朱慈勉结构力学第三章 静定结构
(完整版)完整的结构力学答案-同济大学朱慈勉
朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a )(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。
(a)(ⅡⅢ)Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系(ⅠⅢ)(ⅡⅢ)几何不变(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)2P F a 2P F a4P F Q34P F 2P F(b)aaaa a2m6m2m4m2m2020Q10/326/310(c)18060(d)3m2m2m3m3m4m3m2m2m2mA2m 2m2m2m7.5514482.524MQ3-3 试作图示刚架的内力图。
(a)242018616MQ18(b)4kN ·m 3m3m6m1k N /m2kN A CBD6m10kN3m3m 40kN ·mABC D30303011010QM 210(c)45MQ(d)3m3m 6m6m2m 2m444444/32MQN(e)4481``(f)4m4m2m3m4m222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
(a)F P(b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
结构力学1-9章答案
1 8
2 36
1 4
3 ( 1 3 2 1 6 2 (3) 1 (6))
6EI 2
2
+ 2 6 1 2 5 ()
6EI
2EI
(c)
2kN/m 6m
2kN 2kN
B 2EI C
EI
EI
1
A
D
3m 3m 3m
1 6
2
2
3
3
42
18
36
30
6
MP
M
xc
6
3 2EI
(2
18
2
0
C
F RC [( 1 ) a] a (方向与图示一致)
h
h
(b)
c1 c2 c3
A A′
2a
BC
D
B′ C′
D′
Δ C
a
2a
1
0.5
1.5
0
FR 图
yc
t h
M ds
t
5 4
5
+t 5 5 t (1) 12 t ( 1 4 3 2 4 3)
4
2
h2
54.5t()
5-10 试求图示结构在支座位移作用下的位移:(a) ΔC ;(b) ΔyC , ΔC 。 (a)
C D
D′
E E′
C′ΔC
h
b
A
l 2
B
B′
l 2
a
1
1
1
h
h
0
A
B
C
D
E
FG
H
2m 2m 2m 2m 2m 2m 2m 3m
A
M 7.5
结构力学课后习题答案
朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a)ⅠⅡⅢ(ⅠⅡ)(ⅠⅢ)(Ⅱ Ⅲ)舜变体系`ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)2-3 试分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(Ⅱ Ⅲ)几何不变W=3×3 - 2×2 – 4=1>0可变体系ⅠⅡⅢ(ⅠⅡ)(ⅠⅢ)(ⅡⅢ)几何不变2-4 试分析图示体系的几何构造。
(a)(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)ⅠⅡⅢ几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系ⅢⅠⅡ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)几何不变(d)(ⅠⅡ)ⅢⅠⅡ(ⅡⅢ)(ⅠⅢ)二元杆有一个多余约束的几何不变体ⅠⅡⅢ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)ⅠⅡⅢ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)无多余约束内部几何不变ⅠⅡⅢ(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)二元体(h)ⅠⅡⅢ(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)二元体多余约束W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)(ⅠⅢ)几何不变同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)4P F a2P F a 2P F a M4P F Q34P F 2P F(b)ABCaa aaaF P a DEFF P2m6m2m4m2mABCD10kN2kN/m42020M Q10/326/3410(c)21018018040M1560704040Q(d)3m2m2mA B CEF15kN 3m3m4m20kN/mD 3m2m2m2mA2m 2m2mABCD E FG H 6kN ·m4kN ·m 4kN2m7.5514482.524MQ3-3 试作图示刚架的内力图。
结构力学第三章
§3-1 静定结构的一般概念 §3-2 静定平面刚架 §3-3 三铰拱 §3-4 静定桁架 §3-5 静定组合结构 §3-6 静定结构的特性
§3-1 静定结构的一般概念
一、静定结构的定义
定义:一个几何不变的结构,在荷载等因素作用下其结构的全部支座反力 和内力均可由静力平衡条件唯一确定的结构称静定结构
FxA
FxB
Fx
M
0 C
f
(2)支座反力
设拱轴线方程 y f已(x知) 。
任意截面K的内力为:
MK 0
MK
FyAx FP1(x a1) FxA y
M
0 K
FxA y
F 0 FQK FyA cos FP1 cos FxA sin FQ0K cos FxA sin
F 0 FNK FyA sin FP1 sin FxA cos (FQ0K sin FxA cos)
二、静定平面桁架的内力计算
静定平面桁架的内力计算方法:结点法、截面法及两法的联合应用。 1.结点法:
切取结点为隔离体用 Fx 0、求F解y 未0知的轴力。
例 求图示桁架内力
解:(1)支座反力
FyB 24 12 2kN()、FyA 8 2 6kN()、FxA 0
(2)内力(设各杆轴力以拉为正):
1.支座反力:
FyA
Fy0A
10(16 16
4)
7.5kN
FyB
Fy0B
10 4 16
2.5kN
F A
F B
Fx
M
0 C
f
7.58 10(8 4) 4
5kN
2、内力:集中荷载 F左P 右分段列内力方程。
结构力学课后习题答案(朱慈勉)
朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。
(a)(ⅡⅢ)Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系(ⅠⅢ)(ⅡⅢ)几何不变(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)2P F a 2P F a4P F Q34P F 2P F(b)aa aaa2m6m2m4m2m2020Q10/326/310(c)18060(d)3m2m2m3m3m4m3m2m2m2mA2m 2m2m2m7.5514482.524MQ3-3 试作图示刚架的内力图。
(a)242018616MQ18(b)4kN ·m3m3m6m1k N /m2kN A CBD6m10kN3m3m 40kN ·mABC D30303011010QM 210(c)45MQ(d)3m3m6m6m2m 2m444444/32MQN(e)4481``(f)4m4m2m3m4m222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
(a)F P(b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F两铰的位lx l lx置。
结构力学上册课件-0305静定桁架
-45 0
15 3m
A
-120 C -20 F -20 G
15kN 15kN 15kN
4m
4m
4m
结点分析时把所有杆内力均画成拉力(含已求得的压力)并代 入方程,然后是拉力的代正值,是压力的代负值。结果为正说 明该杆受拉,结果为负说明该杆受压,这样做不易出错。
桁架中内力为零的杆件称为零杆。
L 形结点
主内力: 按计算简图计算出的内力 次内力: 实际内力与主内力的差值
理想桁架与实际桁架的偏差
并非铰接(结点有较大刚性) 并非直杆(部分杆件为曲的,轴线未必汇交) 并非只有结点荷载(但可进行静力等效处理)
桁架的分类(根据几何组成分类)
简单桁架
联合桁架
简单桁架
复杂桁架
由于桁架杆是二力杆,为方便计算常将斜杆的轴力 双向分解处理,避免使用三角函数。
B
FBy Y=0 f(FN2 , FN )=0 X=0 g(FN2 , FN )=0
练习:求图示桁架指定杆件内力。 (只需指出所选截面即可)
a P
b
P
P
P c
P b
3. 对称性的利用
对称结构:几何形状、材料性质和支座对某轴对称的结构。
对称荷载:用在对称结构对称轴两侧,大小相等,方向和作 用点对称的荷载。
3)结点法和截面法的联合应用
2h
FP
FP
FP
FP
FP
FP
FP
1
3 24
6a
FP
A FAy
FP
FAy
FP
FP
FP
FP
FP
FP
1
3
24
B
6a
FBy
结构力学第三章习题及答案
静定结构计算习题3—1 试做图示静定梁的M 、F Q 图。
解:首先分析几何组成:AB 为基本部分,EC 为附属部分。
画出层叠图,如图(b )所示。
按先属附后基本的原则计算各支反力(c)图。
之後,逐段作出梁的弯矩图和剪力图。
36.67KN15KN •m 20KNM 图(单位:KN/m )13.323.313.33F Q 图(单位:KN )3—3 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F AX =48kN (→) M A =60 KN •m (右侧受拉) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)3—7 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F AX =20kN (←) F AY =38kN(↑) F BY =62kN(↑) (2)逐杆绘M 图BCM 图(单位:KN/m ) F Q 图(单位:KN )3030F AX F N图(单位:60)20)(3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)3—9 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F AX =0.75qL (←) F AY =-0.25qL( ) F BY =0.25qL(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)3—11试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F BX =40KN (←) F AY =30KN (↑) F BY =50kN(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)C(a )qBY 23—17 试求图示抛物线三铰拱的支座反力,并求截面D 和E 的内力。
朱慈勉结构力学第三章 静定结构
4.4 载荷、剪力和弯矩之间的关系 4.4.1 分布载荷、剪力和弯矩的微积分关系 若q(x)为常数,则可根据这些关系得到如下表格 dFS ( x ) q( x) dx M ( x) q( x) FS ( x)
dM ( x ) FS ( x) dx
q0 q0 q0
FS 常数
FS 0 FS 0 FS 0
(2)跨中集中力偶作用下
4kN· m
4kN· m
(3)叠加得弯矩图
4kN· m
(3)叠加得弯矩图
6kN· m 4kN· m
4kN· m
2kN· m
q
l/2 l/2
分析步骤
• 确定控制点 • 分析各段内力图走势 (利用微分关系) • 求控制截面内力 • 绘控制截面间内力 图(弯矩图、剪力 图) • 确定弯矩最大点位 置及最大值
y
F1 F2
建立坐标系
取其中一微段 dx q(x)为连续函数,规定向上为正
dx
x
q(x)
FS
M
x
dx
M+dM
将该微段取出,加以受力分析
FS+dFS
q
9/54
4.4 载荷、剪力和弯矩之间的关系 4.4.1 分布载荷、剪力和弯矩的微积分关系
dx FS(x) C M(x) q(x) FS(x)+dFS(x) M(x)+dM(x)
9 Q图(kN)
x 26 4 M图(kN.m) 4 8 28
H
-
7 7 23 8 8
7
30
36.1 8
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
A 1m RA=17kN 17 +
第三章-静定结构受力分析,同济大学课件,朱慈勉版教材
F
D
ql x 2
ql x 2
解:
1 2 C F ql 8 1.EBCF为基本部分,AE和FD为附属部分。 2.求铰B、E处约束力及支座反力。 3.确定铰E、F的位置。 M MC 1 1 1 根据叠加原理, B M 中 = ql 2 M B M C ql x x qx x 2 8 2 2 1 l 考虑到 M B M C M 中 , 故, M B=M C ql 2 , 从而, x 16 8
第3章
§3-1 §3-2 §3-3 §3-4 §3-5 §3-6 §3-7
静定结构受力分析
Analysis of Statically Determinate Structures
概述 多跨静定梁 静定平面刚架 三铰拱 静定平面桁架 组合结构 静定结构的一般性质
土木工程学院 结构力学
2014/10/13
为何采用多跨静定梁这种结构型式?(多跨静定梁的优点)
q
0.086ql 2
多跨静定梁
0.086ql 2
l
x
0.086ql 2
l
x 0.172l时正负弯矩相等
q
简支梁(两个并列)
1 2 ql 8
1 2 ql 0.125ql 2 8
相同跨度相同荷载作用下,与简支梁相比,多跨静定梁弯矩较小, 而且分布均匀。(节省材料,便于大跨)
土木工程学院 结构力学 2014/10/13
例:
叠加法作梁的M图。
由杆端弯矩作图
叠加q弯矩图
ql 2 32
ql 2 16 ql 2 4
M2
叠加ql2弯矩图
ql 2 2
3ql 2 4
ql 2 32
结构力学.同济大学_朱慈勉
3、刚片:假想的一个在平面内完全不变形的刚性 物体叫作刚片。在平面杆件体系中,一根直杆、折 杆或曲杆都可以视为刚片,并且由这些构件组成的 几何不变体系也可视为刚片。
刚片中任一两点间的距离保持不变,既由刚片中 任意两点间的一条直线的位置可确定刚片中任一点 的位置。所以可由刚片中的一条直线代表刚片。
精品课件
精品课件
第一部分 静定结构内力计算
静定结构的特性: 1、几何组成特性 2、静力特性
静定结构的内力计算依据静力平衡原理。
第三章 静定梁和静定刚架
§3-1 单 跨 静 定 梁
单跨静定梁的类型:简支梁、伸臂梁、悬臂梁 一、截面法求某一指定截面的内力
精品课件
1、内力概念
内力是结构承受荷载及变形的能力的体现,可理 解为在各种外因用下结构内部材料的一种响应。内 力是看不见的,但可由结构上受有荷载和结构发生 变形(变形体)体现。
1)复链杆:若一个复链杆上连接了N个结点,则 该复链杆具有(2N-3)个约束,等于(2N-3)个链杆的 作用。 2)复铰:若一个复铰上连接了N个刚片,则该复 铰具有2(N-1)个约束,等于(N-1)个单铰的作用。
精品课件
三、多余约束 在体系上加上或撤除某一约束并不改变原体系的
自由度数,则该约束就是多余约束。
拆除约束法:去掉体系的某些约束,使其成为无 多余约束的几何不变体系,则去掉的约束数即是体 系的多余约束数。
1、切断一根链杆或去掉一个支座链杆,相当去 掉一个约束;
2、切开一个单铰或去掉一个固定铰支座,相当 去掉两个约束;
3、切断一根梁式杆或去掉一个固定支座,相当 去掉三个约束;
4、在连续杆(梁式杆)上加一个单铰,相当去 掉一个约束。
§1-2 结构计算简图
结构力学完整.1同济大学_朱慈勉PPT课件
41
3、截面内力 截开一根梁式杆件的截面上有三个内力(分量),
即:轴力FN 、剪力FQ和弯矩Μ 。 1、内力的定义
FN:截面上平行于截面外法线方向的正应力的代数 和,一般以受拉为正。
FQ:截面上垂直于截面法 线方向的切应力的代数和, 以使隔离体产生顺时针转 动为正。
Μ:截面上正应力对截面
中性轴的力矩代数和,对
刚片中任一两点间的距离保持不变,既由刚片中 任意两点间的一条直线的位置可确定刚片中任一点 的位置。所以可由刚片中的一条直线代表刚片。
精选PPT课件
9
二、研究体系几何组成的任务和目的:
1、研究结构的基本组成规则,用及判定体系是否 可作为结构以及选取结构的合理形式。
2、根据结构的几何组成,选择相应的计算方法和 计算途径。
§1-2 结构计算简图
1、结构计算简图的概念 2、结构计算简图的简化原则是:
1)计算简图要能反映实际结构的主要受力和变 形特点,即要使计算结果安全可靠;
2)便于计算,即计算简图的简化程度要与计算 手段以及对结果的要求相一致。
精选PPT课件
2
精选PPT课件
3
3、结构计算简图的几个要点:
空间杆件结构的平面简化 杆件构件的简化:以杆件的轴线代替杆件;
桁架:由若干直杆在两端用铰结点连接构成。桁 架杆件主要承受轴向变形,是拉压构件。
组合结构:由梁式构件和拉压构件构成。 拱:一般由曲杆构成。在竖向荷载作用下有水 平支座反力。
2、按计算方法分类: 静定结构, 超静定结构。
精选PPT课件
6
§1-4 荷载分类
1、按作用时间分类: 恒载:永久作用在结构上。如结构自重、永久
平面内最简体系的自由度数:
结构力学课后习题答案(朱慈勉)
结构⼒学课后习题答案(朱慈勉)朱慈勉结构⼒学第2章课后答案全解2-2 试求出图⽰体系的计算⾃由度,并分析体系的⼏何构造。
(a)ⅠⅡⅢ(ⅠⅡ)(ⅠⅢ)(ⅡⅢ)舜变体系`ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0⼏何可变(c)有⼀个多余约束的⼏何不变体系(d)2-3 试分析图⽰体系的⼏何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)⼏何不变W=3×3 - 2×2 – 4=1>0可变体系ⅠⅡⅢ(ⅠⅡ)(ⅠⅢ)(ⅡⅢ)⼏何不变2-4 试分析图⽰体系的⼏何构造。
(a)(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)ⅠⅡ(b)W=4×3 -3×2 -5=1>0⼏何可变体系ⅢⅠⅡ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)⼏何不变(d)(ⅠⅡ)ⅢⅠⅡ(ⅡⅢ)(ⅠⅢ)⼆元杆有⼀个多余约束的⼏何不变体Ⅲ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)ⅠⅡⅢ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)⽆多余约束内部⼏何不变ⅠⅡⅢ(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)⼆元体(ⅠⅡ)(ⅡⅢ)⼆元体多余约束W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的⾓度分析图⽰体系的⼏何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)(ⅠⅢ)⼏何不变同济⼤学朱慈勉结构⼒学第3章习题答案3-2 试作图⽰多跨静定梁的弯矩图和剪⼒图。
(a)4P F aP F Q34P F 2 P F (b)ABCaa aaaF P a D EFF P2m6m2m4m2mABCD10kN 2kN/m 42020M Q(c)210 180 18040M1560704040Q (d)3m2m2mA B CEF15kN 3m 3m4m20kN/m D 3m2m2m2m2m 2m 2mAB6kN ·m4kN ·m 4kN2m7.5514482.524MQ3-3 试作图⽰刚架的内⼒图。
结构力学朱慈勉上
3、集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点 两侧,弯矩值突变、剪力值无变化。
三、用“拟简支梁法”绘 弯矩图
先绘出控制截面的弯矩竖标,其间若无外荷载作用,可用直线相连;若有外 荷载作用,则以上述直线为基线,再叠加上荷载在相应简支梁上的弯矩图。
①弯矩M:对梁而言,使杆件上凹者为正(也即下侧纤 维受拉为正),反之为负。一般情况下作内力图时,规定弯 矩图纵标画在受拉一侧,不标注正负号。
②剪力Q:使截开后保留部分产生顺时针旋转者为正, 反之为负。
③轴力N:拉为正,压为负。剪力图和轴力图可绘在杆 轴的任意一侧,但必须标注正负号。
Q
M
M
Q
N
N
M
M
Q
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛 物线。其凹下去的曲线象锅底一样兜住q(x)的箭头。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点; 集中力偶作用点两侧,弯矩值突变、剪力值无变化。 返回
用“拟简支梁法”绘弯矩图
MA
NA QA A
q
MB
NB
l
B QB
(a)
MA
MA (c) q
(3)计算三铰刚架时,要利用中间铰弯矩为零的条件。 (4)绘剪力图、轴力图必须标正、负号;绘弯矩图不必 标正负号,弯矩图绘在受拉一侧。
(5)求支座反力后及绘内力图后都应进行校核。 2、刚架内力计算举例:
第3章
例题1 试作图示刚架内力图。
第3章
解: (一)求支座反力
X 0 MA 0 MB 0
H A 30() VB 96kn() VA 56kn()
结构力学第三章
FS =7kN. FS = 7kN(注意:集中力
章目录 第三节 第四节 第五节
•
偶矩对剪力无影响).
• ③CD段均布荷载,方向向下,根据微分关系,
FS 的一阶导数为 q , q 为常数,可推知 FS 是一次函数,
此段剪力图是斜直线 . 又因为 q 向下指向 , 和坐标正向相反 , 即 q <0 , 此区段剪力递减 . 只需求
静力平衡
3.1.2 利用静力平衡求解杆件内力
第三章 静定结构的内力分析
章目录 第一节 第二节 章目录 第三节 第四节 第五节
第1节
3.1.2 利用静力平衡求解杆件内力
静力平衡
• 计算截面内力的基本方法是截面法,即将结构沿拟求内力的截面截开,选取截面 任意一侧的部分为研究对象(取隔离体),去掉部分对留下部分的作用,用内力来 代替,然后利用平衡条件可求得截面内力。 • 截面法中,可根据平衡推出用外力计算内力分量的简便方法。 • (1)弯矩:等于截面一侧所有外力对截面形心力矩的代数和。 • (2)剪力:等于截面一侧所有外力沿截面方向的投影代数和。 • (3)轴力:等于截面一侧所有外力沿截面法线方向的投影代数和。
判断弯矩曲线的凹凸性。
图 3.5
结构力学课件
第三章 静定结构的内力分析
章目录
3.2.2
第一节 第二节 章目录 第三节 第四节 第五节
•
利用微分关系作内力图
第2节
静定梁
关于内力曲线凹凸性的判断,数学中有个雨伞法则:
•
由于工程中习惯将弯矩图画在杆件的受拉一侧 ,这样梁的弯矩图竖标人为地翻下来 ,以向下为正. 为方便记忆,经研究发现弯矩曲线的凸向与 q 的指向相同. 利用微分关系作内力图,总是要将梁分 成若干段,一段一段地画.梁的分段点为集中力、集中力偶作用点,以及分布荷载的起、终点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.4 载荷、剪力和弯矩之间的关系 4.4.1 分布载荷、剪力和弯矩的微积分关系 若q(x)为常数,则可根据这些关系得到如下表格 dFS ( x ) q( x) dx M ( x) q( x) FS ( x)
dM ( x ) FS ( x) dx
q0 q0 q0
FS 常数
FS 0 FS 0 FS 0
QB
q
↓↓↓ ↓ ↓ ↓ ↓
NB MB
MB
MA
对于任意直杆段,不论 其内力是静定的还是超静 定的;不论是等截面杆或 是变截面杆;不论该杆段 内各相邻截面间是连续的 还是定向联结还是铰联结 弯矩叠加法均适用。
YA°
MA M' M°
YB °
MB
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ ↓↓↓↓↓↓↓
内力图形状特征
无何载区段 均布荷载区段
↓ ↓ ↓ ↓ ↓ ↓
集中力作用处 发生突变
集中力偶作用处
Q图
平行轴线
+
-
+
P
无变化
-
发生突变 m 两直线平行
M图
斜直线
二次抛物线 凸向即q指向
出现尖点
尖点指向即P的指向
备 注
Q=0区段M图 平行于轴线
Q=0处,M 达到极值
集中力作用截 面剪力无定义
集中力偶作用面 弯矩无定义
x
M
ql/2
ql /8
+
2
(3)画出剪力图和弯矩图 剪力图 斜直线 弯矩图二次抛物线
x
5/54
q A x FA
q x FA
B l
M(x) FS(x)
FB
FS
+ -
ql/2
x
M
ql/2
ql2+ /8
x
• 求内力的基本方法:
截面法(截取隔离体;代之相应截面内力;利 用平衡方程求解)
截开、代替、平衡
ΔN=-FX ΔQ=-Fy ΔM=m
N
N+ΔN M+ΔM
增量关系说明了内力图的突变特征
3) 积分关系
FNB FNA q x ( x )dx
AB
FQB FQA q y ( x)dx
AB
M B M A FQdx
AB
由微分关系可得 右端剪力等于左端剪力减去该 段qy的合力; 右端弯矩等于左端弯矩加上该 段剪力图的面积。
FAy
q M0
FBy
FAy
FOy M0
ql A
q
ql /2
B
ql2/4
D↓↓↓↓↓↓↓↓↓↓↓↓↓ ↓↓↓↓↓↓↓↓↓↓↓↓↓ F E 2
ql2/8
ql
l/2
ql
l/2
ql M图
l
↓↓↓↓↓↓↓↓↓↓↓↓↓ ↓↓↓↓↓↓↓↓↓↓↓↓↓ ql2/4 qL ql2/8
+
- Q图 qL
10kN/m
↓↓↓↓↓↓↓ ↓↓↓↓↓↓↓
q B l
M(x) FS(x)
FB
解 (1)求约束力
(2)列剪力方程和弯矩方程
ql FA FB 2
FS
+
ql FS x FA qx qx 0 x l 2
ql/2
-
ql x2 0 x l M x x q 2 2 2 l ql M max M 2 8
q 、M q Q、 、Q M 、M q 、q Q 、 、 Q M 、 在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 零、平、斜、抛 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第3章 静定结构
§3-1 概述
按几何构造特点求解 几何构造形式简单的静定结构比较容易求解,如:
又如:
第3章 静定结构
dFN qx dx dFQ q y dx d 2 M q 由这些微分关系可知: y dM F dx 2 Q dx
例如:
区段叠加法做弯矩图
熟记简支梁弯矩图
FP
q
M
M 2
Pl 4
ql 2 8
M 2
1)简支梁情况
MA
q
几点注意: 弯矩图叠加,是指竖标相 加,而不是指图形的拼合,竖 标M °,如同M、M′一样垂 直杆轴AB,而不是垂直虚线。 利用叠加法绘制弯矩图可以 少求一些控制截面的弯矩值, 少求甚至不求支座反力。而且 对以后利用图乘法求位移,也 提供了把复杂图形分解为简单 图形的方法。
12/54
• 荷载与内力之间的关系:
Q
qy
↓ ↓ ↓ ↓ ↓ ↓ ↓ Q+dQ
1 )
微分关系
dFN q x dx
N
→→→→→
qx
M
dx y
N+dN x M+dM
dFQ q y dx dM FQ dx
qy向下为正
微分关系给出了内力图的形状特征
2) 增量关系
Q Q+ΔQ m
M
Fx Fy
y
F1 F2
建立坐标系
取其中一微段 dx q(x)为连续函数,规定向上为正
dx
x
q(x)
FS
M
x
dx
M+dM
将该微段取出,加以受力分析
FS+dFS
q
9/54
4.4 载荷、剪力和弯矩之间的关系 4.4.1 分布载荷、剪力和弯矩的微积分关系
dx FS(x) C M(x) q(x) FS(x)+dFS(x) M(x)+dM(x)
dx (2)式中略去高阶微量 q x dx 2
注意 在集中力和集中力偶作用处微分关系不成立
10/54
4.4 载荷、剪力和弯矩之间的关系 4.4.1 分布载荷、剪力和弯矩的微积分关系
dFS ( x) q( x) dx
剪力图上某点的斜率等于分布载荷的数值
dM ( x) FS ( x) 弯矩图上某点的斜率等于剪力的数值 dx
静 定 结 构 总 论
三 铰 拱 计 算
组 合 结 构
静 定 平 面 桁 架 内 力 图
静 定 刚 架 内 力 图
多 跨 静 定 梁 内 力 图
截 面 内 力 计 算
回顾和补充
材料力学内容回顾
杆件内力分析要点: • 内力正负号规定:
FN
FN FN FN FQ
FQ FQ
M
M
FQ
M
M
结构力学与材料力学内力规定的异同
3-2-1 刚架式杆件的内力以及与荷载的关系
应用静力平衡条件, 并略去高阶微量,可 得以下关系式:
dFN qx dx dFQ q y dx d 2 M q 由这些微分关系可知: y dM F dx 2 Q dx
⑴ 在无横向荷载(qy = 0)的区段,杆件剪力保持为常数, 对应的剪 力图形为与杆件轴线平行的直线, 弯矩图形为倾斜的直线,其 斜率就等于杆中的剪力。 ⑵ 在杆件剪力为零处, 弯矩图的切线与杆件轴线平行, 此时弯矩取 得极值; 在无剪力的区段, 杆件的弯矩保持为常数, 对应的弯矩 图为与杆件轴线平行的直线。 ⑶ 在有横向均布荷载的区段, 剪力图为倾斜的直线, 弯矩图为二次 抛物线。 ⑷ 在无轴向荷载(qx = 0)的区段, 杆件的轴力保持为常数; 在有轴向 均布荷载的区段, 轴力图为倾斜直线。
• 内力的叠加与分解:
假设:材料满足线弹性、小变形。
例:求截面1、截面2的内力 FN2=50 -141×cos45o
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5kN/m
1
↓
=-50kN FQ2= -141×sin45°=-100kN
1 2 2
50kN
M2= 50×5 -125-141×0.707×5 =-375kN.m + M2=375kN.m (左拉) FN1=141×0.707=100kN
• 轴力和剪力的正负号规定与材料力学相同
• 内力符号脚标有其特定的意义。如MAB表明 AB杆的A端弯矩 • 结构力学弯矩图画在受拉纤维一侧
4.3 剪力方程和弯矩方程 剪力图和弯矩图 【例4-2】
图示简支梁受均布载荷q作用, 求 (1)剪力方程和弯矩方程; (2)画剪力图和弯矩图。
A x FA
q x FA
F M
y
0
FS x q x dx FS x d FS x 0 (1)
C
0
dx FS x dx M x 0 (2) 2
M x dM x q x dx
由(1)式可得:
dFS ( x) q( x) dx dM ( x) FS ( x) dx
§3-1 概述
按几何构造特点求解 几何构造形式简单的静定结构比较容易求解,如:
有些静定结构的几何构造可区分为基本部分和附属部分 由附属部分向基本部分推进
组成静定结构的构件主要有二力杆和受弯杆。二力杆仅承受 轴向力的作用;受弯杆一般同时承受弯矩、剪力和轴力的作用。
如何求解?从构建联结、制作特征找突破
在剪力图无突变(无集中力作用)的某段梁上,有
F S x 2 F S x1 M x 2 M x1
x q x d x
x2
1
q图的面积
在弯矩图无突变(无集中外力偶作用)的某段梁上,有
上述积分关系有时可简化控制截面的内力计算。
11/54
x
x2
1
F S x d x Fs图的面积
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓↓↓