纯电动汽车高压电气架构的设计
电动汽车高压电气系统设计

电动汽车高压电气系统设计根据纯电动汽车安全标准要求,并从车载储能装置、功能安全、故障保护、人员触电防护及高压电安全管理控制策略等方面综合考虑,应对电动汽车高压电系统进行以下四方面设计。
1、高压电电磁兼容性设计由于纯电动汽车上存在高压交流系统,具有较强的电磁干扰性,因此高压线束设计时电源线与信号线尽量采用隔离或分开配线;电源线两端考虑采用隔离接地,以免接地回路形成共同阻抗耦合将噪声耦合至信号线;输入与输出信号线应避免排在一起造成干扰;输入与输出信号线尽量避免在同一个接头上,如不能避免时应将输入与输出信号线错开放置。
2、高压部件和高压线束的防护与标识设计高压部件的防护主要包括防水、机械防护及高压警告标识等。
尤其是布置在机舱内的部件,如电机及其控制系统、电动空调系统、DC/DC 电压转换器、车载充电机等及它们中间的连接接口,都需要达到一定的防水和防护等级。
并且高压部件应具有高压危险警告标识,以警示用户与维修人员在保养与维修时注意这些高压部件。
由于纯电动汽车线束包括低压线束与高压线束,为提示和警示用户和维修人员,高压线束应采用橙色线缆并用橙色波纹管对其进行防护。
同时高压连接器也应标识为橙色,起到警示作用,并且所选高压连接器应达到IP67 防护等级。
3、预充电回路保护设计因为高压设备控制器输入端存在大量的容性负载,直接接通高压主回路可能会产生高压电冲击,故为避免接通时的高压电冲击,高压系统需采取预充电回路的方式对高压设备进行预充电。
图 2 示出纯电动汽车高压系统预充电回路原理图。
图2 纯电动汽车高压系统预充电回路原理图4、高压设备过载/短路保护设计当汽车高压附件设备发生过载或线路短路时,相关高压回路应能自动切断供电,以确保高压附件设备不被损坏,保证汽车和驾乘人员的安全。
因此在高压系统设计中应设置过载或短路的保护部件,如在相关回路中设置保险和接触器,当发生过载或短路而引起保险或接触器短路时,高压管理系统会通过对接触器触点和相关控制接触器闭合的有效指令进行综合判定,若检测出相关电路故障,高压管理系统会发出声光报警以提示驾驶员。
纯电动商用车高压电气系统匹配设计

纯电动商用车高压电气系统匹配设计随着全球经济的持续发展、环保意识的不断提高和政府政策的支持,纯电动商用车正在逐渐成为未来城市交通的主流方式。
高压电气系统是纯电动商用车的核心部分,其匹配设计对车辆的运行性能、安全性和可靠性至关重要。
首先,高压电气系统的匹配设计需要根据车辆的使用场景和需求进行合理的选择。
商用车的使用场景通常是短途城市配送或物流,因此需要考虑最大续航里程、载重能力、充电时间等因素。
在选择电池组时,需要综合考虑能量密度、功率密度、寿命、重量等指标,以达到最优的能量匹配。
其次,高压电气系统的匹配设计需要考虑整车的动力需求和能量转换效率。
纯电动商用车的动力系统通常采用交流电机,因此需要选择适合交流电机特性的电控器。
电控器的选择需要在实现最大动力输出和最佳能量效率之间做出平衡。
再次,高压电气系统的匹配设计需要考虑安全性。
高压电气系统的电压通常在300V以上,因此需要合理设计电池包的结构和防护措施,以避免电池热失控、短路等故障,造成车辆事故。
最后,高压电气系统的匹配设计需要考虑整车的可靠性和维护成本。
纯电动商用车的使用寿命和可靠性与电池组和电控器的寿命密切相关,因此需要保证高压电气系统的稳定性和可靠性,并定期进行维护和检测。
综上所述,高压电气系统的匹配设计是纯电动商用车的关键技术之一,需要充分考虑车辆的使用场景和需求,实现能量匹配、动力匹配、安全匹配和可靠性匹配。
只有科学合理地进行高压电气系统的匹配设计,才能保证纯电动商用车的运行性能、安全性和可靠性,推动其在未来城市交通中发挥更大的作用。
为更具体地说明高压电气系统匹配设计的重要性,可以列举一些相关数据并进行分析。
首先,纯电动商用车的能量密度和功率密度是衡量其性能水平的重要指标。
以目前市场上常见的纯电动快递车为例,其电池组能量密度一般在120-200Wh/kg之间,功率密度约为2kW/kg。
这样的数据意味着快递车的纯电动化水平仍有提高空间,需要进一步提高电池组的能量密度和功率密度,以提高车辆的续航里程和动力输出,满足商用车的实际需要。
新能源汽车高压系统的设计原理及优化方法

高压设备操作规范
设备操作前检查
在操作高压设备前,应 对设备进行全面检查, 确保设备状态良好,无 异常现象。
操作规范执行
严格按照高压设备操作 规范进行操作,避免因 误操作引发的高压电击 事故。
设备定期维护
定期对高压设备进行维 护保养,确保设备性能 稳定可靠,降低故障率 。
应急处理预案制定与执行
01
高压配电盒
分配电能,为各高 压负载提供电源。
高压系统发展趋势
高电压化
随着电池技术的不断进步,高压 系统的电压等级将不断提高,以 提高能量传输效率和续航里程。
集成化
高压系统将向集成化方向发展, 减少部件数量和连接点,提高系 统可靠性和安全性。
智能化
引入先进的传感器和算法,实现 高压系统的实时监测和智能控制 ,提高能源利用效率和安全性。
能量管理策略
电池管理系统(BMS)
01
通过BMS对电池组进行实时监测和控制,实现电池能量的高效
利用和安全管理。
整车控制器(VCU)
02
VCU作为整车能量管理的核心,根据车辆行驶状态和驾驶员需
求,合理分配能量,优化动力性能和续航里程。
能量回收系统
03
利用制动能量回收等技术,将车辆减速或制动时产生的能量转
02
高压系统设计原理
电气安全设计
高压系统隔离
采用绝缘材料、气隙和密封技术等手段,确保高压系统与车辆其 他部分的有效隔离,防止电流泄露和电击风险。
高压互锁回路
通过高压互锁回路的设计,确保在高压系统出现异常或故障时,能 够及时切断电源,保障人员和设备安全。
接地与漏电保护
建立可靠的接地系统,实时监测漏电流,确保在发生漏电时能够及 时报警并切断电源。
氢能源纯电动汽车高压系统的组成和设计

氢能源纯电动汽车高压系统的组成和设计1前言汽车作为重要的交通工具,为人们生活带来便捷和舒适的同时,也带来了诸多负面影响,能源消耗、环境污染和温室效应已经成为全球性难题,寻求替代能源、发展绿色交通刻不容缓。
新能源汽车以汽油、柴油之外的非常规的车用替代燃料或者电能、太阳能等动力能源,具有污染小、噪声低、转换效率高、使用成本低等优点,被视为汽车工业节能减排、减少对石油依存的最有效途径。
我国传统汽车工业基础相对薄弱,技术创新能力较低,许多关键核心技术受制于人,与汽车工业发达国家之间差距仍然较大。
目前,国务院印发的《“十二五”国家战略性新兴产业发展规划》中将新能源汽车列入七大战略新兴产业之一,在国家政策的大力支持下,行业发展迅速,我国汽车工业以纯电驱动作为技术转型的主要战略方向,重点突破电池、电机和电控技术,推进纯电动汽车产业化发展。
2新能源汽车的概述新能源汽车基础的是 EV:Electric vehicle(电动车),顾名思义就是使用电作为动力的汽车。
EV 这个概念是“元概念”。
所谓新能源汽车的分类,就是在“EV”前面,增加了一些修饰性的前缀而已。
2.1纯电动汽车(BEV:Battery Electric Vehicle)BEV 是由电动机驱动的汽车,单纯由车载可充蓄电池或者其他能量储存装置来提供动力的车型。
图 1 纯电动汽车构造图电池有两种方案:三元锂电池和磷酸铁锂电池。
一般来说,乘用车倾向于采用三元锂电池,而商用客车用磷酸铁锂电池会更合适,也有使用钛酸锂电池的案例。
2.2燃料电池电动车(FCEV:Fuel Cell Electric Vehicle)燃料电池车指的就是以燃料电池作为动力电源的汽车。
燃料电池是氢为燃料的静态发电系统,通常还带有一组动力电池作为辅助动力源,燃料电池汽车与纯电动汽车除了动力源不同之外,其驱动电机、传动系统等部件都完全相同。
FCEV 在运行过程中只会产生水,氢燃料电池本身也不会造成污染,所以 FCEV 有很多独特的优势。
电动汽车电子电气架构设计

电动汽车电子电气架构设计随着全球对能源资源的日益紧张和环境污染问题的加剧,人们对替代能源汽车的需求日益增加。
电动汽车因其无污染、低噪音等优点,已经成为了替代传统燃油汽车的主要选择。
而电动汽车的电子电气架构设计是其核心技术之一,对于电动汽车的性能、安全和可靠性具有重要影响。
电动汽车电子电气架构设计的核心目标是将各种电气设备互相联系起来,使得汽车的各项功能得以实现。
随着电动汽车的发展,电子电气架构设计也在不断创新和完善。
本文将对电动汽车电子电气架构设计的相关内容进行探讨,旨在为读者提供一份全面的了解。
电动汽车的电子电气架构设计涉及到电池管理系统(BMS)、动力系统、充电系统、车辆电控系统等多个方面,每个方面都包含多个子系统。
电池管理系统(BMS)是电动汽车中的重点之一,它负责监控电池的状态、故障诊断和可靠性保证。
通过BMS可以对电池进行在线监控、温度控制、充电均衡等功能,确保电池的安全可靠性。
动力系统则是电动汽车中最核心的部分之一,包含电机控制器、传动系统、能量回收系统等。
充电系统则是电动汽车的重要组成部分,包括充电桩、充电连接器、充电控制器等。
电动汽车的电子电气架构设计是一个复杂的系统工程,需要包括硬件设计、软件设计和通信系统设计等多个方面的技术。
不仅要求各个部件之间的协同工作,还需要符合相关的国家标准和行业标准,确保其可靠性和安全性。
1.智能化随着人工智能技术和大数据技术的不断发展,电动汽车的电子电气架构设计日益智能化。
通过智能化电池管理系统,可以实现对电池的预测性维护、最优化的充电与放电控制,从而延长电池的使用寿命。
而在车辆动力管理方面,智能化技术可以实现更加高效的能量利用,提高电动汽车的续航里程。
智能化的充电系统可以实现快速充电、远程充电等功能,极大地提高了电动汽车的使用便利性。
2.模块化电动汽车电子电气架构设计的另一个发展趋势是模块化设计。
传统上,电动汽车的各个电气设备往往独立运行,互相之间难以协同工作。
电动汽车高压电气演示课件

备注
电池成组电压
国内主要商用车电压水平
体积:740L 成组方案:5P157S; 标称电压:3.65*157=574V; 标称电量:69kwh; 电池模组固定采用框架式结构,分两层布置; 分箱布置
5
精
6
精五征电动汽车高压电路示意图
高压安全管理系统拓扑图
7
精
高压供电系统方案
15
精
整车电压平台越少越安全,减少故障率,防护成本 低。
五征物流微卡电压平台为: 高压574V 低压12V 有些混合动力车型考虑轻量化会有双向逆变。
16
精
高压电系统安全性设计
目的在于防止漏电、 过流、 有毒及易燃的化学 物质泄漏等。
17
精
高压电系统安全性设计
目的在于防止漏电、 过流、 有毒及易燃的化学 物质泄漏等。
人体电阻 =1000Ω (润湿状态的大致阻值)
11
精
电动汽车高压电伤害分析
电脱离的极限电压 E=I×R=0.07×1000=70V
12
精
高压电系统安全性设计
电压平台选择
目前ISO和国标没有对高压平台进行强制性规定, 结合目前国内电机电控平台现状,有一个推荐 值。 144V 288V 320V 346V 400V 576V
车身
系统 动力总成 动力附件 电机 主减速器 动力电池
高压控制系统 充电口 悬架 转向 制动 行驶
组合仪表 变速换档
白车身 货箱 外饰
内饰
4
精
开发方案 取消发动机、变速箱、离合器 增加额定功率55KW 峰值110KW永磁同步水冷电机 取消进排气系统、供油系统
额定功率55KW 峰值110KW永磁同步水冷电机
电动汽车高压电气 ppt课件

7) 高压系统连接件具备防插错措施;
8) 各系统控制继电器的模块根据继电器的类型设置保护电路,避免出 现继电器断开瞬 间过压或过流损坏部件。
9
ppt课件
电动汽车安全课题
整车电气设计
Hale Waihona Puke • 主动安全设计 • 被动安全设计
高压电气生产使用
• 安全实时监测 • 诊断
10
ppt课件
电动汽车高压电伤害分析
电动汽车高压电安全隐患的主要部件是动力电池系统, 包括单体电池、 电池模块、电池箱及管理系统、 充电系 统、 高压动力线等。
电伤害主要有触电和短路。
触电的种类:
接触触电指与充电接触发生的触电; 电磁感应触电是指与交流高压附近的金属相接触发生的触电; 静电感应触电指在交流高电压附近人体产生触电, 因放电时的冲击发生的触 电; 电弧触电指人体因大电流在大气中的放电被吹起而发生的触电。
17
ppt课件
高压电系统安全性设计
目的在于防止漏电、 过流、 有毒及易燃的化学 物质泄漏等。
成熟的电动汽车应该实时检测一下数据:
① 高压电气参数: 高压系统电压、 电流, 高压总线剩余电量;
② 高压电路参数: 动力电池绝缘电阻、 高压总线等效电容;
以上因素决定整车高压电路电压等级。
15
ppt课件
整车电压平台越少越安全,减少故障率,防护成本 低。
五征物流微卡电压平台为: 高压574V 低压12V 有些混合动力车型考虑轻量化会有双向逆变。
16
ppt课件
高压电系统安全性设计
目的在于防止漏电、 过流、 有毒及易燃的化学 物质泄漏等。
新能源汽车高压电气系统的组成

新能源汽车高压电气系统的组成随着人们对环保和能源问题的日益关注,新能源汽车作为一种清洁能源车型,正逐渐受到用户的青睐。
在新能源汽车中,高压电气系统是其重要组成部分之一,起着至关重要的作用。
本文将从以下几个方面对新能源汽车高压电气系统的组成进行详细介绍。
一、动力电池组动力电池组是新能源汽车高压电气系统的核心部分,它提供了整车的动力来源。
动力电池组一般由若干个电池单体组成,这些电池单体经过合理的组合和连接,形成了一个能够提供电能的整体组件。
动力电池组的性能和稳定性直接影响着新能源汽车的续航里程和动力输出。
二、高压电池管理系统(BMS)高压电池管理系统是对动力电池组进行监控和管理的关键部件。
其主要功能包括对电池的充放电管理、温度控制、电池状态估计、安全保护等。
通过高压电池管理系统,可以对动力电池组的工作状态进行实时监测和调节,保证动力电池组的安全可靠运行。
三、高压直流-直流变换器(DC-DC)高压直流-直流变换器用于将动力电池组输出的高压直流电转换为低压直流电,以供给车载12V电网和低压电子设备使用。
在新能源汽车中,12V电网主要用于驱动车辆的辅助系统,如灯光、空调等,高压直流-直流变换器的性能直接影响着这些设备的正常工作。
四、电动汽车控制器(EVCU)电动汽车控制器是新能源汽车中用于控制电动驱动系统的关键部件。
它可以根据驾驶员的操作和车辆状态实时调节电动机的输出功率和扭矩,从而实现车辆的动力控制和能量回收。
电动汽车控制器在保证车辆动力性能的也需要对高压电气系统进行监控和保护。
五、高压关断器和保险在新能源汽车高压电气系统中,为了保证车辆的安全可靠运行,通常会设置高压关断器和保险装置。
高压关断器可以在车辆发生故障或事故时切断动力电池组与电动机之间的连接,起到保护车辆和乘客的作用。
而保险装置则可以在高压电气系统发生短路或过载时,及时切断电路,防止事故的发生。
六、高压电气系统的散热和隔离由于新能源汽车高压电气系统在运行过程中会产生较多的热量,并且有着较高的安全风险,因此在系统设计中需设计有效的散热系统和隔离措施。
新能源汽车高压系统的电源电路设计与分析

通过实验验证高压电源电路的实际性 能,包括输入输出特性、转换效率、 温升等。实验结果与仿真结果的对比 分析,可以进一步验证电路设计的正 确性和可行性。
问题与挑战探讨
高压安全问题
新能源汽车高压电源电路涉及高电压和大电流, 存在安全隐患。需要采取严格的安全措施,如使 用绝缘材料、设置过流过压保护等,确保电路的 安全运行。
04
高压电源电路优化与改进
效率提升策略
高效功率转换技术
采用先进的功率转换拓扑和控制策略 ,如同步整流、软开关技术等,以降 低开关损耗和导通损耗,提高电源电 路的整体效率。
优化散热设计
通过改进散热结构、选用高效散热器 以及优化风扇控制策略等措施,降低 电源电路的温升,提高其工作效率和 可靠性。
高性能元器件选用
新能源汽车发展趋势
近年来,新能源汽车得到了快速发展,尤其是纯电动汽车和插电式混合动力汽车。它们具 有零排放、低噪音、低能耗等优点,是未来汽车产业的发展方向。
高压系统的重要性
新能源汽车的高压系统是其核心组成部分,负责电能的储存、转换和传输。高压系统的性 能直接影响到新能源汽车的安全性、续航里程和动力性能等方面。因此,对高压系统的电 源电路进行设计与分析具有重要意义。
拓扑结构类型
常见的拓扑结构包括降压型(Buck) 、升压型(Boost)和升降压型( Buck-Boost)等,根据实际需求选择 合适的拓扑结构。
关键元器件选型与设计
高压开关管
高压电容
选用具有高耐压、低导通电阻和快速开关 特性的功率MOSFET或IGBT等开关管,确 保电路的高效和安全。
选用具有高耐压、低ESR和低漏电流的电容 ,用于滤除电源电路中的高频噪声和纹波 。
防止电池组过放电和电源电路过载。
新能源汽车高压线束设计方案【最新版】

新能源汽车高压线束设计方案在资源日益紧张的今天,节能减排势在必行,新能源汽车在突破技术瓶颈的前提下,市场还是很广阔的。
高压线束在新能源汽车中属于高安全件,所以高压线束的设计及布置至关重要。
整车高压线束主要的设计方案涉及到线束走向设计、线径设计、高压连接器选型、充电口的类型和应用、屏蔽设计、高压线束固定卡扣选型、高压线槽设计、高压互锁HVIL设计、GROMMET设计等。
一、高压线束走向布置及划分类型图1 混合动力高压部件布局图图1为混合动力高压部件布局图。
高压系统在设计方面,考虑到电磁干扰的因素,整个高压系统均由屏蔽层全部包覆。
目前国内车型全部采用屏蔽高压线,曰系车也有应用屏蔽网包覆在高压线外侧,插件处处理实现屏蔽连接。
同时由于高压已经超出人体安全电压,车身不可像低压系统一样作为整车搭铁点,因此在高压线束系统的设计上,直流高压电回路必须严格执行双轨制。
根据高压线束的特性,我们一般以高压电器为中心对高压线束进行划分,可分为电机高压线、电池高压线、充电高压线等。
电机高压线一般是连接控制器和电机的高压线; 电池高压线一般是连接控制器和电池的高压线;充电高压线一般是连接充电机和电池的高压线。
二、高压线束特性高压线束耐压与耐温等级的性能远高于低压线束等级,国内主机厂通常采用屏蔽高压线,近年来日本主机厂主要采用非屏蔽高压线外包裹屏蔽网工序。
屏蔽高压线可减少EMI、RFI对整车系统的影响。
整条高压线束回路均实现屏蔽连接,电机、控制器及电池等接口高压线束屏蔽层,通过插件等压接结构连接到电池电机控制器壳体,再与车身搭铁连接。
高压线的屏蔽对于电缆传导数据不是必须的,但是可减少或避免高压线的辐射。
耐压性能:常规汽车耐高压额定600V,商用车及大巴士电压可高达1000V;耐电流性能:根据高压系统部件的电流量,可达250~400A;耐温性能:耐高温等级分为125丈、150丈、200丈不等,常规选择150丈导线;低温常规-40丈。
纯电动汽车高压电气构架的设计

一51—
万方数据
的电气架构方案。
l纯电动汽车高压电气系统的配置
根据纯电动汽车的实际结构和电路特性,设计安 全合理的保护措施,是确保驾乘人员和汽车设备安全 运行的关键。为了保证高压电安全,必须针对高压电防 护进行特别的系统规划与设计【11。纯电动汽车有很多零
网匿 圈圈DC/DC圈Charger圈DC
l(¨(:)I
|( )I【 》【
高压正(H、7+) 商爪负(H、一)
A,可能危及人身安全和高压零部件的使用安全
性。因此,在设计和规划高压动力系统时,不仅应充分 满足整车动力驱动要求,还必须确保汽车运行安全、驾 乘人员安全和汽车运行环境安全。因此,纯电动汽车的 高压安全已经成为各厂家关注的热点。文章基于在纯 电动汽车上的应用案例,提出了2种不同的高压系统
as
for passenger and
vehicle safety,
well
as
arrangements
of high pressure components.
This paper introduces the typical electrical system architecture of battery electric vehicle compared with the advantages and disadvantages of two different architectures respectively,two different designs for high pressure electrical system architecture
纯电动汽车具有高电压和大电流的特点,通常配 备300 V以上的高压系统,工作电流可达200 A甚至
新能源汽车高压线束设计方案【最新版】

新能源汽车高压线束设计方案在资源日益紧张的今天,节能减排势在必行,新能源汽车在突破技术瓶颈的前提下,市场还是很广阔的。
高压线束在新能源汽车中属于高安全件,所以高压线束的设计及布置至关重要。
整车高压线束主要的设计方案涉及到线束走向设计、线径设计、高压连接器选型、充电口的类型和应用、屏蔽设计、高压线束固定卡扣选型、高压线槽设计、高压互锁HVIL设计、GROMMET设计等。
一、高压线束走向布置及划分类型图1 混合动力高压部件布局图图1为混合动力高压部件布局图。
高压系统在设计方面,考虑到电磁干扰的因素,整个高压系统均由屏蔽层全部包覆。
目前国内车型全部采用屏蔽高压线,曰系车也有应用屏蔽网包覆在高压线外侧,插件处处理实现屏蔽连接。
同时由于高压已经超出人体安全电压,车身不可像低压系统一样作为整车搭铁点,因此在高压线束系统的设计上,直流高压电回路必须严格执行双轨制。
根据高压线束的特性,我们一般以高压电器为中心对高压线束进行划分,可分为电机高压线、电池高压线、充电高压线等。
电机高压线一般是连接控制器和电机的高压线; 电池高压线一般是连接控制器和电池的高压线;充电高压线一般是连接充电机和电池的高压线。
二、高压线束特性高压线束耐压与耐温等级的性能远高于低压线束等级,国内主机厂通常采用屏蔽高压线,近年来日本主机厂主要采用非屏蔽高压线外包裹屏蔽网工序。
屏蔽高压线可减少EMI、RFI对整车系统的影响。
整条高压线束回路均实现屏蔽连接,电机、控制器及电池等接口高压线束屏蔽层,通过插件等压接结构连接到电池电机控制器壳体,再与车身搭铁连接。
高压线的屏蔽对于电缆传导数据不是必须的,但是可减少或避免高压线的辐射。
耐压性能:常规汽车耐高压额定600V,商用车及大巴士电压可高达1000V;耐电流性能:根据高压系统部件的电流量,可达250~400A;耐温性能:耐高温等级分为125丈、150丈、200丈不等,常规选择150丈导线;低温常规-40丈。
德尔福-新能源汽车高压电气系统架构

德尔福-新能源汽车高压电气系统架构HEV/EV Electrical System Architecture 混合动力/纯电动车高压电气系统架构Packard Electrical/Electronic ArchitectureAgenda 目录HEV/EV HV Electrical System:混合动力/纯电动车电气系统– HEV-EV HV System Comparison: 混合动力和纯电动车电气系统比较和电气特性– Technical Requirements to HV System:高压电气系统的技术要求Safety 安全性要求Sealing 密封性要求Shielding 屏蔽性要求Thermal Requirements 耐温度性要求 Charging System 充电系统标准Delphi technical solution:德尔福的技术解决方案–––– High Power AL Cable 大功率铝导线的使用 Safety 安全性 EMC(Shielding) EMC(屏蔽) Thermal Effect 温度影响Development Trend技术发展趋势–Delphi Products Strategy 德尔福产品发展计划–Charging System Development 充电系统发展– Electrical level Development 功率变化引发得电气性能变化Delphi – Be System Develop & Service Supplier for HEV/EV 为新能源汽车打造系统平台Packard Electrical/Electronic Architecture2Hybrid/Electric Vehicle Architecture Comparison 混合动力/纯电动车电气系统MILD Hybrid 中混 Plug-In Hybrid 插电式混合动力 EV 纯电动汽车HV DC HV AC 12V/42V DCPackard Electrical/Electronic Architecture3HEV/EV Voltages and Currents 混合动力/纯电动车电气特性Define load by HEV/EV working condition 根据车辆情况定义负载电气特性 Define components level load condition 根据负载电气特性定义零件AP Market Battery Motor (3 Phase AC RMS) Inverter (DC Input) DC/DC AC PTC Charger (AC Input) B Class Vehicle Current Voltage Temp 300A 300V 150C 200A 250A 30A 30A 30A 30A 300V 300V 300V 300V 300V 220V 150C 125C 105C 105C 105C 105C C Class Vehicle Current Voltage T emp 320A 400V 150C 250A 300A 30A 40A 40A 30A 400V 400V 400V 400V 400V 220V 150C 125C 105C 105C 105C 105CHV AC ConnectionMotor/ AC/Inverter Connection SystemPower PDBPower Distribution SystemMain Power Circuit Motor/ AC/Inverter Connection System EVPower PDBBattery Pack Connection SystemMSDCharging Connection SystemPackard Electrical/Electronic ArchitectureHigh Power Requirements Trend for high voltage/current 高功率下的电气要求变化Packard Electrical/Electronic ArchitectureSafety Requirements 高压电气系统的技术要求Technical Requirement – Sealing: 密封性要求Dust protection level at least 6 防尘等级至少为6Safety Issue caused by sealing 因密封失效导致的严重事故IP55IP67IP69Packard Electrical/Electronic Architecture6EMC/EMI Requirements 高压电气系统的技术要求Shielding: 屏蔽– Vehicle Level EMC Requirement:整车级EMC要求EMC/EMI/EMS ? ISO7637/ISO10605/ISO11452 ? SAEJ1113 – Components Level EMC Requirement:零部件级 EMC要求BCI/TEM/ALSE ? 10KHZ ~ 3.2GHZ – Development: 发展趋势 ? Mores focus on wireless application than regular frequency 。
浅谈纯电动汽车高压线束设计

浅谈纯电动汽车高压线束设计【摘要】纯电动汽车是以动力电池作为能量来源、以驱动电机作为动力来源的可在道路上行驶的无轨车辆。
驱动电机、动力电池、驱动电机控制器、车载充电机、DC-DC等高压电气元件共同构成了纯纯电动汽车的高压电气架构。
随车纯纯电动汽车汽车技术的不断发展,动力电池总成的容量已达到上百千万时,同时动力电池的充电时间也在不断降低,因此必须采用高压大电流充电技术。
作为连接纯电动汽车驱动电机、动力电池等高压电气元件的高压线束,其设计要求也变得更加严格。
本文从高压线束的安全性及可靠性等出发,浅谈高压线束的设计要素。
【关键词】纯电动汽车高压线束安全性可靠性1.国内产品研制情况近年新能源汽车渗透率加速提升。
新能源电动车取消了发动机和发动机线束,通过电机驱动。
燃油车通常使用12V电压,而新能源电动车通常使用400V或更高的驱动电压,低压线束无法满足动力传输需求。
于是在低压线束的基础上,新能源车新增高压线束的需求,主要用在动力电池、驱动电机、车载充电机(OBC)、DC/DC转换器、高压配电盒、电动压缩机以及PTC上,是新增量市场。
国内汽车市场快速发展,吉利、奇瑞、长城、长安、比亚迪等优秀国产品牌正逐渐崛起。
自主品牌本土零部件采购率较高,为国产零部件企业带来发展机遇。
随着同步开发和自主研发的能力的提升,加之成本优势和本地化服务优势,本土汽车零部件供应商在部分汽车零部件领域开始进口替代,我国汽车零部件行业正处于逐步实现国产替代的趋势之中。
2.高压线束的设计随着国内纯电动汽车行业的快速发展,比亚迪、吉利、长安等为摆脱对国外高压线束产品的依赖,纷纷投入一定的研发资金展开高压大电流纯电动汽车所需的高压线束的自主研发工作。
根据纯电动汽车高压电气系统对高压线束的使用要求,纯电动汽车的高压线束首先要高压大电流的使用性要求,其次还要需要满足抗电磁干扰、防水、抗振等安全可靠性要求。
2.1高压线束的设计依据纯电动汽车的用户群体需求可以确定其功能需求及性能指标要求,进而制定出纯电动汽车高压线束的使用要求。
纯电动汽车高压电气架构研究

DC/DC、0BC及PDU集的整体设计方 。
3
,这
种方案实现 咅卜高
、空间 及 本最优化。
2) 动系统设
。动系统用电和电
器 的设
,的 线
动
电出线的方
功能安全要求,动
电出线,IPE需
路熔断丝保护,最 .
本、 熔断丝
和电 包
等
虑采用0ptionl。DU接口分析如表2所示。
高压拓扑图
《"车电%》2019年第9期 27
进行优缺n分析,通过高压架构方案设计和高压架构系统安全设计两方面,提出了一种全新高压架构设计方案,此
新设计方案基于 能和 全的基础上,
能减少模块数量,
系统成本。
:此方案满足系统功能和安
全要求,空间布置简,整车
,系统本低,
。
关键词:电动汽车;高压架构;高压 全;设计 -
中图分类号:U469.72 文献标志码:A 文章编号:1003-8639( 2019 )09-0026-03
Option1 Option2
大, Option2
结论 断丝失效风险,会增加电池包开盖维修风险,综合评
从事电动汽车高压分电单元开发工作。
纯电动汽车由于动力电池和电驱系统取代传统燃油和发 动机5整个系统电压从传统12V升高到300V以上系统电压等 级5高压母线充电及放电电流达到200A以上。因此在设计
整个高压电气架构时,不仅要考虑整车成本、驱动性能和充 电时间要求,还需要考虑整个高压系统安全,确保驾乘人员 的安全。
功率,慢充及快充功率,DC/DC? PTC、ACCM、Heater等高
压部件功率。表1
整车性能要求 的
线
电
, 线及熔断丝 设计。
新能源纯电动汽车高压系统的组成和设计

新能源纯电动汽车高压系统的组成和设计一、新能源纯电动汽车高压系统的构成你想象一下,新能源纯电动汽车就像是一个大家庭,而高压系统,就是它的“大脑”,非常重要哦!高压系统的作用就是给整车提供动力和能量的支持,让汽车可以“跑得快,跑得远”。
不管是车主开车去上班,还是周末出去游玩,这个系统就像隐形的力量在背后默默付出。
你知道吗?它不仅仅负责让车子跑得快,还负责给车内的各种设备提供电力,就好比是给汽车装上一根超级强大的“电力管道”。
你得知道,这个系统不是随便谁都能接触的,它可是有点“危险”,毕竟是高压系统,一不小心可能会“电晕”你。
那它都包括哪些部分呢?高压电池肯定是必须的,毕竟没有电池,电动汽车能跑什么?电池就像是汽车的“心脏”,给它源源不断的能量。
然后就是高压电缆和连接器,这些就像是“血管”,把电池里的电流输送到汽车的各个部件。
还别忘了高压配电盒,它是系统的“指挥官”,负责控制电流的分配,让电流去哪里,哪儿又不能去,统统都在它的掌控之中。
电机驱动控制器,嗯,它就像是大脑发号施令,告诉电机怎么工作,怎么输出动力。
听起来是不是有点像一台复杂的机器,但其实它们每个小部件都在默默地合作,确保你的电动汽车顺利启动、加速、停下。
二、高压系统的设计特点你是不是也在想,这个高压系统这么复杂,设计起来一定难度很大吧?说难也难,说简单也简单,关键就是设计师要有过硬的“技术功底”。
安全性肯定是最重要的。
毕竟,电动车不像燃油车,车主和驾驶员更接近高压电流,一旦出点小问题,可就不好了。
所以,设计师要特别注重电池、电缆、连接器的隔离性和绝缘性,确保系统的每一部分都能防止短路、漏电等危险。
想象一下,如果电池和电缆都得到了良好的保护,车主坐在车里开车时就可以安心地享受驾驶乐趣了。
效率也是设计中不能忽视的一部分。
高压系统的效率越高,车子的续航能力就越强。
比如高压电池,如果它能提供更稳定、更高效的电力,电动汽车就能跑得更远,驾驶员也不用那么焦虑,途中找充电站的“麻烦”也少了。
04德尔福混合动力 纯电动车高压电气系统架构

HEV/EV Electrical System Architecture 混合动力/纯电动车高压电气系统架构Zhou leiHybrid Engineering Manager ,DELPHI Packard E/EA System AP周磊德尔福派克电气系统混合动力部工程经理Agenda目录HEV/EV HV Electrical System:混合动力/纯电动车电气系统–HEV-EV HV System Comparison: 混合动力和纯电动车电气系统比较和电气特性–Technical Requirements to HV System:高压电气系统的技术要求»Safety安全性要求»Sealing 密封性要求»Shielding 屏蔽性要求»Thermal Requirements 耐温度性要求»Charging System 充电系统标准Delphi technical solution:德尔福的技术解决方案–High Power AL Cable 大功率铝导线的使用–Safety 安全性–EMC(Shielding) EMC(屏蔽)–Thermal Effect 温度影响Development Trend技术发展趋势–Delphi Products Strategy 德尔福产品发展计划–Charging System Development 充电系统发展–Electrical level Development 功率变化引发得电气性能变化Delphi –Be System Develop & Service Supplier for HEV/EV 为新能源汽车打造系统平台Packard Electrical/Electronic ArchitecturePackard Electrical/Electronic ArchitectureHybrid/Electric Vehicle Architecture Comparison 混合动力/纯电动车电气系统MILD Hybrid中混Plug-In Hybrid 插电式混合动力EV纯电动汽车Packard Electrical/Electronic ArchitectureHEV/EV Voltages and Currents 混合动力/纯电动车电气特性Define load by HEV/EV working condition根据车辆情况定义负载电气特性 Define components level load conditionBattery PackConnection SystemPower Distribution Motor/ AC/Inverter Connection SystemCharging Connection SystemPower PDBHV AC ConnectionMSDMotor/ AC/Inverter Connection SystemPower PDB400V 125C 400V 105C 400V 105C 400V 105C 220V105CPackard Electrical/Electronic ArchitectureHigh Power Requirements Trend for high voltage/current高功率下的电气要求变化Packard Electrical/Electronic ArchitectureSafety Requirements 高压电气系统的技术要求Technical Requirement –Sealing: 密封性要求IP55IP67IP69Dust protection level at least 6防尘等级至少为6Safety Issue caused by sealing 因密封失效导致的严重事故Packard Electrical/Electronic ArchitectureEMC/EMI Requirements 高压电气系统的技术要求Shielding: 屏蔽–Vehicle Level EMC Requirement:整车级EMC 要求»EMC/EMI/EMS»ISO7637/ISO10605/ISO11452»SAEJ1113–Components Level EMC Requirement:零部件级EMC 要求»BCI/TEM/ALSE »10KHZ ~ 3.2GHZ –Development: 发展趋势»Mores focus on wireless application than regular frequency 。