15、正弦交流电的相量表示法cos

合集下载

正弦交流电的相量表示法

正弦交流电的相量表示法

之一,广泛应用于交流电的分析、设计和控制中。
02
正弦交流电的基础知识
正弦交流电的定义
总结词
正弦交流电是指电压和电流随时间按 正弦规律变化的电能。
详细描述
正弦交流电是现代电力系统中最常用 的电能形式,其电压和电流的大小和 方向随时间变化,且变化规律呈正弦 波形。
正弦交流电的特性
总结词
正弦交流电具有周期性、频率、幅值、相位等特性。
THANKS
性等特性。
相量表示法在交流电机、电力系 统、通信和控制等领域有广泛应 用,是现代电力电子和通信技术
中不可或缺的工具。
04
相量表示法与正弦交流电的 关系
相量与正弦交流电的对应关系
相量是复数,其实部表示正弦交流电 的幅度,虚部表示正弦交流电的相位 。
相量长度(模)表示正弦交流电的有 效值或最大值,相量的角度表示正弦 交流电的相位。
02
相量运算能够简化正弦交流电的分析过程,使得复 杂的三角函数运算转化为简单的复数运算。
03
相量运算在交流电路的分析、设计与控制中有广泛 应用。
相量在电路分析中的应用
在交流电路分析中,相量表示法 能够将时域的三角函数形式转换 为复数形式,便于计算和分析。
通过相量图和相量运算,可以分 析交流电路的阻抗、功率和稳定
复数几何意义
复数在平面坐标系中可以用点或 向量表示,实部为x轴坐标,虚部 为y轴坐标。
阻抗和导纳
阻抗定义
阻抗是电路中阻碍电流流动的量,表示为复数 形式Z=R+jX,其中R是电阻,X是电抗。
导纳定义
导纳是类似于阻抗的量,表示为复数形式Y=G+jB, 其中G是电导,B是电纳。
阻抗和导纳的关系

正弦量的相量表示方法

正弦量的相量表示方法
电工基础
正弦量的相量表示方法
正弦量的表示方法有: 数学表达式、波形图、 相量表达式
1.1 复数及四则运算
1.复数
在数学中常用 A a bi 表示复数,其中a为实部,b为虚部,i 1
称为虚单位。在电工技术中,为区别于电流的符号,虚单位常用j表示。
+j
3
A
+j
b
P
r
O
4
+1
O
a +1
图4.7 复数在复平面上的表示 图4.8 复数的矢量表示

A B (8 j6) (6 j8) 14 j2
A B (8 j6)(6 j8) 10 36.9 10 53.1 100 16.2
正弦量的相量表示方法
1.2 正弦量的相量表示法
给出一个正弦量 u U m sin(t ) 在复平面上作一矢量,如图4.10所示。
(1)矢量的长度按比例等于振幅值U m
(在第四象限)
A1 5 36.9
A2的模 r2 (3)2 42 5
辐角2
arctan
4 3
126.9
则 A2 极坐标形式为
A2 5 126.9
(在第二象限)
正弦量的相量表示方法
例 4.7 写出复数 A 220 60 的三角形式和代数形式。
解 三角形式 A 220(cos60 jsin 60)
u2 2U 2 sin(t 2 ) 40 sin(100t 30) V
电工基础
(2) 复数的三角形式
A r cos jr sin
(3) 复数的指数形式
A re j
(4) 复数的极坐标形式
A r
正弦量的相量表示方法
例4.6 写出复数 A1 4 j3 A2 3 j4 的极坐标形式。 解 A1 的模 r1 42 (3)2 5

第6课_正弦交流电路与相量表示法

第6课_正弦交流电路与相量表示法
电路符号

i
tan
O
i
i
L u (t)
+
单位
-
L 称为电感器的自感系数, L的单位:H (亨) (Henry,亨利),常用 H,m H表示。
线性电感的电压、电流关系
i
L
u (t)
电感元件VCR 的微分关系 根据电磁感应定 律与楞次定律
+
u、i 取关
联参考方向
-
d di ( t ) u( t ) L dt dt
第3章
重点:
正弦交流电路
1. 正弦量的表示、相位差; 2. 正弦量的相量表示 3. 电路定理的相量形式;
1
交流电路
交流动态电路
电路中所含的电源都是交流电源, 则称该电路为交流电路;
交流动态电路
交流电压的电压以及交流电流 源的电流都是随时间做周期变化 的;
如果交流电路中除电源外所含的元件至少有一个是动态元件, 则称该电路为交流动态电路;
( 2) i1 ( t ) 10 cos(100 t 300 ) i2 ( t ) 10 sin(100 t 150 ) ( 3) u1 ( t ) 10 cos(100 t 300 ) u2 ( t ) 10 cos(200 t 450 ) (4) i1 ( t ) 5 cos(100 t 30 )
直流I
R
交流i
R
W RI T
2
W Ri ( t )dt
T 2 0
电流有效 值定义为
1 T 2 I 0 i (t )dt T
def
有效值也称均方根值 (root-meen-square)
同样,可定义电压有效值:

10.正弦交流电路的相量表示法

10.正弦交流电路的相量表示法

I 2= 1590 0 j15(V )
=100 20 100 2 (V ) U
指数表示法:
复数形式:
I cos jI sin I i i
I (cos j sin ) I i i
j
欧拉公式:
e
cos j sin
j i I Ie
课前提问
1、什么是旋转矢量?为什么提出旋转矢量? 2、什么是相量和相量图? 3、复数的四种表示方法是什么?
正弦量的相量表示法
教学任务: • 会画相量图
• 能够用复数的三种形式表示正弦量
回顾正弦交流电路的描述方法:
1. 瞬时值(三角函数法): i I m sin t i
Im

2. 波形图法:

6

旋转矢量的加法
化简:一个电路中只有一种频 率。 要素。 三要素退化为两个 固定位置
B A
C
i
i
正弦量
t
对应
相量图
I m
i
初始相量
相量:电工学中用来表示正弦量大小和相位的矢量。记作 I
相量图表示法:
314t 48)V , 例: 已知: u1 (t ) 100sin(
求:
有理数
复数:
a bj I
极坐标表示法:
最大值: 有效值:

I I m m i
o
i
I m
i(t ) 2 I sin( t i ) I I i
有效值相量的模表示正弦量的有效值 相量的幅角表示正弦量的初相位
优点:方便乘除运算。
【例题讲解】
u(t ) 2U sin(t θ )

电工第2章 正弦交流电路

电工第2章 正弦交流电路
函数(cos)。 1.正弦量数学表达式
图2-2 正弦交流电波形图
2.1 正弦交流电量及基本概念
(1)最大值 又称为幅值,是正弦量的最大值,用带右下标m的大写 字母表示,如Im、Um、Em分别表示正弦电流、正弦电压、正弦电动 势的最大值。 (2)角频率ω 在单位时间内正弦量所经历的电角度,用ω表示,其单 位为弧度每秒(rad/s)。正弦交流电变化一次所需的时间,称为周期T, 其单位为秒(s),正弦量在单位时间内变化的次数,称为频率f, 其单位为赫[兹](Hz)。
图2-9 纯电阻电路
2.3 单一参数元件的正弦交流电路
(2) 有效值关系 由电流与电压的幅值关系Im= Um /R,两端同除 以 ,可得它们的有效值关系为U=IR (3) 相量关系 因为电流i和电压u均为同频率的正弦量。 相量形式为 2.电阻元件的功率 (1) 瞬时功率 在关联参考方向下,电阻元件的 瞬时功率(用小写字母p表示):
图2-4 两正弦量的同相与反相
2.1 正弦交流电量及基本概念
例2.1 已知正弦量u=220sin(314t + 30°)V, 试求正弦量的三要素、有效值及变化周期。 解:对照式(2-1),可知三要素:
2.1 正弦交流电量及基本概念
例2.2 已知正弦电压u和正弦电流i1、i2的瞬时表达式为u = 310sin(ωt -45°)V,,i2=28.2sin(ωt +45°)A,试以电压u为参考量重新写出u和 电流i1、i2的瞬时值表达式。 解:以电压u为参考量, 则电压u的表达式为 由于i1、i2与u的相位差为
2.2 正弦交流电的相量表示方法
2.2.2 正弦量的相量表示法 正弦量和相量是一一对应关系(注意:正弦量和相量不是相等
关系!)。在复平面中,例如相量可用长度为 ,与实轴正向的夹 角为ψ的矢量表示。这种表示相量的图形称为相量图。如图2-7所示

正弦交流电的相量表示法

正弦交流电的相量表示法

u
波形图
O
ωt
瞬时值表达式 u Umsin( t )
相量 U Uψ
必须 小写
重点
前两种不便于运算,重点介绍相量表示法。
2.正弦量用旋转有向线段表示
设正弦量: y
u
Umsin(
t ψ)
u
u0ω
O
x
u1
U
O
m
ψ
ω t1
ωt
若:有向线段长度 = Um
有向线段与横轴夹角 =
初相位
有向线段以速度ω 按逆时针方向旋转
②只有正弦量才能用相量表示, 非正弦量不能用相量表示。
③只有同频率的正弦量才能画在同一相量图上。
I
U
④相量的两种表示形式
相量式: U Uejψ U ψ U( cos ψ jsin ψ)
相量图: 把相量表示在复平面的图形
可不画坐标轴
I
U
⑤相量的书写方式
• 模用最大值表示 ,则用符号:U m 、Im
• 实际应用中,模多采用有效值,符号: U 、I
如:已知 u 220 sin(ω t 45)V
则U m 220e j45V或 U 220 e j45V 2
⑥“j”的数学意义和物理意义
e 旋转 90 因子: j90
ej90 cos 90 jsin90 j
设相量 A rejψ B
+j
则:该旋转有向线段每一瞬时在纵轴上的投影即表示
相应时刻正弦量的瞬时值。
3. 正弦量的相量表示
实质:用复数表示正弦量 复数表示形式
设A为复数: (1) 代数式A =a + jb
+j
b
r
0
A

正弦交流电的相量表示法

正弦交流电的相量表示法

相量的两种表示形式
例:已知同频率的正弦量的表达式分别为
例: 用相量图来表示下列正弦量
u 1 U m sin ω t V
u2 U m sin(ω t - 120 o ) V
u3 U m sin(ω t 120 o ) V
解:

U3

120 °

120° U1
U2
例:
例:写出下列正弦量的相量,并
求出:i = i1+i2 ,画出相量图。
i1 20 2 sin(t 60o)A
i2 10 2 sin(t - 30o )A
解:
İ1= 20∠60°A
İ2=10∠-30°A
İ = İ1+ İ2 = 20∠60°+10 ∠-30°
=20(cos60 °+jsin60 °)+ 10[cos(-30°)
+jsin (-30°)
加减运算用代数式, 实部与实部相加减, 虚部与虚 部分别相加减。
乘除运算用指数式或极坐标式,模相乘或相除, 辐角相加或减。
复数及其四则运算
用画图法作相量的加、减运算
03 正弦量的相量表示法
正弦量的相量表示法
正弦信号可用一旋转矢量来表示,
令:矢量长度=Im 矢量初始角=Ψ
如图所示:
矢量旋转速度=ω
注意:
• ①相量只是表示正弦量,而不等于正弦量,两者只有对应关
系。 i=Im sin(t )≠Im

Im Im
• 正弦量是时间的函数,而相量仅仅是表示正弦量的复数,两 者不能划等号!
• ②只有正弦量才能用相量表示,非正弦量不能用相量表示。 • 因此,只有表示正弦量的复数才能称之为相量。 • ③只有同频率的正弦量才能画在同一相量图上。

正弦交流电路的相量表示法

正弦交流电路的相量表示法

03
相量表示法的应用
相量与复数的关联
01
相量是复数的一种表示形式,其 实部表示电压或电流的有效值, 虚部表示其相位角。
02
通过复数运算,可以方便地计算 正弦交流电路中的电压、电流和 阻抗等参数。
相量在电路分析中的应用
利用相量图,可以直观地分析正弦交 流电路中的电压、电流和阻抗之间的 关系。
通过相量法,可以简化正弦交流电路 的计算过程,提高计算效率和精度。
02
正弦交流电路的基本概念
正弦交流电的产生
交流发电机
通过机械能转换为交流电,发电 机转子旋转产生磁场,定子切割 磁力线产生感应电动势,从而产 生正弦交流电。
交流调压器
通过改变磁通量或改变匝数来调 节输出电压,从而产生正弦交流 电。
正弦交流电的特性
01
02
03
周期性
正弦交流电的电压、电流 等参数随时间按正弦规律 变化,具有周期性。
通过相量图,可以直观地理解电路的相位 关系和阻抗的性质。
03
02
简化了正弦交流电路的分析过程,使得计算 变得直观和方便。
04
局限性
相量法仅适用于线性时不变系统,对于非 线性或时变系统,相量法不再适用。
05
06
对于多频输入信号,相量法可能无法准确 描述信号的频谱特性。
未来研究方向
01
深入研究非线性电路和时变系统的相量表示法,以扩展相量法 的应用范围。
VS
电动机的启动和制动
利用相量法,可以研究电动机的启动和制 动过程,为电动机的控制提供理论支持。
滤波器问题
滤波器的频率响应
通过相量法,可以分析滤波器的频率响应特 性,从而设计出符合要求的滤波器。

正弦交流电的相量表示法(2)

正弦交流电的相量表示法(2)
电工基础
正弦量的表示法:
解析式: i(t ) I m sin(t ) A
i
Im
最大值相量: I m I m
有效值相量: I I
最大值: I m
I
Im
I
有效值: I
平均值:
I
I
电工基础
例:写出下列正弦量的相量形式:
i1 (t ) 5 2 sin(t 53.1) A
2
虚数
用 j 代替
虚部 实部
i
B a jb
j
复数 A a jb 代数式
0
D
b
A
C a jb
D a jb
复数的模
r

0
1
r a 2 b2

复数矢量与实轴正方向的夹角
a
C
0
取值在正180度到负180度之间
a r cos
0
电工基础
三、正弦量的相量表示法: re j r cos jr sin
Im
t
正弦交流电
I me j (t ) I m cos(t ) jI m sin(t )
用 I me
I me
j (t )

jt

I m sin(t ) I mt
加减用代 数式运算
A B a1 jb1 a2 jb2 (a1 a2 ) j (b1 b2 ) A B a1 jb1 (a2 jb2 ) (a1 a2 ) j (b1 b2 )
A B
A
A B
A
B B
1
1

正弦交流电的基本概念、相量表示法

正弦交流电的基本概念、相量表示法
在复平面中,以实轴为电阻轴,虚轴为感抗和容抗之和,将阻抗的相量标在图上,形成阻抗相量 图。
04
交流电路的分析
交流电路的元件
01
02
03
电阻元件
在交流电路中,电阻元件 的阻抗不随时间变化,其 值由电阻的物理性质决定。
电感元件
在交流电路中,电感元件 的感抗随频率变化,其值 由电感的物理性质决定。
电容元件
幅角
相量与实轴正方向的夹角,表示正弦交流电的 相位。
相量运算
加标法题
将•两个文同字频内率容的相量 • 文字内容
按•平行文四字边内形容法则进 • 文行字合内成容。
减法
将一个相量减去另一 个相量,等于将一个 相量的起点平移到另 一个相量的终点后再
进行加法运算。
数乘
一个标量与一个相量 的乘积,表示该标量 乘以相量的模长和幅
表示发电机或变压器的输出功率与输入功 率的比值,反映了设备本身的损耗。
THANKS
角。
比例关系
对于两个同频率的相 量,其比值等于相应 正弦量的比值,即电 压与电流的比值为电 阻,电压与感抗的比 值为电感,电流与容 抗的比值为电容。
03
正弦交流电的相量表示
电压的相量表示
电压的相量表示法
将正弦交流电压的幅度和初相角用复数表示,即$U = U_{m}angletheta$。其 中,$U_{m}$表示电压的幅度,$theta$表示电压的初相角。
电压相量图
在复平面中,以实轴为幅度轴,虚轴为相位轴,将电压的相量标在图上,形成 电压相量图。
电流的相量表示
电流的相量表示法
将正弦交流电流的幅度和初相角用复 数表示,即$I = I_{m}angletheta$。 其中,$I_{m}$表示电流的幅度, $theta$表示电流的初相角。

正弦量的相量表示法

正弦量的相量表示法

小结:
❖ 正弦量能够用相量表达,正弦量也能够用复数 表达。
❖ 正弦量旳相量旳幅角等于正弦量旳初相角, 相 量旳模等于正弦量旳最大值或有效值。
❖ 为了使计算成果能直接表达正弦量旳有效值, 一般使相量旳模等于正弦量旳有效值,即能够 表达为: U Ue j U
❖ 将几种同频率旳正弦量用相应旳相量表达并画 在同一种坐标平面上,这么旳图叫做相量图。
❖ 在同一量图中,以t=0时刻旳相量表达正弦量。
作业:
❖ 课后复习本节内容。 ❖ 预习下一节“交流电路基本元件”。
谢谢,再见!
2023年9月
( 4 ) 正弦量旳瞬时值=相量虚部
u U
例1: 已知 i1 10 2sin t 30A
+j
试i2 写 5出I21s和inI2旳t 体 6现0式A,并
画出其向量图。
I1 解: i1 和 i2 相应旳电流向量
30
体现式分别为
0 -60
+1
I1 1030 A
I2
I2 5 60A
I1旳长度是I2旳二倍。
例2:
已知 A1 10 j5,A2 3 j4

A1 A2 和
A1 A2

解: A1 10 j5 11.1826.57
A2 3 j4 553.13
A1 A2 11.1826.57 553.13
55.9079.70
A1 A2
11.1826.57 553.13
2.236 26.56
这么,表达正弦电压 u Umsin t
旳相量为
U m Ume j Um
为了使计算成果能直接表达正弦量旳有 效值,一般使相量旳模等于正弦量旳有效 值,即能够表达为:

正弦交流电的相量图表示法ppt课件

正弦交流电的相量图表示法ppt课件

u1 2U1sint 1
u2 2U2 sint 2 u= u1 +u2 = 2U sint
U 同频率正弦波的
U2
相量画在一起,
构成相量图。
2
1
U1
U U1 U2
HOME
7
注意 :
1. 只有正弦量才能用相量表示,非正弦量不可以。 2. 只有同频率的正弦量才能画在一张相量图上,
不同频率不行。 3. 一般取直角坐标轴的水平正方向为参考方向,逆 时针转动的角度为正,反之为负。 4. 用相量表示正弦交流电后,它们的加减运算可按 平行四边形法则进行。
在直角坐标系上可表示为.
A = a + jb
用极坐标系则表示为.
0 ax
A=r/
变换关系为:r a2 b2
arctg b a
或: a r cos b r sin
3
5.2 正弦交流电的相量图表示法
概念 :一个正弦量的瞬时值可以用一个旋转矢量
在纵轴上的投影值来表示。
u Um sin t
正弦交流电的相量图表示法矢量长度矢量与横轴夹角初相位矢量以角速度按逆时针方向旋转homehome描述正弦量的有向线段称为相量phasor幅度用最大值表示则用符号
5.2 正弦交流电的相量图表示法
1
正弦量的相量表示法
• 正弦量具有幅值、频率及初相位三个基 本特征量,表示一个正弦量就要将这三
要素表示出来。
包含幅度与相位信息。
HOME
5
正弦量的相量表示法举例
例1:将 u1、u2 用
设: 幅度:相量大小 U2 U1
相位: 2 1
U2 领先于 U1
U2
2
1
U1

正弦交流电的表示法

正弦交流电的表示法
绘制相量图时,需要确定原点、幅值和角度(相位),将正弦交流电的瞬时值与极坐标系中的点对应 起来。
相量表示法的应用
相量表示法在交流电路分析中具有广泛应用,可以用于计算阻抗、感抗和容抗等参 数,简化正弦交流电路的分析过程。
通过相量图,可以直观地分析正弦交流电在电路中的相位关系,有助于理解交流电 路的工作原理。
相量表示法的定义
相量表示法是一种用于描述正弦交流 电的方法,通过将正弦交流电的幅度 和相位用复数(相量)表示,可以简 化电路分析和计算。
相量表示法中,正弦交流电的三要素 (幅值、频率和相位)被整合到一个 复数中,使得正弦波的数学描述更加 简洁明了。
相量图及其绘制方法
相量图是一种用于表示正弦交流电相量关系的图形,通过在复平面(极坐标系)上绘制相量,可以直 观地展示各正弦波之间的相位关系。
极坐标表示法
极坐标表示法是一种通过极角和极幅来表示正弦交流电的方法。
在极坐标系中,正弦交流电的电压和电流可以表示为:$e = E(cosalphacosbeta + sinalphasinbeta)$, 其中$E$是幅值,$alpha$是初相角,$beta$是相位角。
极坐标表示法可以直观地展示出正弦交流电的幅值和相位信息,方便理解和计算。
相量表示法还可以用于交流电路的稳定性分析,预测系统的动态响应和稳定性。
04
正弦交流电的功率和能量
有功功率和无功功率
有功功率
表示实际消耗的功率,用于转换和 利用能量,单位是瓦特(W)。
无功功率
表示与实际消耗无关的功率,用于 维持磁场和电场,单位是乏 (var)。
视在功率和功率因数
视在功率
表示电源提供的总功率,是有功功率和无功功率的矢量和,单位是伏安(VA)。

正弦交流电表示法

正弦交流电表示法

正弦交流电的表示法2.1.2 正弦量的相量表示法如前所述,一个正弦量由幅值、角频率和初相位三个要素确定,而正弦量的这些特征,可以用正弦波和三角函数表示出来。

除此之外,还可以用相量表示,复数是相量的基础。

(1)复数如图2-6所示,一复数A,a1为其实部,a2为其虚部,a为其长度,则复数A可用四种形式来表示:图2-6 复平面上表示复数A①代数式A=a1+j a2(2-8)为虚单位。

②三角函数式令复数A的模|A|=a,φ角是复数A的辐角,有A=|A|(cosφ+jsinφ)=a(cosφ+jsinφ)(2-9)式中,,,③指数式根据欧拉公式e jφ=cosφ+jsinφA=a e jφ(2-10)④极坐标式极坐标式是复数指数式的简写,这四种复数的表示形式,可以相互转换。

复数的指数形式(或极坐标形式)与复数的三角函数式之间可以通过欧拉公式进行转换,指数形式(或极坐标形式)要变换成代数式可以通过欧拉公式进行转换;代数式变换成指数形式(或极坐标形式)可以通过式(2-9)进行转换。

(2)正弦量的相量表示用复数来表示正弦量的方法称为正弦量的相量表示法,即用复数的模来表示正弦量的幅值(最大值或有效值),用复数的辐角来表示正弦量的初相位。

只有同频率的正弦量用相量进行分析计算才有意义,它使得正弦交流电路的分析和计算变得更为简单。

在线性正弦交流电路中,各部分的电流和电压都是同频率的正弦量。

因为频率不变,所以可以用相量来表示正弦量。

正弦量的相量形式是用大写字母上面加小圆点表示。

例如,“”“”“”等。

同理,可自行写出和相量。

相量、、称为有效值相量,、、称为最大值相量或幅值相量。

相量在复平面上的几何图形叫做相量图,如图2-7所示。

图2-7 正弦量的相量图同频率的正弦量,由于它们之间相位的相对位置不变,即相位差不变,因此可以将它们的相量画在同一个坐标上。

不同频率的正弦量,用相量表示时,不能画在同一相量图上。

(3)相量运算相量的运算规则符合复数运算中的交换律、结合律和分配律等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考:
i1 i3
i2
i1(t) = 4 cos(t+00 ) A i2(t) = 3 cos(t +90 o )A
i3 = i1 + i2
利用三角函数公式 利用波形图
相量法
§5.2 - 5.3 正弦交流电的相量表示
内容: 1、正弦量的相量表示 2、两类约束的相量形式 时数: 2 学时 要求:会用相量图和复数表示正弦交流电, 并能运用相量进行两个正弦量的四则 运算及乘方开方运算。复述基尔霍夫 定律相量形式及欧姆定律相量形式的 内容。
4 0 .8 j 4 0 .6 3 .2 j 2 .4
o U 2 3 53
B
u2

3 cos( 53 ) j 3 sin( 53 )
o o
3 cos 53 j 3 sin 53
o
o
u3 5 2 cos t V
3 0 .6 j 3 0 .8
5 0 0 I3
i3(t) = 5
2 cos t A
例2
i1
i3
相 量 图 法
i2
i3 = i1 + i 2
i1(t) = 4 i2(t) = 3
0
)A 2 cos(t + 37°
2 cos(t – 53°)A
+j
I 1 4 37
I1
I 2 3 53
0 I 3 5 0
0
I 1 4 37
I 2 3 53
4 cos 37 0 j 4 sin 37 0 3.2 j 2.4 I1
0 0 I 2 3 cos( 53 ) j 3 sin( 53 ) 1.8 j 5
I m 8 120
o

o Um 4 30 o 0 .5 90 Z o Im 8 120
电压滞后电流 900,该元件为电容
Z 0.5 cos( 90 ) j0.5 sin( 90 )
0 0
0.5 cos 90 j0.5 sin 90 j0.5
1 .8 j 2 .4
U 3 U 1 U 2 5 5 0 0
二、欧姆定律的相量形式 1、欧姆定律 I R I R _ + U + U
R U I
U R I
I _ +
Z
U
U Z= I
_
2、广义欧姆定律与复阻抗
U U u U Z u i I i I I
i 1 5 2 cos( t 45 ) A
o
i1 i 3 i2
i 2 5 2 cos( t 45 ) A
o
i3 = i1 + i2
I I 5 45 0 5 45 0 5 20 o A I3 1 2
5 cos 45
0
j 5 sin 45
2、相量图 静止矢量画在平面座标中的图形
U 20120
0
y
0
x
10 45 0 Im
3、相量式
极坐标式 指数式 三角式 代数式
相量可用复数来表示
U U u
应用场合 乘除运算
U Ue
j u
U U (cos u j sin u )
U a jb a U cos u b U sin u
二、正弦交流电的相量表示法
同频信号只需要表示振幅和初相两个要素
1、相量 t 0 时刻的静止矢量
u 20 2 cos( t 120
0 0
Im I U m U
0 U 20 120
)
i 10 cos( t 45 )
10 45 0 Im
重难点:相量表示法
§5.2 正弦交流电的相量表示法

一、正弦交流电与旋转矢量的关系 1、矢量 能同时表示大小和方向的物理量
y
动画
u(t)
Um x
A O
t
T
( t u )
2、旋转矢量
3、关系 t 0 时刻的静止矢量能表示 振幅和初相
矢量 OA 在 X 轴上的投影 就是正弦交流电的瞬时值 OX U m cos( t u ) u ( t )
a、模是电压与电流振幅或有效值的比值
Z
=
Um Im
=
U I
b、幅角是这段电路电压与电流的相位差 u i
例1 已知某元件压流 如左,求复阻抗
5 30 o Um o I m 4 30
u(t) = 5 cos(100 t +30 )V 。 i(t) = 4 cos(100 t +30 )A
0
I3
I2
2 cos t A
+1
i3(t) = 5
§5 .3 两类约束的相量形式
一、基尔霍夫定律的相量形式
1、KCL 假设节点的电流为同频正弦信号
∑ ik = 0 k=1 ∑ uk = 0
k=1
n

k=1 n
n
Ik = 0
2、KVL 假设回路中的电压为同频正弦信号
n

Uk = 0
k=1
例1 求 i3(t)
0
0 0
5 cos( 45
) j sin( 45
0
)
10 cos 45
5
2
i3(t) = 10 cos t A
例2 求 u3(t)
+ +
u1 4
2 cos( t 37
o
)V
o
u2 3
2 cos( t 53
)V
u3

A
u1
– +
4 37 o 4 cos 37 o j 4 sin 37 o U1
i(t) =
I
3、四种相量表示法的互换
极坐标式 指数式 代数式 三角式
4、KCL、KVL的相量形式 5、广义欧姆定律和复阻抗相量
加减运算
相互 关系
U a b b u arctan a
2 2
三、特殊角与典型三角形
2
450
1 2 300 600 1
sin 30
0
1
sin 45
0
2 2 1 2 3 2
cos 45
0
2 2 3 2 1 2
tan 45 1
0
cos 30
0
tan 30
0
3 3 3
1
2
1、化极座标式
4 0 0 Im1
390 0 Im2
2、加减运算 I m 1 4 cos 0 0 j 4 sin 0 0 4
3 cos 90 0 j 3 sin 90 0 j 3 Im2
Im 3 Im1 Im 2 4 j 3
0
0
小结:
1、正弦交流电的四种表示方法 时域:函数式、波形图 (表三要素) 频域:相量式、相量图 (表两要素) 2、正弦交流电的相量表示 I 与 i(t) 的联系和区别: 联系: 区别: I ( Im ) i(t) 的振幅、初相 i(t) 是正弦函数,是 t 的函数
I 是复常数,不是 t 的函数
同频条件下, I 与 i(t)是对应关系
sin 60
0
cos 60
0
tan 60
0
3
sin 37
0
3 5 4 5
cos 37
0
4 5 3 5
tan 37
0
3 4 4 3
5 370
530
3
sin 53
0
cos 53
0
tan 53
0
4
例1
i1 i3
i2
i3 = i1 + i 2 i (t) = 4 cos(t+00 ) A i (t) = 3 cos(t +90 o )A
o U m 5 30 1 .2 Z o Im 4 30

电压与电流同相,该元件为电阻
Z R 1.2
例2 已知某元件压流 如左,求复阻抗
9 30 o Um o I 3 60
m
u(t) = 9 cos(200 t +30 )V 。 i(t) = 3 cos(200 t - 60 )A
4 2 3 2 arctan 3 5 37 0 3、化极座标式 I m 3 4
4、还原信号
i3(t) = 5 cos(t +37 o ) A
相量计算的一般规律
时域表达式
极坐标式
三角式
代数式 加 减


三角式
极坐标式
代数式
时域
频域
例1
i1 i3
相 量 图 法
i2
i3 = i1 + i 2 i1(t) = 4 cos(t+00 ) A i2(t) = 3 cos(t +90 o )A

o Um 9 30 o 3 90 Z o Im 3 60
电压超前电流 900,该元件为电感
Z = j 3
例3 已知某元件压流 如左,求复阻抗
4 30 o Um
u(t) = 4 cos(314 t +30 )V 。 i(t) = 8 cos(314 t +120 )A
0
I m 1 4 0
相关文档
最新文档