信息论与编码理论基础(第四章).
信息论与编码_曹雪虹__第4章
以得到( 4.5)式。 证毕。
30
例4.3 设试验信道输入符号 {a1, a2 , a3} ,概率
分别为1/3,1/3,1/3,失真矩阵如下所示,
2°绝对误差失真函数 d ( xi , yj ) = | xi - yj |
3°相对误差失真函数 d ( xi , yj ) = | xi - yj |/ | xi |
4°误码失真函数
0 i j
d( xi , y j ) 1 其他
失真函数1°,2°,3°用于连续信源 , 失真函数4°用
于离散信源 , 失真函数4°也称Hanmming失真函数
min
R ( D )0
D
因此可以得到R(D)的定义域为
D 0, Dmax
n
Dmax min j 1,2, ,m
pi dij
i 1
25
Dmax是这样来计算的。R(D)=0就是I(X;Y)=0, 这时试验信道输入与输出是互相独立的,所以条 件概率p(yj/xi)与xi无关。即
pij p( y j / xi ) p( y j ) p j
存储容量(如各种数据库、电子出版物、多媒体娱乐)
、传输时间(如数据通信和遥测)、或占有带宽(如多媒
体通信、数字音频广播、高清晰度电视),要想方设法
压缩给定消息 集合占用的空间域、时间域和频率域资
源。
3
4.1.1 引 言
4.1 实际生活中的需要
基
实际生活中,人们一般并不要求获得完全无失真的消息 ,通常只要求近似地再现原始消息,即允许一定的失真
凡满足保真度准则的这些试验信道称为D失真许 可的试验信道。把所有D失真许可的试验信道 组成一个集合PD。
20
(2)信息率失真函数R(D)
信息论和编码理论基础第四章
第四章
4
§4.2 离散无记忆信道
一、有关DMC的容量定理
(所说的DMC都是离散无记忆平稳信道)
设
DMC在某个时刻输入随机变量为X,输出随机变量为Y。
信道响应特性为转移概率矩阵
[p(y|x),x∈{0, 1, …, K-1},y∈{0, 1, …, J-1}],
它是一个K×J阶矩阵(其中p(y|x)=P(Y=y|X=x))。
2021/2/28
第四章
2
§4.2 离散无记忆信道
定义4.2.1和定义4.2.2(p104) 如果
(1变)量信X道u的的事输件入集为合随都机是变{量0, 序1, 列…X, K1,-X1}2,,X3, …,其中每个随机 (2变)量信Y道u的的事输件出集为合随都机是变{0量, 1序, …列,YJ1-,1Y}2,, Y3, …,其中每个随机 则称该信道为离散信道。如果更有
x0 y0
w( y)
K 1 J 1
q ( x) p ( y | x) log
K 1
p(y | x)
x0 y0
q(z)p(y | z)
z0
K 1
J 1
q ( x) p ( y | x) log
K 1
p(y | x)
x0 2021/2/28
y0
信息论和编码q (理z论) p基( y础| z ) 第z 四0 章
信道及其容量
§4.1 信道分类 §4.2 离散无记忆信道 §4.5 信道的组合 §4.6 时间离散的无记忆连续信道 §4.7 波形信道
信息论和编码理论基础
2021/2/28
第四章
1
§4.1 信道分类
信道是传输信息的媒质或通道。(输入→信道→输出)
信息论与编码第四章课后习题答案
p( x2 | x1 ) = p ( x 2 ) p( x3 | x1 x 2 ) = p ( x3 ) …… p( x N | x1 x2 L x N −1 ) = p( x N ) 即 p( x1 x 2 ) = p ( x1 ) p( x 2 ) p( x1 x 2 x3 ) = p ( x1 ) p( x 2 ) p ( x3 ) …… p( x1 x 2 L x N ) = p ( x1 ) p( x2 )L p( x N ) 【4.8】设连续随机变量 X ,已知 X ≥ 0 ,其平均值受限,即数学期望为 A ,试求 在此条件下获得的最大熵的最佳分布,并求出最大熵。 解: 给定条件如下:
2 2 x1 + x2 2
− ∞ < x1 , x2 < ∞
求随机变量 Y1 = X 1 + X 2 的概率密度函数,并计算变量 Y 的熵 h(Y ) 。 解: 1 − p( x1 x 2 ) = e 2π
2 2 x1 + x2 2
1 − 21 = e 2π
x2
1 − 22 e = p( x1 ) p ( x 2 ) 2π
0 = − log λ + log et ln t 1 − log e ∫ dt
= − log λ + log e = log (2) e λ
h( X ) = − ∫ p ( x ) log p ( x)dx ∞ 1 1 −λ x −λ x = −∫ λe log λe dx −∞ 2 2 ∞ 1 = − ∫ λe −λx log λe −λx dx 0 2 ∞ ∞ 1 = − ∫ λe −λx log dx − ∫ λe −λx log λe −λx dx 0 0 2 e = log 2 + log λ 2e = log λ 注: (2)题直接借用了(1)的结论。
信息论与编码第三版 第4章
p( x)
信息论与编码
3. 根据平均互信息量I(X; Y)达到信道容量的充要条件式对C进行验证:
p ( y j ) p ( xi ) p ( y j / xi )
i 1 3
1 P 0 0
0 1/ 2 0
0 1/ 2 0
0 0 1/6
x1 x2 x3 x4 x5
1 1 1 1 1
y1 y2 y3 y4 y5
1 0 P 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
【解】 该信道的信道容量为:
C max I ( X ; Y ) max H ( X ) log 5
C max I ( X ; Y ) max H (Y )
p( x) p( x)
由于
p( y ) p( x) p( y / x),由于信道转移概率是确定的,求使H (
X
Y)
达到最大值的p ( x )的最佳分布就转化为求p ( y )的最佳分布。由极大离 散熵定理知,在p ( y )等概率分布时,H ( Y ) 达到最大,则
I ( x2 ; Y ) p ( y j / x2 ) log
j 1 2
p ( y j / x2 ) p( y j ) p ( y j / x3 ) p( y j ) p ( y j / x4 ) p( y j ) p ( y j / x5 ) p( y j )
1 log
1 1/ 2
log 2
I ( x3 ; Y ) p ( y j / x3 ) log
j 1 2
1 log
信息论与编码理论-全
纠错码 编码调制理论
网络最佳码
Huffman码(1952)、Fano码 算术码(1976,1982) LZ码(1977,1978)
压缩编码 JPEG MPEG
信息论发展简史
电磁理论和电子学理论对通信理论技术发展起重要的 促进作用
1820-1830年,法拉第发现电磁感应 莫尔斯1832-1835建立电报系统。1876年Bell发明电话 1864麦克斯韦预言电磁波存在,1888年赫兹验证该理论 1895年马可尼发明了无线电通信 微波电子管导致微波通信系统,微波雷达系统 激光技术使通信进入光通信时代 量子力学使通信进入量子通信领域
信息论发展简史
1950年汉明码,1960年卷积码的概率译码, Viterbi译码,1982年Ungerboeck编码调制技术, 1993年Turbo编译码技术,1999年LDPC编码技术。 1959年,Shannon提出率失真函数和率失真信源 编码定理 1961年,Shannon的“双路通信信道”开拓了网 络信息论的研究,目前是非常活跃的研究领域。
熵的性质
对称性 非负性 确定性 扩展性 可加性 极值性 是H(P)上凸函数
熵的性质-可加性
q11 q13
p1
q12 q14
H(p1q11,p1q12,…,p4q44)=H(p 1…,p4)+p1H(q11,…,q14)+…+ p4H(q41,…,q44)
p2
p3
p4
熵的极值性
信息论发展简史
1832年莫尔斯电码对shannon编码理论的启发 1885年凯尔文研究了一条电缆的极限传信速率 1922年卡逊对调幅信号的频谱结构进行研究 1924年奈奎斯特证明了信号传输速率和带宽成正比 1928年Hartley提出信息量定义为可能消息量的对数 1939年Dudley发明声码器 1940维纳将随机过程和数理统计引入通信与控制系 统
信息论与编码(第四章PPT)
变长编码
l p( si )li (码元 / 信源符号).
i 1
编码速率:编码后每个信源符号所能承载的的最大信 息量
R l log m(比特 / 码符号).
编码效率:
H(X ) H(X ) . R l log m
码的多余度(剩余度):
l H ( X ) / log m 1 . l
0级节点
0 1 1 2 2
1级节点
2 0 1 2
w1
0
0
w2 w3 w4 w8
w5
2
2级节点
1
0 1
3级节点
w6 w7
w9
w10
w11
26
4.3
r
变长编码
克拉夫不等式( L.G.Kraft, 1949) 长度为l1, l2,…,lr的m元 即时码存在的充分必要条件是:
li m 1 i 1
唯一可译码: 任意有限长的码元序列,只能被唯一地分割成一个一个的 码字,则称为唯一可译码,或单义可译码. 否则,就称为非 唯一可译码, 或非单义可译码. 例:码4是唯一可译码: 1000100 1000, 100 码3是非唯一可译码: 100010010, 00, 10, 0 或10, 0, 01, 00 或10, 0, 01, 00
麦克米伦定理(麦克米伦: B. McMillan, 1956). 长度为l1, l2,…,lr的m元唯一可译码存在的充分必要条件是:
li m 1 i 1 r
27
4.3
变长编码
例 对于码长序列1,2,2,2, 有 + + + = >1,
1 1 1 1 5 2 4 4 4 4 不存在这样码长序列的唯一可译码, 如码2,码3 1 1 1 1 15 对于码长序列1,2,3,4, 有 + + + = <1, 2 4 8 16 16 存在这样码长序列的唯一可译码! 码4与码5都是唯一可译码!码5是即时码,但码4不是即时码!
信息论与编码第四章课后习题答案
∫ =
− log λe−λx
∞ 0
+ log e
ln e−λx de−λx
∫ =
− log
λ
+
log
et
ln
t
0 1
−
log
e
dt
= −log λ + log e
= log e λ
(2)
h( X )
= −∫ p(x)log p(x)dx
∫ = − ∞ 1 λe−λ x log 1 λe−λ x dx
−∞ 2
2
∫ = − ∞ λe−λx log 1 λe−λxdx
0
2
∫ ∫ = − ∞ λe−λx log 1 dx − ∞ λe−λx log λe−λxdx
0
2
0
= log 2 + log e λ
= log 2e λ
注:(2)题直接借用了(1)的结论。
【4.3】设有一连续随机变量,其概率密度函数为:
sin
x
=
1 2
log
e∫
ln(1
+
sin
x)d
sin
x
+
1 2
log
e∫
ln(1
−
sin
x)d
sin
x
∫ ∫ ln(1+ sin x)d sin x
π
= (1 + sin
x) ln(1+ sin
x)
2 −π
−
2
1 + sin x d sin x 1 + sin x
= 2ln 2 − 2
∫ ln(1− sin x)d sin x
《信息论与编码》第四章习题解答
习题 4.4(3)图
(3)N 个相同 BSC 的积信道,求这时积信道容量 C N ,且证明 lim C N = ∞
N →∞
[证明] (1)见例 4.3.2 (2)首先因为
I ( X ; Y1 , Y2 ,L , YN ) = H ( X ) − H ( X | Y1 , Y2 LYN )
≤ H(X )
利用切比雪夫不等式
1 P[ Z N = 1| X = 0] = P Z ' N > | X = 0 2 1 = P Z ' N − p > − p | X = 0 2 1 ' ≤ P| Z N − p |> − p p 2 p(1 − p ) = 1 N ( − p )2 2
2
2
二元对称信道C2
4
退化信道容量为 C1 = 0 ,二元对称信道容量为 C2 = 1 − H (ε ) , 所以和信道的容量为
C = log 1 + 21− H ( ε )
达到信道容量的输入分布为
[
]
p ( X = 0) = 2 C1 − C 1 = 1 + 21− H (ε ) p ( X = 1) = p( X = 2)
所以满足定理 4.2.2 所规定的达到信道容量的充要条件,信道容量为
C=
(e)
3 bit/次 4
1 3 P = 0 1 3
1 3 1 3 0
0 1 3 1 3
1 3 1 3 1 3
信道是准对称信道,当输入分布为均匀分布时达到信道容量,即
p ( X = 0) = p( X = 1) = p ( X = 2) =
0 1
0 1
《信息论与编码》PPT第四章
L
L
2)误差准则:
→ → e( f , g ) p ε 即P g f (uL ) ≠ uL p ε差准则: E [e ( f , g )] p ε 即E P g f (u ) ≠ u p ε ,
四、 密码 它是研究信息与通信系统在传输最安全的指标下, 系统中的信源和信宿,在什么样条件下能实现统计匹 配,即最优的加、解密密码存在; 反之,又在什么样条件下不能实现统计匹配,即 最优的加、解密密码不存在。
定理: 设掌握密钥的信宿V,它对应的系统传送的互信息 R=I(U,V,)不掌握密钥的信宿V’,它对应的系统传 送的互信息R’=I(U,V’),信源的信息熵为H(U)。 则:掌握密钥的信宿V,通过最优化的加、解密码 V (f2,g2),使得R=I(U,V)=H(U)。 反之,对不掌握密钥的信宿V’,几乎找不到最优化密钥 (f2,g2’)=(f2,g2),即R’=I(U,V’)→0. ——1949年,香农给出的密码学基本定理。 * 概率分布分析: P (ϕ ) = P (u L ).P (cm | sm ).P ( sm | cm ) ′ ′
定理:若系统要求达到的实际传输速率为R,无失真 信源的可用信息熵为H(U),则若R>H(U)时, 最有效的信源编、译码 ( f1 , g1 ) 存在,反之R< H(U)则不存在。——香农编码第一定理。 从另一角度来理解定理——用系统的概率分布函数
′ 由无失真准则,则 即 P ( sm | uL ) = P (vL | sm ) → → 所以 P(ϕ ) = p(uL ) f .g = p(uL ) 即系统与信源匹配。
•系统优化其物理实质: 就是要研究系统在某种优化指标下,上述两类 参数在满足什么条件时对应的编、译码存在; 又在什么条件下,对应的编、译码不存在。
信息论与编码(第三版) 第4章 离散信源编码理论-0525
1
1
N log p(x1x2...xN ) N i log p(xi )
-E log p(x) 以概率
H(X)
定义4.1 关于p(x)的典型集合 A( N ) 是序列 (x1x2...xN ) X 的集合,具有下列性质 2N (H ( X ) ) p(x1x2...xN ) 2N (H ( X ) )
)
H(X
)
|
}
1
得到性质2
性质(3) 2 | A | 1 p(X)
p(X)
2N (H ( X ) )
XxN
XA ( N )
XA( N )
N (H ( X ) ) (N )
渐近等同 分割含义
典型序列 定义
相同数据 相加
性质(4) 对于充分大的N p{A (N)} 1
2 | A | 1 p{A(N)}
前
缀
典型序列数量不大于2N(H(X)+ε)
编码:0+序列编号
码
码长 N(H ) 2
非典型序列
编码:1+序列编号
码长: N log | X | 1
这是一种无失 真编码方法
❖ 上述的编码方案具有下列性质:
码与序列之间是一一对应的,第一位是前缀码,表示码的长 度或者类型。
非典型序列采用的是枚举法,尽管没有考虑非典型序列的长
X p(x)
0 p(0)
p
1 p(1) q
主要关心典型序 列,典型序列的 任何特性都是以 大概率成立的, 而且决定了样点
值的主要特性
如果随机变量 X1, X2,..., X N 都服从独立同一分布
那么序列 (x1x2...xN ) 的概率为
信息论与编码第四章
r li ⒄1
i 1
码长 li ,码符号集中符号个数r,信源符号个数q,称作kraft
不等式。
说明:唯一可译码一定满足不等式,反之,满足不等 式的码不一定是唯一可译码。
• 充分性证明:假定满足不等式的码长为 l1,l2 , ,,lq 在q个码字
中可能有长度相同的码字。设码长为1的有n1个,长度为2
111111
同价码:每个码符号(元)所占的传输时间都相
同
§4.2 等长码和等长信源编码定理
实现无失真编码的条件:
1、信源符号与码字一一对应 2、任意一串有限长的码符号序列与信源s的符号序列也 是一一对应,即N次扩展后仍满足一一对应关系。 同时满足上述条件称为唯一可译码
s : s1 s2 s3 s4 w j c : 0 10 00 01
N
N
I (ai ) log p(ai ) log pik I (sik )
k 1
k 1
E[I (ai )] H (S N ) NH (S )
E(x) xP (x) m H(s)
x
D[I (ai )] ND[I (si )] N{E[I 2 (si )] [H (s)2 ]
q
n
r li
nl m ax
Ajr j
i 1
jn
q
n
r
li
nl max
r j •rj
上界 ⑻
1 (N, ) p(G) MG • max p(ai ) ⑼
max p(ai ) 2 N[H (s) ]
下界 M G [1 (N , )]2 N[H (⑽ s) ]
我们可以只对集G中MG个信源序列进行一一对应的等长编码,
这就要求码字总数不小于MG就行,即
信息论 第4章(哈夫曼编码和游程编码).ppt
- log2 p(xi)
2.34 2.41 2.48 2.56 2.74 3.34 6.66
码长 3 3 3 3 3 4 7
香农编码分析
可求得该信源的信源熵:
H ( X ) pxi log pxi 2.61(比特/符号) xi X
以及平均码长:
N ni p(xi ) 3.14 (码元/符号) i1
下面是对例1进行哈夫曼编码:
X1:0.20 X2:0.19 X3:0.18 X4:0.17
0.39 0.35
0.61
1.00
X6:0.10 X5:0.15
0.26
X7:0.01 0.11
对应的编码如下:
信源 x1
编码 10
码长 2
x2
x3
x4
x5
x6
x7
11 000 001 010 0110 0111
消息码 标识码 游程长度
该编码方式就称为游程编码(RLC).
例如:有一个信源: BBBBBBBBBBXXXXXXXXJJJJJJJJJAAAAAAAAAAAAA AAAAUUUUUUUUUUUUUUUUUUUU
经过游程编码,得到: B#10X#8J#9A#17U#20
其中#为标识码.
游程编码用于二值图像的压缩
游程编码的基本原理
很多信源产生的消息有一定相关性,往往 连续多次输出同样的消息,同一个消息连续输 出的个数称为游程(Run-Length).我们只需要 输出一个消息的样本和对应重复次数,就完全 可以恢复原来的消息系列.原始消息系列经过 这种方式编码后,就成为一个个编码单元(如下 图),其中标识码是一个能够和消息码区分的特 殊符号.
2.61 2.74
信息论与编码课件chapter4_part2
信息论与编码
4-5 变长编码方法
4.5.3 霍夫曼编码方法(Huffman)
信息论与编码
若以X :{a1 , a2 , , ar }为码符号集,用霍夫曼编码方法, s2 S s1 对信源空间为 = P p( s1 ) p( s2 ) 忆信源S,进行无失真信源编码 进行无失真信源编码 其步骤如下: sq 的离散无记 p ( sq )
i = 1,2, , q N
信息论与编码
4-4 变长编码定理 4.4.3 离散平稳无记忆序列变长编码定理 定理:
将信源S的N次扩展信源SN的消息作为编码对象, 的消息作为编码对象 使非延长码的码字与消息一一对应,则当信源扩 展次数N足够大时,信源 足够大时 信源S的每 的每一个信源符号 个信源符号si所 需要的平均码符号数,即平均码长可以无限接近 于下界H(S)/logr ,接近的程度随 接近的程度随N增加而增加
S : {s1 , s 2 , , s q }
W : {w1 , w2 , , wq }
a1
信 源
s1 s2 sq
编码器
X : {a1 , a 2 ,, a r }
a2 ar
信 道
n1 n2 nq
w1 w2 wq
信源空间:
S s1 P = p( s ) 1
王育民信息论与编码理论第四章答案2
4.5若将N 个相同的BSC 级联如题图4.5所示,各信道的转移概率矩阵为⎥⎦⎤⎢⎣⎡--p p p p 11。
令Q t =P{X t =0},t=0,1,…,N,且Q 0为已知。
题图 4.5(a)求Q t 的表达式。
(b)证明N →∞时有Q N →1/2,且与Q 0取值无关,从而证明N →∞级联信道的信道容量C N →0,P>0。
解:(a)对于满足X N 为马氏链的串联信道,他们总的信道转移概率矩阵为各个串联信道矩阵的乘积,即P(X N |X 0)= P(X 1|X 0) P(X 2|X 1)……P(X N |X N-1)由已知得,但各信道的转移概率矩阵为⎥⎦⎤⎢⎣⎡--p p p p 11 则两个信道级联的转移概率矩阵为: P 2=⎥⎦⎤⎢⎣⎡--p p p p 11⎥⎦⎤⎢⎣⎡--p p p p 11=()()()()⎥⎦⎤⎢⎣⎡-+---+2222112p 12p 1p p p p p p 三个信道级联的转移概率矩阵为: P 3=()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+33331221211221211221211-2p 2121p p p 四个信道级联的转移概率矩阵为: P 4=()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+44441221211221211221211-2p 2121p p p 以此类推:可得N 个信道级联的转移概率矩阵为:P N =()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+N N N N p p p 1221211221211221211-2p 2121 则Q t =P{X t =0}=()()()()()000121221211122121122121Q p p Q p Q p t t t t -+--=-⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡-+即Q t 的表达式为:Q t =()()012122121Q p p t t -+-- t=0,1,……,N (b) 由(a)可得到:Q N =()()012122121Q p p t t -+-- 由0<p<1,则0<2p<2,-1<2p-1<1,即|2p-1|<1 则21lim =∞→N N Q ,与Q 0取值无关。
信息论编码第四章答案
解:
唯一可译码是A,B,C,E 唯 可译码是A,B,C,E,非延长码为A,C,E A的平均码长:n = p( si )ni
i =1 6
= 3(1 / 2 + 1 / 4 + 1 / 16 + 1 / 16 + 1 / 16 + 1 / 16)
= 3码符号 / 信源符号
编码效率:
η=
H (s) 2 = * 100% = 66.67% n log r 3
2. 有一个信源X如下:
x2 x3 x4 x5 x6 X x1 p ( x) = 0.32 0.22 0.18 0.16 0.08 0.04
(1)、求信源熵; (2)、用Shannon编码法编成二进制变长码,并计算其编码效 率; (3)、用 用Fano编码法编成二进制变长码,并计算其编码效率; 编码法编成二进制变长码 并计算其编码效率 (4)、用Huffman码编码成二进制变长码,并计算其编码效率; (5)、用Huffman码编码成三进制变长码,并计算其编码效率; (6)、比较三种编码方法的优缺点。
H ( X ) 2.3522 = × 100% = 98% n log l r 2.4 log l 2
三进制Huffman编码 ? 首先, 判断q − (r − 1)α = r 6 − (3 − 1) × 2 = 2 < 3
选择m = r − [q − (r − 1)α ] = 3 − 2 = 1个虚假符号
0.40 0.60 0 0.37 0 0.40 1 0 0.23 1 1
L = P( si )li = 2.63
i =1
二元符号/灰度级
通过哈夫曼最佳二元编码后,每个像素平均需要用 2.63个二元符号,则此图象平均共需要用263个二元符 号来表示。因此,需2.63秒才能传送完这幅图象。 (3)在(2)题中计算时没有考虑图象的像素之间的依赖 关系,但实际此图象的像素之间是有依赖的。例如,若 考虑像素前后之间灰度的依赖关系,就有灰度“1”后 面只可能出现灰度“1”或 “2”;灰度“2”后只可能 出现“2” 或“3” ,等等。这时,此图象灰度值信源 S可以看成一阶马尔可夫信源。还可以进一步看成为m 阶马尔可夫信源。因此,在考虑了这些依赖关系后,像 素的灰度值信源S的实际信息熵 H ∞ < H ( S ) 。根据香农第 一理,总可以找到一种编码,使每个灰度级的平均码 长L → H ∞ (极限熵)。所以,这幅图象还可以进一步压缩, 平均每个像素(灰度)所需要的二元码符号数 L < H ( S ) 。
信息论与编码理论-第4章无失真信源编码-习题解答-20071202
第4章无失真信源编码习题及其参考答案4-1 有一信源,它有六个可能的输出,其概率分布如下表所示,表中给出了对应的码A、B、C、D、E和F(1)求这些码中哪些是唯一可译码;(2)求哪些码是及时码;(3)对所有唯一可译码求出其平均码长l。
4-2 设信源61261126()1()()()()iis s sXp sp s p s p sP X=⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦∑。
对此次能源进行m元唯一可译编码,其对应的码长为(l1,l2,…,l6)=(1,1,2,3,2,3),求m值的最好下限。
(提示:用kraft不等式)4-3设信源为1234567811111111()248163264128128s s s s s s s sXp X⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,编成这样的码:(000,001,010,011,100,101,110,111)。
求(1)信源的符号熵;(2)这种码的编码效率;(3)相应的仙农码和费诺码。
4-4求概率分布为11122(,,,,)3551515信源的二元霍夫曼编码。
讨论此码对于概率分布为11111(,,,,)55555的信源也是最佳二元码。
4-5有两个信源X和Y如下:121234567()0.200.190.180.170.150.100.01X s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦123456789()0.490.140.140.070.070.040.020.020.01Y s s s s s s s s s p Y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用二元霍夫曼编码、仙农编码以及费诺编码对信源X 和Y 进行编码,并计算其平均码长和编码效率;(2)从X ,Y 两种不同信源来比较三种编码方法的优缺点。
4-6设二元霍夫曼码为(00,01,10,11)和(0,10,110,111),求出可以编得这样 霍夫曼码的信源的所有概率分布。
4-7设信源为12345678()0.40.20.10.10.050.050.050.05X s s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求其三元霍夫曼编码。
信息论与编码习题与答案第四章
4-1 设有一个二元等该率信源{}1,0∈X ,2/110==p p ,通过一个二进制对称信道(BSC )。
其失真函数ij d 与信道转移概率ij p 分别定义为j i j i d ij =≠⎩⎨⎧=,0,1 ,j i j i p ij =≠⎩⎨⎧-=,1,εε 试求失真矩阵d 和平均失真D 。
解:由题意得,失真矩阵为d ⎥⎦⎤⎢⎣⎡=0110d ,信道转移概率矩阵为P ⎥⎦⎤⎢⎣⎡--=εεεε11)(i j 平均失真为εεεεε=⨯-+⨯+⨯+⨯-==∑0)1(211211210)1(21),()()(,j i d i j p i p D ji 4-3 设输入符号与输出符号X 和Y 均取值于{0,1,2,3},且输入符号的概率分布为P(X=i)=1/4,i=0,1,2,3,设失真矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0111101111011110d 求)(),(,,max min max min D R D R D D 以及相应的编码器转移概率矩阵。
解:由题意,得 0min =D.则symbol bit X H R D R /24log )()0()(2min ====这时信源无失真,0→0,1→1,2→2,3→3,相应的编码器转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010*********)j (i P ∑===303,2,1,0max ),()(min i j j i d i p D,,141141041141141141141041min{⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯=}041141141141141041141141⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯, 43}43,43,43,43min{== 则0)(max =D R此时输出概率分布可有多种,其中一种为:p(0)=1,p(1)=p(2)=p(3)=0 则相应的编码器转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001000100010001)(i j P]4-5 具有符号集{}10,u u U =的二元信源,信源发生概率为:2/10,1)(,)(10≤<-==p p u p p u p 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.2 离散无记忆信道
关于定义4.2.1和定义4.2.2的注解 “离散”的含义是时间离散,事件离散。即:信道的输入、 输出时刻是离散的,且输入随机变量和输出随机变量都是 离散型的随机变量。 “无记忆”的含义是信道响应没有时间延迟,当时的输出 只依赖于当时的输入。 “平稳”的含义是信道在不同时刻的响应特性是相同的。 “离散无记忆平稳信道”是最简单的信道,信道在某一时 刻u的响应特性 P(Yu=y|Xu=x); x∈{0, 1, …, K-1},y∈{0, 1, …, J-1}, 就能很简单地计算出信道在任意时间段的响应特性。
2018/9/7 5
§4.2 离散无记忆信道
(1)转移概率矩阵的每一行都是一个概率向量。
p(1 | 0) p( J 1 | 0) p(0 | 0) p(0 | 1) p ( 1 | 1 ) p ( J 1 | 1 ) p ( 0 | K 1 ) p ( 1 | K 1 ) p ( J 1 | K 1 )
定义4.2.3(p105) 离散无记忆信道的信道容量定义为如下的C。 达到信道容量的输入概率分布{x, q(x), x∈{0, 1, …, K-1}}称 为最佳输入分布。 其中
C
2018/9/7
q {q ( x ), x{0 ,1,, K 1}}跑遍所有的 K维概率向量
max
I ( X ;Y )
2018/9/7 4
§4.2 离散无记忆信道
一、有关DMC的容量定理 (所说的DMC都是离散无记忆平稳信道)
设 DMC在某个时刻输入随机变量为X,输出随机变量为Y。 信道响应特性为转移概率矩阵 [p(y|x),x∈{0, 1, …, K-1},y∈{0, 1, …, J-1}], 它是一个K×J阶矩阵(其中p(y|x)=P(Y=y|X=x))。 X的概率分布为{x, q(x), x∈{0, 1, …, K-1}}。 Y的概率分布为{y, w(y), y∈{0, 1, …, J-1}}。 以下的结论是我们已知的。
2018/9/7 2
§4.2 离散无记忆信道
定义4.2.1和定义4.2.2(p104) 如果 (1)信道的输入为随机变量序列X1, X2, X3, …,其中每个随机 变量Xu的事件集合都是{0, 1, …, K-1}, (2)信道的输出为随机变量序列Y1, Y2, Y3, …,其中每个随机 变量Yu的事件集合都是{0, 1, …, J-1}, 则称该信道为离散信道。如果更有 (3)P((Y1Y2…YN)=(y1y2…yN)|(X1X2…XN)=(x1x2…xN)) =P(Y1=y1|X1=x1)P(Y2=y2|X2=x2)…P(YN=yN|XN=xN), 则称该信道为离散无记忆信道(DMC)。如果更有 (4)对任意x∈{0, 1, …, K-1},y∈{0, 1, …, J-1},任意两个时 刻u和v,还有P(Yu=y|Xu=x)=P(Yv=y|Xv=x), 则称该信道为离散无记忆平稳信道。
对任意x,
p( y | x) P(Y {0,1,, J 1} | X x) 1
y 0
J 1
2018/9/7
6
§4.2 离散无记忆信道
(2)对任意y∈{0, 1, …, J-1},由全概率公式有
w( y ) q( x) p( y | x)
x 0
K 1Βιβλιοθήκη ( w(0), w(1),, w( J 1)) p(1 | 0) p( J 1 | 0) p ( 0 | 0) p(0 | 1) p ( 1 | 1 ) p ( J 1 | 1 ) (q(0), q(1),, q( K 1)) p(0 | K 1) p(1 | K 1) p( J 1 | K 1)
x 0 y 0 z 0 K 1 J 1
p ( y | x)
q( z ) p( y | z )
8
2018/9/7
§4.2 离散无记忆信道
(4)设转移概率矩阵[p(y|x),x∈{0, 1, …, K-1},y∈{0, 1, …, J-1}]确定,希望选择概率向量{q(x), x∈{0, 1, …, K-1}}使I(X; Y) 达到最大。则见定理2.6.2。
第四章:信道及其容量
§4.1 §4.2 §4.5 §4.6 §4.7 信道分类 离散无记忆信道 信道的组合 时间离散的无记忆连续信道 波形信道
2018/9/7
1
§4.1 信道分类
信道是传输信息的媒质或通道。(输入→信道→输出) 说明 (1)信道输入是随机过程。 (2)信道响应特性是条件概率P(输出值为y|输入值为x),又称 为转移概率。 (3)信道输出是随机过程,输出的概率分布可以由输入的概率 分布和信道的响应特性得到。(全概率公式) (4)根据信道输入、信道响应特性、信道输出的情况,可将信 道分类:离散信道(又称为数字信道);连续信道(又称 为模拟信道);特殊的连续信道——波形信道;恒参信道 和随参信道;无记忆信道和有记忆信道;等等。
2018/9/7 7
§4.2 离散无记忆信道
(3)I(X; Y)是概率向量{q(x), x∈{0, 1, …, K-1}}和转移概率 矩阵[p(y|x),x∈{0, 1, …, K-1},y∈{0, 1, …, J-1}]的函数。
K 1 J 1
p( y | x) I ( X ; Y ) P(( XY ) ( xy)) log w( y ) x 0 y 0 q( x) p( y | x) log K 1
9
§4.2 离散无记忆信道
定理4.2.2(p106) (1)输入概率分布{x, q(x), x∈{0, 1, …, K-1}}是最佳输入分 布的充分必要条件为:对任何满足q(k)>0的k,
I ( X k ; Y ) p( y | k ) log K 1