相位差测量电路的设计
用于相位法激光测距的电路系统设计
用于相位法激光测距的电路系统设计激光测距是一种常用的非接触式测量技术,可以精确测量目标物体与测距仪的距离。
相位法激光测距是其中一种常见的方法,通过测量激光光波的相位差来计算距离。
下面将介绍一个基于相位法激光测距原理的电路系统设计。
1. 激光发射电路:设计一个激光二极管的驱动电路,可以通过电流控制二极管的发射光强。
使用一个恒流源以确保驱动电流的稳定性。
此外,还需要添加一个调节电路,可以根据需要调整激光发射的光功率。
2. 光电检测电路:将光电二极管作为光电检测元件接在测距仪上,用于接收激光反射光信号。
光电二极管产生的电流与光的强度成正比。
使用一个高增益的放大器将光电二极管产生的微弱电流信号放大。
3. 相位差测量电路:使用一个相位差测量电路来测量激光光波发射和接收之间的相位差。
该电路可以采用锁相放大器或频率调制技术。
在锁相放大器中,将激光发射的信号作为参考信号,将光电二极管接收到的信号作为待测信号输入。
锁相放大器可以精确测量相位差,并输出一个稳定的直流电压信号。
4. 距离计算电路:将锁相放大器输出的直流电压信号输入到距离计算电路中,根据相位差和激光波长的关系,计算出目标物体与测距仪之间的距离。
该电路可以通过编程芯片或者专门的测距芯片来实现距离计算。
以上是一个基于相位法激光测距原理的电路系统设计。
通过精心选择和设计各个电路模块,可以实现高精度和稳定的激光测距功能。
需要注意的是,在实际设计中还需考虑电路的抗干扰能力、功率稳定性和其他实际应用需要的因素。
在激光测距中,相位法是一种常用的方法,能够提供高精度和高稳定性的测距结果。
相位法激光测距的原理是通过测量激光发射和接收之间的光波相位差来计算目标物体与测距仪之间的距离。
在设计电路系统时,需要考虑到激光发射电路、光电检测电路、相位差测量电路和距离计算电路等各个环节。
首先,激光发射电路是相位法激光测距系统中的重要组成部分。
它负责驱动激光二极管发射具有稳定光强的激光光束。
基于STM32的全相位FFT相位差测量系统
第33卷第3期2010年6月电子器件Chinese Journal of Electr on DevicesVol .33 No .3Jun .2010收稿日期:2010-01-07 修改日期:2010-01-20The All 2Ph ase FFT Ph ase D i fference Measure ment Syste m B ased on ST M32Q IU L iangfeng,L IU J ingbiao 3,YU Haibin(School of E lectronics &Infor m ation,Hangzhou D ianzi U niversity,Hangzhou 310018,China )Abstract:For the need of signal phase difference measure ment in m ilitary and civil engineering fields ,based on A ll 2phase measure ment theory (a kind of FFT ).and the AR M company ’s high 2perfor mance p r ocess or,32B itCortex M32core ST M32F103,we designed and built a l o w 2cost,si m p le structure,fast p r ocessing and effective phase difference measure ment syste m.After by sa mp ling 127point and treating of the m,we make 64point FFT and achieve the signal phase measure ment .The tests show that the syste m has an effective res oluti on accuracy of 1degree .Key words:phase difference measure ment;ST M32;A ll 2phase FFT;si m ulati on testing EEACC:7310H基于ST M32的全相位FFT 相位差测量系统邱良丰,刘敬彪3,于海滨(杭州电子科技大学电子信息学院,杭州310018)摘 要:针对军用和民用工程领域信号相位差测量的需要,基于全相位测量理论,使用AR M 公司的高性能32B it Cortex M32内核处理器ST M32F103,设计并制作了一个低成本,结构简单,处理速度快而有效的相位差测量系统,通过采样了127个点,处理后做64个点的FFT,实现了信号相位差的测量。
相位差检测
目录一、题目要求 ........................................................ 错误!未定义书签。
二、方案设计与论证 ............................................ 错误!未定义书签。
移相电路 ......................... 错误!未定义书签。
检测电路 ......................... 错误!未定义书签。
显示电路 ......................... 错误!未定义书签。
三、结构框图等设计步骤................. 错误!未定义书签。
设计流程图........................ 错误!未定义书签。
电路图 ........................... 错误!未定义书签。
移相电路图................... 错误!未定义书签。
检测电路图................... 错误!未定义书签。
显示电路图................... 错误!未定义书签。
四、仿真结果及相关分析................. 错误!未定义书签。
移相效果 ......................... 错误!未定义书签。
相位差波形........................ 错误!未定义书签。
相位差度数........................ 错误!未定义书签。
五、误差分析........................... 错误!未定义书签。
误差分析 ......................... 错误!未定义书签。
六、总结与体会......................... 错误!未定义书签。
七、参考文献........................... 错误!未定义书签。
八、附录............................... 错误!未定义书签。
电路中电感和电容的相位关系测量
精度要求:高精度、低失真
输出频率:根据测试需求选 择合适的输出频率
电感测量仪
简介:电感测量 仪是测量电感元 件的仪器,通过 测量电感元件的 电感值、品质因 数和分布电容等 参数,可以评估 电感元件的性能。
添加标题
工作原理:电感 测量仪基于交流 阻抗谱测量技术, 通过测量电感元 件在不同频率下 的阻抗值,结合 相关算法计算出 电感值、品质因 数和分布电容等
实验结果与理论值比较
实验数据与理论预测的对比 误差来源分析 实验结果对理论模型的验证 实验结论与意义
误差分析
测量设备精度对实验结果的影响 环境因素对实验结果的影响 实验操作过程中的人为误差 数据处理和分析过程中的误差
提高测量精度的途径
选用高精度的测量仪器和设备 增加测量次数,取平均值 优化实验方案,减少误差来源 提高实验人员的技能和经验
实验结论与实际应用
实验结论:电感和电容在电路中的相位关系取决于频率和阻抗,通过测量可以得出准确的结 论。
实际应用:了解电感和电容的相位关系对于电子设备和系统的设计、调试和优化具有重要意 义,有助于提高设备的性能和稳定性。
实验结论的验证方法:可以通过多种方法验证实验结论的正确性,如理论计算、仿真分析和 实验验证等。
感谢您的观看
汇报人:XX
参数。
添加标题
种类:电感测量 仪有多种类型, 包括西林电桥、 串联谐振法和并
联谐振法等。
添加标题
应用范围:电感 测量仪广泛应用 于电子设备、通 信、电力电子等 领域,用于生产、 研发和品质控制
等方面。
添加标题
电容测量仪
简介:电容测量仪是用于测量电路中电容元件的相位关系的实验器材。 工作原理:通过测量电容元件在不同频率下的阻抗值,计算出相位角,从而确定电容值。 实验应用:在电路分析、电子测量、通信等领域广泛应用。 使用注意事项:使用前应检查仪器是否正常,确保测量结果的准确性和可靠性。
Multisim仿真软件的相位差测量方法
Multisim仿真软件的相位差测量方法Multisim是一款功能强大的仿真软件。
它拥有丰富的工具和模块,能够实现各种电路的设计、仿真和分析。
其中,相位差测量是电子工程中常用的一种测试方法,也是Multisim中的一项基础功能。
本文将介绍Multisim如何进行相位差测量。
一、相位差的概念和测量相位差是指两个信号之间的时间延迟。
在电子工程中,相位差常用于比较两个信号的相对时间位置,用来判断是否符合预期的设计要求。
如果相位差符合预期,那么电路就可以正常工作,如果相位差不正确,则可能会导致电路出现故障或者严重失效。
在Multisim中,相位差是指两个信号的相对相位差,通常用角度(degree)或者弧度(radian)表示。
相位差可以通过两个信号在时间轴上的差值来计算。
如果两个信号的周期相同,则相位差可以用信号的相位角(phase angle)来表示。
相位差的表示方法有很多种,下面是一些常用的表示方法:1. 角度表示:相位差可以用角度表示,通常用degree表示,一个周期为360度。
2. 弧度表示:相位差可以用弧度表示,通常用radian表示,一个周期为2π(约等于6.28)。
3. 周期表示:相位差可以用周期表示,用一个信号的周期表示另一个信号的相位延迟,通常用T表示。
4. 时差表示:相位差可以用时差表示,即两个信号之间的时间差,通常用t表示。
二、Multisim中的相位差测量方法Multisim中提供了多种方法来测量相位差,下面是一些常用的方法:1. 用示波器测量相位差示波器是电子工程中经常用来测量信号的一种仪器。
在Multisim中,示波器也可以用来测量相位差。
首先,需要将两个信号分别输出到示波器中。
然后,可以使用示波器中的相位差测量功能来计算相位差。
具体步骤如下:1. 将示波器拖入工作区,并将两个信号线分别连接到示波器上。
2. 点击示波器,进入示波器的设置界面。
3. 在设置界面中,可以选择要测量的信号,以及相位差计算的方式。
正弦电路相位差双迹法测量
实验九正弦稳态时R、L、C电压电流相位关系的测试
一、实验目的
1.进一步掌握正弦稳态电路中R、L、C元件的电压电流关系;
2.掌握相位差的测试方法;
3.进一步熟练掌握示波器的双踪测试方法
二、实验仪器与器材
双踪示波器一台
函数发生器一台
面包板一块
电阻、电容、电感若干
三、实验原理
1. R电压电流的相位关系
电阻的电压、电流同相。
2. L电压电流的相位关系
电感的电压相位比电流超前90度。
3. C电压电流的相位关系
电容的电压相位比电流滞后90度。
4. 电压电流相位关系的测试方法
图1中,X为被测元件,R0是电流取样电阻。
只要R0的阻值满足远小于X的阻抗,其电压的相位就代表了X的电流相位。
5. 相位差的测试方法
双迹法(截距法)测量相位差:将示波器的垂直工作方式设为“双踪” ,并将两个通道的零基线与屏幕的横坐标调为重合,观察两个波形的时间差值,利用相关公式求出相位差。
四、实验内容
1.电阻元件电压电流相位关系的测试
自拟实验电路,测试电阻元件的电压电流相位关系,测量该相位差,并在同一坐标下绘出电阻电压与电流的相位波形。
2.电感元件电压电流相位关系的测试
自拟实验电路,测试电感元件的电压电流相位关系,测量该相位差,并在同一坐标下绘出电感电压与电流的相位波形。
3.电容元件电压电流相位关系的测试
自拟实验电路,测试电容元件的电压电流相位关系,测量该相位差,并在同一坐标下绘出电容电压与电流的相位波形。
五、思考题
1.正弦稳态电路中L、C 的电压、电流超前滞后关系?
2.正弦稳态电路中,如何测量流过某个元件的电流?。
基于差放的相位差测量电路的设计及仿真
性 不 高 (o H 1 k z时 , l 法 间 接 测量 计 算 结 果 为 图 方 _ 38 9 , 理 论 结果 比较 误差 为 1 4  ̄ 而文 中提 供 7 。  ̄与 7 . 8 7
. 很 近 的时候 。 量 的效果 很 不理 想 , 测 这是 增大 误 差 的一 11电路 组成 个重 要 原 因 :其 次是 测 得 的结果 还需 经 过相 关公 式 间 接 计 算而 得 . 过 程 显得 繁 琐 。 其 这显 然 不 符合 Mu i m hs i
一
尽 显 了仪 器 仪 表 众 多 、 方 便 快 捷 等 多 个 特 点 。但 是 被溺 电路 的输 入端 日接 入一 个 交 流信号 源 或者 函数 信 Nut i ls i m没 有 直接 测 量 电 压楣 位 差 的仪表 可 用 ( 件 号 发生器 .即波特 图示 仪是 在 既定 频 率下 以扫 描信 号 软 有 直接 显示 比较 两个 电位 的电位 差 的仪 器 .也 即波 特 源 ( 其初 相 位 为 o ) 设 o为参 考 , 量某 一信 号 与其 之 间 测
常用 的相 位差 处 理方 法圆 。
伊 一 9 一幻: —x3 。 竺 6 : 。 — 6 。 o o
T
() 1 ,
从 上 面的求 解 过 程 可知 . l中 的读数 指针 T 图 l和 1 2都 需要 依 靠 鼠标 的人 为 移 动得 以定 位 . 因此 其 精准
如 图 4和 图 5左 图所 示 .将 读 数 指 针 1定 位 到
10 H 0 k z时 ,经相 位 差 测量 电路后 出现 约 为 00 3 . .7  ̄ 小
于 01 ; 定 位 到 1 k z时 . 现 的 误 差 约 为 00 7  ̄ .。 当 0H 出 . 3 0 电路 中 R 和 R 为 电位器 , 作用 是 对输 入 信号 进 ( 处 图中未 显示 , 实 际 已测 量 ) 小于 00  ̄ , 2 其 此 但 , .1。当把 读 行 一 定 比例 的线 性 缩 小 ( 其 缩 小 比例 为 M) 因为 需 书 指 针 2定 位 到 1误 差 时 .可 测量 的最 大频 率 为 1 设 . o . 要 考虑 到 后续 运放 对最 大输 入 信 号大 小 的 限制 .必 须 3 MHz 7 。也 即呈 现频 率越 大 . 误差 就越 大 的规律 左 图 将 大 的输 入 信号 经 过一 定 的处 理才 方便 使 用 . 以 Rl 是 将 单 个 运 放 的 U i G i a d it 设 置 为 所 nt an B n w dh y— 和 R 2保 证 了后 续 电路 的正 常运 行 在 实 际使 用 时必 2 0 0 MHz 时所 得 结果 ,但 设 置 为软件 默认 IO z . O MH 时
基于FPGA的相位差测量模块的设计
基于FPGA的相位差测量模块的设计相位差测量设计思路相位差测量设计要求基于FPGA设计一个测量两路同频率信号相位差的模块,具体要求如下:测量信号频率范围: 20Hz~20kHz ,精度:2度,测量波形:方波。
自行设计相位差可控双路输出脉冲源作为被测对象。
发挥部分:(1)相位差和频率交替显示或同时显示(2)提高测量精度(3)拓宽频率范围到20Hz~200kHz(4)设计出一套相位计前置整形电路方案(采用模拟电路或者模数混合,仅设计和仿真,不制作),要求能自适应峰峰值在0.2V至5伏的非方波输入信号,尽量减少两路输入信号幅度不一致引入的误差,带宽不小于20Hz~20kHz,输出信号能接入本课题设计的相位差测量模块。
相位差测量设计方案根据题目要求,我们组把这个模块的设计分为四个子模块,分别为:信号源的发生、频率计的设计、相位差的测量和四位LED相位差显示。
信号源的发生产生两路同频、相位差可控的信号;频率计的设计是借用信号源产生的信号,然后根据内部晶振产生闸门宽度为1秒的闸门信号,在高电平时开始计数,记得的周期个数,即信号源产生信号的频率;相位差的测量是先通过测量两路信号的上升沿之间内部晶振的周期数,然后由此周期数换算出相位差,再通过VHDL语言内部函数转换成十进制数输出到显示模块。
RTL图如下:模块程序LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY kzys ISPORT ( CLK : IN STD_LOGIC;KG : IN STD_LOGIC;ZS : IN NATURAL;KG_OUT: OUT STD_LOGIC );END entity kzys;ARCHITECTURE one OF kzys ISSIGNAL CNT: NATURAL;BEGINPROCESS(KG,CLK)BEGINIF KG='0' THEN CNT<=0;KG_OUT<='0';ELSIF CLK'EVENT AND CLK='1' THEN IF CNT<ZS THENCNT<=CNT+1;ELSEKG_OUT<='1';END IF;END IF;END PROCESS;END;library ieee;use ieee.std_logic_1164.all;entity xhk isport(sw_1:in std_logic_vector(4 downto 0); f_out1:out natural;y_out2:out natural );end xhk;architecture one of xhk isbeginprocess(sw_1)begincase sw_1 iswhen "00001"=>f_out1<=499999;y_out2<=277778;when "00010"=>f_out1<=499999;y_out2<=625000;when "00011"=>f_out1<=499999;y_out2<=1666667;when "00100"=>f_out1<=6666;y_out2<=5556;when "00101"=>f_out1<=6666; y_out2<=11111;when "00110"=>f_out1<=6666; y_out2<=16667;when "00111"=>f_out1<=499; y_out2<=1806;when "01000"=>f_out1<=499; y_out2<=1667;when "01001"=>f_out1<=499; y_out2<=625;when "01010"=>f_out1<=82; y_out2<=174;when "01011"=>f_out1<=82; y_out2<=81;when "01100"=>f_out1<=82; y_out2<=220;when "01101"=>f_out1<=49;y_out2<=32;when "01110"=>f_out1<=49;y_out2<=65;when "01111"=>f_out1<=49;y_out2<=122;when "10000"=>f_out1<=0;y_out2<=0;when others=>f_out1<=0;y_out2<=0;end case;end process;end;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY plfsq ISPORT ( clk: IN STD_LOGIC; ZS: IN NATURAL;KG: IN STD_LOGIC;F_OUT : OUT STD_LOGIC );END ;ARCHITECTURE one OF plfsq IS SIGNAL FULL: STD_LOGIC ;BEGINPROCESS(clk)VARIABLE CNT8 : NATURAL;BEGINIF KG='0' THENFULL <='0';CNT8 :=ZS;ELSIF clk'EVENT AND clk='1' THEN IF CNT8 >0 THENCNT8:=CNT8-1;ELSECNT8 :=ZS;FULL <= NOT FULL;END IF;END IF;END PROCESS ;PROCESS(clk,FULL)BEGINIF KG='1' THENIF clk 'EVENT AND clk = '1' THEN IF FULL = '1' THEN F_OUT <='1'; ELSE F_OUT <='0';END IF;END IF;END IF;END PROCESS;END one;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY plfsqy ISPORT ( clk: IN STD_LOGIC; ZS: IN NATURAL;KG: IN STD_LOGIC;F_OUTY : OUT STD_LOGIC );END ;ARCHITECTURE one OF plfsqy IS SIGNAL FULL: STD_LOGIC ;BEGINPROCESS(clk)VARIABLE CNT8 : NATURAL;BEGINIF KG='0' THENFULL <='0';CNT8 :=ZS;ELSIF clk'EVENT AND clk='1' THEN IF CNT8 >0 THENCNT8:=CNT8-1;ELSECNT8 :=ZS;FULL <= NOT FULL;END IF;END IF;END PROCESS ;PROCESS(clk,FULL)BEGINIF KG='1' THENIF clk 'EVENT AND clk = '1' THEN IF FULL = '1' THEN F_OUTY <='1'; ELSE F_OUTY <='0';END IF;END IF;END IF;END PROCESS;END one;信号源的发生:library ieee;use ieee.std_logic_1164.all;entity xhy isport(sw_1:in std_logic_vector(4 downto 0); clk:in std_logic;kg:in std_logic;f_outy:out std_logic;f_out:out std_logic);end xhy;architecture qq of xhy iscomponent xhkport(sw_1:in std_logic_vector(4 downto 0);f_out1:out natural;y_out2:out natural ); end component ;component kzysPORT ( CLK : IN STD_LOGIC; KG : IN STD_LOGIC;ZS : IN NATURAL;KG_OUT: OUT STD_LOGIC ); end component;component plfsqyPORT ( clk: IN STD_LOGIC; ZS: IN NATURAL;KG: IN STD_LOGIC;F_OUTY : OUT STD_LOGIC ); end component; component plfsqPORT ( clk: IN STD_LOGIC;ZS: IN NATURAL;KG: IN STD_LOGIC;F_OUT : OUT STD_LOGIC );end component;signal a,b:NATURAL;signal c:STD_LOGIC;beginu1:xhk port map( sw_1=>sw_1,f_out1=>a,y_out2=>b);u2:kzys port map(zs=>b,clk=>clk,kg=>kg,kg_out=>c);u3: plfsqy port map(clk=>clk,ZS=>a, KG=>C,F_OUTY=>F_OUTY); u4: plfsq port map(clk=>clk,ZS=>a,KG=>KG,F_OUT=>F_OUT); END ARCHITECTURE qq;library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity cnt10 isport(clk,en,clr:in std_logic;count10:buffer integer range 0 to 400000000); end cnt10;architecture art of cnt10 isbeginprocess(clk,clr,en)beginif clr='1'thencount10<=0;elsif rising_edge(clk)thenif(en='1')thencount10<=count10+1;end if;end if;end process;end art;频率计的设计:use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;entity freq_measure isPort( clk0 : instd_logic;wave1 : in std_logic;q : out integer range 0 to 400000000);end freq_measure;architecture art of freq_measure iscomponent cnt10port(clk,en,clr:in std_logic;count10:buffer integer range 0 to 400000000);end component;signal en1,clr1 : std_logic;signal date:integer range 0 to 400000000;beginprocess(clk0)variable cnt:integer range 0 to 6;beginif rising_edge(clk0) thenif cnt = 0 then clr1 <= '1';cnt:=1;elsif cnt > 5 then cnt := 0;q<=date;else cnt := cnt+1;clr1 <= '0';en1 <= '1';end if;end if;end process;u1 : cnt10 port map(clk=>wave1,en=>en1,clr=>clr1,count10=>date);end art;library IEEE;use IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;entity measure_n isPort( clk,clk0,clk1:instd_logic;n_out:out std_logic_vector(15 downto 0));end measure_n;architecture art of measure_n issignal count0,count01,count02,count1,count2 : std_logic_vector(15 downto 0);signal x,y,a,clk10,clk11,clk20,clk21: std_logic;beginprocess(clk,clk0,clk1,x,y,count1,count2)beginif clk'event and clk='1'thencase a iswhen '0'=>clk10<=clk0;clk11<=clk1;if clk10='0' and clk11='0'thencount1<=(others=>'0');end if;if clk10='0'thenx<='1';end if;if x='1' thenif clk10='1' thenif clk11='0' then y<='1'; end if;if y='1' thenif clk11='1' thencount01<=count1;count1<=count1;elsecount1<=count1+1;end if;end if;end if;end if;if count01=0 thena<='1';else a<='0';end if;when '1'=>clk20<=clk1;clk21<=clk0;if clk20='0' and clk21='0'then count2<=(others=>'0');end if;if clk20='0'thenx<='1';end if;if x='1' thenif clk20='1' thenif clk21='0' then y<='1';end if;if y='1' thenif clk21='1' thencount02<=count2;count2<=count2;elsecount2<=count2+1;end if;end if;end if;end if;if count02=0 thena<='0';else a<='1';end if;when others=>a<='1';end case;count0<=count01 or count02;end if;n_out<=count0;end process;end art;library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;use ieee.std_logic_arith.all;entity consider1 isport ( clk :in std_logic;n1:in std_logic_vector(15 downto 0);freq:in integer range 0 to 400000000;cout:out std_logic_vector(15 downto 0));end consider1;architecture arch of consider1 issignal c0,c1,e,e0,d0,d1:integer range 0 to 400000000;signal count:std_logic_vector(15 downto 0); signal m:std_logic_vector(15 downto 0); beginprocess(n1,clk)beginif rising_edge(clk) thenm<=n1;c0<=conv_integer(m);d0<=c0*151;d1<=d0/1024;end if;end process;process(clk,freq)beginif rising_edge(clk) thenc1<=freq;e<=c1*d1;e0<=e/2048;count<=conv_std_logic_vector(e0,16);end if;end process;cout<=count;end arch;library IEEE;use IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;entity count isport( clk:in std_logic;c_in:in std_logic_vector(15 downto 0);qa1,qb1,qc1,qd1:out INTEGER RANGE 0 TO 9); End count;architecture art of count isSignal a:integer range 0 to 400000000;signal m: std_logic_vector(15 downto 0); BeginProcess(clk,c_in)variable ai,bi,ci,di:integer range 0 to 9; beginif clk'event and clk='1' thenm<=c_in;a<=conv_integer(m);di:=(a-ai-10*bi-100*ci) /1000;ci:= (a-ai-10*bi)/100;bi:= ((a-ai) rem 100)/10;ai:=a rem 10;end if;qd1<=di;qc1<=ci;qb1<=bi;qa1<=ai;end process;end art;相位差的测量:library IEEE;use IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;entity phase_measure1 isport( clkin,clk0in,clk1in:in std_logic;qa1out,qb1out,qc1out,qd1out:out integer range 0 to 9 );end;architecture art of phase_measure1 iscomponent measure_nPort( clk,clk0,clk1:instd_logic;n_out:out std_logic_vector(15 downto 0));end component;COMPONENT freq_measurePort( clk0 : instd_logic;wave1 : in std_logic;q : out integer range 0 to 400000000 );end COMPONENT;component consider1port ( clk :in std_logic;n1:in std_logic_vector(15 downto 0);freq:in integer range 0 to 400000000;cout:out std_logic_vector(15 downto 0));end component ;component countport( clk:in std_logic;c_in:in std_logic_vector(15 downto 0);qa1,qb1,qc1,qd1:out integer range 0 to 9);end component;signal d,f: std_logic_vector(15 downto 0);signal e: integer range 0 to 400000000;beginu1: measure_n portmap(clk=>clkin,clk0=>clk0in,clk1=>clk1in,n_out=>d);u2: freq_measure port map(clk0=>clkin,wave1=>clk0in,q=>e);u3: consider1 port map(clk=>clkin,n1=>d,freq=>8192,cout=>f);u4: count portmap(clk=>clkin,c_in=>f,qa1=>qa1out,qb1=>qb1out,qc1=>qc1out,qd1=>qd1out);end art;四位LED相位差显示:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY BCD7 ISPORT(BCD:IN INTEGER RANGE 0 TO 9;LED:OUT STD_LOGIC_VECTOR(6 DOWNTO 0));END;ARCHITECTURE ART OF BCD7 ISBEGINLED<= "0111111"WHEN BCD= 0 ELSE "0000110"WHEN BCD= 1 ELSE "1011011"WHEN BCD= 2 ELSE "1001111"WHEN BCD= 3 ELSE "1100110"WHEN BCD= 4 ELSE "1101101"WHEN BCD= 5 ELSE "1111101"WHEN BCD= 6 ELSE "0000111"WHEN BCD= 7 ELSE "1111111"WHEN BCD= 8 ELSE "1101111"WHEN BCD= 9 ELSE "0000000";END ART;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL; ENTITY Vhdl1 ISPORT(LOCK:IN STD_LOGIC;QA,QB,QC,QD:IN INTEGER RANGE 0 TO 9;LEDA,LEDB,LEDC,LEDD:OUT STD_LOGIC_VECTOR(6 DOWNTO 0)); END;ARCHITECTURE ART OF Vhdl1 ISSIGNAL QAL,QBL,QCL,QDL:INTEGER RANGE 0 TO 9; COMPONENT BCD7PORT(BCD:IN INTEGER RANGE 0 TO 9;LED:OUT STD_LOGIC_VECTOR(6 DOWNTO 0));END COMPONENT;BEGINPROCESS(LOCK)BEGINIF(LOCK'EVENT AND LOCK='1')THENQAL<=QA;QBL<=QB;QCL<=QC;QDL<=QD;END IF;END PROCESS;U1:BCD7 PORT MAP(QAL,LEDA); U2:BCD7 PORT MAP(QBL,LEDB); U3:BCD7 PORT MAP(QCL,LEDC); U4:BCD7 PORT MAP(QDL,LEDD); END ART;。
同频正弦信号间相位差测量的设计
同频正弦信号间相位差测量的设计[导读]介绍了以单片机为核心,通过倍频电路实现的两同频正弦信号相位差测量的设计,并对该系统的硬、软件作了比较详尽的阐述。
关键词:信号介绍了以单片机为核心,通过倍频电路实现的两同频正弦信号相位差测量的设计,并对该系统的硬、软件作了比较详尽的阐述。
关键词:单片机,倍频电路,相位差1 引言本设计目的在于测量出任意两相同频率正弦信号之间的相位差,并将测量结果以数字形式显示出来。
具体实现方法为:先通过比较电路将两路同频信号分别转换为相应的脉冲信号,然后将其中的一路信号通过反相器取反后与另一路信号相与,得到一等脉宽的脉冲波形,此脉冲波形的脉宽t,即表示两信号的相位差。
将原信号对应的任意一路脉冲信号(周期为T)倍频后,作为单片机计数器的计数脉冲,并对相位差脉冲记数,得记数值为W。
设倍频电路的倍频系数为A,则记数脉冲周期为T/A,可得到两信号相位差角计算公式如下:其中N=360/A,N为常数,是相位测量系统的最小精确度。
经过单片机系统编程即可实现此简单运算式,并将运算结果Q送LED显示。
原理框图如图1所示。
2 系统硬件电路原理分析与设计整个系统硬件电路由比较整形电路、倍频电路、单片机AT89C51及显示电路组成。
2.1 比较整形电路电路采用电压比较器LM339。
LM339内有4个电压比较器,取其中的两个比较器即可。
两路信号分别接两个比较器同相输入端,将反相输入端接地,即构成过零比较电路。
两比较器输出即转换为脉冲信号。
将其中一路脉冲通过反相器CC4069取反后与另一路信号通过与门CC4081相与,可得一等脉宽的脉冲信号,此脉宽即记载着两输入信号之间的相位差,我们称之为相位差脉宽。
转换过程见图2。
2.2 倍频电路由相位差计算公式可知,倍频系数A越大,测量精度就越高,测量越准确。
本电路采用A=720的倍频电路,因此相位测量精度为N=360/720=0.5°,可以满足实际需要。
倍频电路由锁相环集成电路CC4046和双BCD(Binary-Coded DecimalNotation)同步加法计数器CC4518组成。
Multisim仿真软件的相位差测量方法
Multisim仿真软件的相位差测量方法作者:潘蓉来源:《数字技术与应用》2016年第07期摘要:Multisim为电路的仿真及测量提供了很多便捷的功能,但其在正弦稳态等电路分析中测量电压相位差存在误差,为了解决这一问题,提出了Multisim软件中“单一频率交流分析法”。
本文通过实例电路的仿真测量,说明了测量方法,由此证明了Multisim软件中“单一频率交流分析法”对相位差测量的精确性。
关键词:Multisim 相位差测量单一频率交流分析法中图分类号:TP212 文献标识码:A 文章编号:1007-9416(2016)07-0240-02Multisim是一款功能强大的模拟与数字电路混合仿真软件,被广泛应用于模拟电子技术、数字电子技术和电路分析的仿真分析与设计。
相位差是正弦稳态电路分析中一个非常重要的参数,是比较两个同频率正弦信号之间的关系唯一指标。
在Multisim中,相位差的测量有三种方法:一是用双踪示波器和电流探针测量出两个正弦信号的波形,然后拖动示波器面板上的测量指针,测量两个正弦信号初相位对应的时间差,再根据正弦信号一个周期对应的相位角为360°,人工计算上述时间差相当的角度。
二是瞬态分析法测量出两个正弦信号的波形,测量两个正弦信号初相位对应的时间差。
相位差的计算方法和方法一完全相同。
三是用“单一频率交流分析”法。
前两种方法优点是直观,缺点是测量误差大,但是“单一频率交流分析”法可以准确地测量出电路中任意一点电压和电流的相位差。
1 Multisim软件中单一频率交流分析法介绍单一频率交流分析(Single Frequency AC Analysis)用来测试电路对某个特定频率进行交流频率响应分析的结果,该功能创建了某个特定频率下电压、电流和电源相量的文本输出。
分析结果以输出信号的实部/虚部或者幅度/相位的形式给出。
首先创建需分析的电路图,执行Simulate →Analysis →Single Frequency AC Analysis命令,弹出Single Frequency AC Analysis对话框。
第6章相位差测量
u2 (t) U2m cos
滤波后的直流电压:
请思考:相位差刻度如何标定? U0 U 2m cos
第6章 相位差测量
二、相位差—电压转换式数字相位计
1.原理框图: 相位差 时间间隔 电压 数字式显示φ
?Φ
双稳 电路
1LSB=?
第6章 相位差测量
2.原理波形图
Φ
1LSB= Ug/360
T
U0 Ug T
± 7 × 10-9 / 闸门
9位/秒
7ns~7000s
20ns~7000s
0~360 °(精度 0.05 度)
0~1 × 1012
第6章 相位差测量
习题六
p.191 6.2 6.3 6.5
2
缺点:相移调节范围小,不同相移输出电压幅度不同
第6章 相位差测量
②一种改进的RC移相器
R Rc
uo与ui之间的相位差 00~-1800
第6章 相位差测量
SP3386型高精度通用计数器/相位计
频率范围
动态范围 测量精度 测频分辨率 测周范围 测时范围 相位测量 计数测量
通道 1 和通道 2
0.14mHz~150MHz
调节
电压表 或电流表 或示波器
抵消被测信号间的相位差
第6章 相位差测量
2.移相器 ①RC移相器 相位差00~-900
相位差00~900
(a)低通滤波器:如图(a)
输出电压与输入电压的相位差为 arctan[1/(RC)]
(b)高通滤波器:如图(b)
输出电压与输入电压的相位差为
arctan[1/(RC)]
u2 (t) U2m sin(t-)
U2m sin (t-T)
相位差检测电路
课程设计报告课程电子测量与虚拟仪器题目相位差检测电路系别物理与电子工程学院年级08级专业电子科学与技术班级08电科(3)班学号0502083(02 14 23 24)学生姓名崔雪飞陈祥刘刚李从辉指导教师徐健职称讲师设计时间2011-4-25~2011-4-29目录第一章绪论 (2)第二章题目及设计要求 (3)2.1题目要求 (3)2.2设计要求 (3)第三章方案设计与论证 (4)3.1移相电路设计 (4)3.2检测电路设计 (4)3.3显示电路设计 (5)第四章结构框图等设计步骤 (6)4.1设计流程图 (6)4.2模块分析 (7)4.2.1 移相电路 (7)4.2.2 检测电路 (7)4.2.3 显示电路 (8)4.3结果显示 (9)4.4总电路图 (11)第五章误差分析 (12)第六章总结体会 (13)第七章参考文献 (14)附录 (15)第一章绪论随着电子技术和计算机技术的发展,电子设计自动化(E-DA) 技术使得电子电路设计人员在计算机上能完成各种电路的设计,性能分析和有关参数的测试等大量的工作。
Multi-sim2001是加拿大InteractiveImageTechnologies公司2001年推出的Multisim最新版本,是一个专门用于仿真与设计的工具软件,它丰富的元件库中提供数千种电路元件,随时可以调用;它提供了多种测试仪器仪表,可方便的对电路参数进行测试和分析。
移相器在新一代移动通信、电子战、有源相控阵和智能天线等系统中获得广泛的应用。
移相器在电子系统中的主要作用是调整系统接收 /发射时电路中的信号相位。
本文将介绍用Multisim软件的部分集成电路和控制部件等各种元件来完成移相电路的设计和仿真。
使用Multisim交互式地搭建电路原理图,并对电路进行仿真。
Multisim提炼了SPICE仿真的复杂内容,这样无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。
相位差测量电路设计
本科毕业设计( 2015届)题目:相位差测量电路的设计学院:机电工程学院专业:自动化学生姓名:学号:指导教师:职称(学位):讲师合作导师:职称(学位):完成时间:2015 年 5 月 28日成绩:黄山学院教务处制原创性声明兹呈交的设计作品,是本人在指导老师指导下独立完成的成果。
本人在设计中参考的其他个人或集体的成果,均在设计作品文字说明中以明确方式标明。
本人依法享有和承担由此设计作品而产生的权利和责任。
声明人(签名):年月日目录摘要.................................................................................................错误!未定义书签。
英文摘要.ﻩ错误!未定义书签。
1 绪论ﻩ11.1研究背景及意义ﻩ错误!未定义书签。
1.2 发展现状和发展趋势ﻩ错误!未定义书签。
1.2.1国外发展状况........................................................错误!未定义书签。
1.2.2 国内发展状况ﻩ错误!未定义书签。
1.2.3 发展趋势........................................................................错误!未定义书签。
2 相位差测量的基本原理.............................................................错误!未定义书签。
2.1 相位的基本概念.............................................................错误!未定义书签。
2.2相位差测量原理ﻩ错误!未定义书签。
2.3 电路设计原理...................................................................错误!未定义书签。
第六章相位差测量(修改版)
它是测量长时间内相位差的平均值,不能测出“瞬时”相位 差,且由于电流本身误差及读数误差都较大,所以这种相位 差计测量误差也比较大,约为±(1~3)%。这些又都是模 拟直读相位计的缺点。
模拟式直读相位计各点波形图
1 .1
△T
s in( x)
A s in( x 0 .5)
B
C
D
T
1 .1
0 x
△T
二、椭圆法
椭圆法定义:
若频率相同的两个正弦量信号分别接入示波器的X通道 和Y通达,一般情况下示波器荧光屏上显示的李沙育图 形为椭圆,而椭圆的形状和两个信号的相位差有关,基 于此点用来测量相位差的方法称为椭圆法。 一般情况下u1加于Y通道,u2加于X通道。则光点沿垂 直和水平的瞬时位移量y和x分别为
第六 章 相 位 差 测 量
6.1 6.2 6.3 6.4 6.5 6.6 小结 习题 概述 用示波器测量相位差 相位差转换为时间间隔进行测量 相位差转换为电压进行测量 零示法测量相位差 测量范围的扩展
6.1 概述
• 振幅、频率和相位是描述正弦交流电的三个“要素”。 以电压为例,其函数关系为:
u U m sint 0 0 为初相位。 为角频率; 式中 U m 为电压振幅;
设定为A 组
§6.4
相位差测量电路设计
本科毕业设计( 2015 届 )题目:相位差测量电路的设计学院:机电工程学院专业:自动化学生姓名:学号:指导教师:职称(学位):讲师合作导师:职称(学位):完成时间:2015 年 5 月 28日成绩:黄山学院教务处制原创性声明兹呈交的设计作品,是本人在指导老师指导下独立完成的成果。
本人在设计中参考的其他个人或集体的成果,均在设计作品文字说明中以明确方式标明。
本人依法享有和承担由此设计作品而产生的权利和责任。
声明人(签名):年月日目录摘要 (1)英文摘要 (2)1 绪论 (2)1.1 研究背景及意义 (3)1.2 发展现状和发展趋势 (3)1.2.1 国外发展状况 (3)1.2.2 国内发展状况 (4)1.2.3 发展趋势 (5)2 相位差测量的基本原理 (5)2.1 相位的基本概念 (5)2.2 相位差测量原理 (5)2.3 电路设计原理 (6)3 设计与分析 (6)3.1 移相电路 (6)3.1.1 方案分析 (6)3.1.2 移相电路设计 (8)3.2 检测电路 (8)3.2.1 方案分析 (8)3.2.2 检测电路设计 (11)3.2.3 LM339特性分析 (12)3.2.4 双稳态触发器 (13)3.3 计数显示电路 (14)3.3.1 方案分析 (14)3.3.2 计数显示电路设计 (14)3.3.3 数码管工作原理 (15)4 仿真与调试 (16)5 实验分析 (18)总结 (19)参考文献 (20)致谢.................................................................................................错误!未定义书签。
附录 (21)相位差测量电路设计机电工程学院自动化专业指导老师:(讲师)摘要: 随着计算机以及电子技术的发展,相位差测量技术作为常用的信号测量技术,得到了快速发展,已经成为现代科学研究不可或缺的一部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abs t r a c t
Th e t r adi t i on a l m u l t i -ph as e me t e r n ee d t o f i l m a s ma l l s c al e i n t egr a t e d ci r cu i t s , n o t on l y t he ac cu r a c y of ph a s e di fer — e n ce mea s ur emen t c i r cu i t co m pl e xi t y i s n ot h i gh , an d t h e n ar r o w r an ge of f r equ en ci e s u s ed, S O i n pr a c t i c e t h er e ar e dr a w—
时 刻 和终 了 时刻 的准 确 性 上 存 在 有 问 题 。 主 要表 现在 : 定 时 器 从 应 该 开始 计 时到 实 际开 始 计 时 存 在 有 时 间差 ,即 出 现 了计 时 延
图 2 带 通滤 波器
2 . 2 信 号 比较 环 节 信 号 经过 带通 滤 波 器 滤 掉 高 频 干 扰 和 低 频 漂 移 信 号 并 进 行
1 3 2 相 位 差源自测 量 电 路 的 设 计 相位差测量 电路的设计
De s i gn o f Ci r c u i t i n Ph a s e Di f f e r e n c e Me a s u r e me n t
刘龙 飞 王根 岭 肖培 如 ( 浙江理工大学信息电子学院, 浙江 杭州 3 1 0 0 1 8 )
摘 要
传 统 的相 位 差 测 量仪 需要 采 用 多片 中 小规 模 集成 电路 , 不 仅 电路 复 杂 , 测 量 相 位 差 的精 度 不 高 , 而且 使 用 的 频 率 范 围
窄, 因此 在 实 际应 用 中存 在 着 不足 之 处 。利 用 A T 8 9 C5 1单 片 机 实现相 位 差 测 量 , 分 析 测 量 原理 , 给 出 了硬 件 电路 和 软 件 设 计 方 案 。 该 测 量 方 法 具有 硬 件 电路 简单 , 测 量精 度 高 , 抗干扰好 , 频 率 范 围 宽等 优 点 , 可 广 泛应 用 于各 种 实 时 系统 之 中 。
1 设 计 方 案
线性放大 后 , 变 为一 波形正规 、 幅值适 当的正弦信 号 , 然后经 过
滞 回 比较 器 形 成 T T L电 平 。 采 用 同 相滞 回 比较 器 , 以 减 小 外 加 干
扰, 提 高测 量 仪 灵 敏 度 , 提 高精 度 , 同时 增 大 输 入 阻 抗 。 本 文 采 用 快速 性能较好 的 L F 3 5 3作 比较 器 , 以 适 应 高 频 信 号 的 测 量 要 求, 提 高 反应 速度 和测 量 精 度 。 电路 如 图 3所 示 , 此 电 路 还 有 过
压保护的作用 。
本 文最 大 的 特 点是 将 两 路信 号 通 过 7 4 L S 7 4双稳 态 触 发 器 『 4 转 换 成 一 路 脉 宽 信 号 ,而 脉 宽 的 宽 度 为 信 号 的相 差 使 得 软 件 编
程变得非常方便 , 也 提 高 了精 度 。
基 于 单 片 机 系 统 的 相 位差 测量 框 图 如 图 1所 示 。待 测 信 号 S 1 、 S 2经 过 前 置处 理 和整形 后 , 经 过相 位 差 检测 电 路 , 输 出结 果 直 接 送 入单 片 机 进 行 处 理 ,标 准 正 弦 信 号 由 I CL 8 0 8 3产 生 , 用 于对 待 测 信 号 S 1 、 S 2的 相位 差 进 行 校 正 , 提 高 精度 。
de s i gn. Th i s mea s ur emen t me t ho d i s s i m pl e h ar dwa r e ci r c ui t , h i gh a cc ur a cy , go od a n t i — i n t e r f e r en c e. Ke y wor ds : SCM , Me as u r e me n t s , Ph as e di f f e r e nc e
在相位差的测试技术中 , 单片机仍未得到有效地应用。 用 单
片 机 测 量 相 位 差 的 基 本 思 路 是 这 样 的 :首 先 测 量 出与 相 位 差 相
对应 的时 间间隔 △ T , 再测量 出被测量 信号周 期 T , 最 后 利 用 公 式 计 算 出相 位 差 ‘ P = ( △ T / T) ¥ 3 6 0 c 的值 。该 思 路 的 理 论依 据 是 不 容置 疑 的 , 单 片 机 定 时 器 的计 时 也是 相 当 准 确 的 , 看 似测 量 可 以 准确 地 进 行 , 其 实 不 然 。在 记 录 时 间 间 隔 △ T及 周 期 T的 起 始
时; 同样 , 定 时 器 终 了计 时也 存 在 着 计 时 延 时 , 加 之 程 序 软 件 引 起 的计 时误 差 , 导 致 测 量 系统 存 在 着 较 大 的 系 统 误 差 , 因 此 测 得 结果误差较大。
本 相 位 差 测 量 方 法 充 分 利 用 了 MC S 一 5 1系列 单 片 机 内部 精 确 的时 钟 源 及 校 正 电路 [ 3 ] , 能进行在线检测 和显示 , 大 大 提 高 了相 位 差 的 测试 精度 和速 度 。
b a c k s . I n t h i s p a p e r , AT 8 9 C5 1 MCU p h a s e me a s u r e me n t , a n a l y s i s me a s u r e me n t p r i n c i p l e , g i v e n t h e h a r d wa r e a n d s o f t w a r e