第一节马尔可夫过程及其概率分布
随机过程马氏过程
Fn ( x1 , x2 ,, xn , t1 , t 2 ,, t n ) P{ X (t1 ) x1 , X (t 2 ) x2 ,, X (t n ) xn }
P{ X (t1 ) x1 }P{ X (t2 ) x2 | X (t1 ) x1 }
P{ X (t n ) xn | X (t n1 ) xn1 , X (t n2 ) xn2 ,,
一、马尔可夫过程的数学定义
二、满足马氏性的随机过程
三、马氏过程的分类 四、马氏过程的有限维分布族
1
一、马尔可夫过程的数学定义
马尔可夫过程是具有所谓马尔可夫性 的一类特殊的随机过程.
1 马尔可夫特性
若当某随机过程{X(t),t ∈ T}在某时刻tk 所处的状态已知的条件下,过程在时刻t(t>tk) 处的状态只会与过程在tk时刻的状态有关,而与 过程在tk以前所处的状态无关。这种特性即称为 马尔可夫性,亦称之为无后效性。
19
例1.5 若每隔一分钟观察噪声电压,以X(n) 表示第n分钟观察噪声电压所得结果,则X(n) 为一随机变量,{X(n),n≥1}为一随机过程, 此过程是马氏过程吗? 实际上,每隔一分钟观察所得噪声电压值 相互并不影响,且X(n)为一连续型随机变量, 因而{X(n),n≥1}是独立同分布的连续型随 机变量列,故知它为离散参数集,连续状态集的 马尔可夫过程.
X (t 2 ) x2 , X (t1 ) x1 }
P{ X (t1 ) x1 }P{ X (t 2 ) x2 | X (t1 ) x1 }
P{ X (t n ) xn | X (t n1 ) xn1 }
F ( x1 , t1 )F ( x2 , t2 | x1 , t1 )F ( xn , tn | xn1 , tn1 )
《马尔可夫过程 》课件
PART
06
结论与展望
重要性和应用前景:马尔可夫过程是概率论和随机过程的一个重要分支,它在理论和应用方面都具有重要的意义。在理论方面,马尔可夫过程为随机现象提供了数学模型,有助于深入理解随机现象的本质和规律。在应用方面,马尔可夫过程被广泛应用于金融、经济、生物信息学、计算机科学等领域,为解决实际问题提供了有效的工具。
详细描述
VS
马尔可夫链蒙特卡洛方法在统计物理中广泛应用于求解复杂的数学问题,如高维积分、复杂系统模拟等。
详细描述
在统计物理中,许多问题都需要求解复杂的数学表达式,如高维积分、复杂系统模拟等。马尔可夫链蒙特卡洛方法提供了一种有效的解决方案,通过构造合适的马尔可夫链,可以高效地求解这些数学问题,得到精确的结果。
未来研究方向
随着科技的发展和实际需求的不断变化,马尔可夫过程的研究方向也在不断拓展和深化。未来,马尔可夫过程的研究将更加注重跨学科的应用和创新,如与人工智能、机器学习等领域的交叉融合,以解决更加复杂和实际的问题。同时,随着大数据时代的到来,如何利用马尔可夫过程处理和分析大规模数据也是未来的一定义和作用。
要点一
要点二
详细描述
策略是指导决策者如何在给定状态下选择行动的规则。值函数是评估特定策略的性能的度量,它衡量了从开始到最终状态的总回报。在马尔可夫决策过程中,值函数和策略是紧密相关的,它们一起决定了在给定状态下采取的行动和最终的累积回报。
总结词
描述贝尔曼方程的定义和作用。
描述马尔可夫决策过程的定义。
总结词
马尔可夫决策过程(MDP)是一种数学模型,用于描述在不确定环境中做决策的问题。它由以下四个基本组成部分组成:状态集合、行动集合、状态转移概率和回报函数。在每个时刻,决策者根据当前状态选择一个行动,然后环境根据所选行动转移到一个新的状态,并给予决策者一个回报。
马尔可夫过程基础
因为质点在1,5两点被“吸收”, 故称 有两个吸收壁的随机游动 其一步转 移矩阵为
1 1 2 0 P 1 0 0
0 0 1 2 0 0
0 1 2 0 1 2 0
0 0 1 2 0 0
0 0 0 1 2 1
于是
d j rd j 1
d j rd j 1 r d j 2 r d0
2 j
需讨论 r
当
r 1 c 1 1 u0 uc (u j u j 1 )
j 0
c 1
d j
i j c 1
j 0 c 1
而
u j u j uc
用 X n 表示在时刻 n 质点的位置,
则{ X n ,n 0 }是一个有限齐次马氏链,
试写出一步转移矩阵.
分 析
1
2
3
4
5
故
p11 p 21 p31 P 1 p41 p51
0 1 3 0 P 1 0 0
p12 p22 p32 p42 p52
p0 (i) 1
称 p0 (i) 为马氏链的初始分布
注 马氏链在初始时刻有可能处于I中任意状态,初始分布 就是马氏链在初始时刻的概率分布。 6.绝对分布 概率分布
n0 pn (i) P{X n i} , i I ,
称为马氏链的绝对分布或称绝对概率
定态分布
即
若绝对分布 pn (i) 与 n 无关,
q c 1 ( p )
例3 排队问题 顾客到服务台排队等候服务,在每一个服务周期中只 要服务台前有顾客在等待,就要对排在前面的一位提 供服务,若服务台前无顾客时就不能实施服务。
马尔可夫过程简介
1第七章 马尔可夫过程简介§7.1 马尔可夫过程定义对于一个随机过程,如果它具有以下特性:即当过程在现在时刻k t 所处的状态为已知的条件下,过程在将来时刻k t t >处的状态,只与过程在k t 时刻的状态有关,而与过程在k t 时刻以前所处的状态无关,则具具有此种特性的随机过程称为马尔可夫过程。
上述随机过程所具有的特性又称为无后效应。
无后效应也理解为:过程)(t X 在现在时刻k t 的状态,k k i t X =)(已知的条件下,过程“将来”的情况与“过去”的情况是无关的。
或者说,这种随机过程的“将来”只是通过“现在”与“过去”发生联系,如果一旦“现在”已知,那么“将来”和“过去”就无关了。
或者说,这种随机过程的“将来”只是通过“现在”与“过去”发生联系,如果一旦“现在”已知,那么“将来”和“过去”就无关了。
严格定义如下:定义马尔可夫过程:考虑随机过程)(t X ,并设1110+<<<<k k t t t t t ,如果它的条件概率密度函数满足)]()([)](,),(),()([1011k k k k k t x t x f t x t x t x t x f +-+= 则称为)(t X 为马尔可夫过程。
定义表明,)1(+k t x 的概率密度函数只取决于)(k t x 的状态,而与前)(,),(01t x t x k -个状态无关。
也就是“现在”的状态)(k t x 才对“将来”的状态)(1+k t x 有影响,而“过去”的状态)(,),(),(021t x t x t x k k --对“将来”没有影响。
由马尔要夫定义再根据条件密度函数公式,可写出马乐可夫过程的联合概率密度。
∵ ])(,),()([01t x t x t x f k k +)](,),(),([)](,),(),(),([01011t x t x t x f t x t x t x t x f k k k k k --+=)](,),(),(),([011t x t x t x t x f k k k -+2)](,),(),([)](,),(|)([0101t x t x t x f t x t x t x f k k k k -+= )](,),(),([)](|)([011t x t x t x f t x t x f k k k k -+=∏=+=ki i i t f t x t x f 01)()](|)([由上式要知,马尔可夫过程的联合概率密度函数等于各个转移概率密度和初始概率密度的乘积。
第十一篇马尔可夫链
pi2 L
M M M
aj L
p1 j L
p2 j
L
记成
M P(1) P
pij
L
M
2020/6/1
9
例2 (0 1传输系统) 在如图111只传输数字 0和1的串联系统中,设每一级的传真率(输出 与输入数字相同的概率称为系统的传真率,相 反情形称为误码率)为p,误码率为q 1- p,并 设一个单位时间传输一级,X 0是第一级的输入, X n是第n级的输出(n 1).那么{X n , n 0,1, 2,L } 是一随机过程,状态空间I {0,1},而且
7
当转移概率Pij (m, m n)只与i, j及时间间距n有关时, 把它记为Pij (n),即Pij (m, m n) Pij (n),并称此转移 概率具有平稳性。同时也称此链是齐次的或时齐的。
在马氏链为齐次的情形下,由(1.3)式定义的转移概率
Pij (n) P{X mn a j | X m ai}
0
0
q(1 p)
pq (1 p)
2020/6/1
20
例5 某计算机机房的一台计算机经常出故障,研 究者每隔15分钟观察一次计算机的运行状态,收集 了24小时的数据(共作97次观察)。用1表示正常状 态,用0表示不正常状态,所得的数据序列如下:
1110010011111110011110111111001111111110001101101
称它为马氏链的初始分布。
再看马氏链在任一时刻n T1的一维分布:
P{X mn a j | Xt1 ai1 , Xt2 ai2 ,L , Xtr air , X m ai}
P{X mn a j | X m ai}
马尔可夫过程ppt课件
例1 以图1所示模型为例,求解稳态概率。
故障(p)
S(η1)
1-p
F(η2)
1-q
修复(q)
图1 马尔可夫过程的状态转移图 18
设系统处于正常状态的稳态概率为η1和处于故障状 态的稳态概率为η2,则有
12
(1 (1
p)1 q)2
q2 p1
1 2 1
显然,前两个方程是线性相关的,可以删掉一个。解 方程组得:
系统在各状态的稳定概率通常有以下两种解法: 已知瞬态概率,求极限
Ai
lim
t
P{Si (t)}
式中 Si(t)--系统i状态的瞬态概率; Ai--i状态的稳态概率。
16
通常,稳态概率空间的表达式不易求出,该解 法适合于解决一些比较简单系统的稳态状态概率问 题。 同构法
当系统达到稳定状态以后,各种状态将持续转 移,但是每种状态出现的概率基本不变,从而形成 一个稳定的状态空间。求解状态空间方程组,就可 得到系统在各种状态的稳态概率。
马尔可夫过程
神和尧
1
2
马尔可夫过程简介
一类随机过程(数学基础是随机过程理论)。 原始模型马尔可夫链,由俄国数学家A.A.马尔可夫 于1907年提出。 该过程具有如下特性:在已知目前状态 (现在) 的条件下,它未来的演变 (将来)不依赖于它以往 的演变 ( 过去 ) 。 ④例如森林中动物头数的变化构成——马尔可夫过 程 。在现实世界中,有很多过程都是马尔可夫过程, 如液体中微粒所作的布朗运动、传染病受感染的人 数、车站的候车人数等,都可视为马尔可夫过程。
参数集T=[0, ∞],状态空间E={整数}
(3)时间离散、状态连续的马尔可夫过程——马尔可夫序列。 参数集T= {0,1,2,…},状态空间E= (-∞, +∞)
马尔可夫过程及其概率分布
二、马尔可夫过程的概率分布
研究时间和状态都是离散的随机序列
{ Xn X (n), n 0,1, 2,}, 状态空间为 I (a1,a2 ,}, ai R .
1. 用分布律描述马尔可夫性
对任意的正整数n, r 和 0 t1 t2 tr m; ti , m, n m Ti , 有
12 18
7 12 11 18
故5月1日为晴天 , 5月3日为晴天的概率为 P00(2) 5 12 0.4167,
又由于
0
P4
0 0.4005 1 0.3997
1
0.5995 0.6003
,
故5月1日为晴天 , 5月5日为雨天的概率为 P01(4) 0.5995.
例5 某计算机房的一台计算机经常出故障,研究者 每隔15分钟观察一次计算机运行状态,收集了24小 时的数据 (共作97次观察) . 用1表示正常状态, 用0 表示不正常状态, 所得的数据序列如下:
0, j 1 2.
一
12 3 4 5
步 转 移 概 率 矩 阵
1 0 1 0 0 0
2 1/ 3 1/ 3 1/ 3 0
0
P 3 0 1/3 1/3 1/3 0
4
0
0 1/ 3 1/ 3 1/ 3
5 0 0 0 1 0
说明: 改变游动的概率规则, 就可得到不同方式的 随机游动和相应的马氏链. 如果把点 1 改为吸收壁,
96 次状态转移的情况: 0 0, 8次;
0 1, 18次; 1 0, 18次; 1 1, 52次.
因此, 一步转移概率可用频率近似地表示为:
p00
P{ Xn1
0
|
Xn
0}
8
8 18
关键词无后效性马尔可夫性齐次马尔可夫链n步转移
pi 0 Pii1 t1 Pi1i2 t2 t1
P t t in1in n
n1
i 1
有限维分布完全由初始分布和转移概率所确定 21
§2 多步转移概率的确定
C K方程
Pij u v Pik u Pkj v k 1
ak
aj
ai
0 s su suv t
22
C K方程的证明:
齐次性
=== Pik u Pkj v k 1
证毕!
23
Pi1 u Pi2 u Pi3 u 是u步转移概率矩阵的第i行,
P1 j v P2 j v P3 j v T 是v步转移概率矩阵的第j列,
C K方程可以写成矩阵形式:P u v P u P v
•Pn Pn
有限维分布由初始分布与一步转移概率完全确定
9
例1:(0-1传输系统)
X0
1
X1
2
… X2
Xn-1
n
Xn …
设是程各第,级n状级的态的传空输真间出率I(=为n{≥0p,,11)}.误,那码么率{为Xqn,=n1=-0p,。1X,02是…初}是始一输随入机,过Xn
关当,X而n=与i为时已刻知n以时前,所Xn处+1所的处状的态状无态关的,概所率以分它布是只一与个X马n=氏i有 链,而且还是齐次的.
13
等候室 服务台
随机到达者
离去者
系统
现用马氏链来描述这个服务系统: 设Xn=X(n⊿t)表示时刻n⊿t时系统内的顾客数
,即系统的状态。{Xn,n=0,1,2…}是一随机过程,状 态空间I={0,1,2,3},且如前例1、例2的分析可知,它 是一个齐次马氏链,它的一步转移概率矩阵为:
0
第0 41_11讲马尔可夫过程
9马尔可夫过程9.1马尔可夫过程概论9.1.1马尔可夫过程的状态系统处于某个状态的概率9.1.2马尔可夫过程的状态转移概率从任意状态转移到特定状态的概率 从特定状态转移到任意状态的概率参数连续状态离散马尔可夫过程的转移概率和转移概率分布齐次的参数连续状态离散马尔可夫过程的转移概率和转移概率分布9.1.3参数连续状态离散马尔可夫过程的状态转移的切普曼-柯尔莫哥洛夫方程 9.1.4马尔可夫过程状态瞬时转移的跳跃率函数和跳跃条件分布函数 9.1.5确定马尔可夫过程Q 矩阵跳跃强度、转移概率Q 矩阵9.2参数连续状态离散马尔可夫过程的前进方程和后退方程柯尔莫哥洛夫-费勒前进方程(利用Q 矩阵可以导出、转移概率的微分方程) 福克-普朗克方程(状态概率的微分方程)柯尔莫哥洛夫-费勒后退方程(利用Q 矩阵可以导出、转移概率的微分方程) 9.3典型例题排队问题、机器维修问题、随机游动问题的分析方法 9.4马尔可夫过程的渐进特性稳态分布存在的条件和性质 稳态分布求解9.5马尔可夫过程的研究9.1马尔可夫过程概论9.1.1参数连续状态离散马尔可夫过程的状态,I={0,1,2,…,k,…}给定时刻系统处于某个状态的概率分布[]Tk t w t w t w t ""),(),(),()(10=w9.1.2参数连续状态离散马尔可夫过程的转移概率和转移概率分布,参数连续状态离散的马尔可夫过程的条件转移概率,{}{}I j i t t i t j t P t t t j t P ∪≤===≤′≤′=,,)(/)(0)(/)(211212ξξξξ并满足,{}0)(/)(12≥==i t j t P ξξ,{}1)(/)(12===∑∈Ij i t j t P ξξ齐次马尔可夫过程(随机过程是平稳的)的条件转移概率,如果转移概率只是时间差12t t −=τ的函数,转移概率可以写作)(τj i P ,上述关系写作,0)(≥τj i P ,1)(=∑∈Ij j i P τ。
最新第5章马尔可夫过程ppt课件
显然,绝对分布与初始分布和n步转移概率有如下关系:
q ( jn )q i ( 0 )p i ( jn )( 0 ) , n 0 ,i,j S i
或
q(n) q(0)P(n)(0)
5.2 马尔可夫链的转移概率与概率分布
事实上
q(n) j
P( X n
j)
P(
( X 0 i), X n j)
i
一直推下去,有 P ( k 1 ) ( n ) P ( n ) P ( n 1 )P ( n k ) , n , k 0
其分量形式为
p i ( j k 1 ) ( n )
p i j 1 ( n ) p j 1 j 2 ( n 1 )p j k j ( n k ) ,n , k 0 ; i , j S
5.2 马尔可夫链的转移概率与概率分布
解 根据题设,这个问题可以看成以S={0,1,2,…,c}为状态 空间的随机游动{Xn, n≥0},质点从a点出发到达0状态先 于到达c状态的概率就是甲先输光的概率.设0<j<c,uj 为质点从j出发到达0状态先于到达c状态的概率.由全概率 公式有
j 1j 2 j k
在上式中把 k+1换成 k,便可得如下结论 :
定理5.2.2 马尔可夫链的k 步转移概率由一步转移概率所 完全确定.
5.2 马尔可夫链的转移概率与概率分布
3. 马尔可夫链的分布
def
1)
初始分布称
q(0) i
P(X0i),iS为马尔可夫链{Xn,
n≥0}的
初始分布;
称第i个分量为
P(Xt1 i1, Xt2 i2, , Xtn in)
P( (X0 i), Xt1 i1, Xt2 i2, , Xtn in)
马尔可夫过程
马尔可夫过程 、独立 增量过程及独立随机过程
牛慧芳 2010-122010-12-25
1
7.1 马尔可夫过程
马尔可夫过程是一种重要的随机过程,它具有如下特性:当随机过程 在时刻ti所处的状态已知时,过程在时刻t(t>ti)所处的状态仅与过程在ti时刻的 状态有关,而与过程在ti时刻以前所处的状态无关。此特性称为随机过程的 无后效性或马尔可夫性。此特性也可理解为:随机过程X(t)在“现在”状态 已知的条件下,过程“将来”的情况与“过去”的情况无关。或者说,过去 只影响现在,而不影响将来。 P{将来|现在、过去}=P{将来|现在} 马尔可夫过程分类 按其状态空间I和时间参数集T是连续还是离散可分成四类(如表7-1)。 讨论的内容: 讨论的内容: 定义:转移概率及转移概率矩阵;齐次性;平稳分布;遍历性; 其他性质。
j =1
N
ij
=1
k=n时,n步转移概率pij(n)为: pi j ( n ) = pij ( m , m + 1) = P { X m + n = a j | X m = a i } , n ≥ 1 对应的n步转移概率矩阵为:
11
显然具有如下性质:
0 1、 ≤
N
pij ( n ) ≤ 1
ij
2、
2、马氏链的转移概率及其转移概率矩阵 (1)马氏链的转移概率 (1)马氏链的转移概率 马氏链“在tm时刻出现的状态为ai的条件下,tm+k时刻出现的 状态为aj”的条件概率可用pij(m,m+k)表示,即
齐次马氏链:若pij(m,m+k)与m无关,即pij(m,m+k)= pij (k) k=1时,一步转移概率pij为:
2
概率统计 马尔可夫链
状态空间 S {0,1,2, , k, }
其转移概率 P{X n1 0 | X n i} P{X n1 0} q 1 p
P{X n1 i 1| X n i} P{第n 1次试验时成功 } p
p00 q, p01 p, p02 0,
0, j i 2
pij
P{X n1
P{X (tm1)
j}
p,
j
1
例2:一维随机游动 一个质点在直线上的五个位置:0,1,2,3,4之上随机
游动.当它处在位置1或2或3时,以1/3的概率向左移 动一步而以2/3的概率向右移动一步;当它到达位置 0时,以概率1返回位置1;当它到达位置4时以概率1停 留在该位置上(称位置0为反射壁,称位置4为吸收壁).
n, 中, 对任意正整数
t1 t2 tn tn1
X t1 , X t2 , , X tn , X tn1 相互独立,
故对 jk 0,1, (k 1,2,, n 1) 有
P{X tn1 jn1 | X t1 j1, X t2 j2 , , X tn jn}
P{X tn1 jn1}
P{X (kn ) jn | X (k1 ) j1, X (k2 ) j2 , , X (kn1 ) jn1}
1 10
1 10 9 10
82 100
18 100
18 100 82 100
756
P(3) P3 1000
244 1000
244 1000 756 1000
p (3) 11
756 1000
0.756
P{X n1 1, X n2 1 | X n 1}
一个矩阵
p00 p01 p0 j
p10 p11 p1 j
随机过程马尔科夫过程 ppt课件
输一局后输光)
2020/11/13
23
4.1 马尔可夫链与转移概率
( p q )u i pu i 1 qu i 1
p(ui1 ui ) q (ui ui1 )
ui1 ui
q p
(ui
ui1 )
i 1,2, , c 1
(1q)1,即 pq1
p
2
ui1ui uiui1ui1ui2 u1u0 ˆ
Matlab教程课件-马尔科夫模型简介
X (t j )与X (tn ) xn1相互独立.
此时X (tn )与X (t j ), j 1,2,,n 2相互独立. 这表明X (t )具有无后效性,即{ X (t ), t 0}是一个 马尔可夫过程. 说明:
泊松过程是时间连续状态离散的马氏过程; 维纳过程是时间状态都连续的马氏过程.
例2 只传输数字0和1的串联系统 ( 0 1 传输系统) 如图:
X 0 1 X1 2 X 2 X n1 n X n
X
是第一级的输入
0
Xn是第n级的输出(n 1)
设一个单位时间传输一级, 设每一级的传真率为 p, 误码率为 q=1-p.
p21
状
态
ai
pi1
P(1)
X m1的状态
a2 a j
p12 p1 j
p22 p1 j
P(1)
pi2 pij 记为P
三、应用举例
例1 设{ X (t), t 0}是独立增量过程,且X (0) 0, 证明 { X (t ), t 0}是一个马尔可夫过程.
证明 由独立增量过程的定义知, 当0 t j tn1 tn , j 1,2,,n 2时,
马尔可夫模型
马尔可夫个人简介
• 马尔可夫(1856~1922),苏联数学家。切比雪夫的学生。在概率论、 数论、函数逼近论和微分方程等方面卓有成就。
• 马尔可夫是彼得堡数学学派的代表人物。以数论和概率论方面的工作 著称。他的主要著作有《概率演算》等。在数论方面,他研究了连分 数和二次不定式理论 ,解决了许多难题 。在概率论中,他发展了矩 法,扩大了大数律和中心极限定理的应用范围。马尔可夫最重要的工 作是在1906~1912年间,提出并研究了一种能用数学分析方法研究自 然过程的一般图式——马尔可夫链。同时开创了对一种无后效性的随 机过程——马尔可夫过程的研究。马尔可夫经多次观察试验发现,一 个系统的状态转换过程中第n次转换获得的状态常决定于前一次(第 n-1次)试验的结果。马尔可夫进行深入研究后指出:对于一个系统, 由一个状态转至另一个状态的转换过程中,存在着转移概率,并且这 种转移概率可以依据其紧接的前一种状态推算出来,与该系统的原始 状态和此次转移前的马尔可夫过程无关。目前,马尔可夫链理论与方 法已经被广泛应用于自然科学、工程技术和公用事业中
10632-数学建模-论文-马尔可夫链
若以X n表示时刻 n 时Q的位置,
则 { X n , n = 0,1,2,L}是一随机
1
2
3
45
过程, 而且当X n = i 时,X n+1 , X n+2 ,L等以后的行为只与 X n = i
有关,而与质点以前是如何到 i 是完全无关的,所以,它是一
个马氏链,且为齐次马氏链。
状态空间为:I = {1,2,3,4,5}
= 0.284
14
南京邮电大学孔告化讲 课稿
例题:设 {X n , n ≥ 0} 是具有三个状态 0,1,2 的齐次马氏链,
一步转移概率矩阵为 0 1 2
0 ⎜⎛ 3 / 4 1/ 4 0 ⎟⎞ P = 1 ⎜1/4 1/2 1/4⎟
2 ⎜⎝ 0 3 / 4 1/ 4⎟⎠
已知初始分布为:pi (0) = P{X0 = i} = 1/ 3, i = 0,1,2
=
1|
Xn
=
1}
≈
8
52 + 52
=
26 35
13
南京邮电大学孔告化讲 课稿
续例:若计算机在某一时段(15分钟)的状态为 0,问从此时段 起此计算机能连续正常工作 一小时 (4个时段)的概率为多少?
解:由题意,P{ X1 = 1, X 2 = 1, X 3 = 1, X 4 = 1 | X 0 = 0}
有 P{Xm+n = aj | Xt1 = ai1 , Xt2 = ai2 ,L, Xtr = air , Xm = ai }
= P{Xm+n = a j | Xm = ai }
记 Pij (m, m + n) = P{ Xm+n = a j | X m = ai } 称 Pij (m, m + n) 为马氏链在时刻 m 处于状态 ai 条件下, 在时刻 m + n 转移到状态 a j 的转移概率.
随机过程-马尔可夫
实际中常常碰到具有下列性质的运动体系 Σ,如果已知它在 t = n 时 的状态,则关于它在 n 时以前所处的状态的补充知识,对预言 Σ 在 n 时 以后所处的状态不起任何作用。或者说, 在已知“现在”的条件下,“将 来”与“过去”是独立的。这种性质,就是直观意义上的“马尔可夫性” (简称“马氏性”) 或称“无后效性”。具有马氏性的随机过程称为马尔 可夫过程。 马尔可夫过程在理论上和实际应用中都十分重要,在工程、统计、物 理、生物学、数字计算方法、经济管理和市场预测等领域中 都有十分重要 的作用和广泛应用。
(k + l ) (k )
(m) =
证明:
r ∈E
r ∈E (k ) (l ) Pir (m)Prj (m +
Pir (m)Prj (m + k ) k)
(k )
(l )
=
r ∈E
P {X (m + k ) = r|X (m) = i}P {X (m + k + l) = j |X (m + k ) = r}
j1 ,··· ,jk ∈E
即: K -步转移矩阵由 1 步转移矩阵决定。 设P {X (0) = j } = pj , pj ≥ 0,
j ∈I
pj = 1, 称{pj }j ∈E 为 马 氏 链 的 初 始 分 pj n) = 1
(
布。 (n) (n) 称pj = P {X (n) = j }为绝对概率,满足pj ≥ 0,
(n+1) 由pj
j
= P {X (n + 1) = j } =
k
P {X (n + 1) = j |X (0) = k }P {X (0) = k }
随机过程马尔科夫过程PPT课件
Xn i
P(Xn1 j Xn i)
记i个个体各自产生的后代数分别记为随机变量
,且
有概率分布
1,2, ,i
l (l 0,1, ,i)
P(l k) pk , k 0,1, 2
故一步转移概率为
P(Xn1 j Xn i) P(1 2 i j)
第21页/共44页
例4(卜里耶模型)设一个坛子里有b个黑球和r个红球,每次随机地从坛子中摸出
当时中国近代数学才刚刚起步,大学也没有概率课程。此时 苏联的概率论水平已届于世界最前列。王梓坤也根本不知道什么 是概率,可他的研究方向又恰恰被定为概率论, 著有《概率论基础及其应用》、《随机过程论》、 《生灭过程与马尔科夫链》等9部数学著作.
第2页/共44页
本章主要内容 马尔可夫过程的定义 马尔可夫链的转移概率与概率分布 齐次马尔可夫链状态的分类 转移概率的稳定性能
m)
(n)
P{X
nk
m
j
Xn
i)
P{( Xnk l), Xnkm j Xn i)
l
P{ ( Xnk l, Xnkm j) Xn i)
l
P( Xnk l, Xnkm j) Xn i)
l
第25页/共44页
P( Xnk l Xn i) P(Xnkm j Xn i, Xnk l)
P(k
)
(n)
(
p(k ij
)
(n))
为系统{Xn , n 0}在 n时的k步转移概率矩阵.
第9页/共44页
特别 当k=1时,
p(1) ij
(n)为系统在n时的一步转移概率,
记为 pij (n)
P(1)
(n)
(
p(1) ij
浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】(第13章 马尔可夫链——第1
第13章 马尔可夫链13.1 复习笔记一、马尔可夫过程及其概率分布 马尔可夫过程的概率分布 (1)转移概率及其转移概率矩阵 ①转移概率(,){|}ij m n j m i P m m n P X a X a ++===为马氏链在m 时处于a i 的条件下,到m +n 时转移到状态a j 的转移概率。
1(,)1,1,2,ij j P m m n i +∞=+==∑②转移概率矩阵 (,)((,))ij P m m n P m m n +=+性质:各元素非负,每行之和为1(2)齐次马氏链的转移概率及转移概率矩阵 一步转移概率为(){}11ij ij m j m i p P P X a X a +====一步转移概率矩阵()11211112122122212=1m j j mj i i i ijX a a a a p p p X a p pp P P a p p p +⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的状态的记成状态二、多步转移概率的确定1.C-K 方程1()()(),,1,2,ij ik kj k P u v P u P v i j +∞=+==∑2.n 歩转移概率齐次马尔可夫链的n 歩转移概率矩阵P (n )=P n三、遍历性 1.定义转移概率()ij P n 存在极限或()()121212jj n jP n P n πππππππππ⎡⎤⎢⎥⎢⎥⎢⎥=→∞⎢⎥⎢⎥⎢⎥⎣⎦则此链具有遍历性,若1jjπ=∑,则12(,,)πππ=为链的极限分布。
2.有限链遍历性的充分条件设齐次马氏链{X n ,n ≥l}的状态空间为12{,,,}N I a a a =,P 是它的一步转移概率矩阵,如果∃m ∈N +,使对∀,i j a a I ∈,都有()0,,1,2,,ij P m i j N >=则此链具有遍历性,且有极限分布12(,,,)N ππππ=,它是方程组π=πP 或1,1,2,Nj i ij i p j Nππ===∑满足条件10,1Nj j j ππ=>=∑的唯一解。
概率论第十三章-马尔可夫链
s
s u s u v
t
i, j 1,2,
这就是著名的chapman kolmogorov方程,简称C K 方程
即"从时刻s所处的状态ai出发,经时段u v转移到状态a j "
这一事件可分解成: "从X s ai出发,先经时段u转移到中间状态ak k 1, 2, 再从ak 经时段v转移到状态a j"这样一些事件和
p j i P i, j 0,1 ij P X n 1 j | X n i q j i
p P q
q p
9
例2:排队模型
随机到达者
等候室
服务台
离去者
系统
服务系统由一个服务员和只可以容纳两个人的等候室组成。 服务规则为:先到先服务,后来者需在等候室依次排队;若一 个需要服务的顾客到达系统时发现系统内已有3个顾客,则该 顾客立即离去。 设: (1)时间间隔⊿t内有一个顾客进入系统的概率为q,有一 接受服务的顾客离开系统(即服务完毕)的概率为p; (2)当⊿t充分小时,在这时间间隔内多于一个顾客进入或 离开系统实际上是不可能的; (3)再设有无顾客来到与服务是否完毕是相互独立的。 10
Pin1in tn tn 1
pi 0 Pii1 t1 Pi1i2 t2 t1
马尔可夫链的有限维分布完全由初始分布和转移概率所确定
例如:P{X 0 a0,X 2 a2} P{X 2 a2 | X 0 a0}P{X 0 a 0} p0 (0) p02 (2)
, X (tn 1 ) xn 1}
马尔可夫性(无后效性 ):已知过程“现在” 的条件下, “将来”不依赖于“过 去”。
马尔科夫过程
P{Xn1 j | Xn in}
(i 1,2, , N)
则称 {X n} 为马尔可夫链(简称马氏链)。
2、马尔可夫链的转移概率及性质
(一)
k 1 时,有
pij (1) pij (m, m 1) pij
称为一步转移概率。由所有一步转移概率 pij 构成的矩阵
f X (xn | xn1, , xnk ) f X (xn | xn1 )
证:因为
f X (xn , xn1 , , xnk ) f X (xnk | xnk1 ) f X (xn1 | xn ) f X (xn )
同理
f X (xn1 , xn2 , , xnk ) f X (xnk | xnk1 ) f X (xn2 | xn1 ) f X (xn1 )
可达具有传递性,即若 i r , r j ,则 i j
定义(相通或互达定义):若自状态 i 可达状态 j,同时自状态 j
也可达状态 i,则称状态 i 和状态 j 相通,记为 i j
是齐次的。 5、 如果一个马尔可夫序列是齐次的,并且所有的随机变量 X n
具有相同的概率密度,则称该马尔可夫序列是平稳的。
6、 对于 n r s, 马尔可夫序列的转移概率满足
f X (xn | xs ) f X (xn |xr ) f X (xr | xs )dxr
此式就是有名的切普曼—柯尔莫哥洛夫方程(C-K方程)。
p1N (n) p2N (n)
pNN (n)
(1)
0 pij (n) 1
(2)
为了数学处理便利,通常规定
ቤተ መጻሕፍቲ ባይዱ
N
pij (n) 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 只传输数字0和1的串联系统 ( 0 1 传输系统) 如图:
X 0 1 X1 2 X 2 X n1 n X n
X
是第一级的输入
0
Xn是第n级的输出(n 1)
设一个单位时间传输一级, 设每一级的传真率为 p, 误码率为 q=1-p.
状态空间就是I. 且当Xn i,i I为已知时, X n1所处的状态分布只与X n i有关, 而与时刻 n 以前所处的状态无关. 所以它是一个马氏链, 且是齐次的.
一步转移概率 pij P{ Xn1 j | Xn i}
Pij (n) P{ Xmn a j | Xm ai }.
称为马氏链的n步转移概率
P(n) (Pij(n))为n步转移概率矩阵.
特别的, 当 k=1 时,
一步转移概率 pij Pij (1) P( Xm1 a j | Xm ai }.
一步转移概率矩阵 P(1) X m1的状态
a1 a2 a j
12345 如果Q现在位于1(或5)这点上, 则下一时刻就 以概率1移动到2(或4)这一点上. 1和5这两点称为反射壁. 上面这种游动称为带有两个反射壁的随机游动. 模拟方法:产生均匀分布的随机数序列132322 11122…,其中1表示左移;2表示不动;3表示右移.
12345
理论分析: 以Xn表示时刻n时Q的位置. 则{Xn ,n 0,1,2, }是一随机过程.
i, j 0,1
一步转移概率矩阵
01
P 0 1
p q
q p
例3 一维随机游动 一随机游动的质点在如图所示直线的点集 I {1,2,3,4,5}上作随机游动,并且仅仅在1秒、2秒 等时刻发生游动.
12345 游动的概率规则
如果Q现在位于点 i (1< i <5),则下一时刻各以 1/3的概率向左或向右移动一格, 或以1/3的概率留 在原处;
或写成 Ftn|t1 tn1 ( xn , tn | x1, x2 , , xn1;t1, t2 , , tn1 )
Ftn|tn1 ( xn , tn | xn1, tn1 ), 这时称过程{ X (t), t T }具马尔可夫性或无后效性. 并称此过程为马尔可夫过程.
3. 马尔可夫链的定义
时间和状态都是离散的马尔可夫过程称为马尔 可夫链, 简记为 { X n X (n), n 0,1,2, }.
即: 过程“将来”的情况与“过去”的情况是无 关的.
2. 马尔可夫过程的定义
具有马尔可夫性的随机过程称为马尔可夫过程. 用分布函数表述马尔可夫过程 设 I : 随机过程 { X (t ), t T }的状态空间, 如果对时间t的任意n个数值, tX1 (tnt2)在 条t件n ,Xn(ti 3) ,tixi下T 的 , 条恰件有分布函数 P{ X (tnX) (tnx)n在| X条(t件1 )X (xt1n,1X)(t2 )xn1x下2 ,的,条X (件tn分1 ) 布x函n1数} P{ X (tn ) xn | X (tn1 ) xn1}, xn R
转移到状态a j的转移概率.
说明: 转移概率具有特点
此矩阵的每一行元 素之和等于1.
Pij(m,m n) 1,i 1,2, .
j 1
由转移概率组成的矩阵 P(m,m n)(Pij(m, m n))
称为马氏链的转移概率矩阵. 它是随机矩阵.
3. 平稳性
当转移概率 Pij(m, m n) 只与 i, j 及时间间距 n 有关时, 称转移概率具有平稳性. 同时也称此链是齐次的或时齐的. 此时, 记 Pij(m,m n) Pij(n),
P{X mn a j | X t1 ai1 , X t2 ai2 ,L , X tr air , X m ai}
P{ Xmn a j | Xm ai }, 其中 ai I .
2. 转移概率
称条件概率 Pij(m,m n) P{ Xmn a j | Xm ai }
为马氏链在时刻m处于状态ai条件下,在时刻 m n
二、马尔可夫过程的概率分布
研究时间和状态都是离散的随机序列
{ Xn X (n), n 0,1, 2, }, 状态空间为 I (a1,a2 , }, ai R .
1. 用分布律描述马尔可夫性
对任意的正整数n, r 和 0 t1 t2 tr m; ti , m, n m Ti , 有
Xm 的
a1 p11
a2
p21
p12 p22
状
态
ai
pi1
pi 2
p1 j
p1 j
P(1)
pij
记为P
三、应用举例
例1 设{ X (t), t 0}是独立增量过程,且X (0) 0, 证明 { X (t ), t 0}是一个马尔可夫过程.
证明 由独立增量过程的定义知, 当0 t j tn1 tn , j 1,2, ,n 2时,
分析: {Xn,n 0,1,2, }是一随机过程, 状态空间 I {0, 1} ,
且当Xn i,i I为已知时, X n1所处的状态分布只与X n i有关,
而与时刻 n 以前所处的状态无关.
所以它是一个马氏链, 且是齐次的.
一步转移概率
pijP{ Xn1 Nhomakorabeaj|
Xn
i}
p, j i q, j i,
第一节 马尔可夫过程及其概率分布
一、马尔可夫过程的概念 二、马尔可夫过程的概率分布 三、应用举例 四、小结
一、马尔可夫过程的概念
1. 马尔可夫性(无后效性)
过程或(系统)在时刻t0所处的状态为已知的 条件下,过程在时刻t t0所处状态的条件分布与 与过程在时刻t0之前所处的状态无关的特性称为 马尔可夫性或无后效性.
增量X (t j ) X (0)与X (tn ) X (tn1)相互独立. 根据条件X (0) 0与X (tn1) xn1, 即有
X (t j )与X (tn ) xn1相互独立.
此时X (tn )与X (t j ), j 1,2, ,n 2相互独立. 这表明X (t )具有无后效性,即{ X (t ), t 0}是一个 马尔可夫过程. 说明: