深度学习基础PPT幻灯片
合集下载
经典深度学习(PPT136页)
目标:. 确保美国的世界领导地位 . 优先投资下一代人工智能技术
1. 推动以数据为中心的知识发 现技术
2. 增强AI系统的感知能力
3. 理论AI能力和上限
4. 通用AI 5. 规模化AI系统
6. 仿人类的AI技术 7. 研发实用,可靠,易用的机
器人 8. AI和硬件的相互推动
• 提升机器人的感知能力,更智能的同复 杂的物理世界交互
1. AI系统从设计上需要符合人 类的道德标准:公平,正义, 透明,责任感
2. 构建符合道德的AI技术
3. 符合道德标准的AI技术的实 现框架
• 两层架构: 由一层专门负责道德建设 • 道德标准植入每一个工程AI步骤
4th November 2016
策略 - IV: 确保人工智能系统的自身和对周围环境安全性
1. 推动以数据为中心的知识发 现技术
2. 增强AI系统的感知能力
3. 理论AI能力和上限 4. 通用AI
• 目前的AI系统均为窄人工智能, “Narrow AI”而不是“General AI”
• GAI: 灵活, 多任务, 有自由意志,在 多认知任务中的通用能力(学习能力, 语言能力,感知能力,推理能力,创造 力,计划,规划能力
• AI系统的自我解释能力 • 目前AI系统的学习方法:大数据,黑盒 • 人的学习方法:小数据,接受正规的指
导规则以及各种暗示 • 仿人的AI系统,可以做智能助理,智能
辅导
4th November 2016
策略- I : 在人工智能研究领域做长期研发投资
目标:. 确保美国的世界领导地位 . 优先投资下一代人工智能技术
语音识别,口音,儿童语音识别,受损 语音识别,语言理解,对话能力
深度学习介绍 ppt课件
自编码器的建立
建立AutoEncoder的方法是:
对于m个数据的输入,有:
Code编码:使用非线性激活函数,将维输入数据映射到维隐含层(隐含节点表示特 征)
其中W是一个的权重矩阵,b是一个d'维的偏移向量 Decode解码:通过反向映射,对映射后的数据进行重建
hi
yi
SAE网络每一次训练输入都会得到映射后的 与解码后的 。通过对代价函数的最优
深层带来的好处
为什么采用层次网络
预训练与梯度消失现象
主要内容
自编码器结构
单层自动编码器网络(AutoEncoder)实质上是一个三层的反向传播神经网络。它逐 层采用无监督学习的方式,不使用标签调整权值,将输入映射到隐含层上,再经过反 变换映射到输出上,实现输入输出的近似等价。
X1 X2 X3 X4 X5 +1
RBM网络有几个参数,一个是可视层与隐含 层之间的权重矩阵,一个是可视节点的偏移 量b,一个是隐含节点的偏移量c,这几个参 数决定了RBM网络将一个m维的样本编码成 一个什么样的n维的样本。
受限玻尔兹曼机
RBM介绍
RBM训练
一般地,链接权重Wij可初始化为来自正态分布N(0,0.01)的随机数,隐 单元的偏置cj初始化为0; 对于第i个可见单元,偏置bj初始化为log[pi/(1-pi)] 。pi表示训练样本中 第i个特征处于激活状态所占的比率 学习率epsilon至关重要,大则收敛快,但是算法可能不稳定。小则 慢。为克服这一矛盾引入动量,使本次参数值修改的方向不完全由当 前样本似然函数梯度方向决定,而是上一次参数值修改方向与本次梯 度方向的结合可以避免过早的收敛到局部最优点
激活函数
y f (x)
深度学习介绍 ppt课件
从数学的角度来说,稀疏编码是一种多维数据描述方法,数据 经稀疏编码后仅有少数分量同时处于明显激活状态。在实际应 用中,稀疏编码有如下几个优点:稀疏编码方案存储能力大, 具有联想记忆能力,并且计算简便;使自然信号的结构更加清 晰;事实上,这一简单的自编码神经网络通常可以学习出一个 跟主成分分析(PCA)结果非常相似的输入数据的低维表示。
2016年10月,NVIDIA 发布了新版本的通用并行计算架构库:统一计算设备架构(Compute Unified Device Architecture,CUDA)8.0,以及深度学习专用GPU 加速库:cuDNN 5.0;
2016年11月,在2016全球超级计算机大会(SC16)上,AMD 宣布推出新版Radeon开放计算平台
求误差梯度
求期望和实际 的偏差E
计算隐含层 单元误差
E满足要求?
Y
N
达到最大训练次数?
N Y
结束
BP算法流程
13
主要问题
主要问题
训练过程易陷入局部极小值,从而得不到全局最优解; 计算量大,训练次数多,使得学习效率低,收敛速度慢; 对于隐含层个数和隐含层神经元节点的个数选择,至今还没有一个具体的定论,缺乏理论指导; 训练时,学习新样本有遗忘旧样本的趋势
常用改进方法
添加动量项,Dropout等规则化算法等; 采用改进的梯度下降法,使用硬件辅助计算; RNN,LSTM等改进模型和神经元。
2020/12/27
14
主要内容
现状
神经网络
深度学习
介绍 常见模型
• Stacked Auto-Encoder • Convolutional Neural Network • Deep Belief Network
2016年10月,NVIDIA 发布了新版本的通用并行计算架构库:统一计算设备架构(Compute Unified Device Architecture,CUDA)8.0,以及深度学习专用GPU 加速库:cuDNN 5.0;
2016年11月,在2016全球超级计算机大会(SC16)上,AMD 宣布推出新版Radeon开放计算平台
求误差梯度
求期望和实际 的偏差E
计算隐含层 单元误差
E满足要求?
Y
N
达到最大训练次数?
N Y
结束
BP算法流程
13
主要问题
主要问题
训练过程易陷入局部极小值,从而得不到全局最优解; 计算量大,训练次数多,使得学习效率低,收敛速度慢; 对于隐含层个数和隐含层神经元节点的个数选择,至今还没有一个具体的定论,缺乏理论指导; 训练时,学习新样本有遗忘旧样本的趋势
常用改进方法
添加动量项,Dropout等规则化算法等; 采用改进的梯度下降法,使用硬件辅助计算; RNN,LSTM等改进模型和神经元。
2020/12/27
14
主要内容
现状
神经网络
深度学习
介绍 常见模型
• Stacked Auto-Encoder • Convolutional Neural Network • Deep Belief Network
深度学习基础(PPT36页)
CNN的优点
参数减少与权值共享 如下图所示,如果我们有1000x1000(每个隐层神经元都连接图像的每一个像素点),就有 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 = 1 0 1 2个连接,也就是10^12个权值参数。
局部连接网络,每一个节点与上层节点同位置附近10x10的窗口相连接, 则1百万个隐层神经元就只有 16 0100 18 0,即10^8个参数。其权值连 接个数比原来减少了四个数量级。
深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
深度学习的实质
通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。
人脑的视觉机理
1981年的诺贝尔医学奖获得者 David Hubel和Torsten Wiesel发现了视觉系统的信息处理机制,他们发现了一 种被称为“方向选择性细胞的神经元细胞,当瞳孔发现 了眼前的物体的边缘,而且这个边缘指向某个方向时, 这种神经元细胞就会活跃。
由此可知人的视觉系统的信息处理是分级的,高 层的特征是低层特征的组合,从低层到高层的特征表示 越来越抽象,越来越能表现语义或者意图,抽象层面越 高,存在的可能猜测就越少,就越利于分类。
与神经网络的异同
深度学习与神经网络的异同
神经网络
深度学习
深度学习与神经网络的异同
相同点
二者均采用分层结构,系统包括输入层、隐层(多层)、 输出层组成的多层网络,只有相邻层节点之间有连接,同 一层以及跨层节点之间相互无连接,每一层可以看作是一 个logistic 回归模型。
深度学习技术介绍PPT课件
根据Marr(1982)年理论,理解一个信息处理系统,具有三个被称为分析层面的内容: 计算理论(computational theory)对应计算目标和任务的抽象定义。 表示和算法(representation and algorithm)是关于输人和输出如何表示和从输入到输
出变换的算法说明。 硬件实现(hardware implementation)是系统的实物物理实现。
29
29
M40 GPU加速特性
30
GPU与CPU连接
通过PCIe与CPU连接, 最大理论带宽8GB/s(gen2.0)、16GB/s(gen3.0) CPU称为主机(host), 显卡(GPU)称为设备(device)
31
31
最优连接数量:4
32
32
目前的GPU使用方案
33
33
CPU困境
34
机器学习还可以进行压缩(compression)。用规则拟合数据,我们能得到比数据更简 单的解释,需要的存储空间更少,处理所需要的计算更少,例如,一旦你掌握了加法 规则,你就不必记忆每对可能数字的和是多少。
机器学习的另一种用途是离群点检测(outlier detection),即发现那些不遵守规则的 例外实例。在这种情况下,学习规则之后,我们感兴趣的不是规则,而是规则未能覆 盖的例外,他们可能暗示出我们需要注意的异常,如诈骗等。
具体应用-人脸识别
对于人脸识别(face recognition)。输入是人脸 图像,类是需要识别的人,并且学习程序应当 学习人脸图像与身份之间的关联性。人脸会有 更多的类,输入图像也更大一些,并且人脸是 三维的,不同的姿势和光线等都会导致图像的 显著变化。另外,对于特定人脸的输人也会出 现问题,比如说眼镜可能会把眼睛和眉毛遮住 ,胡子可能会把下巴盖住等。
出变换的算法说明。 硬件实现(hardware implementation)是系统的实物物理实现。
29
29
M40 GPU加速特性
30
GPU与CPU连接
通过PCIe与CPU连接, 最大理论带宽8GB/s(gen2.0)、16GB/s(gen3.0) CPU称为主机(host), 显卡(GPU)称为设备(device)
31
31
最优连接数量:4
32
32
目前的GPU使用方案
33
33
CPU困境
34
机器学习还可以进行压缩(compression)。用规则拟合数据,我们能得到比数据更简 单的解释,需要的存储空间更少,处理所需要的计算更少,例如,一旦你掌握了加法 规则,你就不必记忆每对可能数字的和是多少。
机器学习的另一种用途是离群点检测(outlier detection),即发现那些不遵守规则的 例外实例。在这种情况下,学习规则之后,我们感兴趣的不是规则,而是规则未能覆 盖的例外,他们可能暗示出我们需要注意的异常,如诈骗等。
具体应用-人脸识别
对于人脸识别(face recognition)。输入是人脸 图像,类是需要识别的人,并且学习程序应当 学习人脸图像与身份之间的关联性。人脸会有 更多的类,输入图像也更大一些,并且人脸是 三维的,不同的姿势和光线等都会导致图像的 显著变化。另外,对于特定人脸的输人也会出 现问题,比如说眼镜可能会把眼睛和眉毛遮住 ,胡子可能会把下巴盖住等。
深度学习详解37页PPT文档
深度学习与浅层学习的区别
强调了模型结构的深度,通常有5-10多层的隐层节点;
明确突出了特征学习的重要性,通过逐层特征变换,将 样本在原空间的特征表示变换到一个新特征空间,从而 使分类或预测更加容易。与人工规则构造特征的方法相 比,利用大数据来学习特征,更能够刻画数据的丰富内 在信息。
深度学习的训练方法
深度学习的训练过程
自下而上的非监督学习:从底层开始,一层一层的往 顶层训练,分别得到各层参数。
采用无标签数据分层训练各层参数(可以看作是特征学习 的过程)。
自上而下的监督学习
基于第一步的得到的各层参数进一步调整整个多层模型的 参数,这一步是一个有监督的训练过程。
深度学习的几种常用模型
Auto Encoder(自动编码器) Sparse Coding (稀疏编码) Restricted Boltzmann Machine(限制玻尔兹曼机) Deep Belief Networks (深度信任网络) Convolutional Neural Networks (卷积神经网络)
深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
深度学习的实质
通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。
Convolutional Neural Networks(CNN)
Convolutional Neural Networks(CNN)
卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领 域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网 络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现 的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的 特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层 感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度 不变性。
强调了模型结构的深度,通常有5-10多层的隐层节点;
明确突出了特征学习的重要性,通过逐层特征变换,将 样本在原空间的特征表示变换到一个新特征空间,从而 使分类或预测更加容易。与人工规则构造特征的方法相 比,利用大数据来学习特征,更能够刻画数据的丰富内 在信息。
深度学习的训练方法
深度学习的训练过程
自下而上的非监督学习:从底层开始,一层一层的往 顶层训练,分别得到各层参数。
采用无标签数据分层训练各层参数(可以看作是特征学习 的过程)。
自上而下的监督学习
基于第一步的得到的各层参数进一步调整整个多层模型的 参数,这一步是一个有监督的训练过程。
深度学习的几种常用模型
Auto Encoder(自动编码器) Sparse Coding (稀疏编码) Restricted Boltzmann Machine(限制玻尔兹曼机) Deep Belief Networks (深度信任网络) Convolutional Neural Networks (卷积神经网络)
深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
深度学习的实质
通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。
Convolutional Neural Networks(CNN)
Convolutional Neural Networks(CNN)
卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领 域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网 络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现 的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的 特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层 感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度 不变性。
深度学习PPT幻灯片
❖ 案例:星光智能一号广泛应用于高清视频监控、智能驾驶辅助、无人机、 机器人等嵌入式机器视觉领域
14
深度学习硬件加速方式——ASIC
❖ 阻碍深度学习发展的瓶颈仍是算法速度 ❖ 传统处理器需要多条指令才能完成一个神经元的处理 ❖ ASIC根据深度学习算法定制:处理效率、能效均最高 ❖ 代表:Cambricon(寒武纪科技)DianNao芯片、谷歌的TPU芯片、
11
深度学习硬件加速方式——GPU
❖ SIMD方式,计算能力强,并行度支持好 ❖ 通用性,并非针对深度学习
➢ 运行效率受影响 ➢ 能耗仍较大 ❖ 代表: NVIDIA Tesla P100 GPU ❖ 案例:基于GPADAS)方面与众多车企进行合作
样思考
取新的知识技能,并
应用:国际跳棋程序
改善自身性能
应用:垃圾邮件过滤
深度学习
一种机器学习方法,模 拟人脑机制解释数据, 通过组合低层特征形成 更加抽象的高层属性类 别或特征
应用:谷歌视频寻猫
1950's 1960's 1970's 1980's 1990's 2000's 2010's
3
深度学习的流程
Horizon Robotics(地平线机器人)BPU芯片 ❖ 案例:基于TPU的AlphaGo与围棋冠军李世石人机大战,总比分4:1获胜
15
深度学习硬件加速方式比较
加速方式
优点
缺点
CPU
通用结构、可独立工作 通用性导致效率和能效比低
GPU FPGA DSP ASIC
强大的并行计算能力
通用性导致效率受影响、能耗大
灵活性好、设计空间大、 省去流片过程 改动小、计算能力较高
14
深度学习硬件加速方式——ASIC
❖ 阻碍深度学习发展的瓶颈仍是算法速度 ❖ 传统处理器需要多条指令才能完成一个神经元的处理 ❖ ASIC根据深度学习算法定制:处理效率、能效均最高 ❖ 代表:Cambricon(寒武纪科技)DianNao芯片、谷歌的TPU芯片、
11
深度学习硬件加速方式——GPU
❖ SIMD方式,计算能力强,并行度支持好 ❖ 通用性,并非针对深度学习
➢ 运行效率受影响 ➢ 能耗仍较大 ❖ 代表: NVIDIA Tesla P100 GPU ❖ 案例:基于GPADAS)方面与众多车企进行合作
样思考
取新的知识技能,并
应用:国际跳棋程序
改善自身性能
应用:垃圾邮件过滤
深度学习
一种机器学习方法,模 拟人脑机制解释数据, 通过组合低层特征形成 更加抽象的高层属性类 别或特征
应用:谷歌视频寻猫
1950's 1960's 1970's 1980's 1990's 2000's 2010's
3
深度学习的流程
Horizon Robotics(地平线机器人)BPU芯片 ❖ 案例:基于TPU的AlphaGo与围棋冠军李世石人机大战,总比分4:1获胜
15
深度学习硬件加速方式比较
加速方式
优点
缺点
CPU
通用结构、可独立工作 通用性导致效率和能效比低
GPU FPGA DSP ASIC
强大的并行计算能力
通用性导致效率受影响、能耗大
灵活性好、设计空间大、 省去流片过程 改动小、计算能力较高
深度学习基础理论ppt课件
13
AutoEncoder自动编码器
2)通过编码器产生特征,然后训练下一层。这样逐层训 练:
将第一层输出的code当成第二层的输入信号,同样最小化重构误差,就会 得到第二层的参数,并且得到第二层输出的code,也就是原输入信息的第 二个表达了。其他层就用同样的方法炮制。
14
AutoEncoder自动编码器
3)有监督微调: 到这里,这个AutoEncoder还不能用来分类数据,可
以在AutoEncoder的最顶的编码层添加一个分类器,然后 通过标准的多层神经网络的监督训练方法(梯度下降法) 去训练。
微调分为两种,一个是只调整分类器(黑色部分):
15
AutoEncoder自动编码器
另一种:通过有标签样本,微调整个系统:
在研究中可以发现,如果在原有的特征中加入这些自动学习得到的特 征可以大大提高精确度,甚至在分类问题中比目前最好的分类算法效果还 要好!
16
AutoEncoder自动编码器
AutoEncoder存在的一些变体:
a)Sparse AutoEncoder稀疏自动编码器 b)Denoising AutoEncoders降噪自动编码器
20
Sparse Coding稀疏编码
2)Coding阶段:
给定一个新的图片x,由上面得到的字典,通过解一 个LASSO问题得到稀疏向量a。这个稀疏向量就是这个输入 向量x的一个稀疏表达了。
21
深度学习的常用模型
3、Restricted Boltzmann Machine (RBM)限 制波尔兹曼机
18
Sparse Coding稀疏编码
19
Sparse Coding稀疏编码
Sparse coding分为两个部分:
AutoEncoder自动编码器
2)通过编码器产生特征,然后训练下一层。这样逐层训 练:
将第一层输出的code当成第二层的输入信号,同样最小化重构误差,就会 得到第二层的参数,并且得到第二层输出的code,也就是原输入信息的第 二个表达了。其他层就用同样的方法炮制。
14
AutoEncoder自动编码器
3)有监督微调: 到这里,这个AutoEncoder还不能用来分类数据,可
以在AutoEncoder的最顶的编码层添加一个分类器,然后 通过标准的多层神经网络的监督训练方法(梯度下降法) 去训练。
微调分为两种,一个是只调整分类器(黑色部分):
15
AutoEncoder自动编码器
另一种:通过有标签样本,微调整个系统:
在研究中可以发现,如果在原有的特征中加入这些自动学习得到的特 征可以大大提高精确度,甚至在分类问题中比目前最好的分类算法效果还 要好!
16
AutoEncoder自动编码器
AutoEncoder存在的一些变体:
a)Sparse AutoEncoder稀疏自动编码器 b)Denoising AutoEncoders降噪自动编码器
20
Sparse Coding稀疏编码
2)Coding阶段:
给定一个新的图片x,由上面得到的字典,通过解一 个LASSO问题得到稀疏向量a。这个稀疏向量就是这个输入 向量x的一个稀疏表达了。
21
深度学习的常用模型
3、Restricted Boltzmann Machine (RBM)限 制波尔兹曼机
18
Sparse Coding稀疏编码
19
Sparse Coding稀疏编码
Sparse coding分为两个部分:
计算机视觉PPT课件:深度学习基础
C表示 loss function,δl表示第l層的殘差, 我們就得到第l層的殘差:
c
j f net j wk kj
k 1
38/48
池化層的誤差反向傳播
39/48
池化層的的誤差反向傳播
先考慮mean-pooling:得到的卷積層應該是 4×4大小,其值分佈為(等值複製)左圖:
由於需要滿足反向傳播時各層間殘差總和不 變,所以卷積層對應每個值需要平攤:
這種方法很好的解決了Adagrad過早結束的問 題,適合處理非平穩目標,對於RNN效果很 好。
這裏未必是遞增,通過參 數來協調當前和過往。
Adam
Adam 這個名字來源於 adaptive moment estimation,自適應矩估計。
Adam本質上是帶 有動量項的 RMSprop,它利用 梯度的一階矩估計 和二階矩估計動態 調整每個參數的學 習率。
CNN池化層
• 作用:特徵融合,降維 • 無參數需要學習 • 超參數
• 尺寸(size) • 步長(step) • 計算類別
• 最大化池化(Max pooling) • 平均池化(Average pooling)
36/48
卷積神經網路(CNN)
CNN-Softmax層
• 指數歸一化函數
• 將一個實數值向量壓縮到(0, 1) • 所有元素和為1
進 行調參。 3.充分瞭解數據——如果模型是非常稀疏的,那麼優先
考慮自適應學習率的演算法。 4. 根據需求來選擇——在模型設計實驗過程中,要快速
驗證新模型的效果,可以先用Adam;在模型上線或者 結果發佈前,可以用精調的SGD進行模型的極致優化。 5. 先用小數據集進行實驗。有論文研究指出,隨機梯度 下降演算法的收斂速度和數據集的大小的關係不大。因 此 可以先用一個具有代表性的小數據集進行實驗。
c
j f net j wk kj
k 1
38/48
池化層的誤差反向傳播
39/48
池化層的的誤差反向傳播
先考慮mean-pooling:得到的卷積層應該是 4×4大小,其值分佈為(等值複製)左圖:
由於需要滿足反向傳播時各層間殘差總和不 變,所以卷積層對應每個值需要平攤:
這種方法很好的解決了Adagrad過早結束的問 題,適合處理非平穩目標,對於RNN效果很 好。
這裏未必是遞增,通過參 數來協調當前和過往。
Adam
Adam 這個名字來源於 adaptive moment estimation,自適應矩估計。
Adam本質上是帶 有動量項的 RMSprop,它利用 梯度的一階矩估計 和二階矩估計動態 調整每個參數的學 習率。
CNN池化層
• 作用:特徵融合,降維 • 無參數需要學習 • 超參數
• 尺寸(size) • 步長(step) • 計算類別
• 最大化池化(Max pooling) • 平均池化(Average pooling)
36/48
卷積神經網路(CNN)
CNN-Softmax層
• 指數歸一化函數
• 將一個實數值向量壓縮到(0, 1) • 所有元素和為1
進 行調參。 3.充分瞭解數據——如果模型是非常稀疏的,那麼優先
考慮自適應學習率的演算法。 4. 根據需求來選擇——在模型設計實驗過程中,要快速
驗證新模型的效果,可以先用Adam;在模型上線或者 結果發佈前,可以用精調的SGD進行模型的極致優化。 5. 先用小數據集進行實驗。有論文研究指出,隨機梯度 下降演算法的收斂速度和數據集的大小的關係不大。因 此 可以先用一個具有代表性的小數據集進行實驗。
深度学习Deep-Learning【精品PPT文档】
• 减轻梯度消失问题的一个方法是使用线性激活函数(比如rectifier
函数)或近似线性函数(比如softplus 函数)。这样,激活函数的 导数为1,误差可以很好地传播,训练速度得到了很大的提高。
目录
• • • • • • • • 深度学习简介 数学基础 机器学习简介 感知器 前馈神经网络 卷积神经网络 循环神经网络 深度学习应用
向量函数及其导数
按位计算的向量函数及其导数
logistic函数
softmax函数
softmax函数
softmax函数
softmax函数
目录
• • • • • • • • 深度学习简介 数学基础 机器学习简介 感知器 前馈神经网络 卷积神经网络 循环神经网络 深度学习应用
机器学习中的一些概念
目录
• • • • • • • • 深度学习简介 数学基础 机器学习简介 感知器 前馈神经网络 卷积神经网络 循环神经网络 深度学习应用
向量
向量的模和范数
常见的向量
矩阵
矩阵的基本运算
矩阵的基本运算
常见的矩阵
常见的矩阵
导数
向量导数
导数法则
导数法则
导数法则
常用函数及其导数
常用函数及其导数
深度学习Deep Learning
目录
• • • • • • • • 深度学习简介 数学基础 机器学习简介 感知器 前馈神经网络 卷积神经网络 循环神经网络 深度学习应用
深度学习概念
• 机器学习(Machine Learning,ML)主要是研究如何使计算机从给定的 数据中学习规律,即从观测数据(样本)中寻找规律,并利用学习到的 规律(模型)对未知或无法观测的数据进行预测。目前,主流的机器学 习算法是基于统计的方法,也叫统计机器学习。 • 人工神经网络(Artificial Neural Network ,ANN),也简称神经网络, 是众多机器学习算法中比较接近生物神经网络特性的数学模型。人工神 经网络通过模拟生物神经网络(大脑)的结构和功能,由大量的节点 (或称“神经元”,或“单元”)和之间相互联接构成,可以用来对数 据之间的复杂关系进行建模。
《深度学习之》课件
Part Five
深度学习的未来展 望
深度学习的发展趋势
深度学习技术将更 加成熟,应用领域 更加广泛
深度学习技术将与 其他技术相结合, 如大数据、云计算 等
深度学习技术将更 加注重实际应用, 如医疗、金融、教 育等领域
深度学习技术将更 加注重安全性和隐 私保护,如数据加 密、隐私保护等技 术
深度学习与其他技术的融合
动画效果:适当添加动画效果,如淡入淡出、缩放等,以增强视觉效果
PPT课件的动画与交互设计
动画效果:使用动画效果可以使PPT课件更加生动有趣,吸引观众的注意力
交互设计:交互设计可以增加PPT课件的互动性,让观众更加深入地参与到学习中
动画与交互设计的结合:将动画效果和交互设计相结合,可以使PPT课件更加生动有 趣,增加观众的参与度 动画与交互设计的注意事项:在使用动画效果和交互设计时,要注意不要过度使用, 以免影响观众的注意力和参与度
生成对抗网络(GAN)是一种深度学习技术,由两个子网络组成:生成器和判别器。
生成器负责生成假数据,判别器负责判断数据是真是假。
GAN通过两个子网络的对抗训练,不断提高生成器的生成能力,最终生成与真实数据非 常接近的假数据。
GAN在图像生成、数据增强、图像翻译等领域有广泛应用。
深度强化学习
概念:一种结合了深度学习和强化学习的技术 特点:能够处理高维、复杂的数据,同时具备学习能力和决策能力 应用场景:自动驾驶、游戏AI、机器人控制等领域 技术挑战:需要大量的数据和计算资源,以及复杂的算法设计
PPT课件的内容组织与布局设计
ቤተ መጻሕፍቲ ባይዱ
内容组织:根据深度学习的主题, 将内容分为不同的章节,如“深 度学习概述”、“深度学习方 法”、“深度学习应用”等。
《深度学习介绍》课件
强化学习
推荐系统和强化学习是深度学习在智能推荐和决策领域的重要应用,能够提高推荐和决策的准确性和智能化水平。
总结
06
CHAPTER
深度学习的未来展望
随着深度学习在各领域的广泛应用,对模型的可解释性需求日益增强。未来研究将致力于开发更透明的模型,通过可视化、解释性图谱等技术,帮助用户理解模型决策过程。
池化层用于降低数据的维度,减少计算量和过拟合的风险。常用的池化方法有最大池化和平均池化等。
池化层
激活函数
03
CHAPTER
深度学习的主要模型
1
2
3
卷积神经网络是一种专门用于处理具有类似网格结构数据的深度学习模型,例如图像、语音信号等。
CNN通过局部连接、权重共享和下采样等策略,实现对输入数据的逐层特征提取和抽象。
《深度学习介绍》ppt课件
目录
深度学习概述深度学习的基本原理深度学习的主要模型深度学习的训练技巧深度学习的应用实例深度学习的未来展望
01
CHAPTER
深度学习概述ຫໍສະໝຸດ ABCD
自动驾驶
用于车辆控制、障碍物检测等自动驾驶系统的关键技术。
推荐系统
用于个性化推荐、广告投放等商业应用。
自然语言处理
用于机器翻译、文本分类、情感分析等任务。
防止模型在验证集上过拟合
当模型在验证集上的性能停止提升时,应停止训练并保存模型。早停法可以防止模型在训练集上过拟合。同时,定期保存模型权重也有助于后续的重训练或迁移学习。
05
CHAPTER
深度学习的应用实例
自然语言处理
利用深度学习技术对自然语言文本进行分析和处理,例如机器翻译、情感分析等。
DBN在图像识别、语音识别和自然语言处理等领域有一定的应用价值。
推荐系统和强化学习是深度学习在智能推荐和决策领域的重要应用,能够提高推荐和决策的准确性和智能化水平。
总结
06
CHAPTER
深度学习的未来展望
随着深度学习在各领域的广泛应用,对模型的可解释性需求日益增强。未来研究将致力于开发更透明的模型,通过可视化、解释性图谱等技术,帮助用户理解模型决策过程。
池化层用于降低数据的维度,减少计算量和过拟合的风险。常用的池化方法有最大池化和平均池化等。
池化层
激活函数
03
CHAPTER
深度学习的主要模型
1
2
3
卷积神经网络是一种专门用于处理具有类似网格结构数据的深度学习模型,例如图像、语音信号等。
CNN通过局部连接、权重共享和下采样等策略,实现对输入数据的逐层特征提取和抽象。
《深度学习介绍》ppt课件
目录
深度学习概述深度学习的基本原理深度学习的主要模型深度学习的训练技巧深度学习的应用实例深度学习的未来展望
01
CHAPTER
深度学习概述ຫໍສະໝຸດ ABCD
自动驾驶
用于车辆控制、障碍物检测等自动驾驶系统的关键技术。
推荐系统
用于个性化推荐、广告投放等商业应用。
自然语言处理
用于机器翻译、文本分类、情感分析等任务。
防止模型在验证集上过拟合
当模型在验证集上的性能停止提升时,应停止训练并保存模型。早停法可以防止模型在训练集上过拟合。同时,定期保存模型权重也有助于后续的重训练或迁移学习。
05
CHAPTER
深度学习的应用实例
自然语言处理
利用深度学习技术对自然语言文本进行分析和处理,例如机器翻译、情感分析等。
DBN在图像识别、语音识别和自然语言处理等领域有一定的应用价值。
深度学习PPT幻灯片
❖ 配套首个深度学习指令集Cambricon(DianNaoYu) ➢ 直接面对大规模神经元和突触的处理 ➢ 一条指令即可完成一组神经元的处理 ➢ 对神经元和突触数据传输提供一系列支持
25
典型神经网络芯片——寒武纪DianNao
❖ 片上存储:芯片内含三块片上存储,用于存储input的NBin、output的 NBout和神经网络模型权重参数的SB;片上存储与片外通过DMA通信
❖ 案例:星光智能一号广泛应用于高清视频监控、智能驾驶辅助、无人机、 机器人等嵌入式机器视觉领域
14
深度学习硬件加速方式——ASIC
❖ 阻碍深度学习发展的瓶颈仍是算法速度 ❖ 传统处理器需要多条指令才能完成一个神经元的处理 ❖ ASIC根据深度学习算法定制:处理效率、能效均最高 ❖ 代表:Cambricon(寒武纪科技)DianNao芯片、谷歌的TPU芯片、
19
典型神经网络芯片——IBM TrueNorth
❖ TrueNorth芯片结构、功能、物理形态图
20
典型神经网络芯片——IBM TrueNorth
❖ 人脑分成三个层次——神经突触、脑功能区和脑皮层 ➢ 每个突触由诸多神经元组成,每个脑功能区由诸多突触组成,一个 能完整执行任务的皮层由诸多个功能区组成
❖ 谷歌TensorFlow占绝对优势
➢ 强大的人工智能研发水平、快速的迭代更新
7
深度学习的开源框架
❖ 谷歌2015年底发布开源深度学习框架TensorFlow
➢ Tensor(张量):多维数组在高维空间的数学运算 ➢ Flow(流):基于数据流图的计算 ❖ TensorFlow关键特性 ➢ 代码简洁多语言支持 ➢ 分布式算法执行效率高 ➢ 移值灵活伸缩性好 ➢ 支持多种神经网络算法
25
典型神经网络芯片——寒武纪DianNao
❖ 片上存储:芯片内含三块片上存储,用于存储input的NBin、output的 NBout和神经网络模型权重参数的SB;片上存储与片外通过DMA通信
❖ 案例:星光智能一号广泛应用于高清视频监控、智能驾驶辅助、无人机、 机器人等嵌入式机器视觉领域
14
深度学习硬件加速方式——ASIC
❖ 阻碍深度学习发展的瓶颈仍是算法速度 ❖ 传统处理器需要多条指令才能完成一个神经元的处理 ❖ ASIC根据深度学习算法定制:处理效率、能效均最高 ❖ 代表:Cambricon(寒武纪科技)DianNao芯片、谷歌的TPU芯片、
19
典型神经网络芯片——IBM TrueNorth
❖ TrueNorth芯片结构、功能、物理形态图
20
典型神经网络芯片——IBM TrueNorth
❖ 人脑分成三个层次——神经突触、脑功能区和脑皮层 ➢ 每个突触由诸多神经元组成,每个脑功能区由诸多突触组成,一个 能完整执行任务的皮层由诸多个功能区组成
❖ 谷歌TensorFlow占绝对优势
➢ 强大的人工智能研发水平、快速的迭代更新
7
深度学习的开源框架
❖ 谷歌2015年底发布开源深度学习框架TensorFlow
➢ Tensor(张量):多维数组在高维空间的数学运算 ➢ Flow(流):基于数据流图的计算 ❖ TensorFlow关键特性 ➢ 代码简洁多语言支持 ➢ 分布式算法执行效率高 ➢ 移值灵活伸缩性好 ➢ 支持多种神经网络算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Deep Learning
2020/4/2
1
目录
深度学习简介 深度学习的训练方法 深度学习常用的几种模型和方法 Convolutional Neural Networks卷积神经网络 卷积神经网络(CNN)在脑机接口中的应用源自2020/4/22
What is Deep Learning?
浅层结构的局限性在于有限的样本和计算单元情况下 对复杂的函数表示能力有限,针对复杂分类问题其泛 化能力受到一定的制约。
2020/4/2
9
受到大脑结构分层的启发,神经网络的研究发现多隐 层的人工神经网络具有优异的特征学习能力,学习得 到的特征对数据有更本质的刻画,从而有利于可视化 或分类;而深度神经网络在训练上的难度,可以通过 “逐层初始化”来有效克服。
A brief introduce of deep learning
2020/4/2
3
机器学习
机器学习(Machine Learning)是一门专门研究计算机 怎样模拟或实现人类的学习行为,以获取新的知识或 技能,重新组织已有的知识结构市值不断改善自身的 性能的学科,简单地说,机器学习就是通过算法,使 得机器能从大量的历史数据中学习规律,从而对新的 样本做智能识别或预测未来。
机器学习在图像识别、语音识别、自然语言理解、天 气预测、基因表达、内容推荐等很多方面的发展还存 在着没有良好解决的问题。
2020/4/2
4
特征的自学习
传统的模式识别方法:
通过传感器获取数据,然后经过预处理、特征提取、特 征选择、再到推理、预测或识别。 特征提取与选择的好坏对最终算法的确定性齐了非常关 键的作用。而特征的样式目前一般都是靠人工提取特征。 而手工选取特征费时费力,需要专业知识,很大程度上 靠经验和运气,那么机器能不能自动的学习特征呢?深 度学习的出现就这个问题提出了一种解决方案。
深度学习与浅层学习的区别
强调了模型结构的深度,通常有5-10多层的隐层节点;
明确突出了特征学习的重要性,通过逐层特征变换,将 样本在原空间的特征表示变换到一个新特征空间,从而 使分类或预测更加容易。与人工规则构造特征的方法相 比,利用大数据来学习特征,更能够刻画数据的丰富内 在信息。
2020/4/2
15
深度学习的几种常用模型
Auto Encoder(自动编码器) Sparse Coding (稀疏编码) Restricted Boltzmann Machine(限制玻尔兹曼机) Deep Belief Networks (深度信任网络) Convolutional Neural Networks (卷积神经网络)
7
由此可知人的视觉系统的信息处理是分级的,高层的特 征是低层特征的组合,从低层到高层的特征表示越来越 抽象,越来越能表现语义或者意图,抽象层面越高,存 在的可能猜测就越少,就越利于分类。
2020/4/2
8
浅层学习与深度学习
传统机器学习和信号处理技术探索仅含单层非线性变 换的浅层学习结构。浅层模型的一个共性是仅含单个 将原始输入信号转换到特定问题空间特征的简单结构。 典型的浅层学习结构包括传统隐马尔科夫模型(HMM)、 条件随机场(CRFs)、最大熵模型(Max Ent)、支持向量 机(SVM)、核回归及仅含单隐层的多层感知器(MLP)等。
11
深度学习的训练方法
与神经网络的异同
2020/4/2
12
深度学习与神经网络的异同
神经网络
深度学习
2020/4/2
13
深度学习与神经网络的异同
相同点
二者均采用分层结构,系统包括输入层、隐层(多层)、 输出层组成的多层网络,只有相邻层节点之间有连接,同 一层以及跨层节点之间相互无连接,每一层可以看作是一 个logistic 回归模型。
2020/4/2
16
Convolutional Neural Networks(CNN)
2020/4/2
17
Convolutional Neural Networks(CNN)
2020/4/2
5
深度学习
自2006年,深度学习(Deep Learning)已经成为机器 学习研究中的一个新兴领域,通常也被叫做深层结构 学习或分层学习。其动机在于建立、模拟人脑进行分 析学习的神经网络,它模拟人脑的机制来解释数据, 例如图像,声音和文本,深度学习是无监督学习的一 种。
深度学习的概念源于人工神经网络的研究,含多隐层 的多层感知器就是一种深度学习结构。深度学习通过 组合低层特征形成更加抽象的高层表示属性类别或特 征,已发现数据的分布式特征表示。
2020/4/2
14
深度学习的训练过程
自下而上的非监督学习:从底层开始,一层一层的往 顶层训练,分别得到各层参数。
采用无标签数据分层训练各层参数(可以看作是特征学习 的过程)。
自上而下的监督学习
基于第一步的得到的各层参数进一步调整整个多层模型的 参数,这一步是一个有监督的训练过程。
2020/4/2
2020/4/2
6
人脑的视觉机理
1981年的诺贝尔医学奖获得者 David Hubel和Torsten Wiesel发现了视觉系统的信息处理机制,他们发现了一 种被称为“方向选择性细胞的神经元细胞,当瞳孔发现 了眼前的物体的边缘,而且这个边缘指向某个方向时, 这种神经元细胞就会活跃。
2020/4/2
深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
2020/4/2
10
深度学习的实质
通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。
不同点:采用不同的训练机制
神经网络:采用BP算法调整参数,即采用迭代算法来训 练整个网络。随机设定初值,计算当前网络的输出,然后 根据当前输出和样本真实标签之间的差去改变前面各层的 参数,直到收敛; 深度学习:BP算法不适合深度神经网络,如果对所有层 同时训练,时间复杂度会太高,如果每次训练一层,偏差 逐层传递会出现过拟合。因此深度学习整体上是是一个分 层训练机制。
2020/4/2
1
目录
深度学习简介 深度学习的训练方法 深度学习常用的几种模型和方法 Convolutional Neural Networks卷积神经网络 卷积神经网络(CNN)在脑机接口中的应用源自2020/4/22
What is Deep Learning?
浅层结构的局限性在于有限的样本和计算单元情况下 对复杂的函数表示能力有限,针对复杂分类问题其泛 化能力受到一定的制约。
2020/4/2
9
受到大脑结构分层的启发,神经网络的研究发现多隐 层的人工神经网络具有优异的特征学习能力,学习得 到的特征对数据有更本质的刻画,从而有利于可视化 或分类;而深度神经网络在训练上的难度,可以通过 “逐层初始化”来有效克服。
A brief introduce of deep learning
2020/4/2
3
机器学习
机器学习(Machine Learning)是一门专门研究计算机 怎样模拟或实现人类的学习行为,以获取新的知识或 技能,重新组织已有的知识结构市值不断改善自身的 性能的学科,简单地说,机器学习就是通过算法,使 得机器能从大量的历史数据中学习规律,从而对新的 样本做智能识别或预测未来。
机器学习在图像识别、语音识别、自然语言理解、天 气预测、基因表达、内容推荐等很多方面的发展还存 在着没有良好解决的问题。
2020/4/2
4
特征的自学习
传统的模式识别方法:
通过传感器获取数据,然后经过预处理、特征提取、特 征选择、再到推理、预测或识别。 特征提取与选择的好坏对最终算法的确定性齐了非常关 键的作用。而特征的样式目前一般都是靠人工提取特征。 而手工选取特征费时费力,需要专业知识,很大程度上 靠经验和运气,那么机器能不能自动的学习特征呢?深 度学习的出现就这个问题提出了一种解决方案。
深度学习与浅层学习的区别
强调了模型结构的深度,通常有5-10多层的隐层节点;
明确突出了特征学习的重要性,通过逐层特征变换,将 样本在原空间的特征表示变换到一个新特征空间,从而 使分类或预测更加容易。与人工规则构造特征的方法相 比,利用大数据来学习特征,更能够刻画数据的丰富内 在信息。
2020/4/2
15
深度学习的几种常用模型
Auto Encoder(自动编码器) Sparse Coding (稀疏编码) Restricted Boltzmann Machine(限制玻尔兹曼机) Deep Belief Networks (深度信任网络) Convolutional Neural Networks (卷积神经网络)
7
由此可知人的视觉系统的信息处理是分级的,高层的特 征是低层特征的组合,从低层到高层的特征表示越来越 抽象,越来越能表现语义或者意图,抽象层面越高,存 在的可能猜测就越少,就越利于分类。
2020/4/2
8
浅层学习与深度学习
传统机器学习和信号处理技术探索仅含单层非线性变 换的浅层学习结构。浅层模型的一个共性是仅含单个 将原始输入信号转换到特定问题空间特征的简单结构。 典型的浅层学习结构包括传统隐马尔科夫模型(HMM)、 条件随机场(CRFs)、最大熵模型(Max Ent)、支持向量 机(SVM)、核回归及仅含单隐层的多层感知器(MLP)等。
11
深度学习的训练方法
与神经网络的异同
2020/4/2
12
深度学习与神经网络的异同
神经网络
深度学习
2020/4/2
13
深度学习与神经网络的异同
相同点
二者均采用分层结构,系统包括输入层、隐层(多层)、 输出层组成的多层网络,只有相邻层节点之间有连接,同 一层以及跨层节点之间相互无连接,每一层可以看作是一 个logistic 回归模型。
2020/4/2
16
Convolutional Neural Networks(CNN)
2020/4/2
17
Convolutional Neural Networks(CNN)
2020/4/2
5
深度学习
自2006年,深度学习(Deep Learning)已经成为机器 学习研究中的一个新兴领域,通常也被叫做深层结构 学习或分层学习。其动机在于建立、模拟人脑进行分 析学习的神经网络,它模拟人脑的机制来解释数据, 例如图像,声音和文本,深度学习是无监督学习的一 种。
深度学习的概念源于人工神经网络的研究,含多隐层 的多层感知器就是一种深度学习结构。深度学习通过 组合低层特征形成更加抽象的高层表示属性类别或特 征,已发现数据的分布式特征表示。
2020/4/2
14
深度学习的训练过程
自下而上的非监督学习:从底层开始,一层一层的往 顶层训练,分别得到各层参数。
采用无标签数据分层训练各层参数(可以看作是特征学习 的过程)。
自上而下的监督学习
基于第一步的得到的各层参数进一步调整整个多层模型的 参数,这一步是一个有监督的训练过程。
2020/4/2
2020/4/2
6
人脑的视觉机理
1981年的诺贝尔医学奖获得者 David Hubel和Torsten Wiesel发现了视觉系统的信息处理机制,他们发现了一 种被称为“方向选择性细胞的神经元细胞,当瞳孔发现 了眼前的物体的边缘,而且这个边缘指向某个方向时, 这种神经元细胞就会活跃。
2020/4/2
深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
2020/4/2
10
深度学习的实质
通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。
不同点:采用不同的训练机制
神经网络:采用BP算法调整参数,即采用迭代算法来训 练整个网络。随机设定初值,计算当前网络的输出,然后 根据当前输出和样本真实标签之间的差去改变前面各层的 参数,直到收敛; 深度学习:BP算法不适合深度神经网络,如果对所有层 同时训练,时间复杂度会太高,如果每次训练一层,偏差 逐层传递会出现过拟合。因此深度学习整体上是是一个分 层训练机制。