实验二 Okumura-Hata电波传播模型

合集下载

基于城郊环境下Okumura_Hata预测模型的校正与实现

基于城郊环境下Okumura_Hata预测模型的校正与实现
【Key words】prediction model;CW test method;MATLAB emulation;model adjustment
Hale Waihona Puke 0 引言电波传播特性研究是移动通信系统的关键技术之一,无线 信道的传播特性与通信环境密切相关,具有很大的随机性,多 年来许多专家学者对信道的传播特性进行了大量分析研究, Okumura-Hata 模型[1]在 GSM 系统的路径损耗预测方面具有较高 的准确度,是现代陆地移动通信系统规划的标准[2]。虽然针对 具体环境还有多种预测模型应用于网络规划的工程设计中,但 通过对 Egli、Ibrahim-Parsons、Walfisch- Beroni 等室外宏 蜂窝预测模型与 Okumura-Hata 模型的路径损耗仿真对比发现, Okumura-Hata 预测模型的路径损耗与实测值最为接近。
时,根据CW测量法原理[5],由著名通信专家李建业证明,在
表 1 路径损耗
距离(m) 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320
路径损耗(dB) 85 86 89 91 92 96 94 97 98 103 101 103 104 105 106
ZHANG Xin①, YANG Ming-hua②
(①Department of Computer Science, Lijiang Normal College, Lijiang City, Lijiang Yunnan 674100, China; ②School of Information Science and Engineering Yunnan University, Kunming Yunnan 678000, China)

电磁波传播的三级损耗模型

电磁波传播的三级损耗模型

电磁波传播的三级损耗模型
1、电磁波传播损耗预测目的
掌握基站周围所有地点处接收信号的平均强度及变化特点,以便为网络覆盖的研究以及整个网络设计提供基础。

2、方法
根据测试数据分析归纳出基于不同环境的经验模型,在此基础上对模型进行校正,使其更加接近实际,更准确
3、确定传播环境的主要因素
(1)自然地形(高山、丘陵、平原、水域等)
(2)人工建筑的数量、高度、分布和材料特性
(3)该地区的植被特征
(4)天气状况
(5)自然和人为的电磁噪声状况
(6)系统的工作频率和移动台运动等因素
4、常用的几种室外电波传播损耗预测模型
(1)Hata模型
广泛使用的一种适用于宏蜂窝的中值路径损耗预测的传播模型。

根据应用频率的不同,分为Okumura-Hata模型和COST 231Hata模型。

(2)CCIR模型;
(3)LEE模型;
(4)COST 231 Walfisch-Ikegami模型。

移动通信电波传播和传播预测模型介绍

移动通信电波传播和传播预测模型介绍

2.3.1 多径信号
❖ 两径传播模型
A d
接收信号功率 hb
P rP t 4d 2G rG t1 R e (1 R )A e ..2.. 简化后 直射波
相Pr位P 差t4d2GrGt21R l e2 ❖ 多径传播模型
l(A C C B )A B
C
B hm
其P r中,P tN 4 为 d 路 2 径G 数rG 。t1当NN i 1 很1R 大ie时x ,j 无p法i( )用2公式准确计算出
延都不同的各个路径的总和。
再考虑多普勒效应
考虑移动台移动时,导致各径产生多普勒效应
设路径的到达方向和移动台运动方向之间的夹角为 i
路径的变化量 xi vtcosi
输出复包络
r(t) i
aiexpj2xixi stxicxi
i
aiexpj2xi expj2vtcosistxci vtccosi
P”
(即
)的次级波前
次级波前 P’
能到 达T接P'收R点R
d 2 / 2
d /2
θ在0º到180º之间变化
T
90
R
到达接收点辐射能量与
P
d
θ成正比
扩展波前
菲涅尔区 基尔霍夫公式
❖ 菲涅尔区
从发射点到接收点次级波路径长度直接路径长度大的连续区域
▪ 接收点信号的合成
P”
• n为奇数时,两信号抵消
式中,c为光速; 为波长。
又因为
y (t) R e r (t)e x p (j2fc t)
所以 式中
i r x( t i ) c i为a ie 时x p 延 。j2x i s t x c i ia ie x p j2 fcis t i

电磁场场强测量实验报告

电磁场场强测量实验报告
信息与通信工程学院
电磁场与电磁波实验报告
题目:校园内无线信号场强特性的研究
姓名
班级
学号
班内序号
董敏华
2010211112
10210368
27
杨伶
2010211112
10210369
28
一、实验目的:
1、掌握在移动环境下阴影衰落的概念以及正确测试方法;
2、研究校园内各种不同环境下阴影衰落的分布规律;
3、掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗的概念;
信号电平空间分布图如图所示:
可以看出在此测试区域场强基本稳定在-65dBmw左右。因为频点为182.5MHZ,频率相对较高且无调频广播视频点播类的信号,以至于外界对此影响较小,基本上无大的浮动,且整体信号电平较高。
2、地点为主楼小广场
①在频点为FM97.5MHZ时,主楼小广场的信号电平概率分布直方图以及信号电平概率分布曲线与正态分布曲线的比较如下图所示:
由上图可知:在97.5MHZ的频点下,主楼四层楼道的信号电平在-50dBmw至-80dBmw之间变化,在-62dBmw左右居多。其信号电平概率分布曲线与正太分布曲线差异比较大,其最大值为-48.4dBmw,最小值为-77.4dBmw,均值为-63.79dBmw,标准差为6.64;与上图97.5MHZ的主楼前小广场的数据图比较,发现此组数据的信号电平变化范围较大,且整体的电平值偏大分析原因:主楼小广场比较开阔,为室外测量数据,但主楼四层楼道属于室内测量,在室内测量时未经过建筑物的穿透损耗,所有整体的电平比较大,又因为主楼内的各种实验设备的不同,使得此组数据变化范围较大。
①自由空间模型
自由空间模型假定发射天线和接收台都处在自由空间。我们所说的自由空间一是指真空,二是指发射天线与接收台之间不存在任何可能影响电波传播的物体,电波是以直射线的方式到达移动台的。自由空间模型计算路径损耗的公式是:

北邮电磁场与电磁波实验报告

北邮电磁场与电磁波实验报告

.信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究姓名班级学号序号一、 实验目的1、 掌握在移动环境下阴影衰落的概念以及正确测试方法;2、 研究校园内各种不同环境下阴影衰落的分布规律;3、 掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗的概念;4、 通过实地测量,分析建筑物穿透损耗随频率的变化关系;5、 研究建筑物穿透损耗与建筑材料的关系。

二、 实验内容利用DS1131场强仪,实地测量信号场强1) 研究具体现实环境下阴影衰落分布规律,以及具体的分布参数如何;2) 研究在校园内电波传播规律与现有模型的吻合程度,测试值与模型预测值的预测误差如何;3) 研究建筑物穿透损耗的变化规律。

三、 实验原理1) 阴影衰落在无线信道里,造成慢衰落的最主要原因是建筑物或其他物体对电波的遮挡。

在测量过程中,不同测量位置遇到的建筑物遮挡情况不同,因此接收功率不同,这样就会观察到衰落现象。

在阴影衰落的情况下,移动台被建筑物遮挡,它所收到的信号是各种绕射、反射、散射波的合成。

所以,在距基站距离相同的地方,由于阴影效应的不同,他们收到的信号功率有可能相差很大,理论和测试表明,对任意的d 值,特定位置的接收功率为随机对数正态分布即:00()[]()[]()[]10log(/)r r r P d dBm P d dBm X P d dBm n d d X σσ=+=-+其中,X σ为0均值的高斯分布随机变量,单位为dB ,标准偏差为σ,单位也是dB 。

对数正态分布描述了在传播路径上,具有相同的T-R 距离时,不同的随机阴影效应。

这样利用高斯分布可以方便的分析阴影的随机效应。

它的概率密度函数是:22()()2x m f x σ-- 应用于阴影衰落时,上式中的x 表示某一次测量得到的接受功率,m 表示以dB 表示的接收功率的均值或中值,σ表示接收功率的标准差,单位为dB 。

阴影衰落的标准差同地形、建筑物类型、建筑物密度等有关,在市区的150MHz 频段其典型值是5dB 。

传播模型汇总

传播模型汇总

传播模型总汇1. HATA 传播模型: (1)2. OKUMURA-HATA 电波传播衰减计算模式 (2)3.COST231-HATA 模型 (2)4. COST-231-WALFISH-IKEGAMI传播模型(适合微蜂窝结构) (3)5 . LEE 传播模型( 美籍华裔通信专家李建业先生提出) (3)6. 海面传播模型 (4)7.室内基本的模型(典型)如下: (4)8.室内电梯传播模型 (4)9. 对室内型微蜂窝传播特性的描述,应使用KEENAN-MOTLEY 模型。

(5)10. 隧道的无线传播 (5)1.Hata 传播模型:L=46.3+33.9log(f)-13.82log(Hb)+(44.9-6.55log(Hb))log(d)+Cm (1)其中,L 为最大路径损耗(db); f 为载波频率(Hz);Hb 为天线高度(米);d 为到基站距离( 米)。

中等规模城市或市郊中心树木的稀疏程度中等时:Cm=0 大城市市区中心:Cm=3。

针对3G系统,3G组织也特别推荐了一个模型,该传播模型如下: 3G 传输模型:L=40(1-0.004Hb)log(d)-18log(Hb)+21log(f)+80 (2)其中,各参数的意义同(1)式。

在WCDMA 中,当f=2000MHz 时,则上述两式简化为: Hata 城市传播模型:L=161.17-13.82log(Hb)-(44.9-6.55log(Hb))log(d) ;3G 传播模型:L=149.32-18log(Hb)-40(1-0.004Hb)log(d) 。

2. Okumura-hata 电波传播衰减计算模式GSM900MHz 主要采用CCIR 推荐的Okumura 电波传播衰减计算模式。

该模式是以准平坦地形大城市区的中值场强或路径损耗作为参考,对其他传播环境和地形条件等因素分别以校正因子的形式进行修正。

不同地形上的基本传输损耗按下列公式分别预测。

移动通信中的电波传播与天线第四讲_电波传播模型.

移动通信中的电波传播与天线第四讲_电波传播模型.

第5章移动通信系统中的场强预测模型☐场强预测——所谓场强预测是指根据移动通信的不同环境得到通信范围内的场强分布(路径损耗),建立电波传播的模型,以便对通信网进行规划和设计(天线、基站站址、小区半径、频率……)☐传播模式——分为经验模式、半经验或半确定模式、确定性模式。

经验模式是根据大量测量结果统计分析后导出的公式,应用经验模式可以容易和快速地预测路径损耗,不需要有关环境的详细信息,但是不能提供非常精确的路径损耗估算值。

确定性模式是对具体现场环境直接应用电磁场理论进行计算,如射线追踪方法,环境的描述可以从地形地物数据库中得到。

半经验或半确定模式是基于把确定性方法用于一般的市区或室内环境中导出的公式,为了改善半经验或半确定模式和实验结果的一致性,有时需要根据实验结果对公式进行修正,得到的公式是天线周围某个规定特性的函数。

传播环境——蜂窝移动通信的最大特点就是小区制。

小区的大小和范围直接和传播条件有关,可以根据需要选择小区的大小和范围。

移动通信系统中主要采用宏小区、微小区(微蜂窝)和微微小区(微微蜂窝)三种形式。

经验模式或半经验模式对具有均匀特性的宏小区是合适的。

半经验模式还适用于均匀的微小区,在那里模式所考虑的参数能很好的表征整个环境。

确定性模式适合于微小区和微微小区不管它们的形状如何。

确定性模式对宏小区是不能胜任的,因为对这种环境所需的计算机CPU时间使人无法忍受☐四种电波传播模型——电波传播模型是指通过对电波传播的环境进行不同方法的分析后所得到的电波传播的某些规律、结论以及具体方法。

利用电波传播模型不仅可以估算服务区内的场强分布,而且还可以对移动通信网进行规划与设计。

统计模型(Statistical Model)——通过对移动通信服务区内的场强进行实地测量,在大量实测数据中用统计的方法总结出场强中值随频率、距离、天线高度等因数的变化规律并用公式或曲线表示出来。

实验模型(Empirical Model)——通过实验方法得出某些电波传播规律,但不像统计模型那样用公式或曲线表示出来。

浅谈移动通信无线传播

浅谈移动通信无线传播

浅谈移动通信无线传播摘要:在规划和建设一个移动通信网时,从频段的确定、频率分配、无线电波的覆盖范围、计算通信概率及系统间的电磁干扰,直到最终确定无线设备的参数,都必须依靠对电波传播特性的研究和据此进行的场强预测,是进行系统工程设计与研究频谱有效利用、电磁兼容性等课题所必须了解和掌握的基本理论。

关键词:无线通信;移动通信;3G时代一、无线移动通信技术相关知识(1)卫星移动通信系统。

卫星移动通信系统,其最大特点是利用卫星通信的多址传输方式,为全球用户提供大跨度、大范围、远距离的漫游和机动、灵活的移动通信服务,是陆地蜂窝移动通信系统的扩展和延伸,在偏远的地区、山区、海岛、受灾区、远洋船只及远航飞机等通信方面更具独特的优越性。

(2)无线接入系统。

无线接入系统(又称无线本地环路),就是通过无线的方式,在有线管道铺设比较困难、投资大、电话用户密度大的市和近郊区,或电话用户稀少的远郊区、农村、山区等地方,提供固定电话的服务,作为有线电话网的补充和延伸。

(3)无线寻呼系统。

无线寻呼系统是近几年发展非常迅速的移动通信系统之一。

我国曾是世界上头号寻呼大国。

无线寻呼信息除传统的个人信息外,还有大量的公共信息、专用信息。

目前,应该利用现有的无线寻呼网络,朝向规模经营、文字化、自动化、大联网、高速率、多业务、多用途,以及语音寻呼、双向信息寻呼和小区复用频率的组网方式等方面发展。

(4)未来公众陆地移动通信系统FPLMTS。

目前FPLMTS集合了各种移动通信系统的功能,用户只需使用单一的移动终端设备,就可以在全球任何地方、任何时候,获得与任何人进行高质量的移动通信服务,也就是大家所期望的个人通信。

当前,我国第三代移动通信系统的体系仍然延续了二代移动通信的传统,趋向于采用混合组网,既有CDMA2000体制,也有我国自己提出的TD-SCDMA体制。

二、无线电波的传播(一)传播方式1.直达波或自由空间波;2.地波或表面波;3.对流层反射波;4.电离层波蜂窝系统的无线传播利用了第二种地波或表面波传播方式。

电波传播预测模型分析与研究

电波传播预测模型分析与研究

总第205期2011年第7期舰船电子工程Ship Electr onic EngineeringV o l.31No.784电波传播预测模型分析与研究*刘 勇1) 周新力2) 金慧琴2)(海军航空工程学院研究生管理大队1) 烟台 264001)(海军航空工程学院电子信息工程系2) 烟台 264001)摘 要 文章对O kumura H ata模型、CO ST231 H ata模型、Egli模型三种电波传播模型进行了简要分析。

通过对某地的电波传播损耗进行测量得到实测数据,与预测模型仿真结果进行对比分析,对比结果显示COST231 Hate模型与实测值最接近,并且通过对COST231 H ate模型的修正,使得修正后的模型满足高精度电波传播模型的6dB要求,适合用于预测本地的电波传播。

关键词 电波传播;O kumura H ata模型;COST231 Hata模型;Eg li模型;模型修正中图分类号 T N926Analysis and Research of Radio Wave Propagation M odelL iu Y ong1) Z ho u X inli2) Jin Huiqin2)(Gr aduate Students Brig ade o f N AA U1),Y antai 264001)(Depar tment o f Electro nic and Informat ion Eng ineering of N A AU2),Y antai 264001)A bstract T hree radio w ave pr opagatio n models:O kumura H ata M odel,COST231 H ata M o del and Eg li M odel,are firstly pr esented in this article.O n site test pr opagat ion loss data ar e used to get simulat ions o n these mo dels,simulatio n re sults and actual data a re t hen co mpar ed,r esults show that COST231 Hata M odel has narr ow er err or band.T his art icle lastly modifies COST231 Hata M odel,to make the modified model has ev en hig her accur acy6dB w hen applied t o the pr ediction of local radio pr opagation.Key Words electromagnetic w ave pro pagation,Okumura Hata model,COST231 Hata model,Egli model,model cor rection Class Nu mber T N9261 引言随着军队信息化进程的加快,军事领域电磁应用日益广泛,电磁环境日益复杂,电磁空间的斗争会更加激烈并将对争夺未来战争主动权,乃至国家安全与战略利益拓展产生重大影响[1]。

5.无线电波传播的基本理论(V0.2)

5.无线电波传播的基本理论(V0.2)
L = K1 + K 2 Log10 (d ) + K 3 H ms + K 4 Log10 H ms + K 5 Log10 ( H eff ) + K 6 H eff Log10 (d m ) + K 7 ( LDIFF ) + K clutter
移动台距基站的距离 绕射损耗
d
LDIFF
H eff 基站天线的有效高度
6
反射
在平地面上传播的双射线模型
7
多径衰落
多径衰落
当接收机在可引起反射、绕射的复杂环境下移动时, 当接收机在可引起反射、绕射的复杂环境下移动时, 在不到一个波长范围内会出现几十分贝的电平变化和激烈的相位摆动
8
绕射
当接收机和发射机之 间的无线路径被物体 的边缘阻挡时发生绕 射。 绕射使得无线电信号能够传播 到阻挡物后面。 到阻挡物后面。
通常基于几何绕射理论 )、物理光学 (GTD)、物理光学 )、 (PO)的射线跟踪或其 ) 他精确方法。 他精确方法。
29
三类小区
宏小区(宏蜂窝) 宏小区(宏蜂窝)
覆盖范围通常大于1Km 覆盖范围通常大于 高发射功率,大于20W 高发射功率,大于 高增益天线10dBi~20dBi 高增益天线 ~ 天线高过周围环境 常用于郊区、农村、 常用于郊区、农村、公路等 解决覆盖问题 通常采用经验传播模型或半 确定性经验传播模型进行预 测
16
陆地移动通信中的无线信号
小尺度衰落 小尺度上信号包络的变化是描述多径衰落的, 小尺度上信号包络的变化是描述多径衰落的, 通常服从瑞利概率密度函数, 通常服从瑞利概率密度函数,因而也称为瑞利 衰落。 衰落。 中尺度衰落 中尺度的传播机制描述的是阴影衰落, 中尺度的传播机制描述的是阴影衰落, 当以分贝表示时, 当以分贝表示时,这种变化趋向于正态 高斯)分布, (高斯)分布,通常称为对数正态衰落 大尺度衰落 大尺度的传播机制描述的 是区域均值, 是区域均值,具有幂定律 传播特征, 传播特征,即中值信号功 率与距离长度增加的某次 幂成反比变化

实验二-Okumura-Hata电波传播模型

实验二-Okumura-Hata电波传播模型

学生实验实习报告册学年学期:2017 -2018 学年春学期课程名称:无线电波传输基础学生学院:通信与信息工程学院专业班级:IT011501学生学号:2015210232学生姓名:高小明联系电话:重庆邮电大学教务处制课程名称无线电波传输基础课程编号实验地点YF313 实验时间2017年3月22日校外指导教师无校内指导教师王洋实验名称Okumura-Hata电波传播模型评阅人签字成绩一、实验目的1 学习电波传播Okumura-Hata模型分析方法。

2.掌握使用Matlab建立Okumura-Hata模型的方法。

3.理解传播传输方程的建立。

二、实验原理1.基于电波传输模型的复杂性对于传输模型的不同情况建立不同的损耗方程:2.当移动台的高度为典型值为hr=1.5m时,按Hata-Okumura模型计算路径损耗的公式为:其中:●:市区准平滑地形电波传播损耗中值(dB)●:工作频率(MHz)●:基站天线有效高度(m)●:移动台的有效高度(m)●:移动台与基站之间的距离(km)●:移动台天线高度因子对于中小规模城市,移动台天线高度因子为:对于大城市对于郊区对于开阔地其中:郊区的电波传播损耗中值(dB):开阔地的电波传播损耗中值(dB)三、使用仪器、材料一台装有Matlab的PC5即可。

四、实验步骤1.大城市市区地区准平滑地形、郊区和开阔区,基站天线高度200米,手机天线高度3米,计算不同传播距离和不同载波频率条件下的传播损耗中值。

画出相应的曲线。

2.分析Okumura-Hata方法比较电波在不同频率、不同场景等情况下传播规律。

3.对比900MHz和1800MHz电波传播规律。

五、实验过程原始记录(数据、图表、计算等)实验代码:PhoneHighth=3;JZHighth=200;Distance=10;f1=150:0.1:200;%大城市频率范围1 150<f<200f2=200:0.1:2000;%大城市频率范围2 200<f<2000f=[f1 f2];%大城市频率范围1 150<f<200Ch1=8.29*(log10(1.54*PhoneHighth)).^2-1.1;%大城市频率范围2 200<f<2000Ch2=3.2*log10(11.75*PhoneHighth).^2-4.97;while Distance<200PathLoss1=69.55+26.16*log10(f1)-13.82*log10(PhoneHighth)-Ch1+(44.9-6.55*log10(JZHighth ))*log10(Distance);PathLoss2=69.55+26.16*log10(f2)-13.82*log10(PhoneHighth)-Ch2+(44.9-6.55*log10(JZHighth ))*log10(Distance);%郊区总损耗CTotalLoss1=PathLoss1-2*(log10(f1/28)).^2-5.4;CTotalLoss2=PathLoss2-2*(log10(f2/28)).^2-5.4;%开阔地区损耗1六、实验结果及分析在基站高度200米手机高度3米是分析如下:1.频率距离相同时,中小城市的损耗中值比大城市较小一些。

北邮电磁场与电磁波实验报告材料

北邮电磁场与电磁波实验报告材料

信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究指导老师:日期:目录一、实验目的 (1)二、实验原理 (1)1、电磁波的传播方式 (1)2、尺度路径损耗 (1)3、阴影衰落 (2)4、建筑物的穿透损耗的定义 (3)三、实验内容 (3)四、实验步骤 (4)1、实验对象的选择 (4)2、数据采集 (4)3、数据录入 (5)4、数据处理 (6)五、实验结果与分析 (6)1、磁场强度地理分布 (6)2、磁场强度统计分布 (8)3、建筑物的穿透损耗 (9)六、问题分析与解决 (9)1、测量误差分析 (9)2、场强分布的研究 (10)七、分工安排 (10)八、心得体会 (10)九、附录:数据处理过程 (12)一、实验目的1.掌握在移动环境下阴影衰落的概念以及正确的测试方法;2.研究校园内各种不同环境下阴影衰落的分布规律;3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4.通过实地测量,分析建筑物穿透损耗随频率的变化关系;5.研究建筑物穿透损耗与建筑材料的关系。

二、实验原理1、电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。

对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。

因此基站的覆盖区的大小,是无线工程师所关心的。

决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。

电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。

当电磁波传播遇到比波长大很多的物体时,发生反射。

当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。

当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。

散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。

无线电波传播模型的应用与分析

无线电波传播模型的应用与分析

无线电波传播模型的应用与分析在现代通信领域,无线电波传播模型扮演着至关重要的角色。

它们是我们理解和预测无线电信号在不同环境中传播特性的有力工具,对于无线通信系统的规划、设计、优化以及性能评估都具有不可或缺的意义。

无线电波传播模型的种类繁多,每种模型都有其适用的场景和局限性。

常见的传播模型包括自由空间传播模型、OkumuraHata 模型、COST 231-Hata 模型、射线跟踪模型等。

自由空间传播模型是最简单也是最基础的模型。

它假设信号在无障碍物的理想自由空间中传播,不考虑地形、建筑物等因素的影响。

这个模型适用于卫星通信等长距离、空旷环境下的粗略估计。

但在实际的城市、山区等复杂环境中,其预测结果往往与实际情况相差较大。

OkumuraHata 模型则是一种基于大量实测数据建立起来的经验模型,适用于频率在 150 MHz 到 1500 MHz 之间的城区环境。

它考虑了基站天线高度、移动台天线高度以及通信距离等因素对信号衰减的影响。

然而,对于一些特殊的地形地貌,如山区、水域等,该模型的准确性可能会有所下降。

COST 231-Hata 模型是在 OkumuraHata 模型的基础上发展而来,对频率范围进行了扩展,适用于 1500 MHz 到 2000 MHz 的频段。

它在城市环境中的预测效果相对较好,但在农村和郊区等场景的应用中仍存在一定的局限性。

射线跟踪模型是一种基于几何光学和电磁理论的确定性模型。

它通过追踪无线电波从发射源到接收点的传播路径,考虑了反射、折射、绕射等多种传播机制。

这种模型能够提供非常精确的预测结果,但计算复杂度较高,通常需要大量的计算资源和时间。

无线电波传播模型在无线通信系统的规划和设计中发挥着重要作用。

在网络规划阶段,工程师们可以利用传播模型来估算基站的覆盖范围、信号强度以及容量,从而确定基站的位置、数量和发射功率等关键参数。

例如,在城市中心区域,由于建筑物密集,信号衰减较大,需要增加基站密度以保证良好的覆盖;而在郊区或农村地区,由于地形开阔,信号传播条件较好,可以适当减少基站数量,降低建设成本。

400M传播特性及衰落

400M传播特性及衰落

400MHz频段无线电传播特性及衰落UHF(30MHz< f< 3000MHz) 该频带内,安排有大量固定和移动业务。

该频段除了低端之外,通常不是通过有规则的电离层来进行电波传播的。

气候只对超折射和传导有影响,这是由大气折射指数中正常梯度的变化引起的。

除了自由空间传播外,对流层散射和绕射也是很重要的。

我们可以按照下述各种特定传播环境的传播模型来估算电波的传播损耗。

(1)自由空间传播模型通常把电磁波在真空中的传播称之为“自由空间传播”。

在某些环境中,假定有用信号只是由于在自由空间所产生的传播损耗。

也就是说,把大气看成为近似真空的均匀介质,电磁波沿直线传播,不发生反射、折射、绕射和散射等现象,这时在大气中的传播就等效于自由空间传播,它只与频率f和距离d有关。

(2)平坦大地的绕射模型适合大于视距的传播范围,对有用信号的预测需要考虑地球的曲率。

(3)粗糙大地上的传播模型适合于世界特定地区和特别粗糙大地上的传播。

(4)OKUMURA-HATA模型以距离和发射机天线的高度为依据。

校正这个损耗须要以建筑物在接收位置附近的百分率、路径类型(陆地、海洋、混合)和大地不规则度为依据,主要用于大城市和郊区环境的传播损耗和场强预测。

(5)LONGLEY-RICE(ITS)模型可用来估算地波和对流层散射的传播衰减。

这个模型是统计模型,也就是预测中值场强和估计信号随时间与空间的变化。

另外,还必须考虑到其他有可能造成干扰的传播机理,包括电离层传播机理,有可能随季节和昼夜时间变化;通过偶尔发生的E层,有可能允许在约70MHz频率上进行长距离传播。

此外还有超折射和大气波导等。

400MHz频段的电波属于微波波段,该波段是指频率为300-3000MHz(波长为0.1-1m)的电波,称为特高频(UHF)。

一般来说微波(UHF)频率电波的传播,电波穿透电离层不再返回地面,地波在地面上传播时,由于波长比较短,地面上与使用波长可比拟的物体多,绕射困难,形成阻隔,造成地波衰减严重,因此主要依靠空间直射波传播,也称为视距传播。

电波传播特性的估算

电波传播特性的估算
⑵ 计算准平滑地形市区的衰耗中值
由图3-6查得: Am ( f .d ) Am (450,20) 30.5(dB)
由图3-7查得: Hb (hb , d ) Hb (70,20) 10(dB)
由图3-8查得: H m (hm , f ) H m (1.5,450 ) 3(dB)
所以准平滑地形市区衰耗中值为: LT Lbs Am ( f , d ) H b (hb , d ) H m (hm , f )
LA LT KT
(3.22)
KT为地形地物修正因子
LA LT KT
(3.22)
KT kmr Q0 Qr kh khf k js ksp ks
(3.23)
式中:
Kmr:郊区修正因子; Q0,Qr:开阔区,准开阔区修正因子; Kh,Khf:丘陵地形修正因子及丘陵地微小修正值; Kjs:孤立山丘地形修正因子; Ksp:斜坡地形修正因子; Ks:水路混合地形修正因子
⒋ 任意地形的信号中值预测
⑴ 计算自由空间的传播衰耗
Lbs 32.45 20 lg d (km) 20 lg f (MHZ )
⑵计算准平滑地形市区的信号中值
LT Lbs Am ( f , d ) H d (hb , d ) H m (hm , f )
⑶计算任意地形地物情况下的信号中值
⑶ 植被衰耗
由树木、植被引起的附加衰耗不仅取决于树木的 高度、种类、形状、分布密度、空气湿度及季节 变化,还取决于工作频率、天线极化、通过树木 的路径长度等多方面因素。
一般来说,垂直极化波比水平极化波的衰耗稍大 些。
⑷ 隧道中的传播衰耗
空间电波在隧道中传播时,由于隧道壁的吸收及电波的 干涉作用而受到较大的衰耗。
播方向)有关。在纵向街道上衰耗较小,横向街道 上衰耗较大。 纵向修正因子kai和横向修正因子kac如图3-16所 示。

Okumura—Hata模型的计算机编程

Okumura—Hata模型的计算机编程

Okumura—Hata模型的计算机编程摘要:移动通信中,由于移动台在不停的运动,电波传播的实际情况是复杂多变的。

为此,人们通过大量的实地测量和分析,总结归纳了多种经验模型。

通常在一定情况下,使用这些模型对移动通信电波传播特性进行估算,都能获得比较准确的预测结果。

Okumura—Hata 模型是目前应用最广泛的模型,由此,通过计算机编程或仿真更能方便的得出基本传输损耗。

关键词:移动通信Okumura—Hata编程传输损耗一、Okumura—Hata模型的介绍移动通信中电波传播的实际情况是复杂多变的。

实践证明,任何试图使用一个或几个理论公式计算的结果,都将引入较大误差。

甚至与实测结果相差甚远。

为此,人们通过大量的实地测量和分析,总结归纳了多种经验模型。

通常在一定情况下,使用这些模型对移动通信电波传播特性进行估算,都能获得比较准确的预测结果。

能否准确预测基站信号的覆盖情况是移动通信网络规划的优劣所在,提高预测准确度的关键在于选择最能接近实测值的预测模型。

目前应用较为广泛的是OM模型(Okumura模型),为了在系统设计时,使Okumura模型能采用计算机进行预测,Hata对Okumura模型的基本中值场强通过对其他预测模型的分析对比,并与实测数据的仿真比较,得出了0kumum—Hata预测模型更接近实测值的结论。

移动通信系统中的无线电波是在不规则地形情况下进行传播的,在估算路径损耗时,应考虑特定地区的地形因素,预测模型的目标是预测特定点或特定区域(小区)的信号强度,但在方法复杂性和精确性方面差异很大,因此针对不同地形特点,要选择最适合于本地的预测模型。

在传播预测模型中通常将地形划分为城区、郊区、开阔地和空间自由传播四种情况,城市郊区人口密度介于乡村和繁华市区,基站规划需同时考虑覆盖范围和用户容量两方面因素,随着移动用户的急剧增加,目前城市郊区基站的覆盖范围通常不足lkm,要选择预测模型,需将该地区具有代表性的测量数据代人模型,根据仿真结果以确定出可选用的模型。

移动通信常见电波传播损耗预测模型

移动通信常见电波传播损耗预测模型
)模型中的主要参数易于根据测量值调整,适合本地 无线传播环境,准确性高 (2)路径损耗预测算法简单,计算速度快 • 应用 无线通信系统 • 分类 LEE宏蜂窝模型 LEE微蜂窝模型
LEE宏蜂窝模型
• 基本思路 先把城市当成平坦的,只考虑人为建筑物的影响,在此基 础上再把地形地貌的影响加进来 • 地形地貌影响的三种情况 无阻挡 有阻挡 水面反射
(1)自然地形(高山、丘陵、平原、水域等) (2)人工建筑的数量、高度、分布和材料特性 (3)该地区的植被特征 (4)天气状况 (5)自然和人为的电磁噪声状况 (6)系统的工作频率和移动台运动等因素
常用的电波传播损耗预测模型
• Hata模型 根据应用频率的不同,分为Okumura-Hata 模型和COST 231 Hata模型 • CCIR模型 • LEE模型 • COST 231 Walfisch-Ikegami 模型(WIM模型)
[44.9 6.55 log(ht )] log(d ) C cell Cterrain
校正因子
中小城市 [1.11 log( f ) 0.7] hr [1.56 log( f ) 0.8] 2 f 300Mhz 大城市 郊区乡村 a (hr ) 8.29[log(1.54hr )] - 1.1 3.2[log(11.75h )] 2 4.97 f 300Mhz r
L=42.6+26log(d)+20log(f)
(2)非视距传播情况,路径损耗
L=L0+L1+L2 其中L0—空间损耗 L1—由沿屋顶下沿最近的衍射引起的衰落损耗
L1 16.9 10 log( w) 10 log( f ) 20 log(ht hr ) L11

北邮电磁场与电磁波实验报告

北邮电磁场与电磁波实验报告

信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究指导老师:日期:一、实验目的 (1)二、实验原理 (1)1、电磁波的传播方式 (1)2、尺度路径损耗 (1)3、阴影衰落 (2)4 、建筑物的穿透损耗的定义 (3)三、实验容 (3)四、实验步骤 (4)1、实验对象的选择 (4)2、数据采集 (4)3、数据录入 (5)4 、数据处理 (6)五、实验结果与分析 (6)1 、磁场强度地理分布 (6)2 、磁场强度统计分布 (8)3、建筑物的穿透损耗 (10)六、问题分析与解决 (10)1、测量误差分析 (10)2、场强分布的研究 (10)七、分工安排 (11)八、心得体会 (11)九、附录:数据处理过程 (13)、实验目的1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法;2. 研究校园各种不同环境下阴影衰落的分布规律;3. 掌握在室环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系;5. 研究建筑物穿透损耗与建筑材料的关系。

二、实验原理1、电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。

对于接受者,只有处在发射信号的覆盖区,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。

因此基站的覆盖区的大小,是无线工程师所关心的。

决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。

电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。

当电磁波传播遇到比波长大很多的物体时,发生反射。

当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。

当电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。

散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二Okumura-Hata电波传播模型
设计课时:4
学习方法:理论学习+仿真实验+结果分析+实验报告
一、实验目的
1 学习电波传播Okumura-Hata模型分析方法。

2.掌握使用Matlab建立Okumura-Hata模型的方法。

二、Okumura-Hata模型
2.1Okumura—Hata模型的介绍
移动通信中电波传播的实际情况是复杂多变的。

实践证明,任何试图使用一个或几个理论公式计算的结果,都将引入较大误差。

甚至与实测结果相差甚远。

为此,人们通过大量的实地测量和分析,总结归纳了多种经验模型。

通常在一定情况下,使用这些模型对移动通信电波传播特性进行估算,都能获得比较准确的预测结果。

能否准确预测基站信号的覆盖情况是移动通信网络规划的优劣所在,提高预测准确度的关键在于选择最能接近实测值的预测模型。

目前应用较为广泛的是OM模型(Okumura模型),为了在系统设计时,使Okumura 模型能采用计算机进行预测,Hata对Okumura模型的基本中值场强通过对其他预测模型的分析对比,并与实测数据的仿真比较,得出了Okumuma—Hata预测模型更接近实测值的结论。

移动通信系统中的无线电波是在不规则地形情况下进行传播的,在估算路径损耗时,应考虑特定地区的地形因素,预测模型的目标是预测特定点或特定区域(小区)的信号强度,但在方法复杂性和精确性方面差异很大,因此针对不同地形特点,要选择最适合于本地的预测模型。

在传播预测模型中通常将地形划分为城区、郊区、开阔地和空间自由传播四种情况,城市郊区人口密度介于乡村和繁华市区,基站规划需同时考虑覆盖范围和用户容量两方面因素,随着移动用户的急剧增加,目前城市郊区基站的覆盖范围通常不足lkm,要选择预测模型,需将该地区具有代表性的测量数据代人模型,根据仿真结果以确定出可选用的模型。

2.2数学建模
当移动台的高度为典型值为hr=1.5m时,按Hata-Okumura模型计算路径损耗的公式为:
其中:
●:市区准平滑地形电波传播损耗中值(dB)
●:工作频率(MHz)
●:基站天线有效高度(m)
●:移动台的有效高度(m)
●:移动台与基站之间的距离(km)
●:移动台天线高度因子
对于中小规模城市,移动台天线高度因子为:
对于大城市
对于郊区
对于开阔地
其中
:郊区的电波传播损耗中值(dB)
:开阔地的电波传播损耗中值(dB)
三、实验内容及要求:
【实验内容】
⏹使用C语言(或者Matlab)利用Okumura-Hata方法计算基
本传输损耗;
⏹分析Okumura-Hata方法的误差;
【实验设备】
⏹一台PC 机
【实验步骤】
1.采用Okumura-Hata方法分别计算大城市市区地区准平滑地形、郊区和开阔区,基站天线高度是200米,手机天线高度是3米情况下,不同传播距离和不同载波频率条件下的传播损耗中值。

画出相应的曲线。

2.分析Okumura-Hata方法比较电波在不同频率、不同场景等情况下传
播规律。

3.对比900MHz和1800MHz电波传播规律。

【实验报告】
按照要求完成实验报告。

实验报告中要求给出采用Okumura-Hata方法分别计算大城市市区地区准平滑地形、郊区和开阔区,基站天线高度是200米,手机天线高度是3米情况下,不同传播距离和不同载波频率条件下的传播损耗中值相应的曲线,并做比较。

四、参考资料
1 参考书《无线通信电波传播》
2 代码(此代码仅供参考,完全与该代码一致,记零分)
clear all;
close all;
clc;
hb=200;
hm=3;
lb1=0;
lb2=0;
lb3=0;
lb4=0;
for d=[1 2 5 10 30 50 60 80 100]
f1=100:0.1:300;
f2=300:0.1:3000;
lb11=69.55+26.16*log10(f1)-13.82*log10(hb)-(8.29*(log10(1.54*hm).^2)-1.1)+( (44.9-6.55*log10(hb))*log10(d));
lb12=69.55+26.16*log10(f2)-13.82*log10(hb)-(3.2*(log10(11.75*hm).^2)-4.97)+ ((44.9-6.55*log10(hb))*log10(d));
lb21=lb11-2*(log10(f1/28)).^2-5.4;
lb22=lb12-2*(log10(f2/28)).^2-5.4;
lb31=lb11-4.78*(log10(f1)).^2+18.33*log(f1)-40.98;
lb32=lb12-4.78*(log10(f2)).^2+18.33*log(f2)-40.98;
f=[f1 f2];
lb1=[lb11 lb12];
lb2=[lb21 lb22];
lb3=[lb31 lb32];
figure(1);
hold on;
plot(f,lb1,'r');
title('大城市');
xlabel('频率/MHz');
ylabel('损耗中值/dB');
grid;
figure(2);
hold on;
plot(f,lb2,'b');
title('郊区');
xlabel('频率/MHz');
ylabel('损耗中值/dB');
grid;
figure(3);
hold on;
plot(f,lb3,'g');
title('开阔区');
xlabel('频率/MHz');
ylabel('损耗中值/dB');
grid;
end
输出结果
(注:专业文档是经验性极强
的领域,无法思考和涵盖全面
,素材和资料部分来自网络,
供参考。

可复制、编制,期待
你的好评与关注)。

相关文档
最新文档