三角形辅助线的添加方法和经典习题和答案
等腰三角形4种辅助线添加方法+例题
等腰三角形4种辅助线添加方法+例题三线合一,是等腰三角形里最重要的性质定理之一。
所谓三线,就是等腰三角形中,顶角的角平分线,底边的中线,底边的高线。
必然三线合一。
例题1,是三线合一的最基础的题型,D是BC的中点,那么连接AD,通过三线合一的性质,得出AD⊥BC.方法二:做平行线法这个一般是做一腰的平行线,得出两个角相等,从而得出三角形全等例题2中,这个题是非常常见的考试经典题型。
第①小题,得出三角形全等,得出PD=QD。
第②小题,过点P做PF∥AC,因为△PBF是等腰三角形,PE⊥BF,三线合一得出BE=EF。
又因为三角形全等,得出FD=CD。
所以,得出ED=BC的一半,即为定值。
方法三:截长补短法,或者叫截长取短法简单说,就是在某一条线段上截取一条线段,和已知线段相等。
或者,延长某一线段,使之等于某已知线段。
此解题方法常用,请大家细心钻研,平时多探索,勤学苦练。
例题3,就是一道延长某一线段,使之等于某已知线段,经典考试题型。
例题4,这就是一道在某一条线段上截取一条线段,和已知线段相等,通过等量转换,得出结论的经典考试题型。
方法四:加倍折半法,倍长中线法例题5,解析说过点B做BF∥AC,最后得出的还是线段相等。
其实,这个题还有一个更好的解题思路,就是倍长中线法先提示一下辅助线的添加方法。
因为CE是△ABC的中线,倍长中线CE。
延长CE至F,使EF=CE,连接BF。
倍长中线,必出三角形全等,最后得出,△DBC≌△FBC,所以DC=CF,所以CD=2CE。
看完这经典例题之后,不要认为自己就完全掌握了,这个时候要干什么?。
专题全等三角形常见辅助线做法及典型例题
全等三角形辅助线做法总结 图中有角平分线;可向两边作垂线.. 也可将图对折看;对称以后关系现..角平分线平行线;等腰三角形来添.. 角平分线加垂线;三线合一试试看..线段垂直平分线;常向两端把线连.. 要证线段倍与半;延长缩短可试验..三角形中两中点;连接则成中位线.. 三角形中有中线;延长中线等中线..一、截长补短法和;差;倍;分截长法:在长线段上截取与两条线段中的一条相等的一段;证明剩余的线段与另一段相 等截取----全等----等量代换补短法:延长其中一短线段使之与长线段相等;再证明延长段与另一短线段相等延长 ----全等----等量代换例如:1;已知;如图;在△ABC 中;∠C =2∠B;∠1=∠2..求证:AB=AC+CD..2;已知:如图;AC ∥BD;AE 和BE 分别平分∠CAB 和∠DBA;CD 过点E .求证:1AE ⊥BE ; 2AB=AC+BD .二、图中含有已知线段的两个图形显然不全等或图形不完整时;添加公共边或一其中 一个图形为基础;添加线段构建图形..公共边;公共角;对顶角;延长;平行例如:已知:如图;AC 、BD 相交于O 点;且AB =DC;AC =BD;求证:∠A =∠D..三、延长已知边构造三角形例如:如图6:已知AC =BD;AD ⊥AC 于A ;BC ⊥BD 于B;求证:AD =BC四、遇到角平分线;可自角平分线上的某个点向角的两边作垂线“对折”全等例如:已知;如图;AC 平分∠BAD;CD=CB;AB>AD..求证:∠B+∠ADC=180..五、遇到中线;延长中线;使延长段与原中线等长“旋转”全等 例如:1如图;AD 为 △ABC 的中线;求证:AB +AC >2AD..三角形一边上的中线小于其他两边之和的一半2;已知:AB=4;AC=2;D 是BC 中点;AD 是整数;求AD..3;如图;已知:AD 是△ABC 的中线;且CD=AB;AE 是△ABD 的中线;求证:AC=2AE.六、遇到垂直平分线;常作垂直平分线上一点到线段两端的连线可逆 :遇到两组线段相等;可试着连接垂直平分线上的点 例如:在△ABC 中;∠ACB=90;AC=BC;D 为△ABC 外一点;且AD=BD;DE ⊥AC 交AC 的延长 线于E;求证:DE=AE+BC..七、遇到等腰三角形;可作底边上的高;或延长加倍法“三线合一”“对折”例如: 如图;ΔABC 是等腰直角三角形;∠BAC=90°;BD 平分∠ABC 交AC 于点D;CE 垂 直于BD;交BD 的延长线于点E..求证:BD=2CE..八、遇到中点为端点的线段时;延长加倍次线段例如:如图2:AD 为△ABC 的中线;且∠1=∠2;∠3=∠4;求证:BE +CF >EF九、过图形上某点;作特定的平行线“平移”“翻转折叠” 例如:如图;ΔABC 中;AB=AC;E 是AB 上一点;F 是AC 延长线上一点;连EF 交BC 于D; 若EB=CF..求证:DE=DF.. AD BCD CB A 110 图OC A EB D。
中考总复习—全等三角形中辅助线的添加(最经典最全面)-有答案
DC B AEDFCBA全等三角形及其辅助线作法常见辅助线的作法有以下几种:1) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”(或构造平行线的X 型全等).2) 遇到角平分线,一是可以自角平分线上的某一点向角的两边作垂线,二是在角的两边上截取相同的线段,构成全等。
利用的思维模式是三角形全等变换中的“对折”,也是运用了角的对称性。
3) 截长法与补短法,具体做法是在较长线段上截取一条线段与特定线段相等,使剩下的线段与另一条线段相等;或者是将两条较短线段中的一条延长,使这两条线段的和等于较长的线段。
这种作法,适合于证明线段的和、差、倍、分等题目.4) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.也可以将两腰分拆到两个三角形中,证明这两个三角形全等。
特殊的应用有等边三角形与等腰直角三角形。
5) 此外,还有旋转、折叠等情况。
(一)、中点线段倍长问题(中线倍长或者倍长中线):1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.2、如图△ABC 中,点D 是BC 边中点,过点D 作直线交AB 、CA 延长线于点E 、F 。
当AE=AF 时,求证BE=CF 。
3、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.4、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.E D CB AA BC D E F5 如图,AB=AC ,AD=AE ,M 为BE 中点,∠BAC=∠DAE=90°。
求证:AM ⊥DC 。
应用:1、以△ABC 以的两边AB 、AC 为腰分别向外作等腰Rt △ABD 和等腰Rt △ACE ,且∠BAD=∠CAE-90°,连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当△ABC 为直角三角形时,AM 与DE 的位置关系是, 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt △ABD 绕点A 沿逆时针方向旋转θ° (0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.(二)角平分线与轴对称1、如图,已知AD 为△ABC 的角平分线,∠C=2∠B ,求证:AB=AC+CD.2、 如图,直线l 1∥l 2,直线m 与直线l 1 、l 2交于A 、B 两点。
全等三角形经典题型辅助线
全等三角形常见辅助线作法【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形.【例2】、如图,已知BC > AB ,AD=DC 。
BD 平分∠ABC 。
求证:∠A+∠C=180°.一、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。
1、倍长中线法【例. 3】如图,已知在△ABC 中,90C ︒∠=,30B ︒∠=,AD 平分BAC ∠,交BC 于点D 。
求证:2BD CD =证明:延长DC 到E ,使得CE=CD ,联结AE ∵∠ADE=60°∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC ∴∠BAC=60° ∵AD 平分∠BAC ∴∠BAD=30°∴DB=DA ∠ADE=60°DCBADCB EA【例 4.】 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
证明:延长AE 到点F,使得EF=AE 联结DF在△ABE 和△FDE 中 ∴∠ADC=∠ABD+∠BDA BE =DE ∵∠ABE=∠FDE∠AEB=∠FED ∴∠ADC=∠ADB+∠FDE AE=FE 即 ∠ADC = ∠ADF ∴△ABE ≌ △FDE (SAS ) 在△ADF 和△ADC 中 ∴AB=FD ∠ABE=∠FDE AD=AD ∵AB=DC ∠ADF = ∠ADC ∴ FD = DC DF =DC∵∠ADC=∠ABD+∠BAD ∴△ ADF ≌ ADC(SAS) ∵ADB BAD ∠=∠ ∴AF=AC ∴AC=2AE【变式练习】、 如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.【小结】熟悉法一、法三“倍长中线"的辅助线包含的基本图形“八字型"和“倍长中线”两种基本操作方法,倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。
三角形添加辅助线技巧(带答案)
三角形添加辅助线技巧图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现 角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看 线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验 三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线(一)作平行线作平行线,构造全等三角形 1、已知:如图,在△ABC 中,AB=AC ,D 点在AB 边上,E 在AC 边的延长线上,DE 交BC 于点F ,BD=CE ,求证:DF=EF.(二)作垂线遇角平分线,在平分线上找点作角两边的垂线,利用角平分线的性质,通过三角形全等求解 2、如图,已知OP 平分∠AOB ,C ,D 分别在OA 、OB 上,若∠PCO+∠PDO=180°, 求证:PC=PD.O证明:过P 做PE 垂直于OA 于E,过P 做PF 垂直于OB 为F3、已知:如图,在△ABC 中,AB=2AC ,∠1=∠2,AD=BD ,求证:CD ⊥AC.DCB证明:过D 作DM ⊥AB ,垂足为M,因为AD=BD,所以AM=BM=AB/2(三线合一), 因为AB=2AC,所以AC=AM,因为AD 平分∠BAC ,所以∠1=∠2,在△ADC 和△ADM 中,AC=AM,∠2=∠1,AD 为公共边, 所以△ADC ≌△ADM,所以∠ACD=∠ADM=90,即:CD ⊥AC(三)倍长中线, 构造中位线相等线段的倍长也等,借助中点作平行线,构造中位线,利用中位线的性质求解4、已知:如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF.BC延长AD 交BM 于M 点因为D 为BC 的中点,所以ABMC 为平行四边形 所以BM=AC,因为BE=AC 所以BE=BM,所以角BEM=角BME因为BM//AC,所以角CAM=角BME=角BEM 因为角BEM=角AEF(对等角),所以AF=EF5、如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE.C已知AD 是ABC 的中线,AE 是ABD 的中线,且AB=BD,求证:AC=2AE 可证明△ABE ∽△CBA (SAS )则∠EAB=∠ACB ,∠AEB=∠CAB 且∠ADB =∠ACB+∠CAD=∠DAB=∠EAB+∠DAE=∠ACB+∠DAE 所以∠CAD=∠DAE AD 角CAE 平分线 可由角分线定理得AC :AE=CD :DE=2 AC=2AE6.如图,在△ABC 中,D 是BC 上的靠近B 点的三等分点,E 是AB 的中点,直线AC 与DE 交于点F ,求证:EF=3DE.证明:找CD 中点G ,连接AG ,再根据两个中位线证明比例关系7.在△ABC 中,∠B=2∠C,M 为BC 的中点,AD ⊥BC ,求证:DM=1/2AB.取AB 的中点E ,连接DE 、EM 。
全等三角形经典辅助线做法汇总
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法4)(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
全等三角形添加辅助线的方法
全等三角形添加辅助线的方法1.中线法:将两条边的中点相连并延长,然后证明其与其他一条边的边长和角度相等。
具体步骤如下:a.连接三角形两条边的中点,并延长至交于一点O。
b.证明∆ABC与∆ADB全等,其中∠CAB=∠DAB(两对顶点角),且AB =AD各一边。
c.推导出AC=BD(全等三角形的边)2.垂直平分线法:通过构造两条垂直平分线使其中两个角相等,从而推导出三角形全等。
具体步骤如下:a.根据题意连接一个角的两边,并找出该两边的垂直平分线。
b.证明∆ABC的两个∠BAC和∠BCA各自与∠ACD和∠ACB相等(垂直平分线构成等腰三角形),即∠BAC=∠ACD,∠BCA=∠ACB。
c.推导出∆ABC和∆ACD的三个角相等,从而两个三角形全等。
3.夹边法(重心法):通过构造两个辅助三角形,使两个夹角相等,从而推导出三角形全等。
具体步骤如下:a.过三角形一边的顶点作该边对边的平行线,分别与另两边相交得到两个辅助三角形。
b.证明这两个辅助三角形的两个夹角分别与原三角形的两个对应夹角相等(平行线与三角形两边的交角),即∠BAC=∠EAB,∠CBA=∠DBA。
c.推导出∠ABC和∠EDB相等,从而两个三角形全等。
4.等腰三角形法:通过构造两个等腰三角形,使它们的顶点与原三角形的顶点相连,从而推导出三角形全等。
a.根据题意找到一个角的顶点为原三角形的顶点,并构造一个等腰三角形,顶点为该角的顶点。
b.构造另一个等腰三角形,顶点为原三角形的顶点,并使这两个等腰三角形的顶点分别与原三角形的顶点相连。
c.证明这两个等腰三角形的两个底边与原三角形的两个对应边相等,即AC=DE,BC=DF。
d.推导出∆ABC和∆DEF的三个角相等,从而两个三角形全等。
通过以上几种常见的方法,可以添加辅助线来证明三角形的全等关系。
在实际问题中,根据具体的几何信息和条件,选择合适的辅助线构造方法,可以简化证明过程,并加深对全等三角形的理解。
三角形全等证明,10道考试真题,6种常用辅助线添加的方法和技巧.doc
三角形全等证明,10道考试真题,6种常用辅助线添加的方法和技巧以下六种常用的辅助线添加方法和技巧。
相互学习,一起进步。
方法一、双垂直构造三角形全等。
遇见角平分线,角平分线上的点向角两边做垂直,必出三角形全等。
例题1,是最基础,最简单的题型。
有些,需要我们证明角平分线的时候,同样可以向角两边做垂直,那么只要两个垂线段相等,到角两边距离相等的点在角平分线上。
例题2,过点P做MN平行BC,则出现在AB边和CD 边上,双垂直。
根据题意,证明三角形QNP全等于三角形PMB,结论得证。
方法二,倍长中线。
三角形中,遇见中点,很容易想到倍长中线。
例题3,倍长中线后,得出三角形ACE全等于三角形ACM。
例题4,延长AD至E,使DE=AD。
得出三角形ADC全等于三角形EDB。
第2小题,根据三角形的三边关系,等量代换,即可求出AD的取值范围。
方法三、截长补短法。
求证两个线段和等于一个线段的时候,很容易想到截长补短的辅助线添加方法。
截长补短法,包括了截长法和补短法,两种方法。
一般来说,一道题,既可以用截长法,也可以用补短法。
例题6、解析中用了延长AD至M,使MD=FD。
请认真看解答过程。
再请按照图3的辅助线,自行练习推理,举一反三,得出结论。
方法四、平行线发或者平移法。
解题方法1,过点O做OD平行BC。
还有两个方法,请自行推理,如图3和图4.方法五,旋转法。
把一个三角形,经过旋转,旋转后必出三角形全等,得出结论。
例8和例9,其实也就是,最近经典的半角模型。
之前也专门讲过,这个几何模型。
请认真参考,这个两个例题。
从中总结规律和解题方法。
方法六、翻折法,或者叫对称法。
例题10,看起来很难,当你认真看完解题过程,肯定会有所收获。
全等三角形证明之辅助线,附练习题含答案
全等三角形证明之辅助线讲义➢ 知识与方法梳理1. 为了解决几何问题,在原图的基础上另外添加的直线或线段称为辅助线.辅助线通常画成虚线.辅助线的原则:添加辅助线,构造新图形,形成新关系,建立已知和未知之间的桥梁,把问题转化成自己已经会解的情况. 辅助线的作用:①把分散的条件转为集中; ②把复杂的图形转化为基本图形.添加辅助线的注意事项:明确目的,多次尝试.2. 要证明边相等(或角相等),可以考虑证明它们所在的三角形全等;要证全等,需要找3组条件. ➢ 例题示范例:已知:如图,在△ABC 中,∠C =90°,D 是AB 边上一点,AD =AC ,过点D 作DE ⊥AB ,交BC 于点E . 求证:CE =DE . 【思路分析】 ① 读题标注:② 梳理思路:要证CE =DE ,考虑把这两条线段放在两个三角形中证全等,利用全等三角形对应边相等来证明.观察图形,发现不存在全等的三角形.结合条件,AC =AD ,∠C =∠ADE =90°,考虑连接AE ,证明△ACE ≌△ADE . 【过程书写】 证明:如图,连接AE ∵DE ⊥AB ∴∠ADE =90° ∵∠C =90° ∴∠C =∠ADE在Rt △ACE 和Rt △ADE 中AE AE AC AD=⎧⎨=⎩(公共边)(已知)∴Rt △ACE ≌Rt △ADE (HL ) ∴CE =DE (全等三角形对应边相等)EDC AEDBAEDBCA➢练习题BFEAC D7. 已知:如图,BD ,CE 是△ABC 的高,点P 在BD 的延长线上,BP =AC ,点Q 在CE 上,CQ =AB .判断线段AP 和AQ 的数量和位置关系,并加以证明.8. 已知:如图,∠B =∠D ,AB =CD ,AD ∥BC ,E ,F 分别是AD ,BC 的中点.求证:AF =CE .9. 已知:如图,B ,C ,F ,E 在同一条直线上,AB ,DE 相交于点G ,且BC =EF ,GB =GE ,∠A =∠D .求证:DC =AF .10. 已知:如图,∠C =∠F ,AB =DE ,DC =AF ,BC =EF .求证:AB ∥DE .11. 已知:如图,AB ∥CD ,AD ∥BC ,E ,F 分别是AD ,BC 的中点.求证:BE =DF .QPEDCBACAEF B DDGC AB EFFEBAD CF E B A DC12. 已知:如图,在正方形ABCD 中,AD =AB ,∠DAB =∠B =90°,点E ,F 分别在AB ,BC 上,且AE =BF ,AF 交DE 于点G . 求证:DE ⊥AF .连接BM ,交CN 于点F .有下列结论:①∠AMB =∠ANB ;②△ACE ≌△MCF ;③CE =CF ;④EN =FB .其中正确结论的序号是_________________.【参考答案】1. 证明:如图,连接AD在△ABD 和△DCA 中AB DCBD CAAD DA =⎧⎪=⎨⎪=⎩(已知)(已知)(公共边) ∴△ABD ≌△DCA (SSS )∴∠ABO=∠DCO (全等三角形对应角相等) 2. 证明:如图,连接AC∵AB ∥CDGFEDCBANM EB AFC∴∠CAB =∠ACD ∵AD ∥BC ∴∠DAC =∠BCA 在△ABC 和△CDA 中CAB ACDAC CABCA DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(公共边)(已证) ∴△ABC ≌△CDA (ASA )∴AB =CD ,BC =DA (全等三角形对应边相等) 3. 证明:如图,连接AC ,AD在△ABC 和△AED 中,AB AE B EBC ED =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已知) ∴△ABC ≌△AED (SAS )∴AC =AD (全等三角形对应边相等) ∵F 是CD 的中点 ∴CF =DF在△ACF 和△ADF 中,AC AD AF AFCF DF =⎧⎪=⎨⎪=⎩(已证)(公共边)(已证) ∴△ACF ≌△ADF (SSS )∴∠CFA =∠DFA (全等三角形对应角相等) ∵∠CFA +∠DFA =180° ∴∠CFA =90° ∴AF ⊥CD4. 证明:如图,过点A 作AD ⊥BC 于点D∵AD ⊥BC∴∠ADB =∠ADC=90° 在△ADB 和△ADC 中,B CADB ADCAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(公共边) ∴△ADB ≌△ADC (AAS )∴AB =AC (全等三角形对应边相等) 5. 证明:如图,过点B 作BF ⊥AC 于点FA DBCFCBEDAAD B C6. ∵BC ⊥AD∴∠ACE =∠BCD =90° 在Rt △ACE 和Rt △BCD 中AE BD CE CD =⎧⎨=⎩(已知)(已知)∴Rt △ACE ≌Rt △BCD (HL )∴∠CAE =∠CBD (全等三角形对应角相等) ∵∠ACE =90° ∴∠CAE +∠AEC =90° ∵∠AEC =∠BEF ∴∠CBD +∠BEF =90° ∴∠BFE =90° ∴AF ⊥BD7. 解:AP =AQ 且AP ⊥AQ ,理由如下:如图,∵BD ⊥AC ,CE ⊥AB ∴∠BEQ =∠BDC =∠ADP =90° ∴∠1+∠3=90° ∠2+∠4=90° ∵∠3=∠4 ∴∠1=∠2在△ABP 和△QCA 中54321QCB PE DA1 2 AB QC BP CA =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已知) ∴△ABP ≌△QCA (SAS )∴AP =AQ (全等三角形对应边相等) ∠P =∠5(全等三角形对应角相等) ∵∠ADP =90° ∴∠P +∠PAD =90° ∴∠5+∠PAD =90° 即∠QAP =90° ∴AP =AQ 且AP ⊥AQ 8. 证明:如图,连接AC∵AD ∥BC ∴∠DAC =∠BCA 在△ABC 和△CDA 中,∴△ABC ≌△CDA (AAS )∴BC =DA (全等三角形对应边相等) ∵E ,F 分别是AD ,BC 的中点 ∴1122BF BC DE AD ==, ∴BF =DE在△ABF 和△CDE 中,∴△ABF ≌△CDE (SAS )∴AF =CE (全等三角形对应边相等)9. 证明:如图,过点G 作GH ⊥BE 于点H∵GH ⊥BE∴∠GHB =∠GHE =90° 在Rt △GHB 和Rt △GHE 中,BCA DAC B DAB CD (已证)(已知)(公共边)∠=∠⎧⎪∠=∠⎨⎪=⎩AB CD B DBF DE (已知)(已知)(公共边)=⎧⎪∠=∠⎨⎪=⎩H FBA C GDGB GEGH GH=⎧⎨=⎩(已知)(公共边) ∴Rt △GHB ≌Rt △GHE (HL )∴∠B =∠E (全等三角形对应角相等) ∵BC =EF ∴BC +CF =EF +CF 即BF =EC在△ABF 和△DEC 中,A DB EBF EC ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已证) ∴△ABF ≌△DEC (AAS ) ∴DC =AF10. 证明:如图,连接BE在△AEF 和△DBC 中,AF DCF CEF BC =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已知) ∴△AEF ≌△DBC (SAS )∴AE =DB (全等三角形对应边相等) 在△ABE 和△DEB 中,AE DB AB DEEB BE =⎧⎪=⎨⎪=⎩(已证)(已知)(公共边) ∴△ABE ≌△DEB (SSS )∴∠ABE =∠DEB (全等三角形对应角相等) ∴AB ∥DE11. 证明:如图,连接BDCD ABE F∵AB ∥CD ,AD ∥BC∴∠ABD =∠CDB ,∠ADB =∠CBD 在△ABD 和△CDB 中,ABD CDBBD DBADB CBD ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(公共边)(已证) ∴△ABD ≌△CDB (ASA )∴AD =CB (全等三角形对应边相等) ∵E ,F 分别是AD ,BC 的中点 ∴DE =BF在△BED 和△DFB 中,DE BF ADB CBDBD DB =⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边) ∴△BED ≌△DFB (SAS )∴BE =DF (全等三角形对应边相等) 12. 证明:如图,在△DAE 和△ABF 中AD BA DAE B AE BF =⎧⎪=⎨⎪=⎩(已知)∠∠(已知)(已知) ∴△DAE ≌△ABF (SAS )∴∠1=∠2(全等三角形对应角相等) ∵∠DAB =90° ∴∠2+∠3=90° ∴∠1+∠3=90° ∴∠AGD =90° ∴DE ⊥AF 13. B 14. ②③④CDA B E F ABCDEF G第7题图312。
(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(完整版)初二数学辅助线常用做法及例题(含答案)
DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
全等三角形问题中常见的8种辅助线的作法(有答案解析)
全等三角形问题中常见的辅助线的作法(有答案 )总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接那么成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一〞法:遇到等腰三角形,可作底边上的高,利用“三线合一〞的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法〞或“补短:法〞遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为 30 、60 度的作垂线法:遇到三角形中的一个角为30 度或 60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一〞的性质解题,思维模式是全等变换中的“对折〞法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转〞法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,〔1〕可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折〞,所考知识点常常是角平分线的性质定理或逆定理.〔2〕可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
相似三角形添加辅助线的方法举例(有答案)-精选.pdf
相似三角形添加辅助线的方法举例例1:已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D .求证:BC 2=2CD ·AC .例2.已知梯形ABCD 中,BC AD //,AD BC 3,E 是腰AB 上的一点,连结CE(1)如果AB CE ,CD AB ,AE BE 3,求B 的度数;(2)设BCE 和四边形AECD 的面积分别为1S 和2S ,且2132S S ,试求AEBE 的值例3.如图4-1,已知平行四边ABCD 中,E 是AB 的中点,ADAF31,连E 、F 交AC 于G .求AG :AC的值.ABCD例4、如图4—5,B 为AC 的中点,E 为BD 的中点,则AF :AE=___________.例5、如图4-7,已知平行四边形ABCD 中,对角线AC 、BD 交于O 点,E 为AB 延长线上一点,OE 交BC于F ,若AB=a ,BC=b ,BE=c ,求BF 的长.例6、已知在△ABC 中,AD 是∠BAC 的平分线.求证:CD BD ACAB.相似三角形添加辅助线的方法举例答案例1:已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D .求证:BC 2=2CD ·AC .分析:欲证BC 2=2CD ·AC ,只需证BCAC CDBC 2.但因为结论中有“2”,无法直接找到它们所在的相似三角形,因此需要结合图形特点及结论形式,通过添加辅助线,对其中某一线段进行倍、分变形,构造出单一线段后,再证明三角形相似.由“2”所放的位置不同,证法也不同.证法一(构造2CD ):如图,在AC 截取DE =DC ,∵BD ⊥AC 于D ,∴BD 是线段CE 的垂直平分线,∴BC=BE ,∴∠C=∠BEC ,又∵AB =AC ,∴∠C=∠ABC .∴△BCE ∽△ACB .∴BCAC CEBC ,∴BCAC CDBC 2∴BC 2=2CD ·AC .证法二(构造2AC ):如图,在CA 的延长线上截取AE =AC ,连结BE ,∵AB =AC ,∴AB =AC=AE .∴∠EBC=90°,又∵BD ⊥AC .∴∠EBC=∠BDC=∠EDB=90°,∴∠E=∠DBC ,∴△EBC ∽△BDC ∴BCCE CDBC 即BCAC CDBC 2∴BC 2=2CD ·AC .证法三(构造BC 21):如图,取BC 的中点E ,连结AE ,则EC=BC 21.又∵AB=AC ,∴AE ⊥BC ,∠ACE=∠C ∴∠AEC=∠BDC=90°∴△ACE ∽△BCD .∴BC AC CDCE 即BCAC CDBC21.∴BC 2=2CD ·AC .证法四(构造BC 21):如图,取BC 中点E ,连结DE ,则CE=BC 21.∵BD ⊥AC ,∴BE=EC=EB ,∴∠EDC=∠C又∵AB=AC ,∴∠ABC=∠C ,∴△ABC ∽△EDC .A BCDE ABCDEABCDEABCDEABCD∴EC ACCDBC J 即BC ACCDBC 21.∴BC 2=2CD ·AC .说明:此题充分展示了添加辅助线,构造相似形的方法和技巧.在解题中方法要灵活,思路要开阔.例2.已知梯形ABCD 中,BC AD //,AD BC3,E 是腰AB 上的一点,连结CE(1)如果AB CE ,CD AB ,AE BE 3,求B 的度数;(2)设BCE 和四边形AECD 的面积分别为1S 和2S ,且2132S S ,试求AEBE 的值(1)设k AE ,则kBE 3解法1如图,延长BA 、CD 交于点FBC AD //,AD BC 3,AF BF 3k AF 2,E 为BF 的中点又BF CE CF BC ,又BFCF B C F 为等边三角形故60B 解法2如图作AB DF //分别交CE 、CB 于点G 、F 则DF CE,得平行四边形ABFD同解法1可证得CDF 为等边三角形故601B 解法3如图作EC AF //交CD 于G ,交BC 的延长线于F 作AB GI //,分别交CE 、BC 于点H 、I 则GI CE,得矩形AEHGCEAF //3AEBE CFBC ,又AD BC 3AD CF ,故G 为CD 、AF 的中点以下同解法1可得CGI 是等边三角形故601B解法4如图,作CD AF //,交BC 于F ,作CE FG //,交AB 于G ,得平行四边形AFCD ,且ABFG 读者可自行证得ABF 是等边三角形,故60B 解法5如图延长CE 、DA 交于点F ,作CD AG //,分别交BC 、CE 于点G 、H ,得平行四边形AGCD可证得A 为FD 的中点,则k AH 2,故601得ABG 为等边三角形,故60B解法6如图(补形法),读者可自行证明CDF 是等边三角形,得60FB (注:此外可用三角形相似、等腰三角形三线合和一、等积法等)(2)设S SBCE3,则SS AECD2四边形解法1(补形法)如图补成平行四边形ABCF ,连结AC ,则ADDF2设x S ACD ,则x S S ACE2,xS CDF2由ACFABCSS 得,x xx s s 223,sx45sxsS ACE4324433s s SS AEBE ACEBCE解法2(补形法)如图,延长BA 、CD 交于点F ,91ABCFAD SS sS S SFAD ABCDFAD581梯形s SFAD85,s ss SFEC821285,又sS EBC387BECFBC SS BEEF 设m 8BE,则m 7EF ,m 15BF ,m5AF m 2AE,4AEBE解法3(补形法)如图连结AC ,作AC DF //交BA 延长线于点F 连结FC 则FAD ∽ABC ,故AF AB3(1)ACFACDSS ,FEC AECDS S 四边形23AECDBCE FECBEC S S S S EFBE 四边形故AF AEAF AEEFBE33)(332(2)由(1)、(2)两式得AEBE 4即4AEBE 解法4(割补法)如图连结A 与CD 的中点F 并延长交BC 延长线于点G ,如图,过E 、A 分别作高1h 、2h ,则ADCG且AECG AECDS S 四边形四边形,sS S ABCDABG 5梯形21212153h BG h BC SS ABGEBC ,又43BG BC 5421h h ,54ABBE ,故4AEBE 说明本题综合考查了等腰三角形的性质,相似三角形的判定和性质,解题关键是作辅助线,构造相似三角形.例3.如图4-1,已知平行四边ABCD 中,E 是AB 的中点,ADAF31,连E 、F 交AC 于G .求AG :AC的值.解法1:延长FE 交CB 的延长线于H ,∵四边形ABCD 是平行四边形,∴BC AD//,∴∠H=∠AFE ,∠DAB=∠HBE又AE=EB ,∴△AEF ≌△BEH ,即AF=BH ,∵ADAF31,∴BCAF31,即CHAF41.∵AD ∥CH ,∠AGF=∠CGH ,∠AFG=∠BHE ,∴△AFG ∽△CGH .∴AG :GC=AF :CH ,∴AG :GC=1:4,∴AG :AC=1:5.解法2:如图4—2,延长EF 与CD 的延长线交于M ,由平行四边形ABCD 可知,DC AB//,即AB ∥MC ,∴AF :FD=AE :MD ,AG :GC=AE :MC .∵ADAF31,∴AF :FD=1:2,∴AE :MD=1:2.∵DCABAE2121.∴AE :MC=1:4,即AG :GC=1:4,∴AG :AC=1:5例4、如图4—5,B 为AC 的中点,E 为BD 的中点,则AF :AE=___________.解析:取CF 的中点G ,连接BG .∵B 为AC 的中点,∴BG :AF=1:2,且BG ∥AF ,又E 为BD 的中点,∴F 为DG 的中点.∴EF :BG=1:2.故EF :AF=1:4,∴AF :AE=4:3.例5、如图4-7,已知平行四边形ABCD 中,对角线AC 、BD 交于O 点,E 为AB 延长线上一点,OE 交BC于F ,若AB=a ,BC=b ,BE=c ,求BF 的长.解法1:过O 点作OM ∥CB 交AB 于M ,∵O 是AC 中点,OM ∥CB ,∴M 是AB 的中点,即aMB21,∴OM 是△ABC 的中位线,bBCOM2121,且OM ∥BC ,∠EFB=∠EOM ,∠EBF=∠EMO .∴△BEF ∽△MOE ,∴EM BE OMBF,即ca cb BF 221,∴c abc BF2.解法2:如图4-8,延长EO 与AD 交于点G ,则可得△AOG ≌△COF ,∴AG=FC=b-BF ,∵BF ∥AG ,∴AE BE AGBF.即c ac BFbBF ,∵cac bBF2∴c abc BF2.解法3:延长EO 与CD 的延长线相交于N ,则△BEF 与△CNF 的对应边成比例,即CN BE CFBF.解得c abc BF2.例6、已知在△ABC 中,AD 是∠BAC 的平分线.求证:CD BD ACAB.分析1 比例线段常由平行线而产生,因而研究比例线段问题,常应注意平行线的作用,在没有平行线时,可以添加平行线而促成比例线段的产生.此题中AD 为△ABC 内角A 的平分线,这里不存在平行线,于是可考虑过定点作某定直线的平行线,添加了这样的辅助线后,就可以利用平行关系找出相应的比例线段,再比较所证的比例式与这个比例式的关系,去探求问题的解决.证法1:如图4—9,过C 点作CE ∥AD ,交BA 的延长线于E .在△BCE 中,∵DA ∥CE ,∴AEBA DCBD①又∵CE ∥AD ,∴∠1=∠3,∠2=∠4,且AD 平分∠BAC ,∵∠1=∠2,于是∠3=∠4,∴AC=AE .代入②式得AC AB DCBD.分析2 由于BD 、CD 是点D 分BC 而得,故可过分点D 作平行线.证法2:如图4—10,过D 作DE ∥AC 交AB 于E ,则∠2=∠3.∵∠1=∠2,∴∠1=∠3.于是EA=ED .又∵DC BD EABE,∴EA BE EDBE ACAB ,∴CD BD ACAB .分析3 欲证式子左边为AB :AC ,而AB 、AC 不在同一直线上,又不平行,故考虑将AB 转移到与AC 平行的位置.证法3:如图4—11,过B 作BE ∥AC ,交AD 的延长线于E ,则∠2=∠E .∵∠1=∠2,∴∠1=∠E ,AB=BE .又∵AC BE DCBD,∴CD BD ACAB .分析4 由于AD 是∠BAC 的平分线,故可过D 分别作AB 、AC 的平行线,构造相似三角形求证.证法4 如图4—12,过D 点作DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .易证四边形AEDF 是菱形.则DE=DF .由△BDE ∽△DFC ,得DE BE DFBE DCBD.11 又∵AC AB DEBE,∴DC BD AC AB .。
全等三角形经典题型——辅助线问题
全等三角形问题中常见的辅助线的作法(含答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,D C BAED F CB A利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角 形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1 已知如图1-1 : D E ABC 内两点,求证:AB + AC > BD^ DE ^ CE. 证明:(法一)将DE 两边延长分别交 AB AC 于M N, 在厶 AIMING , AMF AN > MD+ DE ^ NE; (1) 在厶 BDM 中, M 聊 MD> BD ( 2) 在厶 CEN 中, CN^ NE > CE; ( 3) 由(1) + ( 2) + ( 3)得:AM + AN+ MB^ MD^ Ch + NE > MD^ DE + NE + BD + CE形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明。
三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如: 例如:如图 3-1 :已知 ABC 的中线,且Z 1 = Z 2, Z 3=Z 4,求证:BE + CF > EF 。
分析要证 BE + CF > EF ,可利用三角形三边关系定理证明,须把 BE, CF ,EF 移到同一个三角形 中,而由已知Z 1 = Z 2 , Z 3 = Z 4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把 EN, FN, EF 移到同一个三角形中。
证明:在DA 上截取 DN= DB 连接NE, NF ,贝U DN= DC 在厶 DBE 和△ DNE 中:DN 二DB (辅助线的作法)v• 1 = • 2(已知)ED =ED (公共边)•••△ DBE^A DNE (SAS• BE = NE (全等三角形对应边相等)••• AB+ AC > BD + DE +ECA ( 法 交AC 于 在 有: AB + 形两边 GF +上) ....图1 -12)二:)如图1-2, 延长BD F ,延长CE 交BF 于G, △ ABF 和厶GFC 和厶GDE中AF > BD + D 申 GF (三角 之和大于第三边)(1)DG + GE> DE(同上) .............................. ( 由(1) + ( 2) + ( 3)得:AB + AF + GF + FC + D 申 GE> BD + DG^ GF + GH CE + DE• - AB + AC > BD + DE + EG3) 、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某 个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图 2-1 :已知 DABC 内的任一点,求证:/ BDO Z BAC分析]因为/ BDC 与/ BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三 角形,使/ BDC 处于在外角的位置,/ BAC 处于在内角的位 证法一:延长BD 交AC 于点E ,这时/ BDC 是△ EDCF •••/ BDO Z DEC 同理/ DEO Z BAC BDO Z BAC 证法二:连接 AD,并延长交BC 于 FvZ BDF >^ ABD 的外角• Z BDF >Z BAD 同理,Z CDF >Z CAD • Z BDF +Z CDF >Z BAt +Z CAD 置; 外角,即:Z BDO Z BAC注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角DNEG同理可得:CF = NF在△ EFN 中EN+ FN > EF (三角形两边之和大于第三边)••• BE + CF > EF 。
注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全 等三角形的性质得到对应元素相等。
四、 有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。
例如:如图 4-1 : ABC 的中线,且/ 1 = Z 2,/ 3=Z 4,求证:BE + CF > EF 证明:延长ED 至M,使DM=DE 连接CM MF,A BDE 和△ CDM 中, BD =CD (中点的定义)* £1 CDM (对顶角相等) ED 二MD (辅助线的作法)••• △ BDE^A CDM (SAS又••• / 1 = / 2,/ 3=/ 4 (已知)/ 1 + / 2+/ 3+/ 4= 180°(平角的定义) • / 3 +/ 2=90° 即:/ EDF = 90°• / FDM=/ EDF = 90° 在厶〔。
卩和厶MDF 中E D =MD (辅助线的作法)T ’ ZEDF =ZFDM (已证)pF =DF (公共边)• △ EDF ^A MDF ( SAS• EF = MF (全等三角形对应边相等)•••在厶CM 冲,CF + CM> MF (三角形两边之和大于第三边) • BE + CF > EF 注:上题也可加倍 FD,证法同上。
注意]当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题 中分散的条件集中。
五、 有三角形中线时,常延长加倍中线,构造全等三角形。
例如:如图 5-1 : AD 为 △ ABC 的中线,求证: AB+ AC >2ADb 分析:要证 AB+ AC > 2AD,由图想到:图4 -1AD = 2AD 左边比要证结论多 BD + CD 故不能直接证出此题,而由 把所要证的线段转移到同一个三角形中去。
证明:延长AD 至E ,使DE=AD 连接BE,则AE = 2AD•••ABC 的 中线(已知)• BD = CD (中线定义) 在厶ACD^n ^ EBD 中BD =CD (已证)-ADC =/EDB (对顶角相等) AD 二ED (辅助线的作法)• △ ACD^A EBD ( SAS• BE = CA (全等三角形对应边相等)•••在△ ABE 中有:AB+ BE> AE (三角形两边之和大于第三边) (常延长中线加倍,构造全等三角形)AB + BD > AD,AC + CD > AD ,所以有 AB + AO BD + CD > AM2AD 想到要构造2AD 即加倍中线,E图5 -1练习:已知△ ABC AD 是BC 边上的中线,分别以 AB 边、AC 边为直角边各向形外作等腰直角三角形, 如图5-2 , 求证EF = 2AD证明:(截长法)在AB 上截取 AN= AC 连接PN , 在厶APN 和厶APC 中 AN AC (辅助线的作法) ••二 =N 2(已知)AP =AP (公共边)•••△ APN^A APC ( SAS••• PC= PN (全等三角形对应边相等)•••在△ BPN 中,有PB — PN< BN (三角形两边之差小于第三边) • BP- PC< AB- AC证明:(补短法) 延长AC 至M 使AM= AB,连接PM ,在厶 ABP 和△ AMP 中AB =AM (辅助线的作法) ••• «Z 1=N 2(已知)AP =AP (公共边)• △ ABP^A AMP ( SAS• PB= PM (全等三角形对应边相等)又•••在△ PCM 中有:CM> PM- PC (三角形两边之差小于第三边 ) • AB- AC> PB- PG 七、延长已知边构造三角形:例如:如图 7-1 :已知 AC = BD, AD 丄AC 于A , BC 丄BD 于B, 求证:AD - BC分析:欲证 AD = BC,先证分别含有 AD BC 的三角形全等,有几种方案:△ ADC 与△ BCD △ AOD M^ BOC △ ABD 与厶BAC 但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角 作为两个三角形的公共角。
证明:分别延长 DA CB 它们的延长交于 E 点,•/ AD 丄AC BC 丄BD (已知)• / CAE=Z DBE = 90° (垂直的定义) 在厶DBE 与△ CAE 中“E =N E (公共角) ■ DBE = CAE (已证) BD 二 AC (已知)• △ DBEm CAE (AAS )• ED= EC EB = EA (全等三角形对应边相等) • ED- EA= EC — EB 即: AD = BG(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。
)八、连接四边形的对角线,把四边形的问题转化成为三角形来解决。
例如:如图 8-1 : AB// CD AD// BC 求证:AB=CD六、截长补短法作辅助线。
例如:已知如图 6-1 :在△ ABC 中,AB> AC, / 1 = Z 点。
求证:AB- AO PB- PG 分析:要证:AB- AO PB- PC,想到利用三角形三边 为欲证的是线段之差,故用两边之差小于第三边,从而想 —AC,故可在 AB 上截取AN 等于AC,得AB- AC = BN 再 PN,又在△ PNB 中 , PB- PN< BN,即: AB- AO PB- PCo 图5 -22 , P 为AD 上任关系定理证之,因 到构造第三边 AB 连接PN,则PO分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。
证明:连接AC (或BD•/AB// CD AD // BC (已知)1 = Z 2,/ 3 =Z 4 (两直线平行,内错角相等)在厶 ABC^ CDA 中〔仁.2(已证)T AC =CA (公共边)\^3 =. 4(已证)• △ ABC^A CDA (ASA• AB = CD (全等三角形对应边相等九、有和角平分线垂直的线段时,通常把这条线段延长。
例如:如图 9-1 :在 Rt △ ABC 中,AB= AC / BAC= 90°,/ 1 = Z 2, CE1 BD 的延长于 E 。
求证:BD =2CE 分析]要证BD= 2CE,想到要构造线段 2CE 同时 将其延长。
证明:分别延长 BA CE 交于点F 。
•/ BE X CF (已知)•••/ BEF =/ BEC = 90° (垂直的定义)在厶BEF 与厶BEC 中,N 1 二.2(已知)BE =BE (公共边) I —BEF 二.BEC (已证)• △ BEF ^A BEC(ASA1• CE=FEd CF (全等三角形对应边相等)2 BAC=90 BE 丄 CF (已知) BAC =/ CAF = 90° / 1 + Z BDA= 90°/ 1 + / BFC = 90°BDA=/ BFCBAC "CAF (已证)〔/BDA =/BFC (已证)AB = AC (已知)• △ ABD^A ACF (AAS• BD= CF (全等三角形对应边相等) • BD= 2CE十、连接已知点,构造全等三角形。