高斯小学奥数六年级上册含答案第18讲最值问题二
小学数学奥数基础教程(六年级)目30讲全[1]
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
六年级第18讲 高斯记号(教师版)
第18讲 高斯记号1、用{x}表示数x 的小数部分,[x]表示x 的整数部分.如{2.3}=0.3,[2.3]=2.若a+ [b]=15.3,{a}+b=7.8,则a= ,b= 。
【答案】8.3;7.5【分析】根据第一个式子可知a 的小数部分是0.3,所以{a}=0.3,所以b=7. 8-0. 3=7.5,[b]=7,所以a=15.3 -7 =8.3.2、用[x]表示不超过x 的最大整数,并令{x}=x-[z].若z 、y 、z 满足下列关系:x+{y} =2011,[y]+{z}=18.8,z+{x}=6,求x+y+z= .【答案】2034.8【分析】 因为[y]+ {z}=18.8,而[y]是整数,所以{z}=0.8,[y]=18.因为z+{z}=6,即[z]+ {y}+{x}=6,所以[z]=5,z =5.8,{z}+{x}=1,{x}=0.2.因为x+{y}=2011,即[x]+{y}+{z}= 2011,所以[x]=2010,x=2010.2,{x}+{y}=1, {y}=0.8. y=18.8,所以x+y+z= 2010. 2+18. 8+5. 8=2034.8.3、如果正整数n 使得[2n ]+[3n ]+[4n ]+[5n ]+[6n ]=69。
则n 为 .(其中[x]表示不超过x 的最大整数)【答案】48,49【分析】根据题意,由于[2n ]+[3n ]+[4n ]+[5n ]+[6n ]=69<2n +3n +4n +5n +6n =2029n , 而[2n ]+[3n ]+[4n ]+[5n ]+[6n ]=69>2n -1+3n -1+4n -1+5n -1+6n -1, 则有:n<292074⨯=291480=51291 所以n 只能取48,49,50,51,经试验,只有n=48,49时符合条件.4、在[201112],[201122],[201132],……,[201120112]中共出现了多少个互不相同的数?【答案】1509【分析】根据题意,[201120112]=2011,而1007²-1006²=2013,所以从[201110062]开始每两个相邻的[20112n ]与[2011)1(2+n ]不可能相同,从1006²到2011²共有1006个数, 而[201110052]=502,所以0到502均可以取到,共有503个互不相同的数; 所以在[201112],[201122],[201132],……,[201120112]中共出现了1509个互不相同的数。
六年级奥数专题经典 最值问题及答案
例1.1.有9个同学要进行象棋比赛,他们准备分成两组,不同组的人相互之间只比赛一场,同组的人之间不比赛。
他们一共最多能比赛多少场?2.直角三角形斜边长为10cm,求这个直角三角形面积的最大值。
3.一个边长为30的正方形,四个角减去四个正方形,剩下部分可以拼成一个无盖长方体,那么所得的长方体容积最大是多少?4.用1、2、3、4、5、6、7、8、9这九个数字(每个数字仅用一次)组成两个多位数,那么这两个多位数的乘积最大是多少?5.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用0,2,4,6,8这5个⨯-⨯的计算结果的最大值。
数字组成一个三位数FGH和一个两位数IJ。
求算式ABC DE FGH IJ例2.1.如图,用1×2和1×3两种规格的小长方形地板砖铺满5×8的地面,至少需要地板砖多少块?2. 国际象棋的皇后可以控制她所在的横线、竖线和斜线,图中一个皇后(图中五角星)就把整个3×3的棋盘控制了。
那么为了控制一个4×4的棋盘至少要放几个皇后?3. 通过在表达式1÷2÷3中加括号,我们可以得到两个不同的值(1÷2)÷3=61和1÷(2÷3)=23,现在表达式1÷2÷3÷4÷5÷6÷7÷8中加上括号,问我们所能得到的最大值是多少?4. 把14分拆成几个自然数的和,再求出这些自然数的乘积,使得到的积尽可能大,这个乘积是多少?请证明你的结论。
5. 在1,3,5,……99中选取k 个数,使得它们的和为1949,那么k 的最大值是多少?6. A 、B 、C 、D 、E 、F 、G 、H 、I 表示9个各不相同的不为零的自然数,这9个数排成一排,如果其中任何五个相邻的数之和都大于40,那么这9个数的和最小是多少?。
小学六年级奥数--面积计算(二)
二、精讲精练
练习3: 3.如图所示,AB=BC=8厘米,求阴影部分的面积。
二、精讲精练
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。 【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还 原成长方形后(如图所示)。
I和II的面积相等。 因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的 两组三角形面积分别相等,所以
二、精讲精练
练习5: 4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
谢谢观看
二、精讲精练 练习1: 1.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习1: 2.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习3: 3.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练
【例题2】求图中阴影部分的面积(单位:厘米)。 【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形 (如图所示)。
二、精讲精练
练习2: 3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
二、精讲精练
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影 部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相 等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于 长方形面积的一半(如图19-10右图所示)。所以 3.14×12×1/4×2=1.57(平方厘米)
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积 的一半。
3.14×-4×4÷2÷2=8.56(平方厘米) 答:阴影部分的面积是8.56平方厘米。
二、精讲精练
小学数学人教新版六年级上册奥数系列讲座:最值问题(含答案解析)
小学数学人教新版六年级上册实用资料最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,F GH×IJ 尽可能的小.则ABC×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(moda+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9t a=15+17t ⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。
(word完整版)小学六年级奥数题附答案(2021年整理)
(word完整版)小学六年级奥数题附答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)小学六年级奥数题附答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)小学六年级奥数题附答案(word版可编辑修改)的全部内容。
小学六年级奥数题1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3。
甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款4。
由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了."小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时。
有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运。
最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7。
一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
六年级数学奥数题及答案
六年级数学奥数题及答案答案中含有大量的数学公式和图表,无法在文字中准确呈现。
以下是题目的解析和解答思路,供参考。
六年级数学奥数题及答案在一篇文章中难以精确呈现数学题目和解答的内容,因此以下给出数学奥数题目的解析和解答思路,供六年级学生参考。
1. 数学奥数题目一题目描述:某个数的三分之一等于30,请计算这个数的值是多少?解析与解答思路:设这个数为x,根据题目可以得到等式:1/3 * x = 30。
要求解出x 的值,我们可以通过等式的转化来求解。
首先,将等式两边都乘以3,得到:x = 30 * 3 = 90。
因此,这个数的值是90。
2. 数学奥数题目二题目描述:某个数的四分之一等于20,请计算这个数的值是多少?解析与解答思路:与上一题类似,设这个数为y,根据题目可以得到等式:1/4 * y = 20。
同样地,通过等式转化,将等式两边都乘以4,得到:y = 20 * 4 = 80。
因此,这个数的值是80。
3. 数学奥数题目三题目描述:一个长方形的长是3m,宽是2m,请计算它的面积。
解析与解答思路:设长方形的面积为S,根据题目可得到面积公式:S = 长 * 宽。
将已知的长和宽代入公式中,得到:S = 3m * 2m = 6平方米。
因此,这个长方形的面积是6平方米。
4. 数学奥数题目四题目描述:一个圆的半径是5cm,请计算它的周长和面积。
解析与解答思路:设圆的半径为r,根据题目可得到周长和面积的公式:周长C = 2πr,面积S = πr^2。
将已知的半径代入公式中,得到周长:C = 2π * 5cm ≈ 31.42cm,面积:S = π * (5cm)^2 ≈ 78.54平方厘米。
因此,这个圆的周长约为31.42cm,面积约为78.54平方厘米。
5. 数学奥数题目五题目描述:小明从家到学校的路程是3km,他选择了骑自行车,每小时的速度是15km/h,请计算他骑车到学校需要的时间。
解析与解答思路:设小明骑车到学校的时间为t,根据题目可得到距离、速度和时间的关系公式:速度V = 距离D / 时间t。
六年级奥数题及参考答案
六年级奥数题及参考答案【题目一】题目:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的表面积。
【参考答案】长方体的表面积计算公式为:\[ 2 \times (长 \times 宽 + 长\times 高 + 宽 \times 高) \]将题目中给出的长、宽、高代入公式,得:\[ 2 \times (10 \times 8 + 10 \times 6 + 8 \times 6) = 2\times (80 + 60 + 48) = 2 \times 188 = 376 \]所以,这个长方体的表面积是376平方厘米。
【题目二】题目:一个数列的前四项是1,1,2,4,求第五项。
【参考答案】观察数列的规律,可以发现每一项都是前一项的2倍。
因此,第五项应该是第四项的2倍,即:\[ 4 \times 2 = 8 \]所以,第五项是8。
【题目三】题目:一个圆的半径是5厘米,求这个圆的周长和面积。
【参考答案】圆的周长计算公式为:\[ 周长 = 2 \times π \times 半径 \]圆的面积计算公式为:\[ 面积= π \times 半径^2 \]将半径5厘米代入公式,得:周长:\[ 2 \times π \times 5 = 10π \]面积:\[ π \times 5^2 = 25π \]假设π取3.14,那么:周长:\[ 10 \times 3.14 = 31.4 \] 厘米面积:\[ 25 \times 3.14 = 78.5 \] 平方厘米【题目四】题目:一个班级有40名学生,其中男生占60%,女生占40%。
如果班级增加了5名男生,求新的班级中男生和女生的比例。
【参考答案】首先,计算原有男生和女生的数量:男生:\[ 40 \times 60\% = 24 \]女生:\[ 40 \times 40\% = 16 \]班级增加了5名男生后,男生数量变为:\[ 24 + 5 = 29 \]班级总人数变为:\[ 40 + 5 = 45 \]新的班级中男生比例为:\[ \frac{29}{45} \]女生比例为:\[ 1 - \frac{29}{45} = \frac{16}{45} \]【题目五】题目:一个数的1/4加上这个数的1/2等于9/10,求这个数。
小学六年级奥数计算题及答案:最值问题(20211003231047)
小学六年级奥数计算题及答案:最值问题(20211003231047)
小学六年级奥数计算题及答案:最值问题
★这篇【小学六年级奥数计算题及答案:最值问题】,是专门为大家整理的,希望对大家有所帮助!
一把钥匙只好开一把锁 .此刻有 4 把钥匙 4 把锁,但不知哪把钥匙开哪把锁,最多要试 ()次才能配好所有的钥匙和锁.
剖析:第一把钥匙最坏的状况要试 3 次,把这把钥匙和这把锁拿出;剩下的3 把锁和3 把钥匙,最坏的状况要试2 次,把这把钥匙和这把锁取出 ;剩下的 2 把锁和 2 把钥匙,最坏的状况要试 1 次,把这把钥匙和这把锁取出 ;剩下的 1 把锁和 1 把钥匙就不用试了 .
解: 3+2+1=6(次);
答:最多要试 6 次才能配好所有的钥匙和锁.
故答案为: 6.。
高斯小学奥数六年级上册含答案第18讲 最值问题二
第十八讲最值问题二一、最值问题中的常用方法a)极端思考在分析某些最值问题时,可以考虑把问题推向“极端”,因为当某一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问题的“本来面目”清楚地显露出来,从而使问题迅速获解.b)枚举比较根据题目的要求,把可能的答案一一枚举出来,使题目的条件逐步缩小范围,筛选比较出题目的答案.c)分析推理根据两个事物在某些属性上都相同,猜测它们在其他属性上也有可能相同的推理方法.d)构造调整在寻求解题途径难以进展时,构造出新的式子或图形,往往可以取得出奇制胜的效果.二、求最大值和最小值的结论1.和一定的两个数,差越小,积越大;2.积一定的两个数,差越小,和越小;3.两点之间线段最短.例1.用一根长80厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?「分析」题目的限制条件是铁丝长为80厘米,要求体积的最大值,通过什么可以把这二者联系起来呢?练习1、(1)用一根长100厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?(2)有一根铁丝,它能焊接成的棱长都是整数厘米的最大长方体的体积是36立方厘米,这根铁丝的长度是多少厘米?例2.有5袋糖,其中任意3袋的总块数都超过60.这5袋糖块总共最少有多少块?「分析」每3袋的总块数都超过60,要求5袋的总块数.事实上我们以前做过类似的题:“已知三个数两两的和数,求这三个数的总和.”这样的题大家是怎么处理的呢?它的处理方法能否应用到本题中来呢?练习2、有5个学生参加暑期竞赛班,每人都拿了不少积分(所有积分都是整数).如果其中每三人的积分之和都不少于500分,那这五人的总积分最少是多少?例3.用1、2、3、4、5、6、7、8、9各一个组成3个三位数,使得它们都是9的倍数,并且要求乘积最大,请写出这个乘法算式.「分析」为了让这样的三个数的乘积最大,我们当然要让三个数的首位最大.那么首位应该是多少呢?注意到这三个数都是9的倍数,9的倍数有什么特征呢?它对这三个数提出了怎样的要求?练习3、用1、2、3、4、5、6各一个组成两个三位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.例4.把1至99依次写成一排,行成一个多位数:12349899L .从中划去99个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?「分析」要使得到的数最大,所得的数前面几位应该是什么?如果要最小呢?练习4、把1至20依次写成一排,行成一个多位数:12341920L .从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?例5.邮递员送信件的街道如图所示,每一小段街道长1千米.如果邮递员从邮局出发,必须走遍所有的街道,那么邮递员最少需要走多少千米?「分析」如果邮递员恰好没有重复地走遍所有的街道,则这样走的总路程就是最短的.那么邮递员能做到这一点吗?实际上这是一个一笔画问题,同学们回想一下,什么样的图形才能一笔画出来呢?111例6.如图,有一个长方体的柜子,一只蚂蚁要从左下角的A 点出发,沿柜子表面爬到右上角的B 点去取食物,蚂蚁爬行路线的长度最短是多少?一共有几条最短路线?请在图中表示出来.「分析」众所周知,两点之间线段最短.然而在本题中,蚂蚁是不能穿过柜子的,只能在柜子表面爬行.这样一来,我们就要在柜子表面寻找一条从A 到B 的最短路线.可是蚂蚁应该怎么走才能距离最短呢?AB3 31罐头装箱问题作业1.用一根长120厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?2.高、娅、莫、萱四人各有若干块高思勋章,其中任意两人的勋章合起来都少于10块,那么这四人的勋章合起来最多有多少块?3.用1、2、3、4、5、6、7、8各一个组成两个四位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.4.把21至40依次写成一排,行成一个多位数:212223243940L.从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?5.如果例题5中的街道由“土”字形变成如下所示的形状,那么邮递员从邮局出发,要走遍所有的街道,最少需要走多少千米?第十八讲最值问题二例7.答案:294详解:长方体满足:80420++=÷=长宽高厘米,要使体积最大,就应该使三边长度尽量接近.所以当三边长度分别为7厘米、7厘米和6厘米时,体积最大,为776294⨯⨯=立方厘米.例8.答案:103详解:任意3袋糖果总块数都不少于61,必能取出一袋不少于21块糖果;现在余下4袋,同样可以有糖果数超过21块的袋子,再取走这袋.现在余下三袋了,这三袋糖果总和不少于61,所以总的糖果不少于61+21+21=103块.由于5袋糖果分别有21、21、21、20、20块,是符合要求的,所以103就是最小值.例9.答案:954×873×621详解:每个数都是9的倍数,说明每个数的各位数字之和都是9的倍数.由于1到9总的数字和是45,而且每个数的各位数字之和都不超过7+8+9=24,因而三个数的各位数字之和分别为18、18和9.各位数字之和为9的数最大只能是621.其余两个数乘积要尽量大且各自的各位数字之和是18,百位取9和8,十位取7和5,个位取4和3,有最大乘积954×872,故所求的乘法算式是954×873×621.例10.答案:最大为999997585960...9899;最小是10000012345061626364 (9899)详解:(1)要使剩下的数尽量大,就要让数的最前面剩下尽可能多的9.首先,最开头的12345678这8个数字是要去掉的,留下了第一个9;然后去掉1011121314151617181共19个数字,留下了第二个9;再去掉3次的19个数,使得剩下第3、4、5个9.现在已经去掉了一共8+19×4=84个数,剩下的数前5个数字都是9,然后是50515253545556575859一直写到9899,还能再去掉15个数.但我们到下一个9要去掉19个数,到下一个8要去掉17个数,到下一个7要去掉15个数,于是最后结果的第6个数字最大是7,应该去掉的15个数字为505152535455565.所以剩下的数最大为999997585960…9899.(2)要使剩下的数尽量小,就要让数的首位是1,第二位起是尽量多的0.首位上的1取第一个数字1就行了.然后去掉234567891共9个数,留下第一个0;再去掉1112131415161718192共19个数,留下第2个0;再去掉3次的19个数,就能得到第3、4、5个0.现在一共去掉了个数,剩下的数前六个数字是1、0、0、0、0、0,余下的部分是515253545556575859一直写到9899,还能再去掉14个数.下一位取不到0了,只能去掉一个5,留下1;再下一位连1都取不到,只能去掉1个5,取2;再去掉一个5,留下3;去掉一个5,留下4.现在还能再去掉10个数字,而剩下的是55565758596061……,接下来11个数中最小的数是5,所以取一个5.然后剩下的数前11个数字为55657585960,因而我们去掉10个数字5565758596,使下一位达到最小数字0.所以最后剩下的数最小是10000012345061626364…9899.例11. 答案:26详解:如图1,由于的A 、B 两点连出的边是3条,也就是奇数条,仅当A 与B 为出发点和终点时,才能一笔画.我们不能从邮局出发一笔把这个图画出,即邮递员不能只把每条街道走一遍就回到邮局,他至少应该多走1千米街道,最小是26千米.在图2中,我们给出了邮递员走26千米走遍所有街道的一种方法.例12. 答案:最短的长度是5;4详解:为了表示方便,我们把长方体的各个顶点都标上字母,如图3.蚂蚁要从A 处爬到B 处,途中必须经过两个相邻的面,两个相邻面的交线必是EH 、HF 、FG 、GC 、CD 、DE 六条线段中的一条.一共六种情况,但由对称性,可分为三类,每类两种:交线是FG 、DE 的情形为一类,交线是HE 、GC 的情形为一类,交线是FH 、DC 的情形为一类.919485+⨯=邮局图1邮局图2情况1:如果蚂蚁所经过的两相邻面是ACGF 和FGBH ,那么我们可以沿着它们的交线FG 把这两个面展开到同一个平面上,如图4.这样蚂蚁的整个行走路线就在这一个平面上,而且以A 为起点,B 为终点.此时从A 到B 的最短连线就是A 、B 两点的连线,它恰好直角三角形ABC 的斜边.由于3AC =,314BC =+=,因此5AB =.情况2:如果两相邻面的交线是GC .同样我们也可以沿着GC ,把两个相邻面展开到同一个平面上,如图5.此时A 、B 两点的连线是直角三角形ABD 的斜边.由于3BD =,314AD =+=,因此5AB =.情况3:如果两相邻面的交线是DC .同样我们也可以沿着DC ,把两个相邻面展开到同一个平面上,如图6.此时A 、B 两点的连线是直角三角形AGB 的斜边,一定比直角边AG 长.而AG 的长度是336+=,所以AB 一定大于6.其余三种情况的最短路线与上面的情况1、2、3对应相同.所以爬行路线长度最少是5,(1)和(2)的情形都符合要求,加上与它们对应的两种,所以一共会有4条最短路线.把展开图还原到原来的图中,就是所求的最短路线(如图7).因此在长方体表面,从A 到B 的最短路线的长度是5,一共有4条满足要求.AC G33图6图7 AB 331 C DE FGH A B331C DE F GHAB331 C DE F GH 图33 图43 BA 1 C D图5练习1、答案:576简答:100425889⨯⨯=.÷==++,889576练习2、答案:834简答:总积分最少是167167500834++=,此时5人分数可以是166、167、167、167、167.练习3、答案:642×531简答:6和5分别放在两个数的百位上,结合各位数字之和是3的倍数,可得到乘积最大的算式⨯.642531练习4、答案:95617181920;10111111110简答:同例4,由于题目中数位较少枚举即可,注意计算的准确性.作业6.答案:1000简答:120430101010÷==++,1010101000⨯⨯=.7.答案:17简答:必有两人的勋章数都不多于4块,余下两人勋章数之和不多于9块,因而最多只能有44917++=块.8.答案:85327641⨯简答:首位要尽量大,取8和7,次位也尽量大,取6和5,然后是十位要尽量大,从4和3里取.也就是前三位分别取853和764能使乘积最大.但还要保证都是3的倍数,故只能是8532和7641,所⨯.求的乘法算式是853276419.答案:93333334353637383940;1012333435363738394010.答案:36简答:这个图是可以一笔画画出的,最少路程等于街道全程36千米.。
最值问题(数学同步思维训练)-数学六年级上册(通用版)
最值问题(数学同步思维训练)-数学六年级上册(通用版)一、解答题1.一个三位数除以39,商是a,余数是b(a,b都是整数).求a-b的最大值.2.用1、2、3、4、5、6六个数码组成两个三位数,这两个三位数相乘,最大的乘积是多少?最小的乘积又是多少?3.用10元钱买4角、8角、1元的画片共15张,则最多可买1元的画片几张?4.用0、1、2这三个数,分别能组成多少个不同的三位数?其中最小的三位数和最大的三位数分别是多少?5.如果三个人的平均年龄是22岁,且没有小于18岁的,那么最大的人的年龄可能是多少?6.(1)在分母是一位数的最简真分数中,两个不相等的分数最小相差多少?(2)从1至9中选取四个不同的数字填人算式+中,使算式的结果小于1.这个结果最大是多少?7.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米的钢管,那么只有当锯得的38毫米的钢管和90毫米的钢管各多少段时,所损耗的钢管才能最少?8.试把14分拆为3个自然数之和,使它们的乘积最大.9.三人打乒乓球,每场两人,输者退下换另一人,这样继续下去,在甲打了9场,乙打了6场时,丙最多打几场?10.60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,问:这三项运动都不会的最多有多少人?参考答案:1.24【解析】略2.最大乘积是342002,最小乘积是33210【详解】要使乘积最大,不仅百位上的数一定是5和6,十位上的数一定是3和4,个位上的数只能是1和2,而且要使组成的三位数的差尽可能小.由于631-542=89,632-541=91,因此最大的乘积是631×542=342002.同理,要使乘积最小,必须百位上为1和2,十位上为3和4,个位数上为5和6,并且这两个数的差尽可能大,这两个数为135和246,此时最小乘积为33210.3.6张【详解】解:设1元的画片买了x张,8角的画片买了y张,则4角的画片买了(15-x-y)张,共用了10元钱,可列方程:0.4(15-x-y)+0.8y+x=10即2y+3x=20,,x最大,y应该最小,故y=1,x=6,15-x-y=8因此,1元的画片最多买6张4.102,210【详解】列出所有这样的三位数,因为0不能在首位,所以共有102,120,201,210,一共4个,其中最大的是210,最小的是102.5.30岁【分析】三个人的平均年龄是22岁,那么三个人的年龄和是66岁,没有小于18岁的,可以令年龄最小的人刚好是18岁,当有两个人都是18岁时,另一人的年龄最大。
六年级高斯学校竞赛数字谜综合二含答案
第 19 讲数字谜综合二内容概述各类综合性较强的复杂数字谜问题.典型问题兴趣篇 1.将1 表示成两个自然数的倒数之和,请给出所有的答案, 4 1 1 1 1 1中,a、b、c 分别代表三个不同的自然数,这三个数的和可能是 18 a b c2.在算式 多少?3.如图 19-1,将图中每一行左右相邻的两数相加,再除以 12,将所得的余数写在它们下一行 相应的圆圈内.逐行依次进行上面的操作,最后得到最底端的一个数.请问:对于第一行中不 同的自然数 z,最底端的数一共有多少种取值,分别是什么?4.将最小的 10 个合数填到图 19-2 的 10 个空格中,要求满足以下条件: ①填人的数能被它所在列的最上面给出的数整除; ②第三行中每个数都比它上面那一格中的数 大; 请问:第三行中 5 个数的和最小等于多少? 5.将 l 至 7 这 7 个自然数填入图 19-3 中的 8 个方格内,要求其中有一个数字用两次,其余数 字各用一次, 并使图中右下角的 4 个方格中的每格内所填的数均等于它上方和左方相邻方格内 两个数的平均数,请给出一种填法,并求出共有多少种填法.6.请将数字 1 至 9 分别填入图 19-4 中的各个圆圈中,使得图中每条线段两个端点中所填的数 的差(大减小)均为 3 或 4.请给出一种填法,并求出共有多少种填法. 7. 6□0.3 ○,6□1 ○,6□ 1 ○. ○,6□0.3 0.3 0.3在上面 4 个算式的方框内,分别填上加、减、乘、除 4 个运算符号,使 4 个算式的得数之 和尽可能大.请问:这个最大的和等于多少? 8.请用 0、l、2、3,4、5、6、7、8、9 这 10 个数字各一次,组成 5 个自然数,使得它们依次 是某个自然数的 l、2、3、4、5 倍. 9.在如图 19-5 所示表格第二行的每个空格内,填人一个整数,使它恰好表示它上面的那个数 字在第二行中出现的次数,第二行中的 5 个数字各是多少?10. 图 19-6 中相同字母表示相同数字, 不同字母表示不同数字, 且 FIVE 是 5 的倍数,FOUR 是 4 的倍数,求 NINE 的所有可能值. 拓展篇 1.自然数 12 和 60 是一对很有趣的数,它们的积 12×60= 720,恰好是 12 +60 = 72 的 10 倍, 满足上述条件的数对还有哪些,请再举出 3 对. 2.将1 表示成两个自然数的倒数之和,给出所有的答案. 63.求方程1 1 1 的所有正整数解. a 35 b4.将1 写成三个自然数(可以相同)的倒数之和,共有多少种方法? 25. ABCD 表示一个四位数, EFG 表示一个三位数,A、B、C、D、E、F、G 分别代表 1 至 9 中不同的数字.已知 ABCD + EFG =1993.请问:乘积 ABCD × EFG 的最大值与最小值相 差多少? 6.从 1 至 9 中选出 8 个数字填入算式“口口口口+口口口口= 13579”的方框中,每个数字恰 好填一次,使等式成立,请问: (1)没有被选出的数字是多少? (2)两个四位数中较大的数最小是多少?最大是多少? 7.在下面两个算式: ABBC =D×DDE ,CBBA=D×EFG 中,相同的字母代表相同的数字, 不同的字母代表不同的数字,求 B + D + F 的值. 8.小明按照下列算式: 乙组的数□甲组的数○1= 对甲、乙两组数逐个进行计算,其中方框是乘号或除号,圆圈是加号或减号,他将计算结 果填入图 19-7 的表中.有人发现表中 14 个数中有两个数是错的,请你改正.请问:改正后的 两个数的和是多少?9. 如图 19-8, 请在这个 3×6 方格表的每个空格中填人一个整数, 使得对于第一行中的每个数, 它在第二行中出现的次数恰好等于该列第三行所填的数, 而它在第三行中出现的次数又恰好等 于该列第二行所填的数. (例如第二行第一列中的 3,表示第三行中有 3 个 0. )10.在图 19-9 所示的 3×3 方格表中,“北、京、巨、人、学、校、欢、迎、你”这 9 个汉字分 别表示 1 至 9 中的不同数字,并满足:①每一个“田”字形内 4 个数之和都相等;②北 2=迎 2+ 你 2;③学>校. 请问:“北京巨人学校欢迎你”所代表的九位数是多少? 11.将 1 至 9 填入图 19-10 的圆圈内,使图中所有三角形(共 7 个)的 3 个顶点上数字之和都 相等.12.图 19-11 中有大、中、小 3 个正方形,组成了 8 个三角形,现在先把 1、2、3、4 分别填 在大正方形的 4 个顶点上,再把 l、2、3、4 分别填在中正方形的 4 个顶点上,最后把 1、2、3、 4 分别填在小正方形的 4 个顶点上,请问: (1)能否使 8 个三角形顶点上数字之和都相等?如果能,请给出填数方法;如果不能,请说明理 由. (2)能否使 8 个三角形顶点上数字之和各不相同?如果能,请给出填数方法;如果不能,请说明 理由. 超越篇1.请在算式“ 的可能。
高斯小学奥数六年级上册含答案第18讲最值问题二
( 2)有一根铁丝,它能焊接成的棱长都是整数厘米的最大长方体的体积是
36 立方厘米,
这根铁丝的长度是多少厘米?
例 2. 有 5 袋糖,其中任意 3 袋的总块数都超过 60 .这 5 袋糖块总共最少有多少块? 「分析」 每 3 袋的总块数都超过 60 ,要求 5 袋的总块数.事实上我们以前做过类似的 题:“已知三个数两 两的和数, 求这三个数的总和. ”这样的题大家是怎么处理的呢?它 的处理方法能否应用到本 题中来呢?
那么邮递员从邮局出发,要走
1 1 1 邮局 111
第十八讲 最值问题二
例 7. 答 案: 294 详解: 长方体满足: 长 宽 高 80 4 20 厘米,要使体积最大,就应该使三边长度 尽量接近 . 所 以当三边长度分别为 7 厘米、 7 厘米和 6 厘米时,体积最大,为 7 7 6 294 立方厘米 .
( 2)要使剩下的数尽量小,就要让数的首位是
1,第二位起是尽量多的 0.首位上的 1
取第一个数字 1 就行了 . 然后去掉
234567891 共 9 个数,留下第一个
0; 再去掉
1112131415161718192 共 19 个数,留下第 2 个 0; 再去掉 3 次的 19 个数,就能得到第
3、4、5 个 0. 现在一共去掉了 9 19 4 85 个数,剩下的数前六个数字是
「分析」 为了让这样的三个数的乘积最大, 我们当然要让三个数的首位最大. 那么首位 应该
是多少呢?注意到这三个数都是
9 的倍数, 9 的倍数有什么特征呢?它对这三个数
提出了怎样的要求?
练习 3、用 1、2、 3、4、 5、6 各一个组成两个三位数,使得它们都是 要求乘积最大,请写出这个乘法算式.
六年级上册数学试题-数学竞赛计算部分-高斯求和(全国通用)(含答案)
2019小学数学六年级(全国通用)-数学竞赛计算部分-高斯求和(含答案)一、单选题1.用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,那么至少要用()杯子.A.100B.500C.1000D.50502.你一定知道“少年高斯”速算的故事吧!那么1+2+3+4+…+999的结果是()A.100000B.499000C.499500D.5000003.小猫咪咪第一天逮了1只老鼠,以后每天逮的老鼠都比前一天多1只,咪咪10天一共逮了()只老鼠.A.45B.50C.55D.60二、填空题4.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是________.5.把自然数1,2,3,…99分成三组,如果每一组的平均数恰好都相等,那么这三个平均数的乘积是________.6.1+2+3+4+5…+2007+2008的和是________(奇数或偶数).7.1﹣64的自然数中去掉其中两个数,剩下62个数的和是2012,去掉的那两个数共有________种可能.8.100以内的偶数和是________.9.用100个盒子装杯子,每个盒子装的个数都不相同,并且盒子不空,那么至少有________个杯子.10.已知2+4+6+8+…+100=2550,那么1+3+5+7+9+…+101=________.11.1+3+5+7+…+97+99=________=________2.12.9个连续自然数的和是2007,其中最小的自然数是________.13.1+3+5+…+99=________.14.27个连续自然数的和是1998,其中最小的自然数是________.15.自然数1、2、3…14、15的和是120,这15个自然数的平均数是________.16.已知:则:1+2+3+…+99+100+99+98+…+3+2+1=________.17.有40块糖,把它分成4份,且后一份比前一份依次多2块,那么最少一份有________块.18.雅雅家住平安街,礼礼向她打听:“雅雅,你家门牌是几号?”“我住的那条街的各家门牌号从1开始,除我家外,其余各家门牌号加起来恰好等于10000.”雅雅回答说.那么雅雅家住________号.19.计算:9+17+25+…+177=________.三、计算题20.计算:×××…×.21.计算:5+7+9+11+…+97+99=答案解析部分一、单选题1.【答案】D【考点】高斯求和【解析】【解答】解:根据题干分析可得:每个盒子里的杯子数分别为1、2、3、4、5、6...100,所以需要的杯子数为:1+2+3+4+5+ (100)=(1+100)×(100÷2),=101×50,=5050(个),故选:D.【分析】用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,所以又100种不同的装法,要求至少需要多少个杯子,那么可以从最少的个数装起:即每个盒子里的杯子数分别为1、2、3、4、5、6…100,由此可得出所需要的杯子数为:1+2+3+4+5+…+100,利用高斯求和的方法即可解决问题.2.【答案】C【考点】高斯求和【解析】【解答】解:1+2+3+4+…+999=(1+999)×999÷2,=1000×999÷2,=499500.故选:C.【分析】算式1+2+3+4+…+999中的加数构成一个公差为“1”的等差数列,首项为1,末项为999,项数为999.因此本题根据高斯求和公式进行计算即可:等差数列和=(首项+末项)×项数÷2.3.【答案】C【考点】高斯求和【解析】【解答】解:咪咪十天的捕鼠量是:1+2+3+4+5+6+7+8+9+10=(1+10)+(2+9)+(3+8)+(4+7)+(5+6)=11×5=55;答:咪咪前后十天一共逮了55只老鼠.故选:C.【分析】本题其实是一个计算从1加到10的求和问题,小猫咪咪十天中的捕鼠量是一个等差数列:1、2、3…10.将它们相加就是:1+2+…+5+6+…+9+10.从中不难看出一个规律:1+10=2+9=3+8=4+7=5+6=11,5对得数是11的加数相加,加法就转换为乘法问题,即11×5的问题.从而1到10相加的和可以速算为:11×5=55.由此得解,咪咪前后十天一共逮了55只老鼠.二、填空题4.【答案】44【考点】高斯求和【解析】【解答】解:设共n页,被加了两次的页码是x则n(n+1)÷2≤1997,且x≤n用特殊值法求得n=62,则被加了两次的页码是:1997﹣62×(62+1)÷2=xx=1997﹣63×31x=1997﹣1953x=44;故答案为:44.【分析】本题中我们可设共有n页,被加了两次的页码为x,由题意可知页码总和一定小于等于1997,x小于等于总页数n.那么用特殊值法求得n=62.则被加了两次的页码x就等于错误结果1997减掉正确结果n(n+1)÷2的差.5.【答案】125000【考点】高斯求和【解析】【解答】解:设每一组的平均数为x,则由题意得33x+33x+33x=1+2+3+ (99)即99x=(1+99)×99÷299x=99×50,x=50.故三个平均数之积为503=125000.故填125000.【分析】本题中,设每一组的平均数为x,则每一组的总和为33X.那么33X+33X+33X=1+2+3+…+99.解之得X=50,那么这三个平均数的乘积是503=125000.6.【答案】偶数【考点】高斯求和【解析】【解答】解:2008÷2=1004,1+2+3+4+5…+2007+2008=1004个偶数+1004个奇数=偶数+偶数=偶数.即它们的和为偶数.故答案为:偶数.【分析】2008÷2=1004,即1~2008中共有1004个偶数,1004个奇数.根据数的奇性可知,任意偶数相加的和为偶数,偶数个奇数相加的和为偶数,所以1+2+3+4+5…+2007+2008=1004个偶数+1004个奇数=偶数+偶数=偶数.即它们的和为偶数.7.【答案】30【考点】高斯求和【解析】【解答】解:1+2+3+…+64=(1+64)×64÷2,=2080;2080﹣2012=6868是去掉的两个自然数的和.即有:4+64=5+63=6+62=…=33+35共有33﹣4+1=30(种)故答案为:30.【分析】先据高斯求和公式求出1﹣64的自然数和是多少,然后用这个和减2012所得的差即为去掉的两个自然数的和,根据这个差来分析去掉的这两个自然数共有多种可能性即可.8.【答案】2550【考点】高斯求和【解析】【解答】解:100以内的偶数有2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98、100共50个,2+4+6+8+…+92+94+96+98+100=(2+100)×50÷2=102×50÷2=2550答:100以内的偶数和是2550.故答案为:2550.【分析】找出100以内的偶数相加即可.9.【答案】5050【考点】高斯求和【解析】【解答】解:因为每个盒子装的个数都不相同,并且盒子不空,要想让被子数量最少,那么只能是第一个盒子放一个被子,第二个放2个,第三个放3个,以此类推,第100个盒子放100个,1+2+3+4+…+100=(1+100)×100÷2=101×50=5050(个)答:那么至少有5050个被子.故答案为:5050.【分析】因为每个盒子装的个数都不相同,并且盒子不空,那么求至少有多少个,所以第一个盒子放一个被子,第二个放2个,第三个放三个,以此类推,那么被子总数就是1+2+3+4+…+100即可.改算式的算法是:因为第一个数1加上最后一个数100,等于第二个数2加上倒数第二个数99,等于第三个数3加上倒数第三个数98,即为收尾对称着加,其和都相等,从1到100共100个数,一个和是由两个数构成,所以和的个数是100÷2,据此解答即可.10.【答案】2601【考点】高斯求和【解析】【解答】解:数列2+4+6+8+…+100共有50项,数列1+3+5+7+9+…+101共有51项,即多个101,通过观察可知,数列2+4+6+8+…+100中的第一项都比数列1+3+5+7+9+…+101的前50项多1,即多50,所以数列1+3+5+7+9+…+101=2550﹣50+101=2601.故答案为:2601【分析】本题可据这两个等差数列的项数及两个数列中数据的特点由2+4+6+8+…+100=2550推出1+3+5+7+9+…+101的和是多少.11.【答案】2500;50【考点】高斯求和【解析】【解答】解:1+3+5+7+…+97+99=(1+99)×50÷2=100÷2×50=502=2500故答案为:2500,50.【分析】算式1+3+5+7+…+97+99中的加数构成一个公差为“2”的等差数列,首项为1,末项为99,项数为50.因此本题根据高斯求和公式进行计算即可:等差数列和=(首项+末项)×项数÷2.12.【答案】219【考点】高斯求和【解析】【解答】解:根据题意可得:中间的数是:2007÷9=223,即第5个数是223,因为第5个数比最小的数大5﹣1=4,所以最小数自然数是:223﹣4=219.答:最小的自然数是219.故答案为:219.【分析】根据题意,把把这些数从小往大排,2007÷9=223是最中间的数,也就是第5个数是223,因为是连续的自然数,所以第5个数比最小的数大5﹣1=4,用223减去4就是要求的数.13.【答案】2500【考点】高斯求和【解析】【解答】解:1+3+5+…+99=(1+99)×[(99﹣1)÷2+1]÷2,=100×(49+1)÷2,=100×50÷2,=2500.故答案为:2500.【分析】通过分析式中数据可以发现,式中的加数为一个公差为2的等差数列,即此算式是求一个等差数列和的运算.因此根据高斯求和公式计算即可:项数=(末项﹣首项)÷公差+1,等差数列和=(首项+尾项)×项数÷2.14.【答案】61【考点】高斯求和【解析】【解答】解:根据题意可得:中间的数是:1998÷27=74,即第十四个数是74,因为第十四个数比最小的数大14﹣1=13,所以最小数自然数是:74﹣13=61.故答案为:61.【分析】根据题意,把把这些数从小往大排,1998÷27=74是最中间的数,也就是第十四个数是74,因为是连续的自然数,所以第十四个数比最小的数大14﹣1=13,用74减去13就是要求的数.15.【答案】8【考点】高斯求和【解析】【解答】解:1+2+3+…+14+15,=(1+15)×,=16×,=120,120÷15=8,答:这15个自然数的和是120,它们的平均数是8.故答案为:120,8.【分析】根据高斯求和的方法:1+2+3+4+…+n=(n+1)×,代入数据即可求出这15个连续自然数的和,再除以15,就是它们的平均数.16.【答案】10000【考点】高斯求和【解析】【解答】解:方法一:1+2+3+…+99+100+99+98+…+3+2+1,=1002,=10000;方法二:(1+100)×100÷2×2﹣100,=101×100﹣100,=10100﹣100,=10000;故答案为:10000.【分析】方法一:通过已经给出的两个式子可以找出规律:几个对称排列的连续自然数的和等于中间数的平方,所以在算式1+2+3+…+99+100+99+98+…+3+2+1中,中间的数是100,因此1+2+3+…+99+100+99+98+…+3+2+1=1002=10000,据此解答;方法二:在算式1+2+3+…+99+100中,首项是1,末项是100,项数是100,根据高斯求和公式可得:(1+100)×100÷2×2﹣100=10000,据此解答.17.【答案】7【考点】高斯求和【解析】【解答】解:设最少的一份为X,由题意得方程:X+(X+2)+(X+2+2)+(X+2+2+2)=40,4X+2×6=40,4X+12=40,4X=28,X=7;答:最少一份有7块;故答案为:7.【分析】设最少的一份为X,则其他三份依次为X+2;X+2+2;X+2+2+2;根据题意列出方程解答即可.18.【答案】11【考点】高斯求和【解析】【解答】解:140家门牌号码之和为:1+2+3+…+140=(1+140)×140÷2=9870,这个数小于10000,不符合题意;141家门牌号数之和为10011,雅雅家门牌号数是10011﹣10000=11(号);142家的门牌号之和为10153,雅雅家的门牌号是10153﹣10000=153(号),这里我们设定是142家,而由题意可知:142家不会有一家的门牌号是153,即这是不可能的;当设定有142家以上时,也会出现这种矛盾,所以平安街只能有141家,雅雅家门牌号一定是11号.答:雅雅家门牌号是11号.故答案为:11.【分析】根据题意,雅雅家所在的平安街所有各家门牌号之和应大于10000,找出连续自然数相加大于10000的最小和,再减去10000即可解答.19.【答案】2046【考点】高斯求和【解析】【解答】解:9+17+25+…+177=(9+177)×[(177﹣9)÷8+1]÷2=186×22÷2=186×11=2046;故答案为:2046.【分析】观察算式可知,此题是一个公差为8的等差数列,首项是9,末项是177,项数是(177﹣9)÷8+1=22,运用高斯求和公式计算即可.三、计算题20.【答案】解:×××…×.=×××…×=×××…×=×4×=【考点】高斯求和【解析】【分析】根据根据高斯求和公式变形后,通过分子分母约分即可简算.21.【答案】解:5+7+9+11+…+97+99,=(99+5)×[(99﹣5)÷2+1]÷2,=104×[94÷2+1]÷2,=104×[47+1]÷2,=104×48÷2,=2496.【考点】高斯求和【解析】【分析】通过观察可知,式中数加数构成一个公差为2的等差数列,所以本题可根据高斯求和的有关公式进行计算:等差数列和=(首项+末项)×项数÷2,项数=(末项﹣首项)÷公差+1.。
高斯小学奥数六年级上册含答案第02讲 计算综合二
第二讲计算综合二到了六年级,我们对四则运算提出了新的要求,考试中出现的经常是比较复杂的分数四则混合运算题目,因而要求有较强的计算基本功.在计算的同时,综合运用以前学过的各种巧算技巧,往往能使题目的计算过程变得简洁.当然现在的巧算技巧不再像以前那么直接,而是蕴藏在计算的细节之中.练习1 计算:4311.27 4.19122143⎛⎫÷+⨯÷ ⎪⎝⎭ 计算:5413.8512.3131854⎛⎫÷+⨯÷ ⎪⎝⎭.「分析」把除号变乘号,带分数化为假分数.计算的时候,多留意观察,看看有没有哪些步骤能够用到巧算.例题1计算:59193 5.2219930.4 1.691052719950.51995196 5.22950+-⨯⎛⎫÷+ ⎪⨯⎝⎭-+. 「分析」此题比上一题看起来更加复杂了,我们可以先把它分成两个部分:左边的分式与右边的和式.左边的分式,分子与分母有什么联系呢?对于右边的和式,通分显然一种很好的选择.例题3练习2计算:91739236353241123111176345134⨯+⨯⨯-÷计算:711471826213581333416⨯+÷-÷. 「分析」题目看上去很繁,似乎需要大量的计算.对于这种含有带分数的运算,我们一般先把带分数化成假分数,这样可以便于乘除法中进行约分.例题2接下来我们学习一种特殊的计算技巧:换元法.请同学们先看例题4.计算:531579753579753135531579753135579753135357975357975531135357975531357975⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭「分析」算式中的四个括号其实有很大一部分是重叠的,如下所示:我们不妨把这两类重叠部分,一个设为a ,另一个设为b .你能用带有a 和b 的式子把原式表示出来吗?例题4531579753579753135531579753135579753135357975357975531135357975531357975⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ba 练习3计算:2669502.2520110.113220090.220091310.253+⨯⎛⎫÷- ⎪⨯⎝⎭+ 练习4计算:11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫++++⨯++++-+++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭b例4中用到了换元的运算技巧.换元,指的是用字母来代表一块算式,把算式当成一个整体进行计算的想法,是一种很实用的计算技巧.换元的目的是让我们省去很多不必要的计算,这样能够大大简化计算过程.有时候,不一定要用换元才能够省去计算,只要带着这个想法考虑问题就行了.下面我们学习连分数.什么是连分数呢,举几个简单的例子: 1111111+++11123++ 1112134+++像上面这样包含若干层分数线的复杂分数就是连分数.连分数本质上讲应该是一个算式,而不仅仅只是一个数,所以我们通常需要将这样的连分数化简成最简分数的形式.那究竟如何化简呢?想要将连分数化简成普通分数,必须从短分数线开始一层层的来算.我们就拿简单的五层连分数11111111111+++++为例.下面的算式就是这个连分数化简为普通分数的全过程:连分数计算最重要的就是把分数线减少.仔细观察一下上述过程,大家不难发现,连分数的计算顺序是由短分数线开始算,每次算完,分数线就变少,形式变得越来越简单.1315已知“*”表示一种运算符号,它的含义是:ma b a b a b*=+⨯⨯,并且237*=. (1) 请问:m 等于多少?(2) 计算:()()()()1223341920*+*+*++*L .「分析」(1)由“*”的定义,以及237*=,不难求出m ;(2)对于“*”,我们不清楚它有什么运算性质,但可以按照它的定义,把“*”运算换成四则运算,如12*可以替换成1212m +⨯⨯,23*可以替换成2323m+⨯⨯,…… 例题6(1) 将下面这个连分数化简为最简真分数:11514132+++;(2) 若等式成立,x 等于多少?1811111214x =+++. 「分析」第(1)问就是一个简单连分数的计算,从下往上一层层算即可.但第(2)问则是一个连分数方程,而且未知数在最底层,不可能把左侧的分数先算出来.此时,为了将分数线减少,我们可以采取方程左右两侧同时取倒数的想法,这样一来,就容易求解了.例题5作业:1. 计算:.2. 计算:(1);(2).3. 计算:.4. (1)计算:;(2)已知,求x .5. 规定运算,求: (1).(2);(3).第二讲 计算综合二111111112233499100⎛⎫⎛⎫⎛⎫⎛⎫*+*+*++* ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L()()()()99979795959331*+*+*++*L ()()2143*** 1a b a b a b*=-+⨯ 16611110711161115243x =++++++1279348514+++ 1.1111 1.99990.11110.9999⨯-⨯ 212372153653579⎛⎫+⨯÷+⨯ ⎪⎝⎭ 15110 4.5213780.5 1.5⨯+÷-⨯ 7655134.512714⎛⎫⨯+÷⨯ ⎪⎝⎭例题例题1. 答案:14413详解:原式189139943.8512.37.712.35545513=⨯+⨯÷=⨯+⨯⨯⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()94941447.712.32051351313=+⨯⨯=⨯⨯=.例题2. 答案:12详解:原式=71829⨯12640153+-3416⨯4571238882346124042323231233+⨯=⨯=⨯=-3⨯1248423⨯⨯12=. 例题3. 答案:1.25详解:因为5955193 5.2219 3.9 5.2219 1.32910991527551965.2219 6.54 5.22191.3295099+-+--===-+-+-, 及19930.4 1.619930.42 1.619930.820.8199320.80.819950.5199519950.521995199519951995⨯⨯⨯⨯⨯++=+=+=⨯=⨯⨯⨯,所以原式=10.8 1.25÷=. 例题4. 答案:1详解:设531579753135357975a =++,579753357975b =+,于是有:()1351351351351351355311531531531531531531135a b a b ab a ab b a b =⨯+-+⨯=+-+=-=⨯=⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭原式. 例题5. 答案:(1)30157;(2)54(1)详解:原式=111301115715755130304772===+++; (2)详解:原方程两边同时取倒数,得:111118214x +=++,即1318214x =++;将其两边同时取倒数得:182134x +=+,即12134x =+;将其两边同时取倒数得:1342x +=,即54x =.例题6. 答案:(1)6;(2)2665.7(1)详解:由2323723m *=+⨯=⨯,得:6m =;(2)详解:原式=666612233419201223341920+⨯++⨯++⨯+++⨯⨯⨯⨯⨯⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L=()1111612233419201223341920⨯+++++⨯+⨯+⨯+⨯⨯⨯⨯⨯⎛⎫ ⎪⎝⎭L L=1192021012612665.7203⨯⨯-⨯⨯⨯-+=⎛⎫ ⎪⎝⎭.练习 1. 答案:6简答:原式=7731.273 4.196447⨯⨯+⨯⨯=⎛⎫ ⎪⎝⎭.2. 答案:4简答:原式=928553612159940404099514035324115210433710433740297171717102971751317515151⨯+⨯+⨯=⨯=⨯=⨯⨯=-⨯-. 3. 答案:98简答:原式=2009200920112134499841412009220092234+÷-=÷=⨯⨯+⎛⎫⎪⎝⎭.4. 答案:16简答:令11112345a =+++,则原式=()11111666a a a a ++-++=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.作业:1. 答案:25简答:原式()7697575515169251226141214⎛⎫=⨯+⨯⨯=+⨯⨯= ⎪⎝⎭.2. 答案:(1)2;(2)273简答:(1)原式4759110037.257.2514.57.25237221714⎛⎫⎛⎫=⨯+⨯÷=+÷=÷= ⎪ ⎪⎝⎭⎝⎭;(2)原式1220545713672575317791593⎛⎫=+⨯+⨯=⨯+= ⎪⎝⎭.3. 答案:2.111简答:设a =0.1111,b =0.9999,则有:原式(1)(1)(1)1(1)10.99990.11111 2.111a b ab a b b ab a b =++-=⨯++⨯+-=++=++=.4. 答案:(1)4;(2)112简答:(1)原式1212===47939444483+++;(2)倒数法: 110715111166611115243x =--=++++, 11111311525243x =--=++,211133412x =--=.5. 答案:(1)161156;(2)499899;(3)333300.99 简答:(1)原式=313161*212156=; (2)原式=111114922224998999797953199973199⎛⎫⎛⎫⎛⎫⎛⎫++++++=⨯+++= ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭L L ; (3)原式1111111111111122399100122399100⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-++-+++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭⎝⎭L()11111199100101112991001333300.99223991001003⨯⨯⎛⎫⎛⎫=-+-++-+⨯++⨯=-+= ⎪ ⎪⎝⎭⎝⎭L L . 11111112239910022399100⎛⎫⎛⎫⎛⎫=-+⨯+-+⨯++-+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L。
六年级上册数学试题 奥数系列~第18讲 最佳策略问题全国通用(含解析)
第18讲最佳策略问题知识网络在日常生活中,竞赛或争斗性质的现象随处可见,小到下棋、做游戏,大到体育比赛、军事较量等,人们在竞赛或争斗中总是希望自己或自己的一方能够获取胜利或获得最好的结果,这就要求参与竞争的双方都要制定出自己的策略,即分析对方可能采取的计划,有针对性地制定自己的克敌计划。
哪一方的策略更胜一筹,哪一方就会取得最后的胜利。
这种现象我们称之为“对策现象”。
重点·难点如何制定最佳策略,要根据具体的“对策现象”来分析。
一般来说,“对策现象”有三个基本要素:(1)局中人,即在一场竞赛或争斗中的加者,他们为了在对策中取得最后的胜利,必须制定观对付对方的行动计划。
局中人并不特指某一个人,而是指参加竞赛的各个阵营。
(2)策略,是指某一个局中人的一个“自始至终贯彻”的可执行方案,在一局对策中,各具局中人可以有一个策略,也可以有多种策略。
(3)得失,在局对策中,肯定会有胜利者和失败者,竞赛的成绩也会有好有差,我们称之为得失。
每个局中人在一局对策中的得失与全体局中人所采取的策略的优劣有着直接的关系。
学法指导解决策略问题的关键是怎样寻找胜局如何把握胜局。
这可以结合前面几讲中的“带余除法和同余”、“最大与最小”等来进行分析。
经典例题[例1]有一堆棋子共有2002粒,甲、乙两人玩轮流取棋子的游戏。
甲先取乙后取,并且规定每次取的棋子不能超过7粒,但不能不取。
如果规定取到最后一粒棋子的人为胜者,那么甲应如何制定策略以取胜?思路剖析甲为了能取到最后一粒棋子,必须使得当他取到倒数第二轮时,还有8粒棋子。
因为此时轮到乙来取,乙最少要取1粒,最多只能取7粒,因此无论乙取几粒,甲都可以将剩下的棋子一次取净,从而保证必胜。
可见,“8”是个关键数字,一开始甲取的棋子数,应该保证余下的棋子数是8的倍数。
往后的每一轮,不管乙取多少粒(1至7粒),甲总可以使自己所取的棋子数和乙所取棋子数和为8,从而将主动权控制在自己手中。
新编六年级奥数精讲与测试第18讲一次不等式(学生版)
第18讲一次不等式知识要点对于一元一次不等式ax b >,有(1)0a >时,b x a >;(2)0a <时,b x a <;(3)0a =时,若0b ≥,则不等式无解;若0b <,则不等式的解为一切实数.相等与不等是矛盾的两个方面,既相互统一,又可互相转化.利用不等式的思想可解决一些方程问题.典例精讲典例1 解 下列关于x 的一次不等式,必要时加以讨论.(1)1;24816x x x x x -+-+≥(2)233122x x a a+-->解 (1)去分母得1684216x x x x x -+-+≥,即1621x ≥,所以1621x ≤.(2)由题设知0a ≠,去分母并整理得()()()23231a x a a +>+-.当230a +>,即()3>02a a -≠时,1x a >-; 当230a +=,即32a =-时,无解; 当230a +<,即32a <-时,1x a <-. 典例2 已知不等式()2340ab x a b -+-<的解为4>9x ,求不等式4230()a b x a b -+-> 的解.解 已知不等式为24)3(a b x b a -<-,所以由题设得 20,434,29a b b a a b -<⎧⎪-⎨=⎪-⎩所以27.8a b b a <⎧⎪⎨=⎪⎩, 由728a a <可得0a <,从而0a <,78b a =.于是不等式()4230a b x a b -+-> 等价于721202)8(a a a x a -+->,即5528ax a ->所以14x >-,所求的不等式 解为14x >-.典例3 如果不等式组9080x a x b -≥⎧⎨-<⎩,的整数解仅为1、2、3,那么适合这个不等式组的整数a b 、的有序数对()a b ,共有多少对?解 由原不等式组可解得98a b x ≤<.如图18-1,在数轴上画出这个不等式组解集的可能范围,可得01,934,8a b ⎧<≤⎪⎪⎨⎪<≤⎪⎩即09,2432,a b <≤⎧⎨<≤⎩ 所以129a =⋯,,,共9个,25,2632b =⋯,,共8个,于是有序数对()a b ,共有9872⨯=个.典例4 设a b c d 、、、均为整数,且关于x 的方程()21a b x -=、()31b c x -=、()41c d x -=、100x d +=的解都是正数,试求a 的最小值.解 由方程()21a b x -=的解是正数,可知2a b >.注意到a b 、都是整数,则21a b ≥+.同理3b c >,31b c ≥+;4c d >,41c d ≥+.而100d >,101d ≥,所以405c ≥,340511216b ≥⨯+=,2433a ≥.即a 的最小值是2433.典例5 设是a b 、正整数,求满足89910a b <<,且b 最小的分数a b .分析 欲求b 的最小值,只需将b 放入一个不等式,然后估计出b 的下界.这里要用到整数的离散性,即若整数x y 、满足x y >,则1x y ≥+.解 原不等式等价于 89910a b a b ⎧<⎪⎪⎨⎪<⎪⎩,,即89109b a a b <⎧⎨<⎩,,所以8191019.b a a b +≤⎧⎨+≤⎩,91819910b b a -+≤≤g ,8010819b b +≤-,所以19b ≥.又分数1719满足817991910<<,故b 最小且满足题意的分数是1719.典例6 从1开始,写出一组连续的正整数,擦去一个数后,其余整数的平均值为73517.问:擦去的数是多少?解 设写出的一组连续的正整数为12n ⋯、、、,擦去的一个数为()1k k n ≤≤,由题意得 ()12735171n k n ++⋯+-=-. ① 而()())1212112111n n n n k n n n ++⋯+-++⋯+-++⋯+-≥=---(()1212n n n n -==-()()1212123111n k n n n n n ++⋯+-++⋯+-++⋯+≤=---()()122212n n n n -++==-.即72352172n n +≤≤.解之得141468701717n ≤≤.由于n 是正整数,所以69n =或70n = .又由①知1n -()必为17的倍数,所以69n =.代入①式得()12697351768k +++-=g g g ,解得7k =.故擦去的数是7.说明 本题利用1k n ≤≤这一不等关系,先确定n 的取值范围,从而使问题得到解决.不等式在与整数有关的问题中的应用很多,请读者注意体验本题中所用的方法.典例7 某公交公司停车场内有13辆车,从上午6时开始发车(6时整第一辆车开出),以后要每隔6分钟再开出一辆.第一辆车开出1分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的13辆车后依次再出车.问到几点时,停车场内第一次出现无车辆的情况?解 设从6时起x 分钟时第一次出现无车辆,此时总共出车s 辆,进场车y 辆,则()611381,x s s y y x =-⎧⎪=+⎨⎪>-⎩,,813)611(s s ∴->--(),解得48.5s >.s Q 为正整数,49s ∴=,即到第49辆车开出后,停车场内第一次出现无车辆.此时649(1288x =-=).从而288610.860+=(时). 答:到10时48分时,停车场内第一次出现无车辆的情况.水平测试ABCA 卷一、填空题1.不等式7−x <2(6−x )的正整数解为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八讲最值问题二「、最值问题中的常用方法a)极端思考在分析某些最值问题时,可以考虑把问题推向“极端”,因为当某一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问题的“本来面目”清楚地显露出来,从而使问题迅速获解.b)枚举比较根据题目的要求,把可能的答案一一枚举出来,使题目的条件逐步缩小范围,筛选比较出题目的答案.c)分析推理根据两个事物在某些属性上都相同,猜测它们在其他属性上也有可能相同的推理方法.d)构造调整在寻求解题途径难以进展时,构造出新的式子或图形,往往可以取得出奇制胜的效果.二、求最大值和最小值的结论1和一定的两个数,差越小,积越大;2. 积一定的两个数,差越小,和越小;3. 两点之间线段最短.例1.用一根长80厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的「分析」题目的限制条件是铁丝长为80厘米,要求体积的最大值,通过什么可以把这二者联系起来呢? 练习1、(1)用一根长100 厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?(2)有一根铁丝,它能焊接成的棱长都是整数厘米的最大长方体的体积是36 立方厘米,这根铁丝的长度是多少厘米?例2.有5袋糖,其中任意 3 袋的总块数都超过60.这5袋糖块总共最少有多少块?「分析」每3 袋的总块数都超过60,要求5 袋的总块数.事实上我们以前做过类似的题:“已知三个数两两的和数,求这三个数的总和.”这样的题大家是怎么处理的呢?它的处理方法能否应用到本题中来呢?练习2、有 5 个学生参加暑期竞赛班,每人都拿了不少积分(所有积分都是整数).如果其中每三人的积分之和都不少于500 分,那这五人的总积分最少是多少?例3.用1、2、3、4、5、6、7、8、9 各一个组成3个三位数,使得它们都是9的倍数,并且要求乘积最大,请写出这个乘法算式.「分析」为了让这样的三个数的乘积最大,我们当然要让三个数的首位最大.那么首位应该是多少呢?注意到这三个数都是9 的倍数,9 的倍数有什么特征呢?它对这三个数提出了怎样的要求?练习3、用1、2、3、4、5、6 各一个组成两个三位数,使得它们都是 3 的倍数,并且要求乘积最大,请写出这个乘法算式.例4.把1至99依次写成一排,行成一个多位数:1234_ 9899 •从中划去99个数字,剩下的数字组成一个首位不是 0的多位数.请问:剩下的数最大可能是多少?最小可能是多 少?「分析」要使得到的数最大,所得的数前面几位应该是什么?如果要最小呢?练习4、把1至20依次写成一排,行成一个多位数:1234_ 1920.从中划去20个数字, 剩下的数字组成一个首位不是 0的多位数.请问:剩下的数最大可能是多少?最小可能 是多少?例5.邮递员送信件的街道如图所示,每一小段街道长 1千米.如果邮递员从邮局出发,必么邮递员能做到这一点吗?实际上这是一个一笔画问题, 形才能一笔画出来呢?例6.如图,有一个长方体的柜子,一只蚂蚁要从左下角的A 点出发,沿柜子表面爬到右上角的B 点去取食物,蚂蚁爬行路线的长度最短是多少? 一共有几条最短路线?请在图 中表示出来.「分析」如果邮递员恰好没有重复地走遍所有的街道,则这样走的总路程就是最短的. 那同学们回想一下,什么样的图「分析」众所周知,两点之间线段最短.然而在本题中,蚂蚁是不能穿过柜子的,只能在柜子表面爬行•这样一来,我们就要在柜子表面寻找一条从A到B的最短路线•可是蚂蚁应该怎么走才能距离最短呢?罐头装箱问题我们经常遇到把圆柱体罐头放入长方体包装箱的问题, 怎么摆放才能最有效地利用包装箱内的空间呢?一种显而易见的办法是把各圆排列成矩形的形状,像图1这样.它是一种较优排法,但不是最优的办法.没有最大限度地利用空间, 浪费不少,圆的面积只占总共的 78.5% .图1 图2比上述办法好得多的办法, 是将罐头摆放成图2所示的六边形.不难算出,正六边 形内圆所覆盖的面积超过了 90%.实际上,数学家已经证明了如果空间是无限延展的, 这种六边形摆放法是最紧密的包装方式.但是正六边形摆法的最紧密性质是有条件的,尤其在盒子不太大的时候.例如要放9个罐头,正六边形摆法需要的正方形不是最小的•如图3,它的放法就不比图 4好.当罐头数目增加时,放罐头的最佳包装法会不断在变,越来越 倾向于正六边形排法.比如,13个罐头的最优包装法,用边长大约为圆直径3.7倍的正方形就够了•如图 5,虽然它看上去乱糟糟,但已被证明为最优 解•我们可以看到,12个罐头紧紧地靠在一起,而第 13个(黄色的那个)则自由自在地放在中间.最后,大家思考一个问题:设 1角钱硬币的直径为 a 厘米,那么我们在边长为 10a 厘米的正方形中,最多可以不重叠地放入多少枚硬币呢?是 100枚吗?能否放进去更多?图3图5作业1. 用一根长120厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?2. 高、娅、莫、萱四人各有若干块高思勋章,其中任意两人的勋章合起来都少于10块,那么这四人的勋章合起来最多有多少块?3. 用1、2、3、4、5、6、7、8各一个组成两个四位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.4. 把21至40依次写成一排,行成一个多位数:21222324. 3940 .从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?5. 如果例题5中的街道由“土”字形变成如下所示的形状,那么邮递员从邮局出发,要走遍所有的街道,最少需要走多少千米?第十八讲最值问题二例7. 答案:294详解:长方体满足:长宽高80 4 20 厘米,要使体积最大,就应该使三边长度尽量接近.所以当三边长度分别为7厘米、7厘米和6厘米时,体积最大,为7 7 6 294 立方厘米.例8. 答案:103详解:任意 3 袋糖果总块数都不少于61,必能取出一袋不少于21块糖果;现在余下 4 袋,同样可以有糖果数超过21块的袋子,再取走这袋.现在余下三袋了,这三袋糖果总和不少于61,所以总的糖果不少于61+21+21=103 块.由于 5 袋糖果分别有21、21、21、20、20 块,是符合要求的,所以103 就是最小值.例9.答案:954X873X621详解:每个数都是9 的倍数,说明每个数的各位数字之和都是9 的倍数.由于1到9 总的数字和是45,而且每个数的各位数字之和都不超过7+8+9=24,因而三个数的各位数字之和分别为18、18 和9.各位数字之和为9 的数最大只能是621.其余两个数乘积要尽量大且各自的各位数字之和是18,百位取9 和8,十位取7 和5,个位取4和3,有最大乘积954X872,故所求的乘法算式是954X873X521 .例10 . 答案:最大为999997585960 ...9899 ;最小是10000012345061626364 (9899)详解:(1)要使剩下的数尽量大,就要让数的最前面剩下尽可能多的9.首先,最开头的12345678 这8 个数字是要去掉的,留下了第一个9;然后去掉1011121314151617181共19个数字,留下了第二个9;再去掉 3 次的19个数,使得剩下第3、4、5个9.现在已经去掉了一共8+19X4=84 个数,剩下的数前 5 个数字都是9,然后是50515253545556575859 一直写到9899,还能再去掉15 个数.但我们到下一个9要去掉19个数,到下一个8 要去掉17个数,到下一个7 要去掉15个数,于是最后结果的第6 个数字最大是7,应该去掉的15 个数字为505152535455565.所以剩下的数最大为999997585960 (9899)(2)要使剩下的数尽量小,就要让数的首位是1,第二位起是尽量多的0.首位上的1取第一个数字 1就行了 .然后去掉 234567891共9个数,留下第一个 0;再去掉1112131415161718192共19个数,留下第2个0;再去掉3次的19个数,就能得到第 3、4、5个0.现在一共去掉了 9 19 4 85个数,剩下的数前六个数字是1、0、0、0、0、0,余下的部分是 515253545556575859 一直写到9899,还能再去掉14个数.下一 位取不到0 了,只能去掉一个 5,留下1;再下一位连1都取不到,只能去掉 1个5, 取2;再去掉一个5,留下3 ;去掉一个5,留下4 •现在还能再去掉10个数字,而剩 下的是55565758596061••…,接下来11个数中最小的数是 5,所以取一个 5•然后剩 下的数前11个数字为55657585960 ,因而我们去掉10个数字5565758596,使下一位达 到最小数字0.所以最后剩下的数最小是 1000001234506162636…9899 .例11 . 答案:26他至少应该多走1千米街道,最小是26千米.在图2中, 26千米走遍所有街道的一种方法.例12 . 答案:最短的长度是 5; 4详解:为了表示方便,我们把长方体的各个顶点都标上字母,如图3.蚂蚁要从A 处爬到B 处,途中必须经过两个相邻的面, 两个相邻面的交线必是 EH 、HF 、FG 、GC 、CD 、 DE 六条线段中的一条.一共六种情况,但由对称性,可分为三类,每类两种:交线是FG 、DE 的情形为一类,交线是 HE 、GC 的情形为一类,交线是 FH 、DC 的情形为一 类.详解: 如图1,由于的A 、 B 两点连出的边是 3条,也就是奇数条,仅当 A 与B 为出发点和终点时,才能一笔画.我们不能从邮局出发一笔把这个图画出, 即邮递员不能只把每条街道走一遍就回到邮局, 1 1 1图2我们给出了邮递员走图1图3 图4情况1:如果蚂蚁所经过的两相邻面是ACGF和FGBH ,那么我们可以沿着它们的交线FG把这两个面展开到同一个平面上,如图 4 •这样蚂蚁的整个行走路线就在这一个平面上,而且以A为起点,B为终点•此时从A到B的最短连线就是A、B两点的连线,它恰好直角三角形ABC的斜边. 由于AC 3 , BC 3 1 4,因此AB 5 •D B1图63 C 3 GHF G33 CH7D: 1B图A73 C情况2:如果两相邻面的交线是GC •同样我们也可以沿着GC,把两个相邻面展开到同一个平面上,如图 5 .此时A、B两点的连线是直角三角形ABD的斜边•由于BD 3 ,AD 3 1 4,因此AB 5 .情况3:如果两相邻面的交线是DC •同样我们也可以沿着DC ,把两个相邻面展开到同一个平面上,如图 6 .此时A、B两点的连线是直角三角形AGB的斜边,一定比直角边AG长.而AG的长度是3 36,所以AB 一定大于6・其余三种情况的最短路线与上面的情况1、2、3对应相同. 所以爬行路线长度最少是5, (1)和(2)的情形都符合要求,加上与它们对应的两种,所以一共会有4条最短路线.展开图还原到原来的图中,就是所求的最短路线(如图7) •因此在长方体表面,从到B的最短路线的长度是5, 一共有4条满足要求.练习1、答案:576简答:100 4 25 8 8 9 ,8 8 9 576 .练习2、答案:834简答:总积分最少是167 167 500 834 ,此时 5 人分数可以是166、167、167、167、167.练习3、答案:642 X 531简答: 6 和 5 分别放在两个数的百位上,结合各位数字之和是 3 的倍数,可得到乘积最大的算式642 531 .练习4、答案:95617181920;10111111110简答:同例4,由于题目中数位较少枚举即可,注意计算的准确性.作业6. 答案:1000简答:120 4 30 10 10 10 ,10 10 10 1000 .7. 答案:17简答:必有两人的勋章数都不多于 4 块,余下两人勋章数之和不多于9 块,因而最多只能有 4 4 9 17 块.8. 答案:8532 7641简答:首位要尽量大,取8 和7,次位也尽量大,取 6 和5,然后是十位要尽量大,从 4 和 3 里取.也就是前三位分别取853和764能使乘积最大.但还要保证都是3的倍数,故只能是8532 和7641,所求的乘法算式是8532 7641 .9. 答案:93333334353637383940;1012333435363738394010. 答案:36简答:这个图是可以一笔画画出的,最少路程等于街道全程36 千米.。