开关电源环路设计过程
开关电源环路设计与计算_ON-Bright
On-Bright confidential
23
零1234....极左右左右负系在系所位点半半半半反统f统有增l平平平平馈的y稳负益对b面面面面系环a定载带c环极极零零统路k性和宽O系路点点点点D补n产所为C统-::::固偿B生有1稳中/r有必i影电6g,-定h增不增增1须响压18为t/性益稳益益0使。输1C度了0衰定增增系o入f的相减sn减,大大统的(f移小开影id,导,,满情,右关e响引致引引足形n半频起系起起系稳t。及i平a率-统9-统定l909面)环t0震度0的性o度度零路荡相剩条T相相点e移下件n带移移影p的,响a宽零而o,选极且可点要择取将考单标对虑准
On-B开riOg关hn-tB电Erigleh源cttCr环oonnif路icdse设(nStiha计al tno与gThea计nip) aC算oo. Ltd
On-Bright confidential
1
开 开 开 一 讨关关关个论电电电基源源源于OO的环简nB-环路介B2r2i路分g6h3补析t的C偿(1以o2(内nW以反fid电容反激e源n激变ti环a变换l 路t换器o设器为Te计为例np实例)a例o)
18
DCvMvFB(ΛΛs(模s)O) ≈n式V-VBF0Br下ig⋅ 11h++PtRRoCoo12wCCooon11eSsfridSetnat由平对Figalye于面于lbtaoP零Cc小owwCkTw点zp系eM==e信(n1r统而RR/pSoHR2C更言t号aoao1PC1go容,Zoe1传)易D,无C补所函右M偿以半!相
On-Bright confidential
19
电流模式与电压模式的直观a理o 解 电压模式是占空比直接调制,变压器电感是开环状态,在外围电压回路 np 中引入一个DC极点(s=0) Te 电流模式是占空比间接调制,变压器电感是闭环状态。 l to 反激变换器类似于buck-boost架构,以buck-boost为例分析。 tia 无论是电压还是电流模式,CCM中RHZ始终存在,且频率相同。
开关电源环路设计与实例详解
$ "
2@)
!
第六章
反馈环路的稳定
的时刻开始的, 直到三角波结束时刻 ! ! 为止。对于这类芯片, "#$ 芯片输出晶体管导通 (驱动信号由芯片晶体管射极输出) 被触发导通, 这将使 " &’ 增大 时, %"% 型功率晶体管 时, 功率晶体管的导通时间增加。这时, 系统变成正反馈而不是负反馈。
图()*
一、 电路稳定的增益准则
电路稳定的第一个准则是: 在开环增益为 # 的频率 (通常称为剪切频率、 交越频率或 截止频率) 处, 系统所有环节的总开环相位延迟必须小于 /!01 (译者注: 作者表述和我们习 惯表述不一致。在 $*2%图中, 我们一般习惯讨论, 开环传递函数的相位裕量和幅值裕量是 。在剪 指开环传递函数幅频特性 (增益特性) 和相频特性, 不包括负反馈引起的 #301延迟) 切频率处, 总开环相位延迟小于 /!01 (在此频率处, 总开环增益为 #) 的角度, 称为相位裕 量。 为了使系统中各器件工作在最恶劣的情况下时, 仍然保持稳定, 通常的设计准则是, 使系统至少有 /41 5 641的相位裕量。
图 # $ % ( &) 开关整流 ’( 滤波器的幅频特性; ( )) 开关整流 ’( 滤波器的相频特性
图#$( 和图 # $ ( 所示是对应于不同输出阻抗 ! * 值, % &) % )) ’* (* 滤波器的幅频特性
# !
%+#
"
第六章
反馈环路的稳定
和相频特性。图中的曲线是对应于不同比率 ! ! " " # #( 和 !% " & $ # $$ %$ ) !! $ #$ " ! # %
反激式开关电源(flyback)环路设计基础
反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。
它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。
本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。
一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。
其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。
1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。
在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。
通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。
二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。
2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。
开关电源环路设计与计算
Ro
+ ss
LCo1 n2 D'2
)
right 系统右半平面零点: On-B 负载电容ESR 零点:
wrz
=
n2Ro (1− D)2 Lm D
wz
=
1 Ro1C
On-Bright confidential
11
右半平面零点(RHZ)的直观理ao解 RHZ在boost, buck-boost, flyback(占空比由输入输出电压和匝比决 np 定)CCM中都存在,而DCM中没有RHZ。 Te 负载突然增加→输出电压下降→EA+PWM 反应→占空比增大(Wrong to Way)→反激时间减小→输出电流减小(通过输出diode)→输出电压下降更多 l (临时)。此即典型RHZ响应特性。 On-Bright Confidentia 在DCM中,占空比增大导致输出电流增大,故不存在此RHZ
fiden 控制模式 n ¾ 电压模式 o ¾ 电流模式
ht C 开关电源系统可分为两大块 -Brig ¾ 负反馈回路(feedback loop) On ¾ 保护功能(OVP, OCP, OTP ……)
On-Bright confidenቤተ መጻሕፍቲ ባይዱial
4
开(OV关no-Bl电traigg源het MC系oon统dfeid基PeWn本tiaMl组tSo成yTsetn部epma分)o
On-Bright confidential
24
环路的补偿考虑
出况一环环通裕者位统对跨也些路路常量高增有(这接可高需补补(频益1G8样,以频要偿偿的带0ai-等n或适极补的网。宽9O0效m者当点偿目络内=na9为r-输引或以的放只0gB°环irn出入者获是在有ig)相路,到一零得:E一h位带A因t地些点足在个C裕宽(为e。零。够带极or量内环rn在点的宽点o)只rf路i环或相内(,da一有m存e路者位等pn个或一在l的极裕效itf导者个i很iae其点量为rl致一极多,t他以(单oP9个点例零h地抵极0Ta°极)如极es方消点.en相点.T点m,环系.pL移和,a4a根路统r3go,一1i据带.低)n个的)实宽从环频零和输际外而路的极增入情的系单或点益输
开关电源环路补偿设计
开关电源环路补偿设计开关电源环路补偿设计在开关电源设计中,环路补偿是至关重要的一步。
环路补偿的正确设计可以提高电源的稳定性和效率,从而提供更为可靠的电源输出。
本文将针对开关电源的环路补偿设计,从三个方面进行阐述。
一、开关电源环路补偿的基本原理开关电源的环路补偿,是指将部分输出信号回馈到反馈端口,通过正反馈作用来改善系统的动态性能。
补偿的目的,是使电源输出稳定,对负载的响应性更好。
为了实现这一目的,设计师需要对开关电源的基本原理有深入的理解。
在开关电源中,电容、电感和频率之间的相互影响是至关重要的。
通过合理的组合设计,可以提高电源的效率,降低功耗。
二、开关电源环路补偿的设计方法开关电源的环路补偿设计方法,需要综合考虑多个参数,如响应时间、阻尼稳定性、相位裕度等。
其中,响应时间涉及到电路响应时间、电源传输函数以及负载条件,需要根据具体情况予以调整。
阻尼稳定性关系到系统的稳态稳定性,需要根据不同负载条件下的阻尼因素予以设计。
相位裕度涉及到极点间距,可以通过更改反馈回路的增益稳定性来达到较好的效果。
三、开关电源环路补偿的优化在实际电路中,由于电容、电感和负载等多种因素的影响,开关电源环路补偿存在一定的误差。
优化环路补偿,可以通过在电路中加入滤波电容、降低负载电感等措施,提高电源输出的稳定性。
此外,在滤波器的选型方面,选择与系统肖特基二极管参数相匹配的器件,可以较为有效地降低噪声和振荡。
总之,开关电源环路补偿对整个系统的性能至关重要。
一个合理的补偿设计将使电源输出变得更加稳定、高效,具有更好的响应性。
因此,在开发开关电源的过程中,我们应该时刻保持对环路补偿原理的理解,并综合考虑各种参数和因素,以达到最优的设计效果。
开关电源控制环路设计
开关电源控制环路设计前馈环节通常由开关电源的输出电压或电流采样电路、误差放大器、比较器和PWM控制器等组成。
开关电源的输出电压或电流通过采样电路进行实时的电压或电流测量,并将测量值与设定值进行比较。
误差放大器将比较器输出的误差信号放大,并输出给PWM控制器。
PWM控制器根据误差信号调整开关管的导通和关断时间,从而控制开关电源输出电压或电流的稳定性。
反馈环节通常由输出电压或电流反馈回路组成。
反馈回路通过将开关电源输出电压或电流与参考电压或电流进行比较,得到误差信号,并将其输入到前馈环节的比较器中。
反馈环节的作用是通过不断地调整开关电源的工作状态,使输出电压或电流尽量接近设定值,并抵消部分外部环境的影响,以保持开关电源稳定工作。
在开关电源控制环路设计中,需要考虑诸多因素。
首先是前馈环节的设计。
前馈环节应具有高增益和低失真的特性,能够准确地将输出电压或电流的变化转换为误差信号,并将其输出给PWM控制器。
其次是PWM控制器的设计。
PWM控制器应能够按照误差信号的大小和方向,精确地调整开关管的导通和关断时间,并保持开关电源输出电压或电流的稳定性。
最后是反馈环节的设计。
反馈环节应能够准确地测量开关电源的输出电压或电流,并将其输入到前馈环节的比较器中。
同时,反馈环节还需考虑去除噪声和抑制振荡等问题,以保证闭环控制系统的稳定性和可靠性。
开关电源控制环路设计的关键是要平衡稳定性和动态响应速度。
稳定性是指开关电源在加载变化或输入电压波动等情况下,输出电压或电流能够尽快地恢复到设定值并保持稳定;而动态响应速度则是指开关电源对设定值的变化能够迅速地响应。
在设计中,需要根据具体的应用需求和制约条件,选择合适的控制算法、滤波器和补偿网络等,以使开关电源控制环路设计达到较好的稳定性和动态响应速度。
总之,开关电源控制环路设计是一个复杂而关键的任务。
它需要综合考虑前馈环节、反馈环节以及稳定性和动态响应速度等因素,以实现开关电源的稳定性和输出精度要求。
一种buck-boost开关电源环路补偿电路设计
一种buck-boost开关电源环路补偿电路设计
设计一种buck-boost开关电源环路补偿电路的步骤如下:
1. 确定需要补偿的电源环路特性:首先,需要确定要补偿的电源环路具有哪些频率成分的干扰或噪音。
例如,可以通过频谱分析确定这些频率成分的频率范围和幅度。
2. 设计补偿网络:根据第一步的分析结果,设计一个合适的补偿网络来抵消电源环路的干扰或噪音。
补偿网络通常包括电容、电感和阻抗器等元件,可以选择串联或并联配置以实现所需的补偿效果。
3. 选择补偿元件参数:根据补偿网络的设计,选择合适的元件参数,如电容值、电感值和阻抗器阻值等。
可以通过仿真或实验来优化参数选择,并确保所选元件能够在所需频率范围内提供所需的补偿效果。
4. 布局和连接补偿电路:根据设计,将补偿网络的元件布局在电源环路中,并通过适当的连接方式将其与开关电源环路连接。
确保补偿网络能够有效地接收和处理来自电源环路的干扰或噪音,并将补偿信号输出到开关电源环路中。
5. 验证和调整:在连接完补偿电路后,进行验证和调整以确保补偿效果符合预期。
可以使用示波器、频谱仪等仪器来观察和测量电源环路的干扰或噪音幅度,并通过调整补偿网络的参数来优化补偿效果。
需要注意的是,设计补偿电路时需要考虑电路的稳定性和安全性,确保补偿网络不会引入额外的噪音或干扰,并且不会对开关电源环路的性能产生负面影响。
同时,还需遵守相关的电气标准和规范,以确保设计符合相关要求。
开关电源反馈环路设计
开关电源反馈环路设计开关电源是一种将输入直流电压转换为所需输出电压的电源装置。
为了实现稳定可靠的输出电压,开关电源需要建立反馈环路进行控制。
开关电源的反馈环路主要包括内部反馈环路和外部反馈环路。
内部反馈环路是指内部电路中的反馈控制电路,用于控制开关管的导通与截止,以维持输出电压的稳定。
外部反馈环路是指从输出端以回路的形式连接到内部反馈电路,通过比较输出电压与参考电压的差异,产生一个控制信号,用于调整开关电源的开关时间和频率,从而调整输出电压。
设计开关电源的反馈环路时,需要考虑以下几个方面:1.选择合适的参考电压源:参考电压源是反馈环路的重要组成部分,它提供一个稳定的参考电压,用作与输出电压进行比较的基准。
一般可选择使用稳压二极管、参考电压芯片或者精密电位器来作为参考电压源。
2.设计错误放大器:错误放大器是反馈环路中的核心部分,它承担着将输出电压与参考电压进行比较的作用,并产生一个误差信号。
常见的错误放大器有比较器、运算放大器等。
在设计选择错误放大器时,需要考虑它的稳定性、带宽、输入阻抗等因素。
3.设计补偿网络:由于开关电源在转换过程中存在一定的延迟、输出的电压下降等因素,所以需要通过补偿网络来减小这些不稳定因素对输出电压的影响。
常见的补偿网络包括零点补偿网络和极点补偿网络。
零点补偿网络主要通过增加相位较大的零点,来提高系统稳定性;极点补偿网络主要通过增加相位较小的极点,来提高系统的相位裕度。
4.设计输出滤波器:开关电源的输出电压通常包含一定的纹波,需要通过输出滤波器来降低纹波,使输出电压更加稳定。
输出滤波器一般由电感、电容和电阻组成,通过调整它们的数值和组合方式,可以实现对纹波的去除或衰减。
在进行开关电源反馈环路的设计时,还需要进行一系列的仿真和实验,包括频率响应的模拟分析、稳态和动态的性能测试等,以确保设计的反馈环路能够实现对输出电压的稳定控制。
总之,开关电源的反馈环路设计是一项复杂的任务,需要综合考虑电源的性能要求、稳定性要求和实际应用需求等因素,通过选择适当的参考电压源、设计错误放大器、补偿网络和输出滤波器等,来实现对输出电压的稳定控制。
开关电源环路设计及实例详解
开关电源环路设计及实例详解一、开关电源的基本原理开关电源是一种将交流电转换为直流电的电源,其基本原理是通过开关管控制变压器的工作状态,从而实现对输入交流电进行变换、整流和稳压的过程。
开关电源具有输出功率大、效率高、体积小等优点,因此被广泛应用于各种电子设备中。
二、开关电源环路的组成1. 输入滤波器:用于滤除输入交流电中的高频噪声和杂波信号,保证后续环节能够正常工作。
2. 整流桥:将输入交流电转换为直流电信号。
3. 直流滤波器:用于滤除直流信号中的纹波和杂波信号,保证输出稳定。
4. 开关变换器:通过控制开关管的导通和截止状态来控制变压器的工作状态,从而实现对输入信号的变换。
5. 输出稳压器:用于对输出直流信号进行稳压处理,保证输出恒定。
三、开关电源环路设计步骤1. 确定输出功率和输出电压范围。
2. 选择合适的变压器。
3. 设计整流桥和直流滤波器。
4. 设计开关变换器,包括选择合适的开关管和控制电路。
5. 设计输出稳压器,包括选择合适的稳压芯片和反馈电路。
6. 进行整个电路的仿真和优化。
7. 进行实际电路的搭建和调试。
四、开关电源环路设计实例以12V/5A开关电源为例,进行具体设计。
1. 确定输出功率和输出电压范围:输出功率为60W,输出电压范围为11-13V。
2. 选择合适的变压器:根据需求选择带有多个二次侧绕组的变压器,其中一个二次侧用于提供控制信号,另一个二次侧用于提供输出信号。
通过计算得到变压比为1:2。
3. 设计整流桥和直流滤波器:采用全波整流桥结构,并选用大容量滤波电容进行直流滤波处理。
4. 设计开关变换器:选用MOS管作为开关管,并采用反激式结构进行设计。
控制信号通过脉冲宽度调制(PWM)技术进行控制。
同时,在输入端加入输入滤波器进行滤波处理。
5. 设计输出稳压器:选用LM2576芯片进行稳压处理,通过反馈电路控制输出电压。
同时,加入输出滤波电容进行滤波处理。
6. 进行整个电路的仿真和优化:通过仿真软件进行各个环节的仿真和优化,保证整个电路的性能符合要求。
开关电源的环路设计
开关电源反馈设计除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。
它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。
开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。
当负载或输入电压突变时,快速响应和较小的过冲。
同时能够抑制低频脉动分量和开关纹波等等。
为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。
并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。
最后对仿真作相应介绍。
6.1 频率响应在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。
经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。
我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。
6.1.1 频率响应基本概念电路的输出与输入比称为传递函数或增益。
传递函数与频率的关系-即频率响应可以用下式表示600 )()(f f G Gϕ∠=&其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠ϕ(f ) 表示输出信号与输入信号的相位差与频率的关系,称为相频响应。
典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。
图 6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角ϕ。
两者一起称为波特图。
在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。
当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高频截止频率与低频截止频率之间称为中频区。
开关电源控制环路设计(初级篇)
开关电源控制环路设计(初级篇)电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!开关电源控制环路设计(初级篇)1、环路和直流稳压电源的关系稳压电源工作原理我们需要什么样的电源?原文档:开关电源控制环路设计(初级篇)下载方法:请看文章底部第一条留言2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。
■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1( -20db/10倍频程) ■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。
一般需要6db的增益裕量。
备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。
要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。
传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。
把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。
开关电源控制环路设计
开关电源控制环路设计稳压电源工作原理我们需要什么样的电源?2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。
■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1( -20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。
一般需要6db的增益裕量。
备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。
要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。
传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。
把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。
由传递函数就可以绘制增益/相位曲线。
通过代数运算,把G(s)表示为G(s)=N(s)/D(s),其分子和分母都是s的函数,然后将分子和分母进行因式分解,表示成多个因式的乘积,即G(s)=N(s)/D(s)=[(1+s/2*pi*fz1)(1+s/2*pi*fz2)(1+/2*pi*fz3)]/[(s/2*pi*f0)*(1+s/2*pi*fp1)*( 1+s/2*pi*fp2)* (1+s/2*pi*fp3)],分子中对应的频率fz为零点频率,而与分母中对应的频率称fp为极点频率。
开关电源(Buck电路)的小信号模型及环路设计
0 引言设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。
而环路的设计与主电路的拓扑和参数有极大关系。
为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。
在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。
由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。
好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。
开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。
采用其他拓扑的开关电源分析方法类似。
1 Buck电路电感电流连续时的小信号模型为理想开图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。
R为滤波电容C的等效串联电阻,R o为负载电阻。
各状态变量的正方向定义如图e1中所示。
图1 典型Buck电路S导通时,对电感列状态方程有L=U- U o (1)in续流导通时,状态方程变为S断开,D1L=-U(2)o占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为L=D(U-U o)+(1-D)(-U o)=DU in-U o(3)in稳态时,=0,则DU in=U o。
这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压U in成正比。
由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得L=(D+d)(Uin+)-(U o+) (4)式(4)由式(3)的稳态值加小信号波动值形成。
开关电源的环路设计
开关电源的环路设计开关电源的环路设计可以分为三个基本阶段:输入滤波、稳压电路和输出滤波。
输入滤波是为了保护开关电源不受到噪音干扰而设计的。
这是通过输入电容器和电感器形成的LC滤波器来实现的。
在输入电容器的两端串联一个电感器就可以构成LC滤波器。
LC滤波器的作用是隔离输入AC 信号,并将噪声信号注入到地线。
稳压电路是为了保持开关电源的输出电压稳定而设计的。
它包括一个误差放大器、一个脉冲宽度调制器和一个电感器滤波器。
误差放大器可以检测输出电压,如果电压低于设定值,误差放大器就调整PWM信号来增加输出电压。
PWM信号使开关管的工作周期保持不变,但占空比发生变化。
电感器滤波器可以使输出电压更平滑,减少负载干扰。
输出滤波器可以消除由于PWM信号引起的高频噪声,并将噪声杂波注入地线。
输出电容器和电感器可以形成LC滤波器,并且这种滤波器和输入LC滤波器类似,使高频噪声注入地线。
在开关电源的环路设计中,需要考虑的一个重要因素是交叉互干扰。
所谓的交叉互干扰是指输入、输出和控制信号之间的相互影响。
设计师应最小化电路中不同元件之间的电感和电容,以减少交叉互干扰的影响。
另外,还要注意开关电源在额定负载下的稳定性。
如果负载电流或电压波动严重,将会导致输出电压的变化。
为了保持稳定性,可以选择适当的高功率输出管,以及适当的补偿电路。
在实际设计中,环路设计需要考虑到许多因素,如高温和高频噪声等环境因素,以保证开关电源的安全和稳定性。
总之,开关电源的环路设计关键在于实现有效的输入和输出滤波,并确保稳压电路的可靠性和稳定性。
开关电源环路设计2
不可少的,因为没有ESR 的LC 滤波器相位滞后大。
6.4.12. Ⅲ型误差放大器电路、传递函数和零点、极点位置具有图6.41(b)的幅频特性电路如图6.42所示。
可以用第6.4.6节Ⅱ 型误差放大器的方法推导它的传递函数。
反馈和输入臂阻抗用复变量s 表示,并且传递函数简化为)(/)()(12s Z s Z s G =。
传递函数经代数处理得到 )]/((1)[1)((])(1)[1()()()(212123321133112C C C C sR C sR C C sR C R R s C sR s U s U s G in o +++++++== (6-69) 可以看到,此传递函数具有(a ) 一个原极点,频率为 )(212110C C R f p +=π (6-70) 在此频率R 1的阻抗与电容(C 1+C 2)的阻抗相等且与其并联。
(b ) 第一个零点,在频率 12121C R f z π= (6-71) 在此频率,R 2的阻抗与电容C 1的阻抗相等。
(c ) 第二个零点,在频率 31331221)(21C R C R R f z ππ≈+= (6-72) 在此频率,R 1+R 3的阻抗与电容C 3的阻抗相等。
(d ) 第一个极点,在频率 2221212121)]/([21C R C C C C R f p ππ≈+= (6-73) 在此频率,R 2的阻抗与电容C 2和C 1串联的阻抗相等。
(e ) 第二个极点,在频率 33221C R f p π= (6-74) 在此频率R 3的阻抗与电容C 3阻抗相等。
为画出图6.41(b)的幅频特性,以f z 1=f z 2,f p 1=f p 2选择RC 乘积。
双零点和双极点频率的位置由k 来决定。
根据k 获得希望的相位裕度。
图6.41(b)中误差放大器在希望的f c 0处以斜率+20dB/dec 处的增益(图6.41(a))令其等于LC 滤波器的衰减量,但符号相反。
开关电源的建模和环路补偿设计(上)
开关电源的建模和环路补偿设计(上)引言如今的电子系统变得越来越复杂,电源轨和电源数量都在不断增加。
为了实现最佳电源解决方案密度、可靠性和成本,系统设计师常常需要自己设计电源解决方案,而不是仅仅使用商用砖式电源。
设计和优化高性能开关模式电源正在成为越来越频繁、越来越具挑战性的任务。
电源环路补偿设计常常被看作是一项艰难的任务,对经验不足的电源设计师尤其如此。
在实际补偿设计中,为了调整补偿组件的值,常常需要进行无数次迭代。
对于一个复杂系统而言,这不仅耗费大量时间,而且也不够准确,因为这类系统的电源带宽和稳定性裕度可能受到几种因素的影响。
本应用指南针对开关模式电源及其环路补偿设计,说明了小信号建模的基本概念和方法。
本文以降压型转换器作为典型例子,但是这些概念也能适用于其他拓扑。
本文还介绍了用户易用的LTpowerCAD 设计工具,以减轻设计及优化负担。
确定问题一个良好设计的开关模式电源(SMPS) 必须是没有噪声的,无论从电气还是声学角度来看。
欠补偿系统可能导致运行不稳定。
不稳定电源的典型症状包括:磁性组件或陶瓷电容器产生可听噪声、开关波形中有抖动、输出电压震荡、功率FET 过热等等。
不过,除了环路稳定性,还有很多原因可能导致产生不想要的震荡。
不幸的是,对于经验不足的电源设计师而言,这些震荡在示波器上看起来完全相同。
即使对于经验丰富的工程师,有时确定引起不稳定性的原因也是很困难。
图1 显示了一个不稳定降压型电源的典型输出和开关节点波形。
调节环路补偿可能或不可能解决电源不稳定问题,因为有时震荡是由其他因素引起的,例如。
开关电源控制环路设计(初级篇)
开关电源控制环路设计(初级篇)电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!开关电源控制环路设计(初级篇)1、环路和直流稳压电源的关系稳压电源工作原理我们需要什么样的电源?原文档:开关电源控制环路设计(初级篇)下载方法:请看文章底部第一条留言2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。
■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1(-20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。
一般需要6db的增益裕量。
备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。
要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。
传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。
把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。
开关电源环路设计(详细)
* *
22
到三角波终止时间 t2。对于这样的芯片,如果驱动 NPN 晶体管,输出晶体管导通(如果从芯片的输出 晶体管发射极输出) ,这样会随晶体管导通时间增加,使得 Uo 增加,这是正反馈,而不是负反馈。因此, TL494 一类芯片,Us 送到 EA 的同相输入端,Uo 增加使得导通时间减少,就可以采用芯片的输出晶体 管的发射极驱动。 图 6.31 电路是负反馈且低频稳定。但在环路内,存在低电平噪音电压和含有丰富连续频谱的瞬态 电压。这些分量通过输出 Lo,Co 滤波器、误差放大器和 Uea 到 Uy 的 PWM 调节器引起增益改变和相移。 在谐波分量中的一个分量,增益和相移可能导致正反馈,而不再是负反馈,在 6.2.7 节我们已讨论过闭 环振荡的机理。以下就开关电源作加体分析。 6.4.2 环路增益 还是来研究图 6.31 正激变换器。 假定反馈环在 B 点-连接到误差放大器的反相输入端断开成开环。 任何一次谐波分量的噪声从 B 经过 EA 放大到 Uea,由 Uea 传递到电压 Uy 的平均值,和从 Uy 的平均值通 过 Lo,Co 返回到 Bb(正好是先前环路断开点)都有增益变化和相移。 这就是 6.2.7 讨论的环路增益信号通路。 如果假定某个频率 f1 的信号在 B 注入到环路中,回到 B 的信号的幅值和相位被上面提到回路中的 元件改变了。如果改变后的返回的信号与注入的信号相位精确相同,而且幅值等于注入信号,即满足 GH=-1。要是现在将环闭合(B 连接到 Bb) ,并且注入信号移开,电路将以频率 f1 继续振荡。这个引起 开始振荡的 f1 是噪声频谱中的一个分量。 为达到输出电压(或电流)的静态精度,误差放大器必须有高增益。高增益就可能引起振荡。误 差放大器以外的传递函数一般无法改变, 为避免加入误差放大器以后振荡, 一般通过改变误差放大器的 频率特性(校正网络) ,使得环路频率特性以-20dB/dec 穿越,并有 45°相位裕度,以达到闭环的稳定。 以下我们研究误差放大器以外的电路传递函数的频率特性。 1. 带有 LC 滤波电路的环路增益 Gf 除了反激变换器(输出滤波仅为输出电容)外,这里讨论的所有拓扑都有输出滤波器。通常滤波 器设计时根据脉动电流为平均值(输出电流)的 20%选取滤波电感。根据允许输出电压纹波和脉动电 流值以及电容的 ESR 选取输出滤波电容。如果电解电容没有 ESR(最新产品) ,只按脉动电流和允许纹 波电压选取。由此获得输出滤波器的谐振频率,特征阻抗,ESR 零点频率。在频率特性一节图 6.7 示出 了 LC 滤波器在不同负载下的幅频和相频特性。 为简化讨论,假定滤波器为临界阻尼 Ro=1.0Zo,带有负载电阻的输出 LC 滤波器的幅频特性如图 6.32(a)中 12345 所示。此特性假定输出电容的 ESR 为零。在低频时,Xc>>XL,输入信号不衰减,增益 为 1 即 0dB。在 f0 以上,每十倍频 Co 阻抗以 20dB 减少,而 Lo 阻抗以 20dB 增加,使得增益变化斜率为 -40dB/dec。当然在 f0 增益不是突然转变为-2 斜率的。实际上在 f0 前增益曲线平滑离开 0dB 曲线,并 在 f0 后不久渐近趋向-40dB/dec 斜率。这里为讨论方便,增益曲线突然转向-40dB/dec。 如果使相应于 Ro=1.0Zo 条件下稳定,那么在其它负载也将稳定。但应研究电路在轻载(Ro>>1.0Zo) 时的特性,因为在 LC 滤波器转折频率 f= f0 增益谐振提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 绪论
在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。
因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。
由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。
下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。
给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。
测试结果和测量方法也包含在其中。
2. 基本控制环概念
2.1 传输函数和博得图
系统的传输函数定义为输出除以输入。
它由增益和相位因素组成并可以在博得图上分别用图形表示。
整个系统的闭环增益是环路里各个部分增益的乘积。
在博得图中,增益用对数图表示。
因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。
系统的相位是整个环路相移之和。
2.2 极点
数学上,在传输方程式中,当分母为零时会产生一个极点。
在图形上,当增益以20dB每十倍频的斜率开始递减时,在博得图上会产生一个极点。
图1举例说明一个低通滤波器通常在系统中产生一个极点。
其传输函数和博得图也一并给出。
2.3 零点
零点是频域范围内的传输函数当分子等于零时产生的。
在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。
图2
描述一个由高通滤波器电路引起的零点。
存在第二种零点,即右半平面零点,它引起相位滞后而非超前。
伴随着增益递增,右半平面零点引起90度的相位滞后。
右半平面零点经常出现于BOOST和
BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。
右半平面零点的博得图见图3。
3.0 开关电源的理想增益相位图
设计任何控制系统首先必须清楚地定义出目标。
通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。
理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。
高的相位裕量能阻尼振荡并缩短瞬态调节时间。
宽的带宽允许电源系统快速响应线性和负载的突变。
高的增益保证良好的线性和负载调节率。
3.1 相位裕量
参看图4,相位裕量是在穿越频率处相位高于0度的数量。
这不同于大多数控制系统教科书里提出的从-180度开始测量相位裕量。
其中包括DC负反馈所提供的180度初始相移。
在实际测量中,这180度相移在DC处被补偿并允许相位裕量从0度开始测量。
根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。
然而,有一个边界稳定区域存在,此处(指边界稳定区,译注),系统由于瞬态响应引起振荡到经过一个长的调节时间最终稳定下来。
如果相位裕量小于45度,
则系统在边界稳定。
当相位裕量超过45度时,能提供最好的动态响应,短的调节时间和最少过冲。
3.2 增益带宽
增益带宽是指单位增益时的频率,见图4,增益带宽就是穿越频率Fcs。
最大穿越频率的主要限制因素是电源的开关频率。
根据采样定理,如果采样频率小于2倍信号频率(更严谨一点的说法是应该小于2倍最大信号频率,译注),则被采样的信息就不能被完全读取
在开关电源中,开关频率可以从输出纹波中看得出来,它是错误的信息,并且必须不被控制环路所传递。
因此,系统的穿越频率必须小于开关频率的一半,否则,开关噪声和纹波会扭曲输出电压中想要得到的信息,并导致系统不稳定。
3.3 增益
高的系统增益对于保证好的线性和负载调节率提供重要贡献。
它能够使PWM比较器在响应输入输出电压的变化时精确地改变电源开关的占空比,通常,需要在决定高增益和低相位裕量之间做出权衡。
4. 实际设计分析举例
用经典环路控制分析方法,开关调整器的控制环分为四个主要部分:输出滤波器,PWM电路,误差放大器补偿和反馈。
图5用方块图举例说明这四部分,图6举例说明一个开关电源电路图。
首先,输出电压被反馈网络降压,然后把这个反馈电压送入误差放大器,使之与基准电压相比较而产生一个误差电压信号。
脉宽调制部分拾取这个误差电压并且把它与功率变压器的电流相比较并转化为合适的占空比去控制输出部分功率脉冲调制的数量。
输出滤波器部分使来自于功率变压器的斩波电压或电流平滑,使反馈控制环完善。
下面确定每一部分的增益和相位,并把他们联合起来形成系统的传输函数和系统的增益相位点。
4.1 反馈网络H(s)
反馈网络把输出电压降到误差放大器参考电压的水平,其传输式按简单的电阻分压式得到:
4.2 输出滤波部分G1(S)
在电流模式控制系统中,输出电流被调节以达到目标的输出电压。
输出滤波部分把脉动的输出电流转换为目标输出电压。
小信号分析得到:
输出电容的ESR和反馈网络的电阻(R1+R2=RFB)反映出输出滤波器传输函数的特性。
图7的电路分析给出ESR和RSENSE的影响。
传输函数G1(S)给出RFB的初始低频增益。
这个增益在fPOLE=1/2*π*(RFB+ESR)*C处开始滚降,并在fZERO=1/2*π*ESR*C变为水平。
G1(S)的博得图见图8。
4.3 PWM电路部分G2(S)
光耦电路把误差放大网路产生的误差信号传输到主边。
AS3842 PWM电路把这个误差电压与通过主边功率变压器的电流进行比较。
然后功率场效应管的占空比被调制,以提供足够的电流到副边来维持想要的输出。
光耦的小信号传输函数是与光耦的电流传输比成比例的固定增益。
R5(原文误为R6,式5一并改为R5,译注)是与光耦的二极管串联的限流电阻,并且是AS3842误差放大器的输出阻抗(此句应该理解为R5是这个AS3842开关电源电路中,误差放大器部分的输出阻抗,译注)。
这一点在应用文档“Secondary error amplifier with the AS431”中有深入的阐述。
从误差放大器的输出到AS3842的COMP脚的传输函数是:
VCATHODE是AS431的阴极电压,也就是误差补偿放大器的输出电压。
CTR是光耦的电流传输比。
R5(原文为R6,译注)是与光耦的二极管串联的限流电阻。
RCOMP 是AS3842的COMP脚当其试图拉电流超过它的最大输出电流时的输出阻抗。
当误差信号传递到补偿脚以后,将其与电流检测信号比较。
图9表示一个电流检测比较器和开关部分的简单框图:
在闭环系统中,VCOMP与ISENSE维持同样的电平。
因此,IPRIMARY被VCOMP有效的调节:
从ISECONDARY以后(见图9),副边电流或者说输出电流与主边电流成比例,把等式(4)重新排列表示出副边电流与VCOMP之间的关系。
结合等式(3)和(6)得到PWM部分的传输函数:
传输函数G2(s)仅包含增益没有相移。
4.4 误差放大器补偿网络G3(S)
一旦输出滤波器和PWM电路部分的传输函数确定下来,然后可以设定误差放大器补偿网络以取得最优化的系统性能。
图10例举出一个在低频时提供高的频率滚降和高增益的补偿方案。
这个补偿方案有一些很好的特性适合于误差放大器的补偿,它有很高的直流增益和易控的滚降。
4.5 整个系统
因为这是一个线性系统,可以用叠加的方法得到整个系统的传输函数。
通过把整个环路各部分的增益和相位叠加起来,产生整个系统的博得图。
通过放置补偿网络的极点和零点使系统的性能最优化。
图11把各部分的博得图结合起来,负反馈系统的180度相移也加入进来了。
5. 测量结果
构造一个150W的电流模式正激转换器,经过修正的小信号环路特性显示出它在系统瞬态响应时所起的作用。
图13(原文误为图12,译注)给出它的增益-相位图。
与图11所展示的一样,获得了相同的博得图曲线。
此增益相位图显示这个系统有86.7度的相位裕量。
意味着稳定的系统有快速的瞬态响应。
图15(原文误为图13,译注)给出系统的瞬态响应。
为了展示相位裕量的作用,通过增加整个系统的增益和提高穿越频率,系统的相位裕量会减少。
穿越频率提高时系统的相位裕量在减少。
图12(原文误为图14,译注)给出更高的穿越频率和更少的相位裕量(65度)时的系统博得图。
其瞬态响应见图14(原文误为图15,译注),注意更少的相位裕量导致更大的振荡和更长的调节时间。
表1比较了这两个不同增益大小的系统之间线性和负载调节率的变化。
正如前面所述,高的环路增益得到更紧密的线性和负载调节率。
还应该注意需在高的相位裕量和较低的环路增益之间取得平衡。
6. 测量方法
为了保证准确的结果,测试信号接入节点的阻抗必须大于它的输出阻抗。
在图6的测试电路中,误差放大器在副边,PWM电路在主边。
测试信号在光耦的输出和AS3842的VCOMP输入之前接入。
输入阻抗是从VCOMP脚看入时的阻抗,输出阻抗是光耦的输出阻抗。
在其他误差放大器和PWM电路没有隔离的应用中,测试信号可以在输出滤波电容之后接入,使其与误差放大器的输入相串联。