苏科版八年级数学上册:1.2全等三角形培优习题
苏科版数学八年级上册 全等三角形单元培优测试卷
![苏科版数学八年级上册 全等三角形单元培优测试卷](https://img.taocdn.com/s3/m/d95c9bddd4d8d15abe234ebe.png)
一、八年级数学全等三角形解答题压轴题(难)1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.(1)求a,b的值;(2)点P在直线AB的右侧;且∠APB=45°,①若点P在x轴上(图1),则点P的坐标为;②若△ABP为直角三角形,求P点的坐标.【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)①根据等腰直角三角形的性质即可解决问题.②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】(1)∵a2+4a+4+b2﹣8b+16=0∴(a+2)2+(b﹣4)2=0∴a=﹣2,b=4.(2)①如图1中,∵∠APB=45°,∠POB=90°,∴OP=OB=4,∴P(4,0).故答案为(4,0).②∵a=﹣2,b=4∴OA=2OB=4又∵△ABP为直角三角形,∠APB=45°∴只有两种情况,∠ABP=90°或∠BAP=90°①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.∴∠PCB=∠BOA=90°,又∵∠APB=45°,∴∠BAP=∠APB=45°,∴BA=BP,又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,∴∠ABO=∠BPC,∴△ABO≌△BPC(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=4﹣2=2,∴P(4,2).②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.∴∠PDA=∠AOB=90°,又∵∠APB=45°,∴∠ABP=∠APB=45°,∴AP=AB,又∵∠BAD+∠DAP=90°,∠DPA+∠DAP=90°,∴∠BAD=∠DPA,∴△BAO≌△APP(AAS),∴PD=OA=2,AD=OB=4,∴OD=AD﹣0A=4﹣2=2,∴P(2,﹣2).综上述,P点坐标为(4,2),(2,﹣2).【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.2.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2). EB=AD 成立;理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=60°,∴△DBE ≌△CFD (AAS ),∴EB=DF ,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.3.(1)如图1,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两动点,且∠DAE=45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF .(1)试说明:△AED ≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE 的长;(3)如图2,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC 所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC ≌, 得到AE AF =,BAE CAF ∠=∠,45,EAD ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=EAD DAF ∠=∠,从而得到.AED AFD ≌ ()2 由△AED AFD ≌得到ED FD =,再证明90DCF ∠=︒,利用勾股定理即可得出结论. ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+=求出AD 的长,即可求得2DE .试题解析:()1ABE AFC ≌,AE AF =,BAE CAF ∠=∠,45,EAD ∠=90,BAC ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=在AED 和AFD 中,{AF AEEAF DAE AD AD ,=∠=∠=.AED AFD ∴≌()2AED AFD ≌,ED FD ∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.4.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立(3)△DEF 为等边三角形【解析】解:(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA=900.∵∠BAC =900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD .又AB="AC" ,∴△ADB ≌△CEA (AAS ).∴AE=BD ,AD=CE .∴DE="AE+AD=" BD+CE .(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE .∵∠BDA=∠AEC= ,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.5.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或32(3)9s【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,据此列出方程,解这个方程即可求得.【详解】(1)当t=1时,AP=BQ=3,BP=AC=9,又∵∠A=∠B=90°,在△ACP 与△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ),∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∠CPQ=90°,则线段PC 与线段PQ 垂直.(2)设点Q 的运动速度x,①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,912t t xt =-⎧⎨=⎩, 解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xt t t =⎧⎨=-⎩解得632t x =⎧⎪⎨=⎪⎩, 综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. (3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程, 设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点;∴EB=EA=18cm.当V Q =1时,依题意得3x=x+2×9,解得x=9;当V Q =32时,依题意得3x=32x+2×9,解得x=12.故经过9秒或12秒时P与Q第一次相遇.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算. 6.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a =b =4过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM ∴OA 平分∠MON即OA 是第一象限的角平分线(2)过A 作AH 平分∠OAB ,交BM 于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N 可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.7.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG ,由(1)可知,AE=GF ,DC=BG ,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC =B C ∴∠=∠,60DF DE ADB =∠=︒,且E 与A 重合,ADF ∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,BF CD BF BG GF AE∴+=+==故BF AE CD=-.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.8.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【解析】【分析】(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠BAC+∠B+∠C;(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=∠A+∠ADC+∠AEC,求出∠DCE的度数即可.【详解】(1)如图,∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=12∠ADB,∠AEC=12∠AEB,∴∠ADC+∠AEC=1(ADB AEB)2∠+∠=45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.10.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB ≌△CEA ,∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB ≌△CEA , BD=AE ,∠DBA =∠CAE∵△ABF 和△ACF 均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE∵BF=AF ,∴△DBF ≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.。
苏科版八年级数学上册1-2全等三角形试题 一课一练(含答案)-doc
![苏科版八年级数学上册1-2全等三角形试题 一课一练(含答案)-doc](https://img.taocdn.com/s3/m/201271415bcfa1c7aa00b52acfc789eb172d9ecb.png)
苏科版八年级数学上册1.2全等三角形试题一课一练一、选择题1.如图所示,△ABC≌△AEF,AB=AE,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确的个数是( )A.1 B.2 C.3 D.42.下列说法正确的是( )A.全等三角形是指形状相同的三角形 B.全等三角形是指面积相等的三角形C.全等三角形的周长和面积都相等 D.所有的等边三角形都全等3.下列命题中正确的是( )A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的垂直平分线相等D.全等三角形对应角的平分线相等4.如果两个三角形的两边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角( )A.相等B.不相等C.互余D.互补或相等5.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的( )A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC6.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC 中与这个角对应的角是( )A .∠AB .∠BC .∠CD .∠D7.如图,已知△ABC ≌△ABD ,若,则的度数是( )55∠= BAC CAD ∠A .115°B .110°C .105°D .100°8.已知图中的两个三角形全等,则的度数是( )α∠A .72°B .60°C .58°D .50°9.如果的三边长分别为3,5,7,的三边长分别为3,,ABC A DEF A 32x -,若这两个三角形全等,则等于( ).21x -x A . B .3 C .3或 D .4737310.下列关于全等三角形的说法不正确的是A .全等三角形的大小相等B .两个等边三角形一定是全等三角形C .全等三角形的形状相同D .全等三角形的对应边相等11.在△ABC 中,∠A =∠C ,若与△ABC 全等的三角形有一个角等于96°,那么这个角在△ABC 中对应的角是A .∠AB .∠BC .∠CD .∠A 或∠C12.如图所示,锐角△ABC 中,D ,E 分别是AB ,AC 边上的点,△ADC ≌ADC 'A ,△AEB ≌,且,BE 、CD 交于点F ,若∠BAC=40°,则∠AEB 'A ////C D EB BC ''BFC 的大小是( )A.105° B.100° C.110° D.115°13.如图,已知△ABC≌△CDE,下列结论中不正确的是( )A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D 14.如图,△ABE≌△ACD,∠1=∠2,∠B=∠C,下列等式不一定正确的是( )A.AB=AC B.∠BAD=∠CAE C.BE=CD D.AD=DE15.如果一个三角形的一内角平分线垂直于对边,那么这个三角形是( ) A.等腰三角形B.等边三角形C.锐角三角形D.不能确定16.一个三角形的三边长分别为2,5,x,另一个三角形的三边长分别为y,2,6,若这两个三角形全等,则x+y=( )A.11 B.7 C.8 D.1317.若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF长为( ) A.5 B.8 C.7 D.5或818.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是 ( )①AC=DF②BC=EF③∠B=∠E④∠C=∠FA.①②③B.②③④C.①③④D.①②④二、填空题1.如图,将△ABC 沿BC 所在的直线平移到△A'B'C'的位置,则△ABC_______△A'B'C',图中∠A 与____,∠B 与____,∠ACB 与____是对应角.2.三个全等三角形按如图的形式摆放,则_______________度.123∠+∠+∠=3.如图,△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,E 、F 为垂足,在以下结论中:①△ADE ≌△ADF ;②△BDE ≌△CDF ;③△ABD ≌△ACD ;④AE=AF ;⑤BE=CF ;⑥BD=CD .其中正确结论的个数是_______.三、解答题1.如图,点A 、B 、C 在同一直线上,点E 在BD 上,且△ABD ≌△EBC ,AB =2cm ,BC =3cm .(1)求DE 的长;(2)判断AC 与BD 的位置关系,并说明理由.(3)判断直线AD 与直线CE 的位置关系,并说明理由.2.如图所示,四边形ABCD的对角线AC,BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.3.如图所示,已知△ABC≌△ADE,BC的延长线交AD于F,交ED于G,且∠CAD=30°,∠B=∠D=25°,∠EAB=130°,求∠DFB和∠DGB的度数.答案一、选择题B.C.D.D.A.A.B.D.B.B.B.B.C. D.A. A.C.C.二、填空题1.≌、∠A'、∠A'B'C'、∠C'2.180°.3.2.三、解答题1.(1)∵△ABD≌△EBC,∴BD=BC=3cm,BE=AB=2cm,∴DE=BD﹣BE=1cm;(2)DB与AC垂直,理由:∵△ABD≌△EBC,∴∠ABD=∠EBC,又A、B、C在一条直线上,∴∠EBC=90°,∴DB与AC垂直.(3)直线AD与直线CE垂直.理由:如图,延长CE交AD于F,∵△ABD≌△EBC,∴∠D=∠C,∵Rt△ABD中,∠A+∠D=90°,∴∠A+∠C=90°,∴∠AFC =90°,即CE ⊥AD .2.证明:(1)∵△ABC ≌△BAD ,∴∠CAB =∠DBA ,∴OA =OB .(2)∵△ABC ≌△BAD ,∴AC =BD ,又∵OA =OB ,∴AC ﹣OA =BD ﹣OB ,即:OC =OD ,∴∠OCD =∠ODC ,∵∠AOB =∠COD ,∠CAB ,∠ACD , =180°−∠AOB 2=180°−∠COD 2∴∠CAB =∠ACD ,∴AB ∥CD .3.∵△ABC ≌△ADE ,∴∠BAC =∠DAE ,∵∠EAB =130°,∴∠DAE +∠CAD +∠BAC =130°, ∵∠CAD =30°,∴∠BAC (130°﹣30°)=50°, =12∴∠BAF =∠BAC +∠CAD =80°,∴∠DFB =∠BAF +∠B =80°+25°=105°; ∵∠DFB =∠D +∠DGB ,∴∠DGB =105°﹣25°=80°.。
苏科版八年级数学上册第一章《全等三角形》培优测试卷
![苏科版八年级数学上册第一章《全等三角形》培优测试卷](https://img.taocdn.com/s3/m/517b6055f12d2af90242e6e4.png)
第一章《全等三角形》培优测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列语句中,正确的有()(1)一条直角边和斜边上的高对应相等的两个直角三角形全等(2)有两边和其中一边上的高对应相等的两个三角形全等(3)有两边和第三边上的高对应相等的两个三角形全等.A.1个B.2个C.3个D.0个2.一块三角形玻璃被打碎后,店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃,能够全等的依据是()A.ASA B.AAS C.SAS D.SSS3. 如图,已知AB=AD,添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°(第2题图)(第3题图)(第5题图)(第6题图)4.根据下列已知条件,能唯一画出△ABC的是( )A.AB=3, BC=4, AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=65. 如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,A.①②B.①③④C.①②③④D.①③6、在△ABC中,AB=AC,AB>BC,点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC,若△ABC的面积为18,则△ACF与△BDE的面积之和是()A.6 B.8 C.9 D.127.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°(第7题图)(第8题图)(第9题图)(第10题图)8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个9.如图,在△ABC中,AB=AC,∠A=112°,E,F,D分别是AB,AC,BC上的点,且BE=CD,BD=CF,则∠EDF的度数为()A.30°B.34°C.40°D.56°10.如图,等腰直角△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM,NE.下列结论:①AE=AF;②AM ⊥EF;③△AEF是等边三角形;④DF=DN,⑤AD∥NE.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分24分,每小题3分)11.如图中有6个条形方格图,图上由实线围成的图形与(1)是全等形的有.12.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.13.如图,点E,F在线段AD上,且AE=DF,AB∥DC,AB=DC,连接BE,BF,CE,CF,则图中共有全等三角形对.(第12题图)(第13题图)(第14题图)(第15题图)14.如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为.15.如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高,点E从点B出发,在直线BC上以2cm的速度移动,过点E作BC的垂线交直线CD于点F,当点E 运动s时,CF=AB.16.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的有.(把你认为正确的序号都填上)(第16题图)(第17题图)(第18题图)17.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为秒时,△ABP和△DCE全等.18.如图(1)所示,已知AB=AC,D为∠BAC的角平分线上面的一点,连接BD、CD;如图(2)已知AB=AC,D、E、F为∠BAC的角平分线上面的三点,连接BD、CD、BE、CE、BF、CF;…,依次规律,第N个图形中有全等三角形的对数是________.三.解答题(共8小题,满分64分)19.(6分)如图,点B、D、C、F在同一直线,AB=EF,∠B=∠F,BD=CF,试说明△ABC≌△EFD;20.(6分)如图,点B、F、C、E在同一直线上,且BF=CE,∠B=∠E,AC,DF相交于点O,且OF=OC,求证:(1)△ABC≌△DEF;(2)OA=OD.21.(8分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.22.(8分)如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.(1)求证:△ACD≌△BCE;(2)求证:CH平分∠AHE;(3)求∠CHE的度数.(用含α的式子表示)23.(8分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.24.(8分)如图,CD是经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠a.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图l,若∠BCA=90°,∠a=90°,则BE________CF;EF________|BE﹣AF|(填“>”,“<”或“=”);②如图(2),若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件________,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).25.(10分)如图①,在Rt △ABC 中,∠C =90°,BC =9cm ,AC =12cm ,AB =15cm ,现有一动点P ,从点A 出发,沿着三角形的边AC →CB →BA 运动,回到点A 停止,速度为3cm /s ,设运动时间为ts .(1)如图(1),当t = 时,△APC 的面积等于△ABC 面积的一半;(2)如图(2),在△DEF 中,∠E =90°,DE =4cm ,DF =5cm ,∠D =∠A .在△ABC的边上,若另外有一个动点Q ,与点P 同时从点A 出发,沿着边AB →BC →CA 运动,回到点A 停止.在两点运动过程中的某一时刻,恰好△APQ ≌△DEF ,求点Q 的运动速度.26.(10分)定义:我们把三角形被一边中线分成的两个三角形叫做“朋友三角形”. 性质:“朋友三角形”的面积相等.如图1,在△ABC 中,CD 是AB 边上的中线.那么△ACD 和△BCD 是“朋友三角形”,并且S △ACD =S △BCD .应用:如图2,在直角梯形ABCD 中,∠ABC=90°,AD ∥BC ,AB=AD=4,BC=6,点E 在BC 上,点F 在AD 上,BE=AF ,AE 与BF 交于点O .(1)求证:△AOB 和△AOF 是“朋友三角形”;(2)连接OD ,若△AOF 和△DOF 是“朋友三角形”,求四边形CDOE 的面积.拓展:如图3,在△ABC 中,∠A=30°,AB=8,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“朋友三 角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC 面积的 41,则△ABC 的面积是________ (请直接写出答案).。
全等三角形 苏科版数学八年级上册培优练习(含答案)
![全等三角形 苏科版数学八年级上册培优练习(含答案)](https://img.taocdn.com/s3/m/5b75ee0e4531b90d6c85ec3a87c24028915f85de.png)
1.2全等三角形培优练习一、选择题1、有下列说法:①两个三角形全等,它们的形状一定相同;②两个三角形形状相同,它们一定是全等三角形;③两个三角形全等,它们的面积一定相等;④两个三角形面积相等,它们一定是全等三角形.其中正确的说法是()A.①②B.②③C.①③D.②④∠等于( )2、如图中的两个三角形全等,则αA.65︒B.60︒C.55︒D.50︒3、如图,ABC AEF∠=∠;=;③FAB EAB=;②EF BC∆≅∆,观察以下结论:①AC AF④EAB FAC∠=∠,其中正确结论的个数是()A.1个B.2个C.3个D.4个4、如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.DB平分∠ADC B.△ABD和△CDB的周长相等C.AD∥BC,且AD=BC D.△ABD和△CDB的面积相等5、如图,OAC OBDAD=)∆≅∆.若12OC=,7OB=,则(A .5B .6C .7D .86、如图所示,△ABC ≌△ADE ,AB=AD ,AC=AE ,BC 的延长线交DA 于点F ,交DE 于点G ,∠AED=105°,∠CAD=15°,∠B=30°,则∠1的度数为( ).A .50°B .60°C .40°D .20°7、如图,点D 、E 分别在ABC ∆的边AB 、AC 上,且DEF DEA ∆≅∆,若60BDF CEF ∠-∠=︒,则A ∠的度数为( )A .30︒B .32︒C .35︒D .40︒8、如图,N ,C ,A 三点在同一直线上,在ABC ∆中,::3:5:10A ABC ACB ∠∠∠=,又MNC ABC ∆≅∆,则:BCM BCN ∠∠等于( )A .1:2B .1:3C .2:3D .1:49、如图所示,锐角ABC ∆中,D ,E 分别是AB ,AC 边上的点,ADC ADC ∆≅∆',AEB AEB ∆≅∆',且////C D EB BC '',BE 、CD 交于点F ,若40BAC ∠=︒,则BFC ∠的大小是( )A .105︒B .100︒C .110︒D .115︒10、如图所示中的44⨯的正方形网格中,1234567∠+∠+∠+∠+∠+∠+∠=( )A .330B .315C .300D .245二、填空题11、如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知△AEH ≌△CEB ,EB =5,AE =7,则CH 的长是 .12、如图,已知ABC ADE ∆≅∆,60DAC ∠=︒,100BAE ∠=︒,BC 、DE 相交于点F ,则DFB ∠的度数是 度.13、一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x +2y ,若这两个三角形全等,则x +y 的值是 .14、如图,△ABC ≌△ADE ,且AE ∥BD ,∠BAD =130°,则∠BAC 度数的值为 .15、如图,已知AB =3,AC =2,点D 、E 分别为线段BA 、CA 延长线上的动点,如果△ABC 与△ADE 全等,则AD 为 .16、如图,若AB ,CD 相交于点E ,若△ABC ≌△ADE ,且点B 与点D 对应,点C 与点E 对应,∠BAC =28°,则∠B 的度数是 °.17、如图,△ABC ≌△ADE ,BC 的延长线经过点E ,交AD 于F ,∠AED =105°,∠CAD =10°,∠B =50°,则∠EAB = °.18、如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm /s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当△BPE 与△CQP 全等时,时间t 为 s .三、解答题19、如图,ABC ADE ∆≅∆,30B ∠=︒,20E ∠=︒,80BAE ∠=︒,求BAC ∠、DAC ∠的度数.20、如图,△ABC≌△ADE,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.21、如图,△ABC中,点E是AB边上一点,△BCE≌△ACE,ED∥AC,DF⊥AB.(1)判断CE与AB是否垂直,并说明理由;(2)证明:∠EDF=∠BDF.22、如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC∥DE?参考答案一、选择题1、有下列说法:①两个三角形全等,它们的形状一定相同;②两个三角形形状相同,它们一定是全等三角形;③两个三角形全等,它们的面积一定相等;④两个三角形面积相等,它们一定是全等三角形.其中正确的说法是()A.①②B.②③C.①③D.②④【答案】C【分析】根据全等三角形的定义以及性质一一判断即可.【详解】两个三角形全等,它们的形状一定相同,故①正确,两个三角形形状相同,它们不一定是全等三角形,故②错误,两个三角形全等,它们的面积一定相等,故③正确,两个三角形面积相等,它们不一定是全等三角形,故④错误,综上,正确的说法是①③,故选C.∠等于( )2、如图中的两个三角形全等,则αA.65︒B.60︒C.55︒D.50︒【答案】B【分析】由全等三角形的对应角相等可求得答案.【详解】解:∵两三角形全等,∴a、c两边的夹角相等,∴α=60°,故选:B.3、如图,ABC AEF∠=∠;=;③FAB EAB ∆≅∆,观察以下结论:①AC AF=;②EF BC④EAB FAC∠=∠,其中正确结论的个数是()A.1个B.2个C.3个D.4个解:ABC AEF=,故①②正确,∆≅∆,AC AF∴=,EF BC∠=∠,EAF BAF BAC BAFEAF BAC∴∠=∠,故④正∴∠-∠=∠-∠,EAB FAC确,不能确定AB平分EAF∠,故③错误.故选:C.4、如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.DB平分∠ADC B.△ABD和△CDB的周长相等C.AD∥BC,且AD=BC D.△ABD和△CDB的面积相等【答案】A【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【详解】解:A、∵△ABD≌△CDB,∴∠ABD=∠CDB,∠ADB≠∠CDB,DB不一定平分∠ADC,错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,正确;C、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,正确;D、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,正确;故选A.5、如图,OAC OBDAD=)∆≅∆.若12OB=,则(OC=,7A.5 B.6 C.7 D.8解:OAC OBD∆≅∆,==,12OA OB∴==,7OD OC∴=-=,5AD OD OA故选:A.6、如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,则∠1的度数为().A.50°B.60°C.40°D.20°【答案】B【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【详解】∵△ABC≌△ADE,AB=AD,AC=AE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°-∠ACB=180°-105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.故选:B.7、如图,点D、E分别在ABC∆≅∆,若∆的边AB、AC上,且DEF DEA∠-∠=︒,BDF CEF60则A∠的度数为()A.30︒B.32︒C.35︒D.40︒解:DEF DEA∴∠=∠,∆≅∆,F A∠=∠+∠,1CEF FBDF A1∴∠=∠+∠,∠=∠+∠,1CEF AA∴∠=︒,BDF A CEF A∴∠=∠-∠=︒,30A BDF CEF∴∠=∠+∠+∠,260故选:A.8、如图,N ,C ,A 三点在同一直线上,在ABC ∆中,::3:5:10A ABC ACB ∠∠∠=,又MNC ABC ∆≅∆,则:BCM BCN ∠∠等于( )A .1:2B .1:3C .2:3D .1:4【答案】D 【分析】根据已知和三角形的内角和,求出三角的度数,再根据各角之间的关系求出∠BCM 、∠BCN 的度数可求出结果.【详解】解:在△ABC 中,∠A :∠ABC :∠ACB=3:5:10设∠A=3x ,则∠ABC=5x ,∠ACB=10x, ∴3x+5x+10x=180, ∴x=10︒∴∠A=30°,∠ABC=50°,∠ACB=100°, ∴∠BCN=180°-100°=80° ∵△MNC ≌△ABC, ∴∠ACB=∠MCN=100°∴∠BCM=∠NCM-∠BCN=100°-80°=20° ∴∠BCM :∠BCN=20°:80°=1:4 故选D .9、如图所示,锐角ABC ∆中,D ,E 分别是AB ,AC 边上的点,ADC ADC ∆≅∆',AEB AEB ∆≅∆',且////C D EB BC '',BE 、CD 交于点F ,若40BAC ∠=︒,则BFC ∠的大小是( )A .105︒B .100︒C .110︒D .115︒解:延长C D '交AB '于H .AEB AEB ∆≅∆',ABE AB E ∴∠=∠',//C H EB '',AHC AB E ∴∠'=∠',ABE AHC ∴∠=∠',ADC ADC ∆≅∆',C ACD ∴∠'=∠,BFC DBF BDF ∠=∠+∠,BDF CAD ACD ∠=∠+∠,BFC AHC C DAC ∴∠=∠'+∠'+∠,40DAC DAC CAB ∠=∠'=∠'=︒,120C AH ∴∠'=︒,60C AHC ∴∠'+∠'=︒,6040100BFC ∴∠=︒+︒=︒,故选:B .10、如图所示中的44⨯的正方形网格中,1234567∠+∠+∠+∠+∠+∠+∠=()A .330B .315C .300D .245【答案】B【分析】根据正方形的轴对称得1790︒∠+∠=,2690︒∠+∠=,3590︒∠+∠=,544︒∠=.【详解】由图可知,1∠所在的三角形与7∠所在的三角形全等,∴1790︒∠+∠=.同理得,2690︒∠+∠=,3590︒∠+∠=.又544︒∠=,所以1234567∠+∠+∠+∠+∠+∠+∠=315.故选B.二、填空题11、如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知△AEH ≌△CEB ,EB =5,AE =7,则CH 的长是 .【分析】根据全等三角形的性质分别求出EC 、EH ,结合图形计算,得到答案.【解答】解:∵△AEH ≌△CEB ,∴EC =AE =7,EH =EB =5,∴CH =EC ﹣EH =7﹣5=2,故答案为:2.12、如图,已知ABC ADE ∆≅∆,60DAC ∠=︒,100BAE ∠=︒,BC 、DE 相交于点F ,则DFB ∠的度数是 度.解:ABC ADE ∆≅∆,B D ∴∠=∠,BAC DAE ∠=∠,1(10060)202BAD CAE ∴∠=∠=⨯︒-︒=︒, B D ∠=∠,BGA DGF ∠=∠,20DFB BAD ∴∠=∠=︒,故答案为:20.13、一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x +2y ,若这两个三角形全等,则x +y 的值是 .【分析】根据全等三角形的性质可得方程组⎩⎨⎧=+=-72523y x y x ,或⎩⎨⎧=-=+72352y x y x ,解方程组可得答案.【解答】解:由题意得⎩⎨⎧=+=-72523y x y x ,或⎩⎨⎧=-=+72352y x y x ,解得:⎩⎨⎧==23y x 或⎩⎨⎧==13y x ,x +y =5或x +y =4,故答案为:5或414、如图,△ABC ≌△ADE ,且AE ∥BD ,∠BAD =130°,则∠BAC 度数的值为 .【分析】根据全等三角形的性质,可以得到AB=AD,∠BAC=∠DAE,从而可以得到∠ABD=∠ADB,再根据AE∥BD,∠BAD=130°,即可得到∠DAE的度数,从而可以得到∠BAC的度数.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠ABD=∠ADB,∵∠BAD=130°,∴∠ABD=∠ADB=25°,∵AE∥BD,∴∠DAE=∠ADB,∴∠DAE=25°,∴∠BAC=25°,故答案为:25°.15、如图,已知AB=3,AC=2,点D、E分别为线段BA、CA延长线上的动点,如果△ABC与△ADE全等,则AD为.【分析】分△ABC≌△ADE和△ABC≌△ADE两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△ADE时,AD=AB=3,当△ABC≌△AED时,AD=AC=2,故答案为:2或3.16、如图,若AB,CD相交于点E,若△ABC≌△ADE,且点B与点D对应,点C与点E对应,∠BAC=28°,则∠B的度数是°.解:∵△ABC≌△ADE,且点B与点D对应,点C与点E对应,∴∠B=∠D,AC=AE,∠BAC=∠BAD,∴∠ACE=∠AEC,∵∠ACE+∠AEC+∠BAC=180°,∠BAC=28°,∴∠ACE=∠AEC=(180°﹣∠BAC)=76°,∠BAD=28°,∵∠D+∠CAD+∠ACE=180°,∴∠D=180°﹣∠CAD﹣∠ACE=48°,故答案为48.17、如图,△ABC≌△ADE,BC的延长线经过点E,交AD于F,∠AED=105°,∠CAD=10°,∠B=50°,则∠EAB=°.【分析】根据全等三角形的性质得出∠D=∠B=50°,∠EAD=∠CAB,根据三角形内角和定理求出∠EAD,代入∠EAB=∠EAD+∠DAC+∠CAB,即可求出答案.【解析】∵△ABC≌△ADE,∠B=50°,∴∠D=∠B=50°,∠EAD=∠CAB,∵∠AED=105°,∴∠EAD=180°﹣∠D﹣∠AED=25°,∴∠CAB =25°,∵∠CAD =10°,∴∠EAB =∠EAD +∠DAC +∠CAB =25°+10°+25°=60°18、如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm /s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当△BPE 与△CQP 全等时,时间t 为 s .【分析】由条件分两种情况,当△BPE ≌△CQP 时,则有BE =PC ,由条件可得到关于t 的方程,当△BPE ≌△CPQ ,则有BP =PC ,同样可得出t 的方程,可求出t 的值.【解答】解:∵AB =20cm ,AE =6cm ,BC =16cm ,∴BE =14cm ,BP =2tcm ,PC =(16﹣2t )cm ,当△BPE ≌△CQP 时,则有BE =PC ,即14=16﹣2t ,解得t =1,当△BPE ≌△CPQ 时,则有BP =PC ,即2t =16﹣2t ,解得t =4,故答案为:1或4.三、解答题19、如图,ABC ADE ∆≅∆,30B ∠=︒,20E ∠=︒,80BAE ∠=︒,求BAC ∠、DAC ∠的度数.解:ABC ADE ∆≅∆,20C E ∴∠=∠=︒,在ABC ∆中,1801803020130BAC B C ∠=︒-∠-∠=︒-︒-︒=︒;80BAE ∠=︒,1308050CAE BAC BAE ∴∠=∠-∠=︒-︒=︒,ABC ADE ∆≅∆,130DAE BAC ∴∠=∠=︒,13050180DAC DAE CAE ∴∠=∠+∠=︒+︒=︒.故,130BAC ∠=︒,180DAC ∠=︒.20、如图,△ABC ≌△ADE ,BC 的延长线分别交AD ,DE 于点F ,G ,且∠DAC =10°,∠B =∠D =25°,∠EAB =120°,求∠DFB 和∠DGB 的度数.【分析】先根据全等三角形的性质得∠BAC =∠DAE ,由于∠DAE +∠CAD +∠BAC =120°,则可计算出∠BAC =55°,所以∠BAF =∠BAC +∠CAD =65°,根据三角形外角性质可得∠DFB =∠BAF +∠B =90°,∠DGB =65°.【解答】解:∵△ABC ≌△ADE ,∴∠BAC =∠DAE ,∵∠EAB =120°,∴∠DAE +∠CAD +∠BAC =120°,∵∠CAD =10°,∴∠BAC=21(120°﹣10°)=55°, ∴∠BAF =∠BAC +∠CAD =65°,∴∠DFB =∠BAF +∠B =65°+25°=90°;∵∠DFB =∠D +∠DGB ,∴∠DGB =90°﹣25°=65°.21、如图,△ABC 中,点E 是AB 边上一点,△BCE ≌△ACE ,ED ∥AC ,DF ⊥AB .(1)判断CE 与AB 是否垂直,并说明理由;(2)证明:∠EDF =∠BDF .【分析】(1)根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质和平行线的判定和性质即可得到结论.【解答】解:(1)CE ⊥AB ,理由:∵△BCE ≌△ACE ,∴BEC =∠AEC= 21180°=90°,∴CE ⊥AB ; (2)∵ED ∥AC ,∴∠DEC =∠ACE ,∵△BCE ≌△ACE ,∴∠BCE =∠ACE ,∴∠CED =∠DCE ,∵DF ⊥AB ,∴DF ∥CE ,∴∠BDF =∠DCE ,∠EDF =∠CED ,∴∠EDF =∠BDF .22、如图所示,A ,C ,E 三点在同一直线上,且△ABC ≌△DAE .(1)求证:BC =DE +CE ;(2)当△ABC 满足什么条件时,BC ∥DE ?【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.【解答】(1)证明:∵△ABC≌△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵BC∥DE,∴∠BCE=∠E,又∵△ABC≌△DAE,∴∠ACB=∠E,∴∠ACB=∠BCE,又∵∠ACB+∠BCE=180°,∴∠ACB=90°,即当△ABC满足∠ACB为直角时,BC∥DE.。
苏科版八年级上册1-2全等三角形 培优训练(含答案)-doc
![苏科版八年级上册1-2全等三角形 培优训练(含答案)-doc](https://img.taocdn.com/s3/m/1443bb0e30126edb6f1aff00bed5b9f3f90f72d6.png)
苏科版数学新八年级暑假预习培优训练1.2全等三角形一、选择题1.如图,点D,E在的边BC上,≌,其中B,C为对应顶点,D,E为对应顶点,下列结论不一定成立的是A. B. C. D.2.如图,≌,DF和AC,FE和CB是对应边.若,,则等于A. B. C. D.3.如图,,若,,则AB 的长为A.6B.5C.4D.34.如图,≌,,则的度数为A. B. C. D.5.如图,≌,,,则对于结论:其中正确的是,,,,A. B. C. D.6.如图,已知≌,则下列结论:,.,.,.其中正确的是A. B. C. D.二、填空题7.如图,≌,且,,则______8.如图,中,,,,,点P、Q分别在边AC和射线AX上运动,若与全等,则AP的长是______.9.如图,≌,,,则______.10.如图,已知四边形ABCD中,厘米,厘米,厘米,,点E为AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为______时,能够使与全等.11.如图,已知≌,,且,,点A在DE上,则的度数为______.12.如图,中,厘米,厘米,点D为AB的中点.如果点P在线段BC上以v厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米秒,则当与全等时,v的值为__________.三、解答题13.如图,已知≌,点D在AC上,BC与DE交于点P,若,.若,,求的度数;求与的周长和.14.如图,已知≌,点E在AB上,DE与AC相交于点F,当,时,线段AE的长为______;已知,,求的度数;求的度数.15.如图,在中,,,,点F从点B出发,沿线段BC以的速度连续做往返运动,点E从点A出发沿线段AG以的速度运动至点、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与AC 交于点D,设点E的运动时间为秒.分别写出当和时线段BF的长度用含t的代数式表示.在点F从点C返回点B过程中,当时,求t的值.当t为何值时,≌?16.已知:≌连结BE,交AC于F,点H是CE上的点,且,连结DH交BE于求证:.17.如图,已知在中,,厘米,点D为AB上一点且厘米,点P在线段BC上以2厘米秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.用含t的式子表示PC的长为__;若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使与全等?苏科版数学新八年级暑假预习培优训练(教师卷)1.2全等三角形一、选择题1.如图,点D,E在的边BC上,≌,其中B,C为对应顶点,D,E为对应顶点,下列结论不一定成立的是A.B.C.D.答案:【答案】A解析:解:≌,,,B成立,不符合题意;,,C成立,不符合题意;,,D成立,不符合题意;AC不一定等于CD,A不成立,符合题意,故选:A.根据全等三角形的对应边相等、对应角相等判断即可.本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.2.如图,≌,DF和AC,FE和CB是对应边.若,,则等于A.B.C.D.答案:【答案】D解析:【分析】本题主要考查的是全等三角形的对应角相等,以及三角形的内角和定理.根据相等关系,把已知条件转到同一个三角形中然后利用三角形的内角和来求解是解决这类问题常用的方法.根据全等三角形的对应角相等、三角形的内角和是180度来解答.【解答】解:≌,DF和AC,FE和CB是对应边,,又,;,,;故选D.3.如图,,若,,则AB的长为A.6B.5C.4D.3答案:【答案】D解析:【分析】本题考查了全等三角形对应边相等的性质,熟记性质并求出是解题的关键.根据全等三角形的对应边相等可得,然后求出,代入数据计算即可得解.【解答】解:由,得,所以,因为,,所以.故选D.4.如图,≌,,则的度数为A.B.C.D.答案:【答案】A解析:解:≌,,,,故选:A.根据全等三角形的性质可得,再根据等式的性质可得.此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.5.如图,≌,,,则对于结论:其中正确的是,,,,A.B.C.D.答案:【答案】B解析:解:≌,,,,,,正确的是,故选:B.根据全等三角形的对应边相等,全等三角形的对应角相等可得,,,再利用等式的性质可得.此题主要考查了全等三角形的性质,关键是掌握性质定理.6.如图,已知≌,则下列结论:,.,.,.其中正确的是A. B. C. D.答案:【答案】D解析:解:≌,,,,,,,都正确,故选D.根据全等三角形的性质得出,,,,根据平行线的判定推出即可.本题考查了平行线性质和全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.二、填空题7.如图,≌,且,,则______答案:【答案】92解析:解:≌,,,故答案为:92.由全等三角形的性质可求得,在中,利用外角的性质可求得.本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.8.如图,中,,,,,点P、Q分别在边AC和射线AX上运动,若与全等,则AP的长是______.答案:【答案】4或8解析:解:与全等,或,故答案为:4或8.根据全等三角形的性质即可得到结论.本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9.如图,≌,,,则______.答案:【答案】10解析:解:,,,≌,.结合图形和已知条件求出AB的长度,再根据全等三角形对应边相等得.本题主要考查全等三角形对应边相等的性质,熟练掌握性质并灵活运用是解题的关键.10.如图,已知四边形ABCD中,厘米,厘米,厘米,,点E为AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为______时,能够使与全等.答案:【答案】3厘米秒或厘米秒解析:【分析】本题考查了全等三角形的性质和判定的应用,解决问题的关键是掌握全等三角形的对应边相等,属于中档题.分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【解答】解:设点P运动的时间为t秒,则,,,当,时,与全等,此时,,解得,,此时,点Q的运动速度为厘米秒;当,时,与全等,此时,,解得,点Q的运动速度为厘米秒;故答案为3厘米秒或厘米秒.11.如图,已知≌,,且,,点A在DE上,则的度数为______.答案:【答案】解析:解:≌,,,,,,,.,.故答案为:.先由≌,根据全等三角形的性质得出,,由,得出,等量代换得到,那么,于是由三角形内角和定理求出,于是.本题考查了全等三角形的性质,平行线的判定与性质,三角形内角和定理,求出是解题的关键.12.如图,中,厘米,厘米,点D为AB的中点.如果点P在线段BC上以v厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米秒,则当与全等时,v的值为__________.答案:【答案】或3解析:【分析】本题考查了全等三角形的性质分两种情况讨论:若≌,根据全等三角形的性质,则厘米,厘米,根据速度、路程、时间的关系即可求得;若≌,则厘米,,可得答案.【解答】解:中,厘米,点D为AB的中点,厘米,若≌,则需厘米,厘米,点Q的运动速度为3厘米秒,点Q的运动时间为:,厘米秒;若≌,则需厘米,,,解得:;的值为:或3,故答案为或3.三、解答题13.如图,已知≌,点D在AC上,BC与DE交于点P,若,.若,,求的度数;求与的周长和.答案:【答案】解:,,,≌,,,即的度数为;≌,,,和的周长和.解析:根据全等三角形的性质得到,计算即可;根据全等三角形的性质求出BE、DE,根据三角形的周长公式计算即可.本题考查的是全等三角形的性质、三角形内角和定理的应用,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.14.如图,已知≌,点E在AB上,DE与AC相交于点F,当,时,线段AE的长为______;已知,,求的度数;求的度数.答案:【答案】;≌,,,,;是的外角,,是的外角,.解析:【分析】根据全等三角形的性质得出,,即可求出答案;根据全等三角形的性质得出,,根据三角形内角和定理求出,即可得出答案;根据三角形外角性质求出,根据三角形外角性质求出即可.本题考查了全等三角形的性质,三角形内角和定理,三角形外角性质的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【解答】解:≌,,,,,,故答案为3;见答案;见答案.15.如图,在中,,,,点F从点B出发,沿线段BC以的速度连续做往返运动,点E从点A出发沿线段AG以的速度运动至点、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与AC 交于点D,设点E的运动时间为秒.分别写出当和时线段BF的长度用含t的代数式表示.在点F从点C返回点B过程中,当时,求t的值.当t为何值时,≌?答案:【答案】解:当时,,当时,;由题意得,,解得;当时,≌,则,即,解得,当时,≌,则,即,解得,则或4时,≌.解析:本题考查的是列代数式和全等三角形的性质的应用,根据题意列代数式、掌握全等三角形的对应边相等是解题的关键.根据点F从点B出发、点E从点A出发的速度、结合图形解答;根据题意列出方程,解方程即可;分点E从点A运动至点G、从点G返回两种情况,根据全等三角形的性质列式计算即可.16.已知:≌连结BE,交AC于F,点H是CE上的点,且,连结DH交BE于求证:.答案:【答案】证明:≌,,,在和中,≌,,在和中,,,.解析:根据全等三角形的性质得出,,进而证明三角形全等解答即可.此题考查全等三角形的性质,关键是根据全等三角形的性质和判定解答.17.如图,已知在中,,厘米,点D为AB上一点且厘米,点P在线段BC上以2厘米秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.用含t的式子表示PC的长为__;若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使与全等?答案:【答案】解:;,,又与全等,,≌,,,点P,点Q运动的时间秒,厘米秒.即点Q的运动速度是厘米秒时,能够使与全等.解析:【分析】此题考查了全等三角形的性质,主要运用了路程速度时间的公式,要求熟练运用全等三角形的判定和性质.先表示出BP,根据,可得出答案;根据全等三角形应满足的条件探求边之间的关系,再根据路程速度时间公式,先求得点P运动的时间,再求得点Q的运动速度.【解答】解:,则;故答案为;见答案.。
苏科版八年级上册1-2全等三角形同步习题(含解析)-doc
![苏科版八年级上册1-2全等三角形同步习题(含解析)-doc](https://img.taocdn.com/s3/m/7a45205f0a1c59eef8c75fbfc77da26925c596f4.png)
苏科版八年级上册1.2全等三角形同步习题一、单选题1.如图,两个三角形△ABC 与△BDE 全等,观察图形,判断在这两个三角形中边DE 的对应边为()A .BEB .ABC .CAD .BC2.下列说法正确的是()A .形状相同的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等D .所有的等腰三角形都全等3.如图,A ABC B C '''≌△△,其中36A ∠=︒,24C '∠=︒,则B ∠=()A .60°B .100°C .120°D .135°4.已知图中的两个三角形全等,则α∠的度数是()A .72°B .60°C .58°D .50°5.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是()A .△ABD 和△CDB 的面积相等B .△ABD 和△CDB 的周长相等C .∠A+∠ABD =∠C+∠CBD D .AD ∥BC ,且AD =BC6.如图:若ABE ACF V V ≌,且5,2==AB AE ,则EC 的长为()A .2B .2.5C .3D .57.如图,D 、E 分别是△ABC 的边AC 、BC 上的点,且△ADB ≌△EDB ≌△EDC ,则∠C 的度数为()A .15ºB .20ºC .25ºD .30º8.如图所示,图中的两个三角形能完全重合,下列写法正确的是()A .△ABE ≌△AFB B .△ABE ≌△ABFC .△ABE ≌△FBAD .△ABE ≌△FAB9.如图,ABC CDA ≅ ,BAC DCA ∠=∠,则BC 的对应边是()A .CDB .CAC .DAD .AB10.全等三角形又叫做合同三角形,平面内的合同三角形分为真合同三角形与镜面合同三角形,两个真合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻折,下列各组合同三角形中,是镜面合同三角形的是()A .B .C .D .二、填空题11.如图,ABC ADE ≅ ,如果5,7,6AB cm BC cm AC cm ===,那么DE 的长是______.12.如图,ABC 与BAD 全等,可表示为________,C ∠与D ∠是对应角,AC 与BD 是对应边,其余的对应角是________,其余的对应边是________.13.如图,△ABC ≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.14.如果△ABC 的三边长分别为7,5,3,△DEF 的三边长分别为2x ﹣1,3x ﹣2,3,若这两个三角形全等,则x=__________.15.如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),如果要使△ABD 与△ABC 全等,且点D 坐标在第四象限,那么点D 的坐标是__________;16.如图,ABC A B C ''△≌△,点B '在边AB 上,线段A B ''与AC 交于点D ,若40A ∠=︒,60B ∠=︒,则A CB '∠的度数为________.17.如图,将△ABC 沿BC 所在的直线平移到△A'B'C'的位置,则△ABC_______△A'B'C',图中∠A 与____,∠B 与____,∠ACB 与____是对应角.18.如图,ABC 中点A 的坐标为()0,1,点C 的坐标为()4,3如果要使以点A 、B 、D 为顶点的三角形与ABC 全等(非重合),那么点D 的坐标可以是__________.三、解答题19.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出对应边和其他对应角.20.已知:如图,△ABD与△CDB全等,∠ABD=∠CDB,写出其余的对应角和各对对应边.21.如图,在方格纸中,△PQR的三个顶点及A,B,C,D,E五个点都在小方格的顶点上,现以A,B,C,D,E中的三个顶点为顶点画三角形,(1)在图甲中画出一个三角形与△PQR 全等;(2)在图乙中画出一个三角形与△PQR 面积相等但不全等.22.如图,在'''ABC A B C ∆∆和中,已知'A A ∠=∠,'B B ∠=∠,''AB A B =,试把下面运用“叠合法”说明ABC ∆和'''A B C ∆全等的过程补充完整:说理过程:把ABC ∆放到'''A B C ∆上,使点A 与点'A 重合,因为,所以可以使,并使点C 和'C 在AB (''A B )同一侧,这时点A 与'A 重合,点B 与'B 重合,由于,因此,;由于,因此,;于是点C (射线AC 与BC 的交点)与点'C (射线''A C 与''BC 的交点)重合,这样.23.如图,点E ,H ,G ,N 在同一直线上,△EFG ≌△NMH ,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边.在△NMH 中,MH 是最长边.已知EF =2.1cm ,EH =1.1cm ,HN =3.3cm.(1)写出其他对应边及对应角;(2)求线段MN 及线段HG 的长度.24.如图,△ACF ≌△DBE ,其中点A 、B 、C 、D 在一条直线上.(1)若BE ⊥AD ,∠F=62°,求∠A 的大小.(2)若AD=9cm ,BC=5cm ,求AB 的长.25.如图,ABD △≌EBC ,2cm AB =,5cm =BC .(1)求DE 的长;(2)若A 、B 、C 在一条直线上,则DB 与AC 垂直吗?为什么?26.如图,已知ABC ≌DEF ,5cm AF .(1)求CD 的长.(2)AB 与DE 平行吗?为什么?参考答案1.B【解析】观察图形可知:BE >AB ,BE >BC ,∴BE 和AC 是对应边,显然BD 和BC 是对应边,∴DE 和AB 是对应边.故选B .2.C【解析】解:A 、形状相同的两个三角形全等,说法错误,本选项不符合题意;B 、面积相等的两个三角形全等,说法错误,本选项不符合题意;C 、完全重合的两个三角形全等,说法正确,本选项符合题意;D 、所有的等腰三角形都全等,说法错误,本选项不符合题意.故选:C .3.C【解析】解:∵A ABC B C '''≌△△,∴24C C '∠=∠=︒,∵36A ∠=︒,∴1803624120B ∠=︒-︒-︒=︒;故选:C .4.D【解析】∵两个三角形全等,∴∠α=50°.故选D .5.C【解析】A 、∵△ABD ≌△CDB ,∴△ABD 和△CDB 的面积相等,故本选项错误;B 、∵△ABD ≌△CDB ,∴△ABD 和△CDB 的周长相等,故本选项错误;C 、∵△ABD ≌△CDB ,∴∠A =∠C ,∠ABD =∠CDB ,∴∠A +∠ABD =∠C +∠CDB ≠∠C +∠CBD ,故本选项正确;D 、∵△ABD ≌△CDB ,∴AD =BC ,∠ADB =∠CBD ,∴AD ∥BC ,故本选项错误;故选:C .6.C【解析】解:∵ABE ACF V V ≌,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC ﹣AE=5﹣2=3,故选:C .7.D【解析】解:∵△ADB ≌△EDB ≌△EDC ,∴∠A=∠DEB=∠DEC ,∠ADB=∠BDE=∠EDC ,∵∠DEB+∠DEC=180°,∠ADB+∠BDE+EDC=180°,∴∠DEC=90°,∠EDC=60°,∴∠C=180°-∠DEC-∠EDC ,=180°-90°-60°=30°.故选:D .8.B【解析】解:要把对应顶点写在对应位置.∵B 和B 对应,A 和A 对应,E 和F 对应,故△ABE ≌△ABF .故选B .9.C【解析】∵ABC ≌△CDA ,∠BAC=∠DCA ,∴∠BAC 与∠DCA 是对应角,∴BC 与DA 是对应边(对应角对的边是对应边).故选C .10.B【解析】由题意知真正合同三角形和镜面合同三角形的特点,可判断要使选项B 的两个三角形重合必须将其中的一个翻转180°;而A 、C 、D 的全等三角形可以在平面内通过平移或旋转使它们重合.故选B .11.7cm【解析】ABC ADE ≅ ,BC DE ∴=,7BC cm = ,7DE cm ∴=,故答案为:7cm .12.ABC BAD ≌CAB ∠与DBA ∠,ABC ∠与BAD ∠AB 与BA ,BC 与AD【解析】解:ABC BAD ≌,C ∠与D ∠是对应角,AC 与BD 是对应边,∴其余的对应角是CAB ∠与DBA ∠,ABC ∠与BAD ∠;其余的对应边是AB 与BA ,BC 与AD .故答案为:ABC BAD ≌,CAB ∠与DBA ∠,ABC ∠与BAD ∠,AB 与BA ,BC 与AD13.120【解析】∵ABC A B C ''' ≌,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案为:120.14.3【解析】∵△ABC 与△DEF 全等,∴327x -=且215x -=,解得:3x =,或325x -=且217x -=,没有满足条件的x 的值.故答案为:3.15.(5,-1)【解析】解:∵△ABD 与△ABC 全等,∴C 、D 关于AB 对称,顶点C 与顶点D 相对应,即C 点和D 点到AB 的相对位置一样.∵由图可知,AB 平行于x 轴,∴D 点的横坐标与C 的横坐标一样,即D 点的横坐标为5.又∵点A 的坐标为(0,2),点C 的坐标为(5,5),点D 在第四象限,∴C 点到AB 的距离为3.∵C 、D 关于AB 轴对称,∴D 点到AB 的距离也为3,∴D 的纵坐标为-1.故D (5,-1).16.140︒【解析】ABC A B C ''' △≌△,40A A '∴∠=∠=︒,60A B C B ''∠=∠=︒,CB CB '=,180406080A CB ACB ''∴∠=∠=︒-︒-︒=︒,60BB C B '∠=∠=︒,180606060BCB '∴∠=︒-︒-︒=︒,140A CB A CB BCB ''''∴∠=∠+∠=︒.故答案为:140°.17.≌∠A'∠A'B'C'∠C'【解析】∵△ABC 沿BC 所在的直线平移到△A'B'C'的位置,∴△ABC ≌△A'B'C',∴∠A=∠A',∠B=∠A'B'C',∠ACB=∠C',∴∠A 与∠A',∠B 与∠A'B'C',∠ACB 与∠C'是对应角,故答案为≌、∠A'、∠A'B'C'、∠C'18.()41-,或()1,3-或()1,1--【解析】如图,∵ABD 与ABC 有一条公共边AB ,当点D 在边AB 上方时,坐标为()11,--当点D 在边AB 下方时,坐标为()41-,或()13-,故答案为:()41-,或()13-,或()11,--.19.AB 与AC ,AE 与AD ,BE 与CD 是对应边;∠D 与∠E 是对应角.【解析】∵△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,∴点A 的对应点是A ,点B 的对应点是C ,点E 的对应点是D ,∴∠E 与∠D 是对应角,AB 与AC ,BE 与CD ,AE 与AD 是对应边.20.∠A 与∠C ,∠ADB 与∠CBD 是对应角;BD 与DB ,AD 与CB ,AB 与CD 是对应边.【解析】解:△ABD 与△CDB 全等,∠ABD =∠CDB ,则∠A 与∠C ,∠ADB 与∠CBD 是对应角;BD 与DB ,AD 与CB ,AB 与CD 是对应边.21.解:(1)如图所示:(2)如图所示:【解析】(1)过A 作AE ∥PQ ,过E 作EB ∥PR ,再顺次连接A 、E 、B .(答案不唯一)(2)∵△PQR 面积是:12×QR×PQ=6,∴连接BA ,BA 长为3,再连接AD 、BD ,三角形的面积也是6,但是两个三角形不全等.(答案不唯一)22.见解析.【解析】说理过程:把ABC ∆放到'''A B C ∆上,使点A 与点'A 重合,因为''AB A B =,所以可以使AB 与''A B 重合,并使点C 和'C 在AB (''A B )同一侧,这时点A 与'A 重合,点B 与'B 重合,由于'A A ∠=∠,因此,射线AC 与射线''A C 叠合;由于B B '∠=∠,因此,射线BC 与射线''B C 叠合;于是点C (射线AC 与BC 的交点)与点'C (射线''A C 与''B C 的交点)重合,这样'''ABC A B C ∆∆与重合,即'''ABC A B C ∆∆与全等.23.(1)答案见解析;(2)MN =2.1cm ,HG =2.2cm.【解析】解:(1)对应边:EG 和NH ,EF 和NM ;对应角:∠E 和∠N ,∠EGF 和∠NHM.(2)由△EFG ≌△NMH ,得MN =EF =2.1cm ,EG =NH =3.3cm ,所以HG =EG -EH =2.2cm .24.(1)∠A =28°;(2)AB =2cm .【解析】(1)∵BE ⊥AD ,∴∠EBD=90°.∵△ACF ≌△DBE ,∴∠FCA =∠EBD=90°.∴∠F +∠A=90°∵∠F =62°,∴∠A =28°.(2)∵△ACF ≌△DBE ,∴CA =BD .∴CA -CB=BD -CB .即AB =CD .∵AD =9cm,BC=5cm ,∴AB +CD=9-5=4cm .∴AB =CD=2cm .25.详见解析【解析】(1)∵ABD △≌EBC ,∴5cm BD BC ==,2cm BE AB ==.∴3cm DE BD BE =-=.(2)DB AC⊥∵ABD △≌EBC ,∴ABD EBC ∠=∠.又A 、B 、C 在一条直线上,∴90EBC ∠=︒.∴DB AC ⊥.26.(1)5cm CD =;(2)AB 与DE 平行,见解析.【解析】(1)∵ABC ≌DEF ,∴AC DF =.∴AC FC DF FC -=-,即AF CD =.∵5cm AF =,∴5cm CD =.(2)∵ABC ≌DEF ,∴A D ∠=∠,∴AB DE ∥.。
苏科版八年级上册第一章《全等三角形》培优训练(有答案)
![苏科版八年级上册第一章《全等三角形》培优训练(有答案)](https://img.taocdn.com/s3/m/7bfef27dfad6195f312ba66f.png)
苏科版八上第一章《全等三角形》培优训练(一)班级:___________姓名:___________得分:___________一、选择题1.利用尺规作图,下列条件中不一定能作出唯一三角形的是A. 两角一边B. 三边C. 两边一角D. 一直角边一斜边2.如图所示,已知在△ABC中,AD是BC边上的中线,则下列结论中正确的是()A. AD>12(AB+AC) B. AD=12(AB+AC)C. AD<12(AB+AC) D. AD与AB+AC的大小关系不确定3.如图,在等边△ABC中,AD=BE=CF,D,E,F不是中点,连结AE,BF,CD,构成一些三角形.如果三个全等的三角形组成一组,那么图中全等的三角形的组数是()A. 3个B. 4个C. 5个D. 6个4.如图,在△ABC中,D是BC的中点,ED⊥BC,∠EAC+∠EAF=180°,EF⊥AB于点F.若AF=3,AC=10,则AB的长为()A. 16B. 15C. 14D. 135.如图,方格纸中△DEF的三个顶点分别在小正方形的顶点上,像这样的三个顶点都在格点上的三角形叫格点三角形,则图中与△DEF全等的格点三角形有()个.A. 9B. 10C. 11D. 126.如图,在△ABC中,∠ACB=90°,AC=BC,AD平分∠BAC,CE⊥AD交AB于E,BE=CF,BF交CE于P,连PD,下列结论:①AC=AE,②CD=BE,③PB=PF,④DP⊥BF,其中一定成立的是_________。
A. ①②B. ①②③C. ①②④D. ①②③④7.如图:Rt△ABC中,AC=BC,∠ACB=90°;D为BC边中点,CF⊥AD交AD于E,交AB于F;BE交AC于G;连DF,下列结论:①AC=AF.②CD+DF=AD.③∠ADC=∠BDF.④CE=BE.⑤∠BED=45°,其中正确的有()A. 5个B. 4个C. 3个D. 2个二、填空题8.如图,AE=AF,AB=AC,∠A=60°,∠B=24°,则∠BOC=______ 度.9.如图所示,∠E=∠F=90∘,∠B=∠C,AE=AF,结论:①EM=FN;②AF//EB;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有______ .10.如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则m+n_______b+c.11.如图,在四边形ABCD中,AD//BC,若∠DAB的角平分线AE交CD于E,连接BE,并且BE平分∠ABC,则以下命题①BC+AD=AB;②E为CD中点;③∠AEB=90°;④S△ABE=1 2S四边形ABCD;⑤BC=CE.正确的命题序号是__________.12.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC−CD−DA向终点A运动,设点P的运动时间为t秒,当t的值为________秒时,△ABP和△DCE全等.13.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是_____________14.如图,有一个Rt△ABC,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=__________.三、解答题15.如图,已知△ABC的两条高AD、BE交于点F,AE=BE.(1)若∠C=70°,求∠AFB的度数.(2)求证△AEF≌△BEC.(3)若AD平分∠BAC,求证AF=2BD.16.如图,在方格纸上画平行线.(1)过点C画CD⊥AB;(2)过点E画EF//AB.17.如图1,在Rt△ACB中,∠BAC=90°,AB=AC,分别过B、C两点作过点A的直线l的垂线,垂足为D、E;(1)如图1,当D、E两点在直线BC的同侧时,猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE= BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图3,∠BAC=90°,AB=16,AC=20.点P从B点出发沿B→A→C路径向终点C运动;点Q从C点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,各自到达终点时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?(直接写出答案)18.如图,已知AM//BN,AC平分∠MAB,BC平分∠NBA。
苏科版八年级数学上册1-2全等三角形同步练习(附答案)-doc
![苏科版八年级数学上册1-2全等三角形同步练习(附答案)-doc](https://img.taocdn.com/s3/m/c910719c0129bd64783e0912a216147916117e51.png)
苏科版八年级数学上册1.2全等三角形同步练习一、单选题1.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A .115°B .65°C .40°D .25°2.如图,A ,F ,C ,D 在一条直线上,△ABC ≌△DEF , AF =1,FD =3,则FC 的长是( )A .1B .1.5C .2D .2.53.如图所示,图中的两个三角形全等,则∠α等于( )A .B .C .D .50︒55︒60︒65︒4.如图,和全等,且,对应.若,,ABC A DEF A A D ∠=∠AC DE 6AC =5BC =4AB =,则的长为( ) DFA .4B .5C .6D .无法确定 5.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18cm 2,则EF 边上的高是( )A .6cmB .7cmC .8cmD .9cm6.如图,把△ABC 沿线段DE 折叠,使点B 落在点F 处;若,∠A =70°,AC DE ∥AB =AC ,则∠CEF 的度数为( )A .55°B .60°C .65°D .70°7.罗同学学习了全等三角形后,利用全等三角形绘制出了下面系列图案,第(1)个图案由2个全等三角形组成,第(2)个图案由4个全等三角形组成,第(3)个图案由7个全等三角形组成,第(4)个图案由12个全等三角形组成,则第(6)个图案中全等三角形的个数为( )A .25B .38C .70D .1358.如图,△ABC ≌△ADE ,如果AB =5cm ,BC =7cm ,AC =6cm ,那么DE 的长是( )A .6cmB .5cmC .7cmD .无法确定 9.如图,已知△ABC ≌△CDA ,下列结论:(1)AB=CD ,BC=DA ;(2)∠BAC=∠DCA ,∠ACB=∠CAD ;(3)AB//CD ,BC//DA .其中正确的结论有( ) 个.A .0B .1C .2D .310.如图,,BC 的延长线交DE 于点G ,若,,ABC ADE △≌△24B ∠=︒54CAB ∠=︒,( )16DAC ∠=︒DGB ∠=A .B .C .D .70︒65︒60︒80︒11.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是( )A .AD =BEB .BE ⊥AC C .△CFG 为等边三角形D .FG ∥BC12.如图,已知点B 、C 、D 在同一条直线上,ABC 和CDE 都是等边三角形.BE 交A A AC 于F ,AD 交CE 于G ,AD 交BE 于O 点.则下列结论中不一定正确的是( )A .AD=BEB .CO 平分∠BODC .BE ⊥ACD .FG ∥BC 二、填空题13.如图,已知,若∠BAC =60°,∠ACD =23°,则__________.ABC ADC △≌△D ∠=14.已知,,,,则______.ABC DEF ≅A A 5AB =6BC =4DF =EF =15.如图,中,点D 、点E 分别在边、上,连结、,若ABC A AB BC AE DE ,,且的周长比的周长大6.则ADE BDE A A ≌::2:3:4AC AB BC =ABC A AEC △AEC △的周长为______16.如图,Rt △ABE ≌Rt △ECD ,点B 、E 、C 在同一直线上,则结论:①AE =ED ;②AE ⊥DE ;③BC =AB +CD ;④AB DC .其中成立的是______.(填上序号即可) ∥17.如果△ABC ≌△DEF ,△DEF 周长是30 cm ,DE =9 cm ,EF =13 cm .∠E =∠B ,则AC =__________cm .三、解答题18.如图已知△ABC ≌△DEF ,点B 、E 、C 、F 在同一直线上,∠A =85°,∠B =60°,AB =8,EH =2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.19.如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为t s,且t≤5(1)PC=cm(用含t的代数式表示)v(2)如图2,当点P从点B开始运动时,点Q从点C出发,以cm/s的速度沿CD向点D运动,是否存在这样的v值,使得以A﹑B﹑P为顶点的三角形与以P﹑Q﹑C为顶点的三角形v全等?若存在,请求出的值;若不存在,请说明理由.20.如图,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度数.21.如图①,在△ABC中,AB=12cm,BC=20cm,过点C作射线CD∥AB,点M从点B出发,以3cm/s的速度沿BC匀速移动;点N从点C出发,以acm/s的速度沿CD匀速移动.点M、N同时出发,当点M到达点C时,点M、N同时停止移动.连接AM、MN,设移动时间为t(s).(1)点M、N从移动开始到停止,所用时间为s;(2)当△ABM与△MCN全等时,①若点M、N的移动速度相同,求t的值;②若点M、N的移动速度不同,求a的值;(3) 如图②,当点M、N开始移动时,点P同时从点A出发,以2cm/s的速度沿AB向点B匀速移动,到达点B后立刻以原速度沿BA返回.当点M到达点C时,点M、N、P同时停止移动.在移动的过程中,是否存在△PBM与△MCN全等的情形?若存在,求出t的值;若不存在,说明理由.参考答案1--10CCBAA DBCDA 11--12BC13.97°14.615.1216.①②③④17.818.解:(1)在中,,,∴ ABC A 85A ∠=︒60B ∠=︒18035ACB A B ∠=︒-∠-∠=︒∵ABC DEF △≌△∴,8A B D E ==35F ACB ∠=∠=︒∴6DH DE EH =-=故答案为,35︒6(2)∵ABC DEF △≌△∴B DEF ∠=∠∴//AB DE 19.解:(1)∵点P 的速度是2cm /s ,∴t s 后BP =2t cm ,∴PC=BC−BP =(10−2t )cm ,故答案为:(10﹣2t );(2)由题意得:,∠B=∠C =90°,cm CQ vt =∴只存在△ABP ≌△QCP 和△ABP ≌△PCQ 两种情况,当△ABP ≌△PCQ 时,∴AB=PC ,BP=CQ ,∴10−2t =6,2t=vt ,解得,t =2,v =2,当△ABP ≌△QCP 时,∴AB=QC ,BP=CP ,∴2t =10-2t , vt =6,解得,t =2.5,v =2.4,∴综上所述,当v =1或v =2.4时,△ABP 和△PCQ 全等.20.∴∠C=∠D ,∠OBC=∠OAD ,∵∠O=65º,∴∠OBC=180º−65º−∠C=115º−∠C ,在四边形AOBE 中,∠O+∠OBC+∠BEA+∠OAD=360º,∴65º+115º−∠C+135º+115º−∠C=360º,解得∠C=35º.21.(1)点M 的运动时间(秒), 203t =故答案为: 203(2)①∵点M 、N 的移动速度相同,∴CN =BM ,∵CD ∥AB ,∴∠NCM =∠B ,∴当CM =AB 时,△ABM 与△MCN 全等,则有12=20-3t ,解得t =. 83②∵点M 、N 的移动速度不同,∴BM ≠CN ,∴当CN =AB ,CM =BM 时,两个三角形全等,∴运动时间t =, 103∴a =.12181053=(3)若点M 、N 的移动速度不同,则CM =BM 时,两个三角形有可能全等,由(2)②可知此时t = 103若点M 、N 的移动速度相同,则BM =CN ,BP =CM ,∴20-3t =12-2t 或20-3t =2t -12,解得t =8(舍)或 325综上所述,满足条件的t 的值为或103325。
2022-2023学年八年级上册《全等三角形》培优练习题 含答案
![2022-2023学年八年级上册《全等三角形》培优练习题 含答案](https://img.taocdn.com/s3/m/8d55d00d58eef8c75fbfc77da26925c52cc59119.png)
独家原创《全等三角形》培优练习题一.选择题1.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F 2.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED=90°,AE=DE,则BE=()A.13 B.8 C.6 D.53.平面内,到三角形三边距离相等的点有()个.A.4 B.3 C.2 D.14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠DAC交CD于点F,点E为AB上一点,AE=AC,连接EF,若∠B=56°,则∠AEF=()A.34°B.46°C.56°D.60°5.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处6.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°7.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.48.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.609.如图,已知点E、F在线段BC上,BE=CF,DE=DF,AD⊥BC,垂足为点D,则图中共有全等三角形()对.A.2 B.3 C.4 D.510.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则下列结论:①DF+AE>AD;②DE=DF;③AD⊥EF;④S△ABD:S△ACD=AB:AC,其中正确结论的个数是()A.1个B.2个C.3 个D.4个二.填空题11.如图,∠1=∠2,BC=EC,请补充一个条件:能使用“AAS”方法判定△ABC≌△DEC.12.如图,OP平分∠MON,PA⊥ON,垂足为A,Q是射线OM 上的一个动点,若P、Q两点距离最小为8,则PA=.13.如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3=.14.如图,AB=AC,AD=AE,点B、D、E在一条直线上,∠BAC =∠DAE,∠1=35°,∠2=30°,则∠3=度.15.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和26,求△EDF的面积.16.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM ⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ 运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三.解答题17.已知:如图,∠BAC=∠DAC.请添加一个条件,使得△ABC≌△ADC,然后再加以证明.18.小明家门前有一条小河,村里准备在河面上架上一座桥,但河宽AB无法直接测量,爱动脑的小明想到了如下方法:在与AB垂直的岸边BF上取两点C、D使CD=,再引出BF的垂线DG,在DG上取一点E,并使A、C、E在一条直线上,这时测出线段的长度就是AB的长.(1)按小明的想法填写题目中的空格;(2)请完成推理过程.19.在△ABC中,D是AB的中点,E是CD的中点.过点C作CF ∥AB交AE的延长线于点F,连接BF.求证:DB=CF.20.如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD ⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若BF=3,求CE的长度.21.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.22.如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当AF+FD=AE时,求证:∠AFD=2∠AED.23.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC =16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动.同时,点Q在线段CA上由C点以a厘米/秒的速度向A点运动.设运动的时间为t秒.(1)直接写出:①BD=厘米;②BP=厘米;③CP=厘米;④CQ=厘米;(可用含t、a的代数式表示)(2)若以D,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,试求a、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动.设运动的时间为t秒;直接写出t=秒时点P与点Q第一次相遇.24.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).参考答案一.选择题1.解:A、添加AC=DF,满足SAS,可以判定两三角形全等;B、添加∠B=∠E,满足ASA,可以判定两三角形全等;C、添加BC=EF,不能判定这两个三角形全等;D、添加∠C=∠F,满足AAS,可以判定两三角形全等;故选:C.2.解:在△ABE和△ECD中∴△ABE≌△ECD(AAS).∴CE=AB=5.∴BE=BC﹣CE=13﹣5=8.故选:B.3.解:如图,△ABC外角平分线的交点共有3个,内角平分线的交点有1个,所以,到三边距离相等的点共有3+1=4个.故选A.4.解:∵AF平分∠DAC,∴∠CAF=∠EAF,又∵AC=AE,AF=AF,∴△ACF≌△AEF,∴∠AEF=∠ACF,又∵CD⊥AB,∠ACB=90°,∴∠B+∠BAC=90°=∠ACD+∠DAC,∴∠B=∠ACD,∴∠AEF=∠B=56°,故选:C.5.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.故选:A.6.解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.7.解:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选:D.8.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故选:B.9.解:∵BE=CF,DE=DF,AD⊥BC,∴AD垂直平分BC,AD垂直平分EF,∴AB=AC,AE=AF,又∵AD=AD,∴△ABD≌△ACD(SSS),△AED≌△AFD(SSS),∵BE=CF,DE=DF,∴BF=CE,又∵AB=AC,AE=AF,∴△ABF≌△ACE(SSS),∵AB=AC,AE=AF,BE=CF,∴△ABE≌△ACF(SSS),∴图形中共有全等三角形4对,故选:C.10.解:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴∠AED=∠AFD=90°,DE=DF,故②正确;在Rt△AED和Rt△AFD中,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,故③正确;∵在△AFD中,AF+DF>AD,又∵AE=AF,∴AE+DF>AD,故①正确;∵S△ABD=,S△ACD=,DE=DF,∴S△ABD:S△ACD=AB:AC,故④正确;即正确的个数是4个,故选:D.二.填空题11.解:可以添加∠A=∠D,理由是:∵∠1=∠2,∴∠ACB=∠DCE,∴在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).故答案是:∠A=∠D.12.解:过点P作PQ⊥OM,垂足为Q,则PQ长为P、Q两点最短距离,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PA=PQ=8,故答案为:8.13.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1﹣∠2+∠3=90°﹣45°=45°.故答案为:45°.14.解:如图所示:∵∠BAC=∠DAE,∠BAC=∠1+∠DAC,∠DAE=∠DAC+∠4,∴∠1=∠4,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ADB=∠AEC,又∵∠2+∠4+∠AEC=180°,∴∠AEC=115°,∴∠ADB=115°,又∠ADB+∠3=180°,∴∠3=65°,故答案为65.15.解:如图,作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,∴DF=DH,在Rt△FDE和Rt△HDG中,,∴Rt△FDE≌Rt△HDG(HL),同理,Rt△FDA≌Rt△HDA(HL),设△EDF的面积为x,由题意得,48﹣x=26+x,解得x=11,即△EDF的面积为11,故答案为:11.16.解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.三.解答题17.解:若添加的条件为:AB=AD,则在△ABC与△ADC中,,∴△ABC≌△ADC(SAS).若添加的条件为:∠B=∠D,则在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).若添加的条件为:∠ACB=∠ACD,则,∴△ABC≌△ADC(ASA).故答案为:AB=AD(或∠B=∠D或∠ACB=∠ACD)(答案不唯一).18.解:(1)在与AB垂直的岸边BF上取两点C、D使CD=CB,再引出BF的垂线DG,在DG上取一点E,并使A、C、E在一条直线上,这时测出线段DE的长度就是AB的长.故答案为:CB,DE;(2)由题意得DG⊥BF,∴∠CDE=∠CBA=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴DE=AB(全等三角形的对应边相等).19.证明:∵E为CD的中点,∴CE=DE,∵∠AED和∠CEF是对顶角,∴∠AED=∠CEF.∵CF∥AB,∴∠EDA=∠ECF.在△EDA和△ECF中,,∴△ADE≌△FCE(ASA),∴AD=FC,∵D为AB的中点,∴AD=BD.∴DB=CF.20.解:如图所示:(1)∵AD⊥BC,BE⊥AC,∴∠FDB=∠FEA=∠ADC=90°,又∵∠FDB+∠1+∠BFD=180°,∠FEA+∠2+AFE=180°,∠BFD=∠AFE,∴∠1=∠2,又∠ABC=45°,∴BD=AD,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA)∴BF=AC;(2)∵BF=3,∴AC=3,又∵BE⊥AC,∴CE=AE==.21.证明:(1)∵BE⊥CD,∴∠BEC=∠DEA=90°,又∵BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.22.证明:(1)过点D作DM⊥AB于M,DN⊥AC于N,如图1所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB和△DNF中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在AB上截取AG=AF,连接DG.如图2所示,∵AD平分∠BAC,∴∠DAF=∠DAG,在△ADF和△ADG中.,∴△ADF≌△ADG(SAS).∴∠AFD=∠AGD,FD=GD又∵AF+FD=AE,∴AG+GD=AE,又∵AE=AG+GE,∴FD=GD=GE,∴∠GDE=∠GED又∵∠AGD=∠GED+∠GDE=2∠GED.∴∠AFD=2∠AED23.解(1)由题意得:①BD=12,②BP=4t;③CP=16﹣4t,④CQ=at,故答案为:①12,②4t,③(16﹣4t),④at;(2)∵BP=4t,BD=12,CP=16﹣4t,CQ=at,∵∠B=∠C,∴分两种情况:①若△DBP≌△QCP,则,∴,∴,②若△DBP≌△PCQ,则,∴,∴;(3)①若a=4 时,P,Q不能相遇,②若a=6 时,由题意得:6t﹣4t=48,t=24,答:t=24秒时点P与点Q第一次相遇.故答案为:24.24.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.。
2020秋苏科版初中数学八年级上册1.2 全等三角形 同步练习及答案
![2020秋苏科版初中数学八年级上册1.2 全等三角形 同步练习及答案](https://img.taocdn.com/s3/m/c3c19534d4d8d15abf234e72.png)
初中数学苏科版八年级上册1.2 全等三角形同步练习一、单选题(共10题;共20分)1.下列说法:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长相等,面积不相等,其中正确的为()A. ①②③④B. ①②③C. ①②④D. ①③④2.已知下图中的两个三角形全等,则∠α度数是()A. 72°B. 60°C. 58°D. 50°3.已知△ABC≌△A1B1C1,A和A1对应,B和B1对应,∠A=70°,∠B1=50°,则∠C的度数为()A. 70°B. 50°C. 120°D. 60°4.如图,若△ABC ≌△ DEF, BC=6, EC=4,则CF的长为( )A. 1B. 2C. 2.5D. 35.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个6.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A. 2cmB. 3cmC. 4cmD. 5cm7.如图,≌,若,,则CD的长为( )A. 5B. 6C. 7D. 88.如图,若,,则的度数为()A. B. C. D.9.如图,点B,E,C,F在同一条直线上,△ABC≌△DEF,∠B=45°,∠F=65°,则∠COE的度数为()A. 40°B. 60°C. 70°D. 100°10.如图所示,△ABC ≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(共8题;共8分)11.如图,△ACE≌△DBF,如果∠E=∠F,DA=12,CB=2,那么线段AB的长是________.12.如图,△ABC≌△ADE,∠EAC=25°,则∠BAD=________。
苏科版数学八年级上册1-2全等三角形 同步练习(含答案)
![苏科版数学八年级上册1-2全等三角形 同步练习(含答案)](https://img.taocdn.com/s3/m/c8100792dc3383c4bb4cf7ec4afe04a1b071b0fe.png)
苏科版数学八年级上册1.2全等三角形同步练习1.2全等三角形一.选择题1.如图,已知△ABC≌△ADE,若∠E=70°,∠D=30°,则∠BAC的度数是()A.80°B.70°C.40°D.30°2.如图,△ABC≌△EDF,AE=20,FC=10,则AF的长是()A.5B.10C.15D.不能确定3.如图,△ABE≌△ACD,∠B=50°,∠AEC=120°,则∠DAC的度数是()A.120°B.70°C.60°D.50°4.如图:若△ABE≌△ACD,且AB=6,AE=2,则EC的长为()A.2B.3C.4D.65.如图,N,C,A三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2B.1:3C.2:3D.1:46.已知:△ABC≌△DEF,∠ABC=∠DEF,AB=3,EF=5,DF=6,则AC=()A.3B.5C.6D.3或5或6 7.图中的两个三角形全等,则∠1等于()A.45°B.62°C.73°D.135°8.全等三角形是()A.三个角对应相等的三角形B.周长相等的两个三角形C.面积相等的两个三角形D.三边对应相等的两个三角形9.如图,△ABC≌△ADE,∠ABC和∠ADE是对应角,则与∠DAC相等的角是()A.∠ACB B.∠CAE C.∠BAE D.∠BAC10.边长都为整数的△ABC≌△DEF,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为偶数,则DF的取值为()A.3B.4C.5D.3或4或5二.填空题11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE=cm.13.如图,点A、D、C、B在同一条直线上,△ADF≌△BCE,DF与CE交于点M,∠B =32°,∠F=28°,则∠DMC的度数为.14.如果△ABC≌△DEF,△DEF周长是30cm,DE=9cm,EF=13cm.∠E=∠B,则AC =cm.15.如图,△ABC≌△ADE,BC的延长线经过点E,交AD于F,∠AED=105°,∠CAD =10°,∠B=50°,则∠EAB=°.三.解答题16.如图所示,△ABC≌△AEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求△AEC各内角的度数.17.如图,△ABC≌△A′B′C′,∠C=25°,BC=6cm,AC=4cm,你能得出△A′B′C′中哪些角的大小、哪些边的长度?18.如图,△ADF≌△CBE,且点E、B、D、F在一条直线上.(1)试判断AD与BC的位置关系(不需要证明).(2)试判断BF与DE的数量关系,并证明你的结论.19.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.参考答案一.选择题1.解:∵△ABC≌△ADE,∴∠C=∠E=70°,∠B=∠D=30°,∴∠BAC=180°﹣70°﹣30°=80°,故选:A.2.解:∵△ABC≌△EDF,DF=BC,AB=ED,∴AC=EF,即AF+FC=CE+FC∴AF=CE∴AF=(AE﹣FC)÷2=(20﹣10)÷2=5.故选:A.3.解:∵∠AEC=120°,∴∠AEB=180°﹣120°=60°,∵△ABE≌△ACD,∴∠ADC=∠AEB=60°,∠C=∠B=50°,∴∠DAC=180°﹣50°﹣60°=70°,故选:B.4.解:∵△ABE≌△ACF,∴AC=AB=6,∴EC=AC﹣AE=4,故选:C.5.解:在△ABC中,∠A:∠ABC:∠ACB=3:5:10设∠A=3x°,则∠ABC=5x°,∠ACB=10x°3x+5x+10x=180解得x=10则∠A=30°,∠ABC=50°,∠ACB=100°∴∠BCN=180°﹣100°=80°又△MNC≌△ABC∴∠ACB=∠MCN=100°∴∠BCM=∠NCM﹣∠BCN=100°﹣80°=20°∴∠BCM:∠BCN=20°:80°=1:4故选:D.6.解:∵△ABC≌△DEF,∠ABC=∠DEF,∴AC=DF=6,故选:C.7.解:∵两个三角形全等,∴边长为a的对角是对应角,∴∠1=73°,故选:C.8.解:A,两个大小不等的等边三角形三个角均相等,但其不是全等三角形,故不正确;B,周长相等不一定各边对应相等,故不正确;C,面积相等的两个三角形不一定对应边相等,对应角相等,故不正确;D,符合全等三角形的SSS判定方法,故正确;故选:D.9.解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠EAC=∠DAE﹣∠EAC,即∠BAE=∠DAC.故选:C.10.解:∵△ABC≌△DEF,AB=2,BC=4,∴DE=AB=2,BC=EF=4,∴4﹣2<DF<4+2,2<DF<6,∵△DEF的周长为偶数,DE=2,EF=4,故选:B.二.填空题11.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.12.解:∵△ABD≌△ACE,∴AD=AE,AC=AB,又AD=8cm,AB=3cm,∵BE=AE﹣AB=8﹣3=5,∴BE=5cm.故填5.13.解:∵△ADF≌△BCE,∴∠A=∠B=32°,∴∠MDC=∠A+∠F=32°+28°=60°,同理可得:∠MCD=60°,∴∠DMC=180°﹣60°﹣60°=60°,故答案为:60°14.解:DF=30﹣DE﹣EF=8cm.∵△ABC≌△DEF,∠E=∠B,∴AC=DF=8cm,故答案为:815.解:∵△ABC≌△ADE,∠B=50°,∴∠D=∠B=50°,∠EAD=∠CAB,∵∠AED=105°,∴∠EAD=180°﹣∠D﹣∠AED=25°,∴∠CAB=25°,∵∠CAD=10°,∴∠EAB=∠EAD+∠DAC+∠CAB=25°+10°+25°=60°16.解:∵△ABC≌△AEC,∴∠B=∠E,∠BAC=∠EAC,∠ACB=∠ACE.∵∠B=30°,∠ACB=85°,∴∠E=30°,∠ACE=85°,∠ACB=180°﹣∠B﹣∠ACB=65°,∴∠EAC=65°.故∠E=30°,∠ACE=85°,∠EAC=65°.17.解:∵△ABC≌△A′B′C′,∴∠C′=∠C=25°,B′C′=BC=6cm,A′C′=4cm,故能得出△A′B′C′中∠C′的大小,边B′C′,A′C′长度.18.解(1)AD∥BC.理由如下:如图,∵△ADF≌△CBE,∴∠ADF=∠CBE,∴∠ADB=∠CBD,∴AD∥BC;(2)BF=DE.理由如下:如图,∵△ADF≌△CBE,∴BE=DF,∴BE+BD=DF+BD,即BF=DE.19.解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.。
苏科版八年级数学上册:1.2全等三角形-培优练习
![苏科版八年级数学上册:1.2全等三角形-培优练习](https://img.taocdn.com/s3/m/eee85041a26925c52cc5bf91.png)
初中数学试卷灿若寒星整理制作全等三角形练习A1.已知:AB=CD ,∠A=∠D ,求证:∠B=∠C2.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.3.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明): 4.AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CF5. 如图:AB=CD ,AE=DF ,CE=FB 。
求证:AF=DE 。
AB C DOE DCB AFDCBAFE DCBADC BAE6..已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是 DC 、BC 的中点,求证: AE =AF 。
7.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.8.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .9.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .10.已知:如图, AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC =AE .若AB = 5 ,求AD 的长?11.如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。
求证:MB=MC12.如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.DBCAFE654321E D CBAA CB DE FB C M AF E已知:求证:证明:13在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.14.如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
苏科版八年级数学上册:1.2全等三角形培优习题
![苏科版八年级数学上册:1.2全等三角形培优习题](https://img.taocdn.com/s3/m/bd458de3910ef12d2af9e7e0.png)
全等三角形培优习题1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .2.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B3.已知如图(1),△ABC 中,∠BAC =90°,AB =AC ,AE 是过A 的一条直线,且B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E ,求证:(1)BD =DE +CE ;(2)若直线AE 绕A 点旋转到(2)位置时(BD <CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请予证明.(3)若直线AE 绕A 点旋转到图(3)位置时,(BD >CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请直接写出结果,不须证明.(4)归纳(1)、(2)、(3),请用简捷语言表述BD 、DE 、CE 的关系.4.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且1()2A E AB A D =+,求∠ABC+∠ADC 的度数。
P ED CB A DC BA5.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.6.如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积7.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.8.如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.(1)求证:AD=CE,AD⊥CE(2)若△DBE绕点B旋转到△ABC外部,其他条件不变,则(1)中结论是否仍成立?请证明9.如图,已知ABC ∆为等边三角形,D.E.F 分别在边BC.CA.AB 上,且DEF ∆也是等边三角形.(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2)你所证明相等的线段,可以通过怎样的变化相互得到?10.已知:如图点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作正三角形△ACM 和△BCN ,连结AN 、BM ,分别交CM 、CN 于点P 、Q .求证:PQ ∥AB .11.如图,△ABC 中,E 、F 分别是AB 、AC 上的点.① AD 平分∠BAC ,② DE ⊥AB ,DF ⊥AC ,③ AD ⊥EF .以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①② ⇒ ③,①③ ⇒ ②,②③ ⇒ ①.(1)试判断上述三个命题是否正确(直接作答);(2)请证明你认为正确的命题.F E D C BA12、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)直接写出线段EG 与CG 的数量关系;(2)将图1中△BEF 绕B 点逆时针旋转45º,如图2所示,取DF 中点G ,连接EG ,CG .你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明. (3)将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?13、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90A E F ∠=,且EF 交正方形外角D C G ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证A M E E C F△≌△,所以A E E F =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如不正确,请说明理由.F B A D C EG 图1 F B A D C E G 图 2 F B AC E 图3 D。
苏科版数学八年级上册1-2 全等三角形 同步练习(含解析)-doc
![苏科版数学八年级上册1-2 全等三角形 同步练习(含解析)-doc](https://img.taocdn.com/s3/m/e458a1b9ed3a87c24028915f804d2b160b4e86c3.png)
苏科版数学八年级上册1.2全等三角形同步练习1.2全等三角形基础过关全练知识点1全等三角形的概念1.(2021江苏苏州相城期中)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.全等三角形是指周长相等的两个三角形D.全等三角形的面积,周长分别相等2.(教材P12变式题)如图所示,若两个三角形能完全重合,则下列写法正确的是()A.△ABE≌△DECB.△ABE≌△DCEC.△ABE≌△CDED.△ABE≌△EDC3.如图所示,△ABC与△BAD全等,可表示为,∠C与∠D是对应角,AC 与BD是对应边,其余的对应角是,其余的对应边是.知识点2全等三角形的性质4.(2022独家原创)已知△ABC≌△DEF,且AB=2,AC=3,则EF的长可能是()A.1B.2C.5D.65.(2022江苏东台期中)如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.知识点3全等变换6.(2022江苏丹阳期末)如图,△ABC向右平移2cm得到△DEF,如果△ABC的周长是16cm,那么四边形ABFD的周长是()A.16cmB.18cmC.20cmD.22cm7.如图,A,D,E三点在同一直线上,且△BAD≌△ACE.(1)求证:BD=DE+CE;(2)若BD∥CE,请你猜想△ABD的形状;(3)在(2)的条件下,可以通过平移、翻折、旋转中的哪些方法,使△ABD与△ACE完全重合?能力提升全练8.(2021黑龙江哈尔滨中考,7,)如图,△ABC≌△DEC,点A和点D是对应顶点,点B 和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°9.(2022江苏盐城亭湖月考,3,)如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°10.(2021辽宁鞍山中考,11,)如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为.11.(2020江苏南通月考,11,)已知有两个全等的三角形,若一个三角形三边的长分别为3、5、7,另一个三角形三边的长分别为3、3a-2b、a+2b,则a+b=. 12.(2022江苏宜兴月考,19,)如图,已知△ABC≌△DEF,且∠A=75°,∠B=35°,ED=10cm,求∠F的度数与AB的长.素养探究全练13.[逻辑推理](2021江苏南京秦淮期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为t s.图①图②(1)如图①,当t=时,△APC的面积等于△ABC面积的一半;(2)如图②,在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好使△APQ≌△DEF,求点Q的运动速度.答案全解全析基础过关全练1.D根据全等三角形的概念和性质逐个验证,可知选项D的说法符合题意.故选D.2.B观察题中图形可知,两个三角形的对应顶点分别是点A与点D,点B与点C,点E 与点E,所以写法正确的是△ABE≌△DCE.故选B.3.答案△ABC≌△BAD;∠ABC与∠BAD,∠BAC与∠ABD;BC与AD,AB与BA解析用全等符号表示三角形全等时,对应的顶点要写在对应的位置上,能够重合的角是对应角,能够重合的边是对应边.4.B∵△ABC≌△DEF,且AB=2,AC=3,∴DE=AB=2,DF=AC=3,∴3-2<EF<3+2,即1<EF<5,所以EF的长可能是2.故选B.5.解析(1)证明:∵△ABD≌△CFD,∴∠BAD=∠DCF.又∵∠AFE=∠CFD,∴∠AEF=∠CDF=90°,∴CE⊥AB.(2)∵△ABD≌△CFD,∴BD=DF,AD=CD=5.∵BC=7,CD=5,∴BD=BC-CD=2,∴AF=AD-DF=5-2=3.6.C∵△ABC向右平移2cm得到△DEF,∴BE=AD=CF=2cm,DF=AC.∵△ABC的周长是16cm,∴AB+AC+BC=16cm,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=16+2+2=20(cm).故选C.7.解析(1)证明:∵△BAD≌△ACE,∴AD=CE,BD=AE.∵A,D,E三点在同一直线上,∴AE=DE+AD,∴BD=DE+CE.(2)△ABD是直角三角形.理由如下:∵BD∥CE,∴∠BDE=∠E.∵△BAD≌△ACE,∴∠ADB=∠E,∴∠ADB=∠BDE.∵∠ADB+∠BDE=180°,∴∠ADB=90°,∴△ADB是直角三角形.(3)答案不唯一.如将△ADB先绕着点A逆时针旋转90°,再绕着AB的中点逆时针或者顺时针旋转180°,可使△ABD与△ACE完全重合.能力提升全练8.B由全等三角形的性质可知∠ACB=∠DCE,根据等量减等量差相等求得∠ACD=∠BCE =65°,由垂直可得∠CAF+∠ACD=90°,进而可知∠CAF=25°,故选B.9.D ∵△ABC≌△ADE,∴∠B=∠D=28°.又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°-28°-95°=57°.∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选D.10.答案3解析由平移的性质可知BE=CF.∵BF=8,EC=2,∴BE+CF=8-2=6,∴BE=CF=3,∴平移的距离为3.11.答案5或4解析根据题意得3t2=5,+2=7或3t2=7,+2=5,分别解这两个方程组可得=3,=2或=3,=1,∴a+b=5或4.12.解析∵∠A=75°,∠B=35°,∴∠ACB=180°-∠A-∠B=70°.∵△ABC≌△DEF,ED=10cm,∴∠F=∠ACB=70°,AB=DE=10cm.素养探究全练13.解析(1)①当点P 在BC 上时,如图1,若△APC 的面积等于△ABC 面积的一半,则12AC·CP=12·12AC·CB,∴CP=12BC=92cm,此时,点P移动的距离为AC+CP=12+92=332cm,∴移动的时间为332÷3=112s.图1图2②当点P在BA上时,过点C作CD⊥AB,交AB于D,如图2,若△APC的面积等于△ABC面积的一半,则12AP·CD=12·12AB·CD,∴AP=12AB,即点P为BA的中点,此时,点P移动的距离为AC+CB+BP=12+9+152=572cm,∴移动的时间为572÷3=192s.故答案为112或192.(2)∵△APQ≌△DEF,∴对应顶点为A与D,P与E,Q与F.①当点P在AC上时,如图3所示:图3此时,AP=4cm,AQ=5cm,∴点Q移动的速度为5÷(4÷3)=154cm/s.②当点P在AB上时,如图4所示:图4此时AP=4cm,AQ=5cm,即点P移动的距离为AC+CB+BP=9+12+15-4=32cm,点Q移动的距离为AB+BC+CQ=15+9+12-5=31cm,∴点Q移动的速度为31÷(32÷3)=9332cm/s.综上所述,点Q的运动速度为154cm/s或9332cm/s.。
专题1.2全等三角形-2022-2023学年八年级数学上册尖子生同步培优题典(解析版)【苏科版】
![专题1.2全等三角形-2022-2023学年八年级数学上册尖子生同步培优题典(解析版)【苏科版】](https://img.taocdn.com/s3/m/0a8862725e0e7cd184254b35eefdc8d376ee14af.png)
2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】专题1.2全等三角形【名师点睛】1.全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质:(1)性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等补充:①全等三角形的对应边上的高、中线以及对应角的平分线相等②全等三角形的周长相等,面积相等③平移、翻折、旋转前后的图形全等(2)关于全等三角形的性质应注意①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.【典例剖析】【例1】(2021·江苏无锡·八年级阶段练习)如图,已知△ABC≌△DEF,且∠A=75︒,∠B=35︒,ED=10cm,求∠F的度数与AB的长.【答案】∠F=70°,AB= 10cm【解析】【分析】根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出DE= AB,∠F=∠ACB,即可得出答案.【详解】解:∵∠A=75°,∠B=35°,∴∠ACB=180°-∠A-∠B=70°,∵△ABC≌△DEF,DE=10cm,∴∠F=∠ACB=70°,AB=DE=10cm,【点睛】本题考查了全等三角形的性质,三角形的内角和定理,解此题的关键是掌握:全等三角形的对应边相等,对应角相等.【变式1.1】(2021·江苏·淮安市洪泽实验中学八年级期中)如图已知△ABC≌△DEF,点B、E、C、F在同一直线上,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.【答案】(1)35°,6;(2)见解析【解析】【分析】(1)根据三角形内角和求得∠ACB,再根据全等三角形的性质得到∠F=∠ACB,DE=AB=8,即可求解;(2)由全等三角形的性质可得∠B=∠DEF,即可求解.【详解】解:(1)在△ABC中,∠A=85°,∠B=60°,∴∠ACB=180°−∠A−∠B=35°∵△ABC≌△DEF∴AB=DE=8,∠F=∠ACB=35°∴DH=DE−EH=6故答案为35°,6(2)∵△ABC≌△DEF∴∠B=∠DEF∴AB//DE【点睛】此题考查了全等三角形的性质,涉及了三角形内角和的性质,平行线的判定,解题的关键是掌握相关基本性质.【变式1.2】(2021·江苏盐城·八年级期中)如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证∶CE⊥AB(2)已知BC=7,AD=5,求AF的长.【答案】(1)见解析;(2)3【解析】【分析】(1)由△ABD≌△CFD,得出∠BAD=∠DCF,再利用三角形内角和即可得出答案;(2)根据全等三角形的性质得出AD=DC,即可得出BD=DF,进而解决问题.【详解】(1)证明:∵AD⊥BC∴∠CDF=90°∵△ABD≌△CFD,∴∠BAD=∠DCF,又∵∠AFE=∠CFD,∴∠AEF=∠CDF=90°,∴CE⊥AB;(2)解:∵△ABD≌△CFD,∴BD=DF,AD=DC,∵BC=7,AD=5,∴BD=BC−CD=2,∴AF=AD−DF=5−2=3.【点睛】此题考查了全等三角形的性质,熟练应用全等三角形的性质是解决问题的关键.【满分训练】一.选择题(共10小题)1.(2021秋•泗阳县期末)若△ABC≌△DEF,且∠A=50°,∠B=60°,则∠F的度数为( )A.50°B.60°C.70°D.80°【分析】根据全等三角形的性质得出∠D=∠A=50°,∠E=∠B=60°,再根据三角形内角和定理求出∠F即可.【解析】∵△ABC≌△DEF,∠A=50°,∠B=60°,∴∠D=∠A=50°,∠E=∠B=60°,∴∠F=180°﹣∠D﹣∠E=180°﹣50°﹣60°=70°,故选:C.2.(2021秋•姜堰区期末)若△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则DF的长为( )A.3B.4C.5D.6【分析】根据全等三角形的性质分别求出DE、EF,根据三角形的周长公式计算,得到答案.【解析】∵△ABC≌△DEF,AB=3,BC=4,∴DE=AB=3,EF=BC=4,∵△DEF的周长为12,∴DF=12﹣DE﹣EF=12﹣3﹣4=5,故选:C.3.(2021秋•滨海县期末)已知△ABC≌△DEF,AB=2,AC=3,若△DEF周长为偶数,则EF的取值为( )A.2或3或4B.4C.3D.2【分析】因为两个全等的三角形对应边相等,所以求EF的长就是求BC的长.【解析】∵AB=2,AC=3,∴3﹣2<BC<3+2,∴1<BC<5.若周长为偶数,BC也要取奇数所以为3.∵△ABC≌△DEF,∴AB=EF,∴EF的长也是3.故选:C.4.(2021秋•邗江区期末)如图,△ABC≌△ADE,∠DAC=90°,∠BAE=140°,BC、DE交于点F,则∠DAB=( )A.25°B.20°C.15°D.30°【分析】根据全等三角形的性质得到∠BAC=∠DAE,进而证明∠BAD=∠CAE,结合图形计算即可.【解析】∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∵∠DAC=90°,∠BAE=140°,∴∠BAD+∠CAE=50°,∴∠BAD=∠CAE=25°,故选:A.5.(2021秋•凉州区期末)如图,△ABC≌△A'B'C',其中∠A=37°,∠C'=23°,则∠B=( )A.60°B.100°C.120°D.135°【分析】根据全等三角形的性质得出∠C=∠C′=23°,再根据三角形的内角和定理求出即可.【解析】∵△ABC≌△A'B'C',∠C'=23°,∴∠C=∠C′=23°,∵∠A=37°,∴∠B=180°﹣∠A﹣∠C=180°﹣37°﹣23°=120°,故选:C.6.(2021秋•高邑县期末)已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°【分析】根据三角形内角和定理求出∠2,根据全等三角形的性质解答即可.【解析】由三角形内角和定理得,∠2=180°﹣60°﹣73°=47°,∵两个三角形全等,∴∠1=∠2=47°,故选:A.7.(2021秋•靖西市期末)如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠E的度数为( )A.80°B.35°C.70°D.30°【分析】根据全等三角形的对应角相等解答即可.【解析】∵△ABC≌△ADE,∠C=30°,∴∠E=∠C=30°,故选:D.8.(2021秋•仪征市期末)若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为( )A.30B.27C.35D.40【分析】直接利用全等三角形的性质得出对应边相等进而得出答案.【解析】∵△ABC≌△DEF,∴BC=EF=30,故选:A.9.(2021秋•亭湖区期末)如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是( )A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.【解析】∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选:A.10.(2022•路南区二模)三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是( )A.90°B.120°C.135°D.180°【分析】直接利用平角的定义结合三角形内角和定理以及全等三角形的性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,进而得出答案.【解析】如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.故选:D.二.填空题(共6小题)11.(2021秋•靖江市期末)如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=25°,则∠EAC 的度数为 55° .【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE﹣∠DAC代入数据进行计算即可得解.【解析】∵∠B=70°,∠C=30°,∴∠BAC=180°﹣70°﹣30°=80°,∵△ABC≌△ADE,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE﹣∠DAC=80°﹣25°=55°.故答案为:55°.12.(2021秋•沛县期末)如图,已知△ABC≌△DFE,∠B=80°,∠ACB=30°,则∠D= 70 °.【分析】根据三角形内角和定理求出∠A,根据全等三角形的性质解答即可.【解析】∵∠B=80°,∠ACB=30°,∴∠A=180°﹣80°﹣30°=70°,∵△ABC≌△DFE,∴∠D=∠A=70°,故答案为:70.13.(2021秋•黄石期末)如图,点B、E、D、C在同一直线上,△ABE≌△ACD,DE=4,BC=10,则CE = 3 .【分析】根据全等三角形的性质得出BE=CD,求出BD=CE,再求出答案即可.【解析】∵△ABE≌△ACD,∴BE=CD,∴BE﹣DE=CD﹣DE,即BD=CE,∵DE=4,BC=10,∴CE=BD=(10﹣4)=3,故答案为:3.14.(2021秋•亭湖区期末)如图,已知△ABC≌△ADE,∠B=25°,∠E=98°,∠EAB=20°,则∠BAD 的度数为 77° .【分析】根据全等三角形的性质得出∠D=∠B=25°,根据三角形的内角和定理求出∠EAD,再求出答案即可.【解析】∵△ABC≌△ADE,∠B=25°,∴∠D=∠B=25°,∵∠E=98°,∴∠EAD=180°﹣∠D﹣∠E=57°,∵∠EAB=20°,∴∠BAD=∠BAE+∠EAD=20°+57°=77°,故答案为:77°.15.(2021秋•北海期末)如图,已知△ABC≌△DEF且∠A=45°,∠E=60°,那么∠F= 75 度.【分析】根据全等三角形的对应角相等求出∠D,根据三角形内角和定理计算,得到答案.【解析】∵△ABC≌△DEF,∠A=45°,∴∠D=∠A=45°,∴∠F=180°﹣∠E﹣∠D=180°﹣45°﹣60°=75°,故答案为:75.16.(2021秋•淮安区期末)如图,△ABC≌△DEF,BE=5,BF=1,则CF= 3 .【分析】根据题意出去EF,再根据全等三角形的对应边相等解答即可.【解析】∵BE=5,BF=1,∴EF=BE﹣BF=4,∵△ABC≌△DEF,∴BC=EF=3,∴CF=BC﹣BF=3,故答案为:3.三.解答题(共6小题)17.(2021秋•宜兴市月考)如图,已知△ABC≌△DEF,且∠A=75°,∠B=35°,ED=10cm,求∠F的度数与AB的长.【分析】根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出AB=DE,∠F=∠ACB,即可得出答案.【解析】∵∠A=75°,∠B=35°,∴∠ACB=180°﹣∠A﹣∠B=70°,∵△ABC≌△DEF,ED=10cm,∴∠F=∠ACB=70°,DE=AB=10(cm).18.(2021秋•大化县期中)如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.【分析】(1)由△ABD≌△CFD,得出∠BAD=∠DCF,再利用三角形内角和即可得出答案;(2)根据全等三角形的性质得出AD=DC,即可得出BD=DF,进而解决问题.【解答】(1)证明:∵△ABD≌△CFD,∴∠BAD=∠DCF,又∵∠AFE=∠CFD,∴∠AEF=∠CDF=90°,∴CE⊥AB;(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.19.(2021秋•灌云县月考)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC∥DE?【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.【解答】(1)证明:∵△ABC≌△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵BC∥DE,∴∠BCE=∠E,又∵△ABC≌△DAE,∴∠ACB=∠E,∴∠ACB=∠BCE,又∵∠ACB+∠BCE=180°,∴∠ACB=90°,即当△ABC满足∠ACB为直角时,BC∥DE.20.(2021秋•宜兴市校级月考)如图,已知△ABC≌△DEF,∠A=90°,∠B=60°,AB=8,EH=3.求∠F的度数与DH的长.【分析】根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出AB=DE,∠F=∠ACB,即可得出答案.【解析】∵∠A=90°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=30°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=30°,DE=AB=8,∵EH=3,∴DH=8﹣3=5.21.(2021春•郓城县期末)如图,线段AD、BE相交于点C,且△ABC≌△DEC,点M、N分别为线段AC、CD的中点.求证:(1)ME=BN;(2)ME∥BN.【分析】(1)连接BM、EN,根据全等三角形的性质、平行四边形的判定得到四边形MBNE是平行四边形,根据平行四边形的性质证明;(2)根据平行四边形的性质证明.【解答】证明:(1)连接BM、EN,∵△ABC≌△DEC,∴AC=DC,BC=EC,∵点M、N分别为线段AC、CD的中点,∴CM=CN,∴四边形MBNE是平行四边形,∴ME=BN;(2)∵四边形MBNE是平行四边形,∴ME∥BN.22.(2021春•市中区期末)如图,△ABD≌△EBC,AB=3cm,BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?【分析】(1)根据全等三角形对应边相等可得BD=BC=6cm,BE=AB=3cm,然后根据DE=BD﹣BE 代入数据进行计算即可得解;(2)DB⊥AC.根据全等三角形对应角相等可得∠ABD=∠EBC,又A、B、C在一条直线上,根据平角的定义得出∠ABD+∠EBC=180°,所以∠ABD=∠EBC=90°,由垂直的定义即可得到DB⊥AC.【解析】(1)∵△ABD≌△EBC,∴BD=BC=6cm,BE=AB=3cm,∴DE=BD﹣BE=3cm;(2)DB⊥AC.理由如下:∵△ABD≌△EBC,∴∠ABD=∠EBC,又∵∠ABD+∠EBC=180°,∴∠ABD=∠EBC=90°,∴DB⊥AC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
全等三角形培优习题
1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .
2.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B
3.已知如图(1),△ABC 中,∠BAC =90°,AB =AC ,AE 是过A 的一条直线,且B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E ,求证:(1)BD =DE +CE ;(2)若直线AE 绕A 点旋转到(2)位置时(BD <CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请予证明.(3)若直线AE 绕A 点旋转到图(3)位置时,(BD >CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请直接写出结果,不须证明.(4)归纳(1)、(2)、(3),请用简捷语言表述BD 、DE 、CE 的关系.
P E
D
C
B A D
C
B
A
4.如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且
1
()
2
A E A
B A D
=+,求∠ABC+∠ADC的
度数。
5.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关
系,并证明你的结论.
6.如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积
7.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.
8.如图,已知∠ABC=∠DBE=90°,DB=BE ,AB=BC .(1)求证:AD=CE ,AD ⊥CE
(2)若△DBE 绕点B 旋转到△ABC 外部,其他条件不变,则(1)中结论是否仍成立?请证明
9.如图,已知ABC ∆为等边三角形,D.E.F 分别在边BC.CA.AB 上,且DEF ∆也是等边三角形.(1)除已
知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2)你所证明相等的线段,可
以通过怎样的变化相互得到?
10.已知:如图点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作正三角形△ACM 和△BCN ,连结AN 、BM ,分别交CM 、CN 于点P 、Q .求证:PQ ∥AB .
F E
D C
B A
11.如图,△ABC 中,E 、F 分别是AB 、AC 上的点.① AD 平分∠BAC ,② DE ⊥AB ,DF ⊥AC ,③ AD ⊥EF .以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①② ⇒ ③,①③ ⇒ ②,②③ ⇒ ①. (1)试判断上述三个命题是否正确(直接作答); (2)请证明你认为正确的命题.
12、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)直接写出线段EG 与CG 的数量关系;(2)将图1中△BEF 绕B 点逆时针旋转45º,如图2所示,取DF 中点G ,连接EG ,CG .你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明. (3)将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?
A D C E
G 图1
F A D G
图2 F
A C E 图3 D
13、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90A E F ∠=o
,且
EF 交正方形外角D C G ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取
AB 的中点M ,连接ME ,则AM =EC ,易证A M E E C F △≌△,所以A E E F
=.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如不正确,请说明理由.。