时间序列分析方法第章谱分析完整版
时间序列分析01-第一章
![时间序列分析01-第一章](https://img.taocdn.com/s3/m/a230e6c789eb172ded63b71f.png)
5/6
1.4
时间序列分析的应用领域
随着时间序列分析方法的日趋成熟,其应用领域越 来越广泛,主要集中在预报预测领域,例如气象预 报、市场预测、地震预报、人口预测、汛情预报、 产量预测等等。另一个应用领域是精密测控,例如 精密仪器测量、精密机械制造、航空航天轨道跟踪 和监控,以及遥控遥测、精细化工控制等。再一个 应用领域是安全检测和质量控制。在工程施工和维 修中经常会出现异常险情,采用仪表监测和时间序 列分析方法可以随时发现问题,及早排除故障,以 保证生产安全和质量要求。以上仅仅列举了某些应 用领域,实际上还有许多应用,不胜枚举。
4/6
1.3 时间序列分析方法的起源与发展
时间序列分析方法最早起源于1927年,数学家耶尔(Yule)提出 建立自回归(AR)模型来预测市场变化的规律。接着,在1931 年,另一位数学家瓦尔格(Walker)在AR模型的启发下,建立 了滑动平均(MA)模型和自回归、滑动平均(ARMA)混合模 型,初步奠定了时间序列分析方法的基础,当时主要应用在经济 分析和市场预测领域。20世纪60年代,时间序列分析理论和方法 迈入了一个新的阶段,伯格(Burg)在分析地震信号时最早提出 最大熵谱(MES)估计理论,后来有人证明AR模型的功率谱估 计与最大熵谱估计是等效的,并称之为现代谱估计。它克服了用 传统的傅里叶功率谱分析(又称经典谱分析)所带来的分辨率不 高和频率漏泄严重等固有的缺点,从而使时间序列分析方法不仅 在时间域内得到应用,而且扩展到频率域内,得到更加广泛的应 用,特别是在各种工程领域内应用功率谱的概念更加方便和普通。 到20世纪70年代以后,随着信号处理技术的发展,时间序列分析 方法不仅在理论上更趋完善,尤其是在参数估计算法、定阶方法 及建模过程等方面都得到了许多改进,进一步地迈向实用化,各 种时间序列分析软件也不断涌现,逐渐成为分析随机数据序列不 可缺少的有效工具之一。
谱分析方法
![谱分析方法](https://img.taocdn.com/s3/m/9b07581555270722192ef700.png)
第4章 谱分析方法§1 绪论一. 时间序列模型:通过分析自相关就获得描述与预测时间序列可能够用模型的第一印象。
如1t t t y y a f --=这里t y 与1t y -相关性较大,而与2t y -相关较弱,为什么?二.分析时间序列的两种方法频谱法, 时间序列法-Box Jenkins 方法三. 时间序列模型的五个特征(最重要的)描述趋势有多种方法 1. 趋势t t y t a d m =++ 1,2,....,t n = 确定性趋势 11t t t t y y d m m ---=+- 随机趋势2. 季节性: 111,22,,...t t t t s s t t y y D D D a a a m --=++++ 1,2,....,t n =,s t D 是季节哑变量,定义为,1s t D =, ()1t T S s =-+, 1,2,...,S S = 1,2,....,T N = ,0s t D = 其它3. 异常观测值异常观测值:在时间序列中,可能有一个或几个点,会对时间序列的建模与预测起到重要的作用。
这样的数据点称为奇异观测值。
4. 条件异方差异常观测值倾向于成群出现,这个现象称为波动性集聚(vilatility clustering )条件异方差()()22112t t t t t y y y y a r m ----=+-+ 3,4,...,t n = 5. 非线性: 状态依赖——机制转换特征§2 谱分析一. 时间序列分析的方法1 时序分析方法:也就是时序建模方法,ARMA 等,也就是原序列的时间顺序不变。
2 频谱建模方法:单变量频谱建模技术就是时间序列看作是有不同频率的正弦和余弦波组成。
其基本思想是:把时间序列看作是互不相关的周期(频率)分量的叠加,通过研究和比较各分量的周期变化,以充分揭示时间序列的频域结构,掌握其主要波动特征。
做法:对某个时间序列剔除趋势和季节因素后的循环项(平稳)进行谱估计,根据估计出的普密度函数,找出序列中的主要频率分量,从而把握该序列的周期波动特征。
《时间序列分析法》课件
![《时间序列分析法》课件](https://img.taocdn.com/s3/m/7f0b6a6ea4e9856a561252d380eb6294dd88222c.png)
目录
• 时间序列分析法概述 • 时间序列数据的预处理 • 时间序列的模型选择 • 时间序列的预测与分析 • 时间序列分析法的实际应用案例 • 时间序列分析法的未来发展与挑战
01
时间序列分析法概述
时间序列分析法的定义
时间序列分析法是一种统计方法,通 过对某一指标在不同时间点的观测值 进行统计分析,以揭示其内在的规律 和趋势。
处理速度要求高
大数据时代要求快速处理和分析时间序列数据 ,以满足实时性和高效率的需求。
数据质量与噪声处理
大数据中存在大量噪声和异常值,需要有效的方法进行清洗和预处理。
时间序列分析法与其他方法的融合
统计学方法
时间序列分析法可以与统计学方 法相结合,利用统计原理对数据 进行建模和推断。
深度学习方法
深度学习在处理复杂模式和抽象 特征方面具有优势,可以与时间 序列分析法相互补充。
ARIMA模型
适用于平稳时间序列的预测, 通过差分和整合方式处理非平
稳数据。
指数平滑法
适用于具有趋势和季节性变化 的时间序列,通过不同权重调 整预测值。
神经网络
适用于复杂非线性时间序列, 通过训练数据建立预测模型。
支持向量机
适用于小样本数据和分类问题 ,通过核函数处理非线性问题
。
预测精度评估
均方误差(MSE)
它通常用于预测未来趋势、分析周期 波动、研究长期变化等方面。
时间序列分析法的应用领域
金融市场分析
用于股票、债券、商品等市场的价格预测和 风险评估。
气象预报
通过对历史气象数据的分析,预测未来的天 气变化。
经济周期研究
分析经济周期波动,预测经济走势。
时间序列分析法讲义
![时间序列分析法讲义](https://img.taocdn.com/s3/m/755b221dda38376bae1fae08.png)
2004
(4) 1451604 1494570 1478651 1577307 6002132
季别累计
(5) 5277839 5503950 5333203 5724816 21839808
季别平均 季节指数
(6) 1319460 1375988 1333301 1431204 1364988
(7) 0.9666 1.0081 0.9768 1.0485 4.0000
97
8
20 -1 503 - 1
07
50
3
20 0 526 0 0 08
20 1 559 55 1
09
9
解:设t表示年次,y表示年发电量,则方成为:y=a+bt
a y 2677 535.4
n5
b ty 278 27.8 t 2 10
y=535.4+27.8t
当t=3时,y=618.8
指数平滑法是生产预测中常用的一种方法。 也用于中短期经济发展趋势预测,
(1) 一次指数平滑法(单重指数平滑法)
X t1
S (1) t
X t
(1
)S
(1) t 1
一次指数平滑法的初值的确定有几种方法
(A) 取第一期的实际值为初值(数据资料较多);S0(1) X1 (B) 取最初几期的平均值为初值(数据资料较少)。
2、指数的分类 (1)个体指数:反映某一具体经济现象动态变动的相
对数
(2)综合指数:反映全部经济现象动态变动的相对数
(3)数量指标指数:它是表明经济活动结果数量 多少的指数。
(4)质量指标指数:它是表明经济工作质量好坏 的指数。
(5)定基指数:它是指各个指数都是以某一个固 定时期为基期而进行计算的一系列指数。
时间序列分析课件讲义
![时间序列分析课件讲义](https://img.taocdn.com/s3/m/6d54e695960590c69ec376a4.png)
3.5E+09 3.0E+09 2.5E+09 2.0E+09 1.5E+09 1.0E+09
5.0E+08 99:01 99:07 00:01 00:07 01:01 01:07 02:01 02:07
Y
8
单变量时间序列分析
趋势模型
确定型趋势模型
平滑模型 季节模型
水平模型
加法模型
9
乘法模型
ARMA模型 ARIMA模型 (G)ARCH类模型
42
(2)ADF检验 DF检验只对存在一阶自相关的序列适用。 ADF检验 适用于存在高阶滞后相关的序列。 y = y t 1 + t
表述为
y t = y t 1 + t
t
存在高阶滞后相关的序列,经过处理可以表述为 y t = y t 1 + 1yt 1+ 2yt 2 + ....... + p1yt p1 + t 上式中,检验假设为
34
特别地,若 其中,{ t }为独立同分布,且E( t ) = 0,
D( t )
2 = <
yt= y t 1+ t
t = 1,2,......
,则{
(random waik process) 。可以看出,随机游动过程是 单位根过程的一个特例。
yt }为一随机游动过程
(2) 季节差分
3. 随机性
23
(四)ARMA模型及其改进 1. 自回归模型 AR(p) 模型的一般形式
( B) yt
=
et
AR (p) 序列的自相关和偏自相关 rk :拖尾性 k :截尾性
时间序列分析法(ppt42页)
![时间序列分析法(ppt42页)](https://img.taocdn.com/s3/m/25aa5125d5bbfd0a78567356.png)
3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。08:305.26.202108:305.26.202108:3008:30:575.26.202108:305.26.2021
第七章 时间序列分析
➢ 第一节 时间序列的概念和表示方法 ➢ 第二节 时间序列分析的基本原理 ➢ 第三节 趋势拟合方法 ➢ 第四节 季节变动预测
第一节 时间序列概念和表示方法
时间序列分析方法由 Box-Jenkins (1976) 年 提出。它适用于各种领 域的时间序列分析。
第一节 时间序列的概念和表示
型为
▪ 乘法模型
Y=T+S+C+I
(3.3.1)
假定时间序列是基于4种成份相乘而成的。假定季 节变动与循环变动为长期趋势的函数。该模型的方程 式为
Y T SCI
(3.3.2)
二、趋势拟合方法
(一)平滑法
时间序列分析的平滑法主要有三类 :
移动平均法
设某一时间序列为 y1,y2,…,yt,则t+1 时刻的预测值为
1.自相关性判断
①时间序列的自相关,是指序列前后期 数值之间的相关关系,对这种相关关系程度 的测定便是自相关系数。
② 测度:设y1,y2,…,yt,…,yn,共有 n个观察值。把前后相邻两期的观察值一一成 对,便有(n-1)对数据,即(y1,y2),(y2, y3),…,(yt,yt+1),…,(yn-1,yn)。
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021年6月上 午9时57分21.6.2609:57June 26, 2021
时间序列分析方法 第0章 谱分析
![时间序列分析方法 第0章 谱分析](https://img.taocdn.com/s3/m/a6406c5d0740be1e650e9aa4.png)
第六章 谱分析 Spectral Analysis到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。
这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。
在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为:上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞-}{t Y 性质时所发挥的重要程度如何。
如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。
我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。
对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。
§6.1 母体谱我们首先介绍母体谱,然后讨论它的性质。
6.1.1 母体谱及性质假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为:假设这些自协方差函数是绝对可加的,则自协方差生成函数为:这里z 表示复变量。
将上述函数除以π2,并将复数z 表示成为指数虚数形式)exp (ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。
利用De Moivre 定理,我们可以将j i e ω-表示成为:因此,谱函数可以等价地表示成为:注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为:利用三角函数的奇偶性,可以得到:假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数)(ωY s 存在,并且是ω的实值、对称、连续函数。
时间序列分析部分讲义中国科学研究院安鸿志22页word
![时间序列分析部分讲义中国科学研究院安鸿志22页word](https://img.taocdn.com/s3/m/e942d1950242a8956bece4d9.png)
时间序列分析 (J.D.Hamilton)前言: 3.平稳ARMA过程(p49-78),6.谱分析(p180-202),11.向量自回归(p345-409),21.异方差时间序列模型(p799-823).3. 平稳ARMA过程3.0 概述 (认识论,方法论,历史观,发展观)什么是”回归模型”?什么是”自回归模型”?它们有什么联系 ?为什么用”回归”一词 ?它们的推广模型是什么 ?它们的应用背景是什么 ?* 考虑”父-子身高的关系”X---父亲的身高,Y---儿子的身高,它们有关系吗? 有什么样的关系呢?不是确定的关系! 又不是没有关系!在同族中抽取n对父-子的身高, 即有n对数据:(X1,Y1), (X2,Y2), … , (X n,Y n).Y k ~ a + bX k , 1≤k≤n.Y k = a + bX k + e k , 1≤k≤n. (0.1)* 此为一元线性回归模型.e k---个体差异, 其他因素, 等等.* 如果, 如果能记录到一个父系的长子身高序列, 即X1,X2,…,X n , 显然, (X1,X2),(X2,X3),…,(X n-1,X n)是(n-1)对父--子身高数据, 与(X k,Y k)相比, 这里的Y k = X k+1 , k=1,2,…,n-1.依同样论述有X k +1 = a + bX k + e k , 1≤k≤n. (0.2)* 此为一元线性自回归模型(自变元Y k是因变元X k的延迟) * 回归←英文翻译←Regression←(0.2),具体说来如下:μ--男人平均身高. 由(0.2)得X k +1-μ = a + bX k + e k -μ (注意μ=(b-1)μ+bμ) = a +(b-1)μ + b(X k -μ)+ e k.W k = (X k -μ)---第k代长子身高与平均身高之差,c= a +(b-1)μ,于是有W k+1 = c + bW k + e k. (0.3) 特别人们发现: 0<b<1.它表明:平均说来, 当父亲身高超过平均身高时,其子身高也会超过平均身高,但是比父亲身高更靠近平均身高.有回归平均身高的趋向!稳定系统!* 回归模型的推广: (线性模型)* 增加自变元个数:比如, 儿子身高不仅与父亲还与母亲, 甚至于祖父母有关, 于是(0.1)式应推广为:Y k = a + b1X1k +…+ b p X pk +e k , 1≤k≤n. (0.4) * 此为p元线性回归模型.* 向非线性推广:仍以父-子身高的关系为例, 它们的真实关系应是比(0.1)式更一般的形式:Y k = ϕ(X k )+ e k , 1≤k≤n. (0.5)(0.4)式更一般的形式:Y k = ϕ(X1k,…,X pk )+ e k , 1≤k≤n. (0.6) 近年来, 又引出了比(0.6)式更广的模型:Y k =ϕ(X1k,…,X pk )+s(X1k,…,X pk )e k ,1≤k≤n. (0.7) * 此为异方差回归模型.(0.7)式的更一般的形式:Y k =ψ(X1k,…,X pk ;e k ),1≤k≤n. (0.8) 模型越复杂, 越近似真实情况, 也越难统计分析.* 应用背景:非常广泛!主要用于预报,控制,检测,管理. 模型的获得方法有两类.3.1 期望,平稳性,遍历性:确切说, 是对(0.1)至(0.8)式中{e k}的最起码的假定, 根据这些假定就可以引出随机过程和各种模型概念, 用它们近似描述{e k}(本来是说不清的).而且, 对这些起码的假定, 也只是以最直观的方式, 而非严格的概率论观点, 加以介绍.* 期望和随机过程* 随机过程: {X(t);-∞<t<∞},其中X(t)是随机变量.* 随机序列: {X k;k=…,-1,0,1,…},其中X k是随机变量.特别当X k=X(kh)时,序列{X k}是过程{X(t)}的等间隔采样序列.回忆随机变量X和它的样本的定义, 我们有:* 样本序列:{…,x-1,x0,x1,…}是序列{X k}的一个样本序列, 又称为一个实现, 又称为一个观测序列,等等.请注意: 随机变量X的一个样本,就是一个数;随机向量X的一个样本,就是一个向量数;随机序列{X k}的一个样本, 是一个无穷数列;在实际应用中, 我们无法记录无穷数列,从而在讨论随机序列{X k}的样本时, 只能考虑一个样本的有限部分, 比如{x1,x2,…,x n}是序列{X k}的一段观测值序列.在理论讨论时,为了方便又不得不涉及无穷数列. 这些都是学习和掌握时间序列分析时, 首先要认清的起点.** 序列的分布 :回忆随机变量X的定义便知,它的特征被它的概率分布所确定. 同样, 随机序列也被它的概率分布所确定.不过, 随机序列的分布是无穷个随机变量的概率分布,其复杂性可以想得到. 这里为了避免涉及太深的概率论概念, 我们仅考虑最简单的特疏情况, 即X k~N(μk,σ2k), 它有密度f k(x)=(2πσ2k)-1/2exp{(x-μk)2/2σ2k}而且(X k+1,X k+2,…,X k+m)有联合正态分布. 于是有:* 期望(均值):EX k=⎰xf k(x)dx=μk,* 方差:Var(X k)=E(X k-μk)2=⎰(x-μk)2f k(x)dx=σ2k.* 自协方差:γkj=E[(X k-μk)(X j-μj)]=⎰⎰(x-μk)(y-μj)f kj(x,y)dxdy = E[(X j-μj)(X k-μk)]= γjk.回忆二元随机变量X和Y的协方差定义便可理解上式.* 平稳序列:一类重要的特疏随机序列.弱平稳序列: 如果μk=μ; γkj=γk-j=γj-k .严平稳序列: 如果 (X k+1,X k+2,…,X k+m)的分布与k无关!正态平稳序列: 弱平稳序列≅严平稳序列!** 遍历性:一个重要性质—-时间序列统计分析的基础.(与大数是律有关)(1/n)∑k=1n X k → EX k=⎰xf k(x)dx=μk, 当n→∞.(1/n)∑k=1n g(X k )→ Eg(X k)=⎰g(x)f k(x)dx, 当n→∞.3.2 白噪声序列: 什么是? 为什么叫? 有什么用?它是基楚性的随机序列,具体来说,{…,ε-1,ε0,…}是相互独立相同分布的随机变量序列,且均值为零,方差为σ2.(常用i.i.d.{εt}表示)Eεt=0, Eεt2=σ2, Eεtεs=0,(t≠s)(3.2.1) (3.2.2) (3.2.3)因为, 当t≠s时γts=E[(εt-Eεt)(εs-Eεs)]=Eεtεs=Eεt Eεs=0=γt-s.为什么叫白噪声序列,在讲谱分析更能看清.它有什么用呢 ? 可以说,很多很多的随机序列都是通过白噪声序列的变化生成的!* 请看几个例子:例1. Y t=a+b t+εt, (确定函数+白噪声)μt=EY t=E(a+b t+εt)=a+b t+Eεt==a+b t,γkj=E[(Y k-EY k)(Y j-EY j)]=Eεkεj=Eεk Eεj=0,(j≠k)γkk=E(Y k-EY k)2=Eεk2=σ2.例2. Y t=εt+a1εt-1+a2εt-2, (白噪声延迟的线性和)例3. Y t=εtεt-1, (白噪声⨯白噪声延迟)例4. Y t=εt/(1+εt-12). (白噪声+白噪声延迟的函数) 一个有趣的问题: 是否用白噪声序列能生成所有的平稳序列 ? (回答是, 不能!)3.3 移动平均过程(滑动平均序列—Moving Average-MA)* 移动平均过程定义的由来---概述:设{εk}为白噪声序列, 顾名思义, 滑动平均序列是: Y t=(εt+εt-1+…+εt-m+1)/m, t=…,-1,0,1,…推而广之Y t=(θ0εt+θ1εt-1+…+θmεt-m+1)/(θ0+θ1+…+θm),更广之Y t=μ+θ1εt-1+…+θmεt-m+1+εt, (3.3.8) 或Y t=μ+∑i=0∞ψiεt-i. (线性序列) (3.3.13)Y t=μ+∑i=-∞∞ψiεt-i. (线性序列,非现实)* 移动平均过程的特征:* 均值函数:EY t=μ+∑i=0∞ψi Eεt-i=μ. (By Eεt-i=0) (*)* 自协方差函数:γkj=E[(Y k-μ)(Y j-μ)] (用上式)=E[∑i=0∞ψiεk-i∑i=0∞ψiεj-i]= E[∑i=0∞∑s=0∞ψiψsεk-iεj-s]= ∑i=0∞∑s=0∞ψiψs Eεk-iεj-s(By Eεk-iεj-s=0,if k-i≠j-s)= ∑i=0∞ψiψi+|k-j|Eε12 (By Eε12=σ2)= σ2∑i=0∞ψiψi+|k-j|= γk-j. (3.3.18)* 可见, (3.3.13)式的{Y t}是平稳序列. 特别当{εk}为正态白噪声序列时, {Y t}也是正态平稳序列.还特别指出: 为保证(3.3.18)式可求和, 要求∑i=0∞ψi2<∞. (3.3.14) 或者更强的要求∑i=0∞|ψi|<∞. (3.3.15) 由此式可导出∑i=0∞|γi|<∞. (3.3.19) 此式能保证序列{Y t}具有遍历性.* 一阶移动平均过程(MA(1))Y t=μ+θεt-1+εt, (3.3.1) 相当于(3.3.13)式中的ψ0=1,ψ1=θ,其它ψi=0. 以此代入(*)和(3.3.13)式则有EY t=μ, (3.3.2) γ0=σ2(1+θ2), γ1=γ-1=σ2θ, γi=0, 当|i|>1时.(3.3.3) (3.3.4) (3.3.5)(3.3.5)式是一阶移动平均过程的基本特征!它表现为自协方差函数序列{γ0,γ1,γ2,…},在1以后是截尾的, 即{γ0,γ1,0,0,0,…}.易见, 这一特征与γ0和γ1的具体取值并不密切, 所以,可用序列的自相关函数表述.* 自相关函数:ρk=γk/γ0, k=0,1,… (3.3.6) 这是因为ρk=γk/γ0=γk/γ01/2γ01/2=E[(Y t+k-μ)(Y t-μ)]/{E(Y t+k-μ)2E(Y t-μ)2}1/2,它是Y t+k和Y t的相关系数, 依平稳性它与t无关, 但与k 有关, 所以称函数, 又因是序列自身的关系, 所以称自相关函数.* 对于(3.3.1)的一阶移动平均过程而言, 由(3.3.4)和(3.3.5)知ρ0=1, ρ1=θ/(1+θ2), 当k>1,ρk=0. (3.3.7) 可见, 自相关函数在1以后全为零(截尾)是一阶移动平均过程的本质性特征!* 以上内容不难推广到* q阶移动平均过程:(MA(q))(见p58-59)模型Y t=μ+θ1εt-1+…+θqεt-q+εt, (3.3.8)特征γk=0, ρk=0, 当k>q. (3.3.12) 即,它的自协方差函数在q步以后截尾.关于γ0, γ1,…,γq的具体表达式为γ0=(1+θ12+θ22+…+θq2)σ2, (σ2=Eεt2) (3.3.10)γj=(θj+θj+1θ1+θj+2θ2+…+θqθq-j)σ2,j=1,2,…,q (3.3.12) 注意, 以上(3.3.10)和(3.3.10)式, 表达了γ0, γ1,…,γq和参数θ1,θ2,…,θq2,σ2的相互依赖关系! 但是, 除非q=1,一般很难求解. 况且, 它们的解还有不唯一性问题, 此问题方在3.7节中解答.例2(见p59).3.4自回归过程.(自回归序列—AutoRegression--AR)* 一阶自回归过程(AR(1)) (相当于概述)* 实际背景:* 定义:Y t= c + φY t-1 + εt , (3.4.1)其中{εt}是白噪声序列, 而且, εt与{Y t-1,Y t-2,…}独立!所以, 在文献中, {εt}又被称为新息序列!* 求解: 由(3.4.1)式反复迭代有: (Y t=c+φY t-1 +εt=c+φ(c+φY t-2 +εt-1)+εt=c+φc+φ2Y t-2 +φεt-1+εt=φ2Y t-2+(c+φc)+(εt+φεt-1)=φ3Y t-3+(c+φc+φ2c)+(εt+φεt-1+φ2εt-2)=φn Y t-n+(c+φc+…+φn-1c)+(εt+φεt-1+…+φn-1εt-n+1)→(c+φc+φ2c+…)+(εt+φεt-1+φ2εt-2…)(当n→∞)=c/(1-φ)+∑k=0∞φkεt-k. (3.4.2)* 平稳性:显然, 上式成立的充分必要条件是:|φ|<1. 即φ∈(-1, 1)于是有名称: 区间(-1,1)为AR(1)模型的平稳域;(3.4.2)式的解为AR(1)模型的平稳解;--- AR(1)平稳序列;它也是MA(∞)序列(见(3.3.13)式).* 均值函数:由(3.4.2)式和Eεt=0,有Y t=c/(1-φ)=μ. (3.4.3)* 自相关函数: 在(3.3.18)式, 此时ψj=φj, j=0,1,…于是AR(1)的自协方差函数为γk=σ2φj/(1-φ2)=φjγ0, j=0,1,… (3.4.5)AR(1)的自相关函数为ρk=γk/γ0=φj, j=0,1,… (3.4.6)回顾模型AR(1)(3.4.1)式Y t=c+φY t-1 +εt, 两边同取均值得μ=EY t=Ec+φEY t-1 +Eεt=c+φμ⇒μ=c/(1-φ).在(3.4.1)式两边同减上式μ=c+φμ得(Y t-μ)=φ(Y t-1-μ)+εt.记W t=(Y t-μ), 它是{Y t}的中心化序列! 它满足中心化的AR(1)模型W t=φW t-1 +εt. (3.4.1)’以W t-k(k≥1)同乘上式两边, 然后再同取均值得γk=EW t W t-k=φEW t-1W t-k+Eεt W t-k=φγk-1, k=1,2,… (3.4.15) 其中用到εt与W t-k独立,和Eεt=0,即Eεt W t-k=Eεt EW t-k=0.由此可得γk=φkγ0.将W t=φW t-1 +εt两边平方后, 再同取均值得γ0=EW t2=φ2EW t-1 2+Eεt2+2φEW t-1εt=φ2γ0+σ2⇒γ0=σ2/(1-φ2).记L为(一步)延迟算子(运算), 即Lεt=εt-1,L2W t=W t-2,等等. 于是, W t=φW t-1 +εt 可写成W t=φLW t +εt或者 W t-φLW t =εt 或者(1-φL)W t=εt . (3.4.1)’’W t=(1-φL)-1εt=∑k=0∞φk L kεt=∑k=0∞φkεt-k.其中(1-φL)-1=∑k=0∞φk L k ⇔ (1-φL)∑k=0∞φk L k=1.以上推演方法, 不仅简便, 而且能推广到高阶情况!* 高阶推广:Y t=c+φ1Y t-1+…+φp Y t-p +εt , (3.4.13)μ=c+φ1μ+…+φpμ,W t=φ1W t-1+…+φp W t-p +εt ,记则 W t=φ1W t-1+…+φp W t-p +εt 等价于Z t=AZ t-1+Uεt . (*)于是, 以上对模型AR(1)的推演步骤都无困难地推广到以上p元一阶AR模型. 唯一的差别就是要用到矩阵运算. 例如, 类似于(3.4.2)式的解为Z t=∑k=0∞A k Uεt-k. (*)此时(3.4.13)式具有平稳解的充分必要条件是:A的本征值的模都小于1,ρ(A)<1. (对比|φ|<1, ρ(A)是A的谱半径).* 二阶AR模型:(见p64-66)(概述其难点所在)模型:Y t=c+φ1Y t-1 +φ2Y t-2+εt,W t=φ1W t-1 +φ2W t-2+εt, (3.4.10)依前所述, 只要求得(3.4.10)式的解, 就不难获得AR(2)模型的个项特征量. 要获得(3.4.10)式的解,就等价于求{W t}的(3.3.13)式中的系数ψj(0≤j<∞). 如上所述, 我们有两种方法:一是用(3.4.10)仿(3.4.2)式)求二元一阶AR模型的解) 说实话,都不简单! 为什么? 请看若用(3.4.10)式反复迭法, 则有W t=φ1W t-1 +φ2W t-2+εt=εt+φ1(φ1W t-2 +φ2W t-3+εt-1)+φ2W t-2=εt +φ1εt-1+(φ12+φ2)W t-2+φ1φ2W t-3=…以下难于寻找 εt-2, εt-3,…的系数的表示法. (难于寻找规律)若用算子的代数运算求解(3.4.10)式, 此时Z t =⎪⎪⎭⎫ ⎝⎛-1t t W W , A=⎪⎪⎭⎫ ⎝⎛0121φφ, 在用(*)式求Z t 的表达式时, 要求出A k(k=1,2,…), 同样难于寻找规律!究其根源在于: 此时(3.4.10)式可写为W t -φ1W t-1 -φ2W t-2=εt , (3.4.10)’记 Φ(L)=1-φ1L -φ2L 2, 则(3.4.10)式又可写为Φ(L)W t =εt , (3.4.10)’’ 于是有解W t =Φ-1(L)εt =∑j=0∞ψj εt-j (=Y t -μ=Y t -c Φ-1(1)) 其中Φ-1(L)=∑i=0∞ψi L j ⇔ Φ(L)=∑i=0∞ψi L j=1 式中的系数ψj 与Φ(x)=0的根有关, 而且只有当Φ(x)=0的根都在单位圆外, 即Φ(x)≠0,对|x |<1.(3.4.18) (3.4.10)式才有平稳解! 而且,一般难于给出ψj 的显示表达式! 对A k而言也如此!注意AR(1)时只有一个实根;AR(2)时可能有两个不同的实根, 有一个的实的双重根, 有两个不同的但是共轭的复根.对于注重应用者, 更关心自协方差函数, 请看:将 W t=φ1W t-1 +φ2W t-2+εt 两边同乘 W t-k , 再求均值可得EW t W t-k=φ1EW t-1W t-k+φ2EW t-2W t-k+Eεt W t-k注意, 对于k≥1时, Eεt W t-k=Eεt EW t-k=0, 于是有γk=φ1γk-1 +φ2γk-2, k≥1, 或者 (3.4.25)γk-φ1γk-1 -φ2γk-2=0, k≥1. (3.4.25)’当k=0时, 将W t=φ1W t-1 +φ2W t-2+εt 两边同乘W t, 再求均值得EW t W t=φ1EW t-1W t+φ2EW t-2W t+Eεt W t=φ1γ1+φ2γ2+Eεt(φ1W t-1 +φ2W t-2+εt)=φ1γ1+φ2γ2+φ1Eεt W t-1+φ2Eεt W t-2+Eεt2 (By Eεt W t-j=0,j≥1)=φ1γ1+φ2γ2+σ2. (3.4.29)至此我们得到了(3.4.29)式和(3.4.25)式. 人们已注意到, (3.4.25)式也是二阶差分方程, 也难得显示解. 但是我们不关心它的解, 而关心γ0,γ1,γ2和参数φ1,φ2,σ2的相互依赖关系! 至于γ3,γ4,…, 它们被γ0,γ1,γ2(或φ1,φ2,σ2)唯一确定, 而且不被关注. 进一步而言, (3.4.29)式和(3.4.25)式中取k=1,2就唯一确定了γ0,γ1,γ2和参数φ1,φ2,σ2的相互依赖关系! 现写下这三个方程:γ0=φ1γ1+φ2γ2+σ2,γ1=φ1γ0 +φ2γ1,γ2=φ1γ1 +φ2γ0.将γ0同除以上后两式的ρ1=φ1+φ2ρ1, (3.4.27)ρ2=φ1ρ1 +φ2. (3.4.28)由此不难解出ρ1,ρ2与φ1,φ2的关系.其实,我们更关心φ1,φ2对ρ1,ρ2的依赖关系! 注意,(3.4.27)和(3.4.28)式联合起来, 称为(AR(2)的)Yule-Walker 方程.* p 阶AR 模型:(见p66-68) 模型:Y t =c+φ1Y t-1 +…+φp Y t-p +εt , (3.4.31) 记W t =Y t -μ=Y t -c/(1-φ1 -…-φp ),W t =φ1W t-1 +…+φp W t-p +εt , (3.4.31)’W t -φ1W t-1 -…-φp W t-p =εt ,Φ(L)W t =εt ,Φ(L)=1-φ1L -…-φp L p . 平稳条件:Φ(x)=0的根都在单位圆外, 即Φ(x)≠0,对|x |<1.(3.4.32) Y-W 方程:ρt =φ1ρt-1 +…+φp ρt-p , t=1,2,… (3.4.37) 若记 φ=(φ1,φ2,…,φp )τ, ρ=(ρ1,ρ2,…,ρp )τ, 再记R=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----111212111 p p p p ρρρρρρ 则 由(3.4.37)式可得R φ=ρ. (3.4.37)’ 有解φ=R-1ρ. (3.4.37)’’** 偏相关函数:若将(3.4.37)’中的p用k代替, 并记相应的记号为φ(k)=(φ1k,φ2k,…,φkk)τ, ρ(k)=(ρ1,ρ2,…,ρk)τ和R(k),则有φ(k)=R-1(k)ρ(k), k=1,2,… (3.4.37)* 序列{φkk:k=1,2,…}为偏相关函数列.请注意, ρk是W t+k和W t的相关系数,而φkk是在已知W t+1,W t+2,…,W t+k-1条件下, W t+k和 W t的相关系数. 粗略地说, 在扣除W t+1,W t+2,…,W t+k-1的影响后, W t+k和 W t的相关系数.可以证明, 对于平稳AR(p)序列而言, 偏相关函数列在p以后都为零, 也称截尾, 即{φkk:k=1,2,…}={φ11,φ22,…,φpp,0,0,…}. (*)3.5自回归滑动平均过程:(ARMA(p,q))讨论ARMA(p,q)模型时, 用多元化的方法并不方便, 常用的方法是延迟算子的方法. 具体如下:* ARMA(p,q)模型:Y t=c+φ1Y t-1+…+φp Y t-p+θ1εt-1+…+θqεt-q+εt. (3.5.1)Y t-φ1Y t-1-…-φp Y t-p=c+εt+θ1εt-1+…+θqεt-q记Φ(L)= 1-φ1L-…-φp L p ;Θ(L)= 1+θ1L+…+θq L q ;于是(3.5.1)式可写成Φ(L)Y t=c+Θ(L)εt, (3.5.2) 上式有解Y t=Φ-1(L)c+Φ-1(L)Θ(L)εt,=μ+ψ(L)εt.其中μ=c/(1-φ1-…-φp) (书中有此式,但无编号)=cΦ-1(1)ψ(L)εt=Φ-1(L)Θ(L)εt=(∑k=0∞ϕk L k)Θ(L)εt=∑k=0∞ψk L kεt=∑k=0∞ψkεt-k=W t.于是(3.5.1)(或(3.5.2))有解Y t=μ+W t=μ+∑k=0∞ψkεt-k. (*)中心化的ARMA模型为Φ(L)W t=Θ(L)εt, (3.5.2)’W t=Φ-1(L)Θ(L)εt.关于ARMA(p,q)模型的特性, 能说些什么呢 ? 它的自相关函数和偏相关函数都不截尾, 可以说, 正因为都不截尾,就不得不考虑引入ARMA(p,q)模型.当然也不是无条件的, 细究起来要读第5章. 在此, 我们仅介绍以下性质.* (3.5.1)有平稳解的条件:Φ(x)=0的根都在单位圆外, 即Φ(x)≠0,对|x|<1.(3.5.3) * 自协方差序列的尾部特征:将(3.5.2)两边同乘W t-k(k>q), 再取均值得E[(W t-φ1W t-1-…-φp W t-p)W t-k]=E[(εt+θ1εt-1+…+θqεt-q)W t-k] 即有γt-φ1γt-1 +…+φpγt-p=0, t=q+1,q+2,… (3.5.5) 很有趣, 虽然ARMA(p,q)序列的自协方差序列不截尾, 但是它的线性组和序列γt-φ1γt-1 +…+φpγt-p确在q步后截尾. 由此既可给出此模型的判别依据, 又可找到γ0,γ1 ,…,γp+q和参数φ1,φ2,…,φp,θ1,θ2,…,θq,σ2的依赖关系.(见第5章)3.6自协方差生成函数(谱表示)(移至第6章)3.7可逆性:* 先举两个例子,首先看W t=εt+(1/2)εt-1 (*)其中{εt}为正态白噪声,即εt~N(0,σ2). 于是有EW t=0, EW t2=σ2+(1/2)2σ2=(1+(1/4))σ2=(5/4)σ2,γ1=EW t W t-1=E(εt+(1/2)εt-1)(εt-1+(1/2)εt-2)=(1/2)σ2.再考查另一模型Z t=ηt+2ηt-1, (**)其中{ηt}为正态白噪声,即ηt~N(0,σ2/4), 即,Eηt2=ση2=σ2/4, 于是有EZ t=0, EZ t2=ση2+4ση2=5ση2=(5/4)σ2,γ1=EZ t Z t-1=E(ηt+2ηt-1)(ηt-1+2ηt-2)=2ση2=(2/4)σ2=(1/2)σ2. 可见序列{W t}和{Z t}有相同的均值, 和相同的自协方差函数.而且它又是正态的(此条不可少!), 于是它们有完全相同的概率分布结构! 在理论和应用中都无法区分.出现此问题的根源在于: 模型(*)和(**)分别可写成W t=(1+(1/2)L)εt=Θ1(L)εt,Z t=(1+2L)ηt=Θ2(L)ηt,奇妙的是, Θ1(L)=0和Θ2(L)=0 的根互为倒数! 因为, Θ1(L)=0的根是2, Θ2(L)=0的根是1/2.具此,我们可以使用模型(*), 因为Θ1(L)=0的根是2,它在单位圆外!至此, 我们可以回答第3.3节俭的不能唯一确定MA(q)的系数问题了.具体地说, 就是将MA(q)模型的系数多项式Θ(L)限定在单位圆外或者圆上! (详见p77)* 可逆性: 将MA(q)模型的系数多项式Θ(L)限定在单位圆外! 单位圆上也不许有根! 为何加此限制呢? 为了有MA(q)模型有以下的逆转公式可用:εt=Θ-1(L)W t=∑i=0∞πi W t-i. (对比W t=Θ(L)εt)* 对于ARMA模型,既要求它有平稳性,又要求它有可逆性,于是它既可写成传递形式W t=Φ-1(L)Θ(L)εt=∑i=0∞ψiεt-i,又可写成逆转形式εt=∑i=0∞πi W t-i.ARMA模型一览表注1: Θ(L)=1+∑j=1qθj L j ; Φ(L)= 1-∑j=1pφj L j; 其中L为一步延迟运算.注2: 注意各模型的自协方差列{γk}与其参数的关系.第 21 页。
时间序列分析(第一章、第二章)
![时间序列分析(第一章、第二章)](https://img.taocdn.com/s3/m/62b61bedd1f34693daef3e9a.png)
方法三: 二次曲线法
xt a bt ct 2 t ,
(a, b, c)T (YY T )1YX
t 1,2, ,24
xt 5948 .5 17.0t 1.6t 2
1. 二次项估计(趋势项)
数据和二次趋势项估计
2. 季节项、随机项
例二、美国罢工数(51-80年) (滑动平均法)
6500
杭州近三年房价走势
房地产业、房价
关乎国计民生的支柱产业 影响着城镇居民的住房消费 影响着水泥,钢铁,建材,冶金等相关
行业的发展 影响着地方政府财政收入 …………………………….
股市是经济的晴雨表 从股市本身看,我国股市的确有自己的
特点 股票是一种高风险的资本投资
………………………………
《应用时间序列分析》
何书元 编著 北京大学出版社
概率统计学科中应用性较强的一个分支 广泛的应用领域:
金融经济 气象水文 信号处理 机械振动 …………
Wolfer记录的300年的太阳黑子数
太阳黑子对地球的影响
会出现磁暴现象 会引起地球上气候的变化 会影响地球上的地震 会影响树木生长 会影响到我们的身体 ………………………
),
m
(4.10)
其中 . m ( jk )mm , i 2
a a
j j ji
定理4.4成立.
注:当 {a j} l2 时结论仍成立.
§1.5 严平稳序列及其遍历性
严平稳与宽平稳关系
遍历性
宽平稳遍历性例子
严平稳遍历定理
例 5.1
线性平稳列的遍历定理
(1)正态白噪声 (2)Poisson白噪声 (3)独立同分布的白噪声
参考书: 1. 时间序列的理论与方法 田铮 译
第9章-时间序列分析方法PPT课件
![第9章-时间序列分析方法PPT课件](https://img.taocdn.com/s3/m/7211ddc5866fb84ae55c8d33.png)
市场调查与预测
主讲:杜明汉
1
.
第9章 时间序列预测方法
9.1 时间序列预测法概述
目录
9.2 简单平均值预测法 9.3 移动平均法
9.4 指数平滑法
9.5 季节指数法
.
2
学习目标
理论目标:
❖学习与把握简单平均预测法、移动平均法、指数平滑法、季节指数 法的含义,四种方法的特点和各自的应用范围等陈述性知识;能运用 所学理论知识指导“时间序列分析预测“的相关认知活动。
❖ 时间序列是指同一经济现象或特征值按时间先后顺序排列而形 成的数列。时间序列预测法遵循连续性原理,即认为事物发展 是延续的,从过去到现在并发展到未来,不发生质的变化,能 够延续下去。并运用数学方法找出数列的发展趋势或变化规律, 并使其向前延伸,预测市场未来的变化趋势。根据这些知识, 请你分析一下时间序列预测法的应用范围。
权数较少,选择期数 n 等于 3,进行预测。
解:用表格的形式计划一次移动平均数
表 9-7
一次移动平均数计算表
年份
销售额
一次移动平均数
2004
982
——————
2005
1040
——————
2006
1051
(982+1040+1051)÷3=1024.3
2007
1048
(1040+1051+1048)÷3=1046.3
2008
1032
(1051+1048+1032)÷3=1043.7
2009
1028
(1048+1032+1028)÷3=1036.0
.
答:用一次移动平均数法预测该商场针织内衣 2010 年销售额预计为 1036 万元。
利用Excel进行时间序列的谱分析-Read
![利用Excel进行时间序列的谱分析-Read](https://img.taocdn.com/s3/m/8da0119f5122aaea998fcc22bcd126fff7055d02.png)
利用Excel进行时间序列的谱分析-Read利用Excel 进行时间序列的谱分析(I )在频域分析中,功率谱是揭示时间序列周期特性的最为有力的工具之一。
下面列举几个例子,分别从不同的角度识别时间序列的周期。
1 时间序列的周期图【例1】某水文观测站测得一条河流从1979年6月到1980年5月共计12月份的断面平均流量。
试判断该河流的径流量变化是否具有周期性,周期长度大约为多少?分析:假定将时间序列x t 展开为Fourier 级数,则可表示为∑=++=ki t i i i i t t f b t f a x 1)2sin 2cos (εππ (1)式中f i 为频率,t 为时间序号,k 为周期分量的个数即主周期(基波)及其谐波的个数,εt 为标准误差(白噪声序列)。
当频率f i 给定时,式(1)可以视为多元线性回归模型,可以证明,待定系数a i 、b i 的最小二乘估计为∑∑====Nt i t i Nt i t i tf x N b t f x N a112sin 2?2cos 2?ππ (2)这里N 为观测值的个数。
定义时间序列的周期图为)(2)(22i i i b a N f I +=,k i ,,2,1 = (3) 式中I (f i )为频率f i 处的强度。
以f i 为横轴,以I (f i )为纵轴,绘制时间序列的周期图,可以在最大值处找到时间序列的周期。
对于本例,N =12,t =1,2,…,N ,f i =i /N ,下面借助Excel ,利用上述公式,计算有关参数并分析时间序列的周期特性。
第一步,录入数据,并将数据标准化或中心化(图1)。
图1 录入的数据及其中心化结果中心化与标准化的区别在于,只需将原始数据减去均值,而不必再除以标准差。
不难想到,中心化的数据均值为0,但方差与原始数据相同(未必为1)。
第二步,计算三角函数值为了借助式(1)计算参数a i 、b i ,首先需要计算正弦值和余弦值。
时间序列分析方法之谱分析
![时间序列分析方法之谱分析](https://img.taocdn.com/s3/m/bd715073453610661ed9f4b4.png)
第六章谱分析Spectral Analysis到目前为止,时刻变量的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:我们研究的重点在于,那个结构对不同时点和上的变量和的协方差具有什么样的启发。
这种方法被称为在时刻域(time domain)上分析时刻序列的性质。
在本章中,我们讨论如何利用型如和的周期函数的加权组合来描述时刻序列数值的方法,那个地点表示特定的频率,表示形式为:上述分析的目的在于推断不同频率的周期在解释时刻序列性质时所发挥的重要程度如何。
如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。
我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示能够描述的任何数据性质,都能够利用另一种表示来加以体现。
对某些性质来讲,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。
§6.1 母体谱我们首先介绍母体谱,然后讨论它的性质。
6.1.1 母体谱及性质假设是一个具有均值的协方差平稳过程,第个自协方差为:假设这些自协方差函数是绝对可加的,则自协方差生成函数为:∑+∞-∞==j jj Y z z g γ)(那个地点z 表示复变量。
将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:∑+∞-∞=--==j j i j i Y Y e e g s ωωγππω21)(21)(注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都能够计算)(ωY s 的数值。
利用De Moivre 定理,我们能够将j i e ω-表示成为:)sin()cos(j i j e j i ωωω-=-因此,谱函数能够等价地表示成为:∑+∞-∞=-=j j Y j i j s )]sin()[cos(21)(ωωγπω注意到关于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为:⎭⎬⎫⎩⎨⎧----++-=∑+∞=10)]sin()sin()cos()[cos(21)]0sin()0[cos(21)(j j Y j i j i j j i s ωωωωγπγπω 利用三角函数的奇偶性,能够得到:⎭⎬⎫⎩⎨⎧+=∑+∞=10)cos(221)(j jY j s ωγγπω 假设自协方差序列+∞∞-}{j γ是绝对可加的,则能够证明上述谱函数)(ωY s 存在,同时是ω的实值、对称、连续函数。
时间序列分析方法精讲课件
![时间序列分析方法精讲课件](https://img.taocdn.com/s3/m/b20233e86e1aff00bed5b9f3f90f76c661374c12.png)
DF和麦金农检验值
在 =1的虚拟假设下,且把惯常计算的t统计量称为 (tau)统计量。迪基和富勒曾在蒙 特卡罗模拟的基础上算出一个统计量的临界值表。文献中 检验叫做迪基-富勒(DF) 检验,以纪念它的发现人。注意,如果 =1的虚拟假设被拒绝( 即表示时间序列是平 稳的),则可使用平常的“学生”t检验。然而这些表达还不够实用,随后,麦金农 (Mackinnon)又通过蒙特卡罗模拟将表加以扩充。ET、MICRO TSP、EVIEWS等统计 软件包都给出有DF统计量的迪基-富勒和麦金农临界值。 如果所计算的统计量的绝对值( 即超过DF或麦金农DF临界的绝对值,则不拒绝所给时 间序列是平稳的假设,而反过来,如果它小于临界值,则时间序列是非平稳的。 由于理论上和实践上的原因,人们用以下形式的回归做迪基-富勒检验
选看一些我国经济时序数据
在做任何时间序列的分析时,通常第一步工作是先看看数据的的图形。我们上图所画的时间序列得 到的第一个印象是出口和进口都有一个上升的趋势,虽然这个趋势并不光滑,其实这些时间序列都是非 平稳时间序列(nonstationary time series)的例子。
平稳时间序列概念
如果一个随机过程的均值和方差在时间过程上都是常数,并且在任何两时期之间的 协方差值仅依赖于该两时期间的距离或滞后,而不依赖于计算这个协方差的实际 时间,就称它为平稳的。
时间序列分析第一章 时间序列分析简介
![时间序列分析第一章 时间序列分析简介](https://img.taocdn.com/s3/m/844171824693daef5ff73d59.png)
2019/12/13
时间序列分析
2019/12/13
时间序列分析
2019/12/13
精品课件!
时间序列分析
2019/12/13
精品课件!
时间序列分析
1.4 时间序列分析软件
常用软件
S-plus,Matlab,Gauss,TSP,Eviews 和SAS
推荐软件——SAS
在SAS系统中有一个专门进行计量经济与时间序列 分析的模块:SAS/ETS。SAS/ETS编程语言简洁, 输出功能强大,分析结果精确,是进行时间序列分 析与预测的理想的软件
观察值序列:随机序列的 n 个有序观察值,称之 为序列长度为 n 的观察值序列
x1, x2 ,, xt
随机序列和观察值序列的关系
观察值序列是随机序列的一个实现 我们研究的目的是想揭示随机时序的性质 实现的手段都是通过观察值序列的性质进行推断
2019/12/13
时间序列分析
1.3 时间序列分析方法
2019/12/13
时间序列分析
完善阶段
异方差场合
Robert F.Engle,1982年,ARCH模型 Bollerslov,1985年GARCH模型 多变量场合 C.Granger ,1987年,提出了协整(co-
integration 后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函 数
20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶 段
特点
非常有用的动态数据分析方法,但是由于分析方法复杂,结 果抽象,有一定的使用局限性
时间序列分析第一章 时间序列 ppt课件
![时间序列分析第一章 时间序列 ppt课件](https://img.taocdn.com/s3/m/ad906f33360cba1aa911dac2.png)
0
5
10
15
20
25
30
22
例三、化学溶液浓度变化数据
18.5
18
17.5
17
16.5
16 0
20
40
60
80 100 120 140 160 180 200
23
一阶差分 y t x t x t 1 ,t 21 9 7
1.5 1
0.5 0
-0.5 -1 0 20 40 60 80 100 120 140 160 180 200
E ( X 2 ) a 2 2 E ( X Y ) E Y 2 E [ ( a X Y ) ] 0
于是,判别式 4 (E (X 2))2 4 E X 2 E Y 2 0
取Yt Xt 时,有界性有Schwarz不等式得到:
kE (Y K 1 Y 1)E Y k 2 1 E Y 1 20
线性平稳序列的谱密度定理72如果是wn0实数列平方可和则线性平稳序列有谱密度67两正交序列的谱定理73是相互正交的零均值的平稳序列c是常数定义1如果分别有谱函数则平稳序有谱函数2如果102030405060708090100864269谱密度图70线性滤波与谱设平稳序列有谱函数和自协方差函数hhj是一个绝对可和的保时线性滤波器
Tn
n i1
aa n
j1 i j ij
E n i1
nj1aiaj(Xi )(Xj )
E[
a n
i1 i
(Xi
)]2
0
28
为证明有界性,我们先介绍一个常用的不等式. 引理 (Schwarz不等式) 对任何方差有限的随机变量X和Y,有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列分析方法第章谱分析HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第六章 谱分析 Spectral Analysis到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。
这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。
在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为:上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞-}{t Y 性质时所发挥的重要程度如何。
如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。
我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。
对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。
§ 母体谱我们首先介绍母体谱,然后讨论它的性质。
6.1.1 母体谱及性质 假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为:假设这些自协方差函数是绝对可加的,则自协方差生成函数为:这里z 表示复变量。
将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。
利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为:注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为:利用三角函数的奇偶性,可以得到: 假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数)(ωY s 存在,并且是ω的实值、对称、连续函数。
由于对任意k π2,有:)()2(ωπωY Y s k s =+,因此)(ωY s 是周期函数,如果我们知道了],0[π内的所有)(ωY s 的值,我们可以获得任意ω时的)(ωY s 值。
§ 不同过程下母体谱的计算 假设随机过程+∞∞-}{t Y 服从)(∞MA 过程: 这里:∑∞==0)(j jj L L ψψ,∑∞=∞<0||j j ψ,⎩⎨⎧≠==ts ts E s t ,0,)(2σεε根据前面关于)(∞MA 过程自协方差生成函数的推导: 因此得到)(∞MA 过程的母体谱为:例如,对白噪声过程而言,1)(=z ψ,这时它的母体谱函数是常数:下面我们考虑)1(MA 过程,此时:z z θψ+=1)(,则母体谱为: 可以化简成为:显然,当0>θ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数;当0<θ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数。
对)1(AR 过程而言,有:这时只要1||<φ,则有:)1/(1)(z z φψ-=,因此谱函数为:该谱函数的性质为:当0>φ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数;当0<φ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数。
一般地,对),(q p ARMA 过程而言: 则母体谱函数为:如果移动平均和自回归算子多项式可以进行下述因式分解: 则母体谱函数可以表示为: 从母体谱函数中计算自协方差如果我们知道了自协方差序列+∞∞-}{j γ,原则上我们就可以计算出任意ω的谱函数)(ωY s 的数值。
反过来也是对的:如果对所有在],0[π内的ω,已知谱函数)(ωY s 的数值,则对任意给定的整数k ,我们也能够计算k 阶自协方差k γ。
这意味着母体谱函数)(ωY s 和自协方差序列+∞∞-}{j γ包含着相同的信息。
其中任何一个都无法为我们提供另外一个无法给出的推断。
下面的命题为从谱函数计算自协方差提供了一个有用的公式: 命题 假设+∞∞-}{j γ是绝对可加的自协方差序列,则母体谱函数与自协方差之间的关系为:上述公式也可以等价地表示为:利用上述谱公式,可以实现谱函数与自协方差函数之间的转换。
解释母体谱函数假设0=k ,则利用命题可以得到时间序列的方差,即0γ,计算公式为:根据定积分的几何意义,上式说明母体谱函数在区间],[ππ-内的面积就是0γ,也就是过程的方差。
更一般的,由于谱函数)(ωY s 是非负的,对任意],0[1πω∈,如果我们能够计算:这个积分结果也是一个正的数值,可以解释为t Y 的方差中与频率的绝对值小于1ω的成分相关的部分。
注意到谱函数也是对称的,因此也可以表示为:这个积分表示频率小于1ω的随机成分对t Y 方差的贡献。
但是,频率小于1ω的随机成分对t Y 方差的贡献意味着什么?为了探索这个问题,我们考虑更为特殊一些的时间序列模型:这里j α和j δ是零均值的随机变量,这意味着对所有时间t ,有0=t EY 。
进一步假设序列M j j 1}{=α和Mj j 1}{=δ是序列不相关和相互不相关的:⎪⎩⎪⎨⎧≠==k j kj E j k j ,0,)(2σαα,⎪⎩⎪⎨⎧≠==kj k j E j k j ,0,)(2σδδ0)(=k j E δα,对所有的j 和k这时t Y 的方差是:因此,对这个过程来说,具有频率j ω的周期成分对t Y 的方差的贡献部分是2j σ。
如果频率是有顺序的:πωωω<<<<<M 210,则t Y 的方差中由频率小于或者等于j ω的周期形成的部分是:22221j σσσ+++ 。
这种情形下t Y 的k 阶自协方差为:因为过程}{t Y 的均值和自协方差函数都不是时间的函数,因此这个过程是协方差平稳过程。
但是,可以验证此时的自协方差序列∞=0}{k k γ不是绝对可加的。
虽然在上述过程中,我们已经过程的方差分解为频率低于某种程度的周期成分的贡献,我们能够这样做的原因在于这个过程是比较特殊的。
对于一般的情形,着名的谱表示定理(the spectral representation theorem)说明:任何协方差平稳过程都可以表示成为不同频率周期成分的和形式。
对任意给定的固定频率],0[πω∈,我们定义随机变量)(ωα和)(ωδ,并假设可以将一个具有绝对可加自协方差的协方差平稳过程表示为:这里需要对随机变量)(ωα和)(ωδ的相关性给出更为具体的假设,但是上述公式便是谱表示定理的一般形式。
§ 样本周期图 Sample Periodogram对一个具有绝对可加自协方差的协方差平稳过程}{t Y ,我们已经定义在频率ω处的谱函数值为:∑+∞-∞=--==j j i j i Y Y e e g s ωωγππω21)(21)(,)])([(μμγ--≡-j t t j Y Y E注意到母体谱是利用+∞=0}{j j γ表示的,而+∞=0}{j j γ表示的是母体的二阶矩性质。
给定由T y y y ,,,21 表示的T 个样本,我们可以利用下述公式计算直到)1(-T 阶的样本自协方差:⎪⎩⎪⎨⎧+---=-=---=-+=--∑1,,2,1,ˆ1,,1,0,))(()(ˆ11T j T j y y y y j T jTj t j t t j γγ,∑==Tt t y Ty 11对于给定的ω,我们可以获得母体谱密度对应的样本情形,我们称其为样本周期图:样本周期图也可以表示成为如下形式:类似地,我们可以证明样本周期图下的面积等于样本方差: 样本周期图也是关于原点对称的,因此也有:更为重要的是,谱表示定理在样本情形也有类似的表示。
我们将要说明,对于平稳过程的任意一个容量为T 的观测值序列T y y y ,,,21 ,存在频率M ωωω,,,21 和系数μˆ,M αααˆ,,ˆ,ˆ21 ,Mδδδˆ,,ˆ,ˆ21 使得t 期的y 值可以表示成为: 其中:当k j ≠时,)]1(cos[ˆ-t j j ωα与)]1(cos[ˆ-t k k ωα不相关; 当k j ≠时,)]1(sin[ˆ-t j j ωδ与)]1(sin[ˆ-t k k ωδ不相关;对于所有的j 和k ,)]1(cos[ˆ-t j j ωα与)]1(sin[ˆ-t kk ωδ不相关。
y 的样本方差是∑=--T t t y y T 121)(,该方差中可以归因于频率为j ω的周期成分的部分由样本周期图)(j Y s ω给出。
我们对样本容量是奇数的情形展开讨论上述谱表示模式。
这时ty 可以表示成为由2/)1(-≡T M 个不同频率构成的周期函数,频率M ωωω,,,21 如下:Tπω21=,Tπω42=,……,TM Mπω2=因此最高频率为:我们考虑t y 基于常数项、正弦函数和余弦函数的线性回归: 将这个回归方程表示成为下述方式:其中:11{1,cos[(1)],sin[(1)],,cos[(1)],sin[(1)]}t M M t t t t ωωωω'=----x ,这是一个具有T M =+)12(个解释变量的回归方程,因此解释变量与观测值是一样多的。
我们将证明解释变量之间是线性无关的,这意味着t y 基于t x 回归的OLS 估计具有惟一解。
该回归方程的 系数具有显着的统计意义:2/)ˆˆ(22j j δα+表示t y 中可以归因于频率j ω的周期成分的那部分。
这就是说,任意观测到的序列T y y y ,,,21 ,它都可以利用上述周期函数形式表示,并且不同频率的周期成分对方差的贡献都可以在样本周期图中找到。
命题 假设样本容量是奇数,定义2/)1(-≡T M ,并设定T i j /2πω=,M j ,,2,1 =,假设解释变量为: 则有:进一步,假设T y y y ,,,21 是任意T 个实数,则下述推断成立: (a) 过程t y 可以表示为: 这里:y =μˆ,∑=-=T t j t j t y T 1)]1(cos[2ˆωα,∑=-=Tt j t j t y T 1)]1(sin[2ˆωδ (b) t y 的样本方差可以表示为:样本方差可以归因于频率为j ω的周期成分的部分为2/)ˆˆ(22j j δα+。
(c) t y 的样本方差中可以归因于频率为j ω的周期成分的部分还可以表示为:其中)(ˆj y sω是样本周期图在频率j ω处的值。