华科_HUST_微机原理_并行IO接口实验_独立式开关输入_实验报告

合集下载

华中科技大学微机接口课程设计实验报告

华中科技大学微机接口课程设计实验报告

《微机接口技术》课程设计报告设计题:人工降雨系统指导老师:谭支鹏、熊自立、陈永平设计时间:2013.10.28 至2013.11.1人工降雨系统设计一、课程设计目的1、掌握接口硬件开发平台的使用方法,利用现有的实验平台和PC机,组成一个微机模拟应用系统。

2、掌握基本接口电路的综合应用。

3、掌握接口电路的驱动程序和界面软件的设计与编制,学会调试与测试接口软件的一般方法。

4、微机接口技术及接口芯片的综合应用。

5、在干旱了一段时间后,进行人工降雨。

不同的季节,大自然不降雨对生活生产的影响不同,要控制好等待多久才进行人工降雨,以及降雨的量。

二、课程设计要求设计一个模拟的微机应用系统。

要求该系统综合应用实验台上的多种资源(并行接口、串行接口及其它接口和传感器)设计满足选题要求的符合实际应用的硬件系统,编制主控程序;执行元件驱动程序;通信程序等相应的软件,实现主控中心微机与终端机的远距离传送以及远程控制或监测功能。

由一个主控机(上位机)和若干个下位机组成,上位机与下位机利用串行通讯接口进行连接,构成一个完整系统。

主控机负责数据处理,下位机负责接口访问,接口所需的芯片功能需要通过FPGA自己设计实现。

基于FPGA设计的芯片功能可以是一个完整的功能芯片,也可以只是你在应用需要的芯片某项功能即可。

验收的时候会根据实现的情况作出评价。

(1)主控机:在屏幕上用数字、图形、表格、曲线等方式直观地显示数据/状态处理的结果和过程。

(2)下位机:用实验台的声光部件描述当前监控/操作的工作状态,按主控机的命令驱动执行元件并返回状态和结果。

题目要求:1.用实验台上的信号电源模拟湿度计的信号电压。

2.用实验台上的LED和扬声器模拟加湿动作及报警信号。

3.用实验台上的步进电机模拟水泵动作。

4.上位机实现图形监控。

(模拟)三、课程设计内容及过程1.系统总体结构图1) 系统硬件由主控机(其中一台微机)、终端机(另一台位微机)和执行部件组成。

华中科技大学计算机原理实验报告

华中科技大学计算机原理实验报告

电气学科大类《计算机原理与应用实验》课程实验报告电气与电子工程学院级姓名:学号:专业班号:日期:2014年1月7日实验成绩:评阅人:实验评分表目录实验评分表错误!未指定书签。

实验一:软件安装与使用错误!未指定书签。

一、实验目的错误!未指定书签。

二、实验设备错误!未指定书签。

三、实验任务错误!未指定书签。

四、实验原理错误!未指定书签。

五、实验内容错误!未指定书签。

六、实验过程及结果错误!未指定书签。

七、实验感想八、参考文献实验二:汇编语言实例讲解与程序编写一、实验目的二、实验设备三、实验任务四、实验原理五、实验内容六、实验过程及结果七、实验感想八、参考文献实验三:基于软件的最小系统硬件设计一、实验目的二、实验设备三、实验任务四、实验原理五、实验内容六、实验过程及结果七、实验感想八、参考文献实验四:基于最小系统的汇编程序设计一、实验目的错误!未指定书签。

二、实验设备错误!未指定书签。

三、实验任务错误!未指定书签。

四、实验原理错误!未指定书签。

五、实验内容六、实验过程及结果七、实验感想八、参考文献实验五:并行接口实验(演示实验)一、实验目的二、实验设备三、实验任务四、实验原理五、实验内容六、实验过程及结果七、实验感想八、参考文献实验六:工频测频接口电路设计与实现一、实验目的二、实验设备三、实验任务四、实验原理五、实验内容六、实验过程及结果七、实验感想八、参考文献实验一:软件安装与使用一、实验目的通过本实验学习软件的安装与使用。

二、实验设备微机一台,仿真软件三、实验任务.安装仿真软件。

.利用仿真软件编程。

四、实验原理仿真软件就是在下的一种仿真软件,它可以仿真模拟的程序运行,并且可以直观地观察寄存器的变化情况。

结合了一个先进的原始编辑器、组译器、反组译器、具除错功能的软件模拟工具(虚拟),还有一个循序渐进的指导工具。

这对刚开始学组合语言的人会是一个很有用的工具。

它会在模拟器中一步一步的编译程序码并执行,视觉化的工作环境让它更容易使用。

华科计算机并行实验报告

华科计算机并行实验报告

课程设计报告题目:并行实验报告课程名称:并行编程原理与实践专业班级:学号:姓名:指导教师:报告日期:计算机科学与技术学院目录1,实验一 (1)1 实验目的与要求 (1)1.1实验目的 (1)1.2实验要求 (1)2 实验内容 (1)2.1.1熟悉pthread编程 (1)2.1.2简单的thread编程 (2)2.2.1熟悉openMP编程 (3)2.3.1熟悉MPI编程 (4)2,实验2~5 (7)1 实验目的与要求 (7)2 算法描述 (7)3.实验方案 (8)4实验结果与分析 (8)3 心得体会 (10)附录: (10)3 蒙特.卡罗算法求π的并行优化 (19)1.蒙特.卡罗算法基本思想 (19)2.工作过程 (20)3.算法描述 (20)4 设计与实现 (21)5 结果比较与分析 (23)6 思考与总结 (24)1,实验一1 实验目的与要求1.1实验目的1)熟悉并行开发环境,能进行简单程序的并行开发,在Linux下熟练操作。

2)熟悉一些并行工具,如pthread,OpenMP,MPI等进行并行编程3)培养并行编程的意识1.2实验要求1)利用pthread、OpenMP、MPI等工具,在Linux下进行简单的并行编程,并且掌握其编译、运行的方法。

2)理解并行计算的基础,理解pthread、OpenMP、MPI等并行方法。

2 实验内容2.1.1熟悉pthread编程Linux系统下的多线程遵循POSIX线程接口,称为 pthread。

编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。

下面是pthread编程的几个常用函数:1,int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict attr, void *(*start_rtn)(void),void *restrict arg);返回值:若是成功建立线程返回0,否则返回错误的编号形式参数:pthread_t *restrict tidp 要创建的线程的线程id指针const pthread_attr_t *restrict attr 创建线程时的线程属性void* (start_rtn)(void) 返回值是void类型的指针函数void *restrict arg start_rtn的行参2 , int pthread_join( pthread_t thread, void **retval );thread表示线程ID,与线程中的pid概念类似;retval用于存储等待线程的返回值连接函数pthread_join()是一种在线程间完成同步的方法。

微机原理实验报告串行IO接口

微机原理实验报告串行IO接口

微机原理实验报告串⾏IO接⼝微机原理实验预习报告串⾏I/O接⼝实验1)理解RS232串⾏通信协议以及接⼝设计2)理解SPI串⾏通信协议3)掌握RS232串⾏接⼝设计4)掌握SPI串⾏接⼝设计5)掌握串⾏AD/DA接⼝设计⼆实验任务SPI接⼝DA转换输出锯齿波满量程下的锯齿波硬件电路框图软件流程图四实现步骤硬件实现1、加⼊中断控制器和SPI总线接⼝2、配置SPI接⼝参数,:⼀次传输16位数据,分频⽐为4,SCLK的频率为25MHz3、端⼝连接配置4、UCF配置软件实现1、导出到SDK2、建⽴⼀个新的空⼯程3、将源码加⼊新的c源⽂件中源代码及注释:#include"xparameters.h"#include"xspi.h"#include"xintc.h"#include"xil_exception.h"#define BUFFER_SIZE 2void SpiIntrHandler(void *CallBackRef, u32 StatusEvent, u32 ByteCount); //⽤户定义的SPI终端服务程序static XIntc IntcInstance;static XSpi SpiInstance;volatile int TransferInProgress;//中断结束状态标志int Error;u8 ReadBuffer[BUFFER_SIZE];u8 WriteBuffer[BUFFER_SIZE];int main(void)int Status,Count;Status = XSpi_Initialize(&SpiInstance,XPAR_SPI_0_DEVICE_ID);Status = XSpi_Initialize(&SpiInstance,XPAR_INTC_0_DEVICE_ID);Status = XIntc_Connect(&IntcInstance, XPAR_INTC_0_SPI_0_VEC_ID, (XInterruptHandler) XSpi_InterruptHandler,(void *)&SpiInstance);Status = XIntc_Start(&IntcInstance, XIN_REAL_MODE);XIntc_Enable(&IntcInstance, XPAR_INTC_0_SPI_0_VEC_ID);microblaze_register_handler((XInterruptHandler)XIntc_InterruptHandler, &IntcInstance); microblaze_enable_interrupts();//设置SPI接⼝⽤户中断服务函数XSpi_SetStatusHandler(&SpiInstance,&SpiInstance,(XSpi_StatusHandler) SpiIntrHandler); //配置SPI接⼝⼯作模式Status = XSpi_SetOptions(&SpiInstance,XSP_MASTER_OPTION|XSP_CLK_PHASE_1_OPTION);//设置从设备选择信号Status = XSpi_SetSlaveSelect(&SpiInstance,1);//使能SPI接⼝XSpi_Start(&SpiInstance);//循环输出数据到SPI接⼝控制DAC输出锯齿波while(1){WriteBuffer[0] = (u8) (Count);//SPI输出数据的低8位WriteBuffer[1] = (u8) (Count>>8)&0x0f;// SPI输出数据的⾼8位,其中⾼4位清零,使得Vout正常输出电压Count=Count+32;if (Count==4096)Count=0;//12位DAC转换数据达到最⼤值时,恢复到0TransferInProgress = TRUE; // 设置传输状态标志为1XSpi_Transfer(&SpiInstance, WriteBuffer, (void*)0, 2);//⼀次传输2个字节while (TransferInProgress);// 等待传输结束}return XST_SUCCESS;}void SpiIntrHandler(void *CallBackRef, u32 StatusEvent, u32 ByteCount){TransferInProgress = FALSE;//进⼊中断表⽰传输结束,修改传输状态标志为0if (StatusEvent != XST_SPI_TRANSFER_DONE){Error++;}}五实验验证观察峰峰值为3.3v左右,即为满量程的⼯作电压六实验总结1)通过实验学会了在AXI总线上连接SPI接⼝2)学会了并⾏I/O接⼝的设计3)知道了波形的输出条件和量程的选择。

微机接口技术实验报告并行接口实验

微机接口技术实验报告并行接口实验

微机接口技术实验报告并行接口实验系别: 计算机科学与技术完成时间:2012-5-15一、实验目的1.熟悉并行接口电路;2.掌握8255并行接口芯片及8253定时器的应用及其编程技术。

二、实验内容及要求通过对8255芯片的编程,使得实验台上的步进电机按顺时针或逆时方向转动,同时扬声器(模拟电子琴)做高8度和低8度循环发音:1. 控制步进电机转动和电子琴发音;2.使用K0控制步进电机顺逆时针转动和电子琴发高低音;3.使用K1控制步进电机和电子琴速度(分快和慢两种速度);4.使用K2启动和停止步进电机转动和电子琴发音。

三、实验原理1、可编程并行芯片8255A并行接口即同时在多根I/O线上,以数据字节或字为单位实现CPU通过I/O端口与I/O 设备或被控制对象之间的信息传递,如计算机与打印机,A/D和D/A转换器,开关量接口等。

8255及其改进型8255A是最广泛应用的并行I/O接口。

8255A的主要性能参数如下:(1)8255A内共有4个端口,分别为口A、口B、口C和控制端口。

前三个端口为8位并行I/O端口,常用于传送数据信息;控制端口是用于接收CPU送来的控制命令,即控制字。

(2)8255A芯片可以三种不同的工作方式与I/O设备进行数据传输,具体方式由控制字来设定。

(3)8255与CPU之间交互信息可以使用中断方式进行。

它内部有三个中断源,分别产生与方式1(1个)和方式2(2个)中。

(4)8255A所有信号与TTL信号兼容,可直接与CPU的三总线连接使用。

(5)8255A使用单一的+5V电源,单项时钟。

8255A的三种工作方式:方式0——基本的输入/输出方式,方式1——选通的输入/输出方式,方式2——双向的输入/输出方式。

本次实验采用方式0,将口A和口B作为输出,分别控制步进电机的旋转和电子琴的发音,口C作为控制输入端。

根据端口编址及寻址方式,设定端口A的地址为288H,端口B地址为289H,端口C地址为28AH,控制端口的地址为28BH。

微机原理实验报告并口实验

微机原理实验报告并口实验

微机原理实验报告:并口实验1. 引言微机原理实验是计算机科学与技术专业的一门重要实验课程之一。

通过该实验,学生可以了解并学习微机系统的基本原理和结构,培养对计算机硬件的基本操作和维护能力。

本报告将详细介绍我们在并口实验中所进行的实验步骤、实验结果和实验心得。

2. 实验目的本次实验的目的是通过并口实验,了解并实践如何使用并行口控制外部设备。

并口是计算机上常见的接口之一,用于与外部设备进行数据交互,例如打印机、键盘、LED灯等。

通过本次实验,我们将学会如何通过编程的方式控制并口输出信号,进而控制外部设备的工作。

3. 实验步骤(1)准备工作:首先,我们需要准备一台支持并口的计算机,并确保系统已经安装了合适的驱动程序。

然后,我们需要连接一根并口数据线,将计算机与外部设备连接起来。

(2)编程环境搭建:我们要使用的编程语言是C语言,所以需要在计算机上配置相应的编译器和开发环境。

(3)编写代码:接下来,我们需要编写一段简单的代码,来控制并口输出信号。

这段代码通常包括对并口寄存器的读写操作。

我们可以使用IO口的寄存器来设置输出状态和控制外部设备的工作。

(4)测试与调试:在编写完代码后,我们需要进行测试和调试。

通过观察外部设备的反应,可以判断代码是否正确地控制了并口输出信号。

如果出现问题,我们可以通过查看代码和调试信息来找出问题的原因。

4. 实验结果我们按照上述步骤完成了实验,并取得了如下实验结果:(1)成功控制外部设备:通过编写控制代码,我们成功地控制了与计算机连接的外部设备。

例如,我们可以在LED灯上显示相应的图案和文字。

(2)了解并口寄存器操作:通过本次实验,我们对并口寄存器的操作有了更深入的了解。

我们学会了如何设置输出状态和控制外部设备的工作模式。

(3)掌握数据传输方法:在实验过程中,我们还掌握了一些基本的数据传输方法。

例如,我们可以通过并口将数据传输给外部设备或从外部设备接收数据。

5. 实验心得通过本次并口实验,我们对微机系统的基本原理和结构有了更深入的了解。

微机原理实验---并行接口实验

微机原理实验---并行接口实验

微机原理实验---并行接口实验
并行接口(Parallel Port)是一种广泛使用的计算机外围设备接口。

它通常用于连接打印机、扫描仪、摄像头等设备,以实现数据的传输和控制。

本实验旨在教授学生使用并行接口实现数据输入和输出的基本功能,以提高学生对计算机外围设备的理解和应用能力。

具体实验步骤如下:
材料及设备:
1. 一台计算机
2. 并行数据线(Parallel Data Cable)
3. 并口测试器(Parallel Port Tester)
4. 8位开关(8-bit Switch)
5. LED 灯(LED Light)
实验步骤:
1. 将并行数据线连接至计算机的并行接口,并将另一端连接至并口测试器。

2. 使用并口测试器测试并行接口是否正常。

若测试失败,可检查并行接口是否损坏或驱动程序是否正确安装。

3. 将 8 位开关连接至并口测试器的数据输出端,连接正确后,将 8 位开关的位置设置为 0。

4. 运行实验程序,将数据从计算机输出至并口测试器。

5. 将 LED 灯连接至并口测试器的数据输入端,将计算机输入的数据传输至 LED 灯并输出。

华科微机接口课程设计报告范文

华科微机接口课程设计报告范文

华科微机接口课程设计报告范文指导老师:周功业学生姓名:李中亚学生学号:U202214238所在班级:计算机0803班同组成员:崔泽波、扈泓达、傅强设计题:货物计费计数运输系统设计时间:2022.9.5至2022.9.9一、课程设计目的学习并行接口、步进电机、开关量接口、声光系统、并行通讯、8253定时/计数器、波特率时钟、串行通信接口、A/D,D/A转换器、数据采集程序的设计原理与方法,掌握其控制程序的编写。

1.掌握接口硬件开发平台的使用方法,利用现有的实验平台和PC机,组成一个微机模拟应用系统;2.掌握基本接口电路的综合应用3.掌握接口电路的驱动程序和界面软件的设计与编制,学会调试与测试接口软件的一般方法;二、课程设计任务结合实际应用,设计一微机应用系统,要求该系统综合应用并行接口、串行接口,定器接口、中断接口、模拟接口等等,实现主控中心微机与下位机实现远距离传送,以及远程控制、监测功能。

三、课程设计要求由一个主控机监控和若干个下位机组成,主控机负责数据处理,下位机负责访问接口。

主控机:在显示屏上用数字、图形、表格、曲线等直观数据处理的过程。

下位机:在显示屏上或用实验台的声光描述当前监控的工作状态。

四、课程设计内容(一)选题及题目要求设计方案选择:货物计费计数运输系统1.用实验台上的开关信号模拟上货请求信号。

2.用实验台上的LED和扬声器模拟上/下货时状态信息。

3.用实验台上的步进电机的正反转模拟运输动作。

4.上位机实现图形监控。

(模拟)(二)设计功能说明1.上货过程:在下位机通过键盘输入货物类型、数量,按上货按钮SW2开始请求上货,这时下位机向上位机发送一个上货请求和货物类型、数量,上位机接收到上货请求后通过界面显示请求的货物类型和数量,按下SW2按钮允许上货,下位机接收到允许命令,扬声器响起,开始上货,LED计数器由零开始加1,步进电机开始正转,直到上货结束,此时下位机LED灯显示的数字为货物数量;2.下货过程:在下位机通过键盘输入货物类型、数量,按下货按钮SW3开始请求下货,这时下位机向上位机发送一个下货请求和货物类型、数量,上位机接收到下货请求后通过界面显示请求的货物类型和数量,按下SW4按钮允许下货,下位机接收到允许命令,扬声器响起,开始下货,LED计数器由零开始加1,步进电机开始反转,直到下货结束,此时下位机LED灯显示的数字为货物数量;3.当上/下货结束时,由主机计算费用,将费用数据传给下位机并显示,下位机按下交费按钮SW4表示交费结束,上位机和下位机均回到初始状态。

微机原理实验报告并口实验

微机原理实验报告并口实验

微机原理实验报告——并口实验一、实验目的本实验旨在通过并口实验,了解和掌握微机原理中并口的基本原理、工作方式以及编程操作方法,通过实际操作并口实验,巩固并深化对微机原理的理解。

二、实验原理并口是微机原理中的一种常见的输入输出接口,并具有较高的灵活性和通信能力。

并口的基本结构包括数据寄存器和状态寄存器,通过使能信号对并口进行控制。

在并口实验中,通过编写相应的程序,实现将数据并行输入并通过并口输出的功能。

实验中主要使用的是8255芯片实现并口的控制。

三、实验器材1. IBM PC机或兼容机2. 8255芯片3. 连接线缆四、实验步骤1. 将8255芯片连接到计算机的并口接口,确保连接正确稳固。

2. 打开计算机并进入操作系统。

3. 编写并口控制程序。

在程序中,首先需要设置8255芯片为输出模式,然后通过与8255芯片对应的数据寄存器将需要输出的数据写入,并通过使能信号控制数据传输。

4. 运行编写好的程序,观察程序运行的结果。

五、实验结果与分析通过实验发现,在编写并口控制程序的过程中,需要正确设置8255芯片的工作模式和相应的寄存器,否则无法实现正确的数据传输。

其中,使能信号的控制也是关键的一步,通过正确的控制使能信号,才能实现数据的传输与输出。

六、实验总结通过本次并口实验,我们深入学习和掌握了微机原理中并口的基本原理和工作方式。

实验中我们了解到,在编写并口控制程序时需要对8255芯片的寄存器进行正确的设置,以确保数据传输和输出的正确性。

并口具有很高的灵活性和通信能力,能够广泛应用于各种数据输入输出的需求中。

然而,本次实验仅是对并口实验的基础性操作,实际应用中还需要根据具体需求进行更复杂的编程和控制。

为了更好地应用并口,建议在掌握基本操作的基础上,进一步学习并口的高级应用和相关技术。

最后,本次实验不仅提高了我们对微机原理的理解,也加深了我们对硬件与软件配合的理解。

通过实际动手实验,我们更加深入地理解了微机原理并口实验的基本原理与操作方法。

华中科技大学HUST微机原理并行IO接口数码管实验报告

华中科技大学HUST微机原理并行IO接口数码管实验报告

电子信息与通信学院实验报告实验名称:微机原理实验课程名称:并行IO接口设计班级:姓名:学号:教师:一、实验目的1.掌握GPIO IP核的工作原理和使用方法2.掌握中断控制方式的IO接口设计原理3.掌握中断程序设计方法4.掌握IO接口程序控制方法-------查询方式-------延时方式二、实验任务写一个数码管滚动输出任意数字的程序,并下载到FPGA板子上,用延时、中断两种方式实现。

三、实验原理硬件实现框图如图所示:四、硬件实现步骤1.使用XPS创建一个基于AXI总线的最小计算机系统。

File –> New BSB Project,如图:2.修改时钟设置:将时钟产生器的时钟输入信号进行修改,修改为单一时钟源。

修改后的结果如图:3.添加GPIO IP核,设置seg_0配置:a.在IP Catalog标签中,双击下面图标创建GPIO IP核:b.添加GPIO IP核后,将名字改为LED_16Bits,如图:c.更改seg_0配置窗口的属性,如图:4.添加AXI Interrupt Controller IP核:a.在IP Catalog标签中,双击下面图标创建INTC IP核:b.添加axi_intc_0的中断源,如图:c.将microblaze_0实例的INTERRUPT引脚选择axi_intc_0_INTERRUPT,如图:5.产生外部GPIO连接:a.选中seg_0中的GPIO_IO_O,选择make external,生成外部连接端口;选中GPIO_IO,设置为“No connection”,取消其外部连接端口;选中seg_0中的GPIO2_IO_O,选择make external,生成外部连接端口;选中GPIO2_IO,设置为“No connection”,取消其外部连接端口。

结果如图:b.在ports标签下,展开External Ports项,可看到seg_0生成的seg_0_GPIO2_IO_pin和seg_0_GPIO_IO_pin端口,如图:6.添加timer IP核:a.选择如图的IP核并双击,添加到工程:b.中断信号的连接结果如图所示:7.配置UCF文件:在UCF文件中修改如下所示配置,配置LED连接电路约束:NET "CLK" TNM_NET = sys_clk_pin;TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 100000 kHz;NET "CLK" LOC = "E3" | IOSTANDARD = "LVCMOS33";NET "RESET" LOC = "E16" | IOSTANDARD = "LVCMOS33";NET "RsRx" LOC = "C4" | IOSTANDARD = "LVCMOS33";NET "RsTx" LOC = "D4" | IOSTANDARD = "LVCMOS33";NET "seg_0_GPIO2_IO_pin<0>" LOC = "L3" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<1>" LOC = "N1" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<2>" LOC = "L5" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<3>" LOC = "L4" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<4>" LOC = "K3" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<5>" LOC = "M2" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<6>" LOC = "L6" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<7>" LOC = "M4" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<0>" LOC = "N6" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<1>" LOC = "M6" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<2>" LOC = "M3" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<3>" LOC = "N5" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<4>" LOC = "N2" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<5>" LOC = "N4" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<6>" LOC = "L1" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<7>" LOC = "M1" | IOSTANDARD = "LVCMOS33";8.创建工程过程完成后,a.在主界面下选择Hardware->Generate Netlist;b.在主界面下选择Hardware->Generate Bitstream;c.单击Graphical Design View,可以看到系统的连接图,如下:五、软件设计1.中断方式实现数码管滚动任意数字用户应用程序的设计包括定时器配置、启动中断系统、设计中断服务程序。

微机原理 简单Io接口设计实验

微机原理 简单Io接口设计实验
74LS273是一个八位D触发器,可作为扩展的输出接口用。当E端输入低电平时,在CLK端的一个脉冲上升沿使输入端D0~D7的状态锁存到触发器中,输出端Q0~Q7输出被锁存的状态。J33为输出信号连接插座,J34为端口地址信号的连接插座(连接到图1-3:J40)。
四、实验步骤
1、取箱子,把电源线和USB通信线接好
START:
MOVAL,0FH
BEGIN:ROLAL,01H
MOVDX,208H
OUTDX,AL
MOVCX,5000
AA:LOOPAA
LOOPBEGIN
JMPBEGIN
CODEENDS
七、实验收获
运行的原理,将课堂上的只是在实际中运用到实验连接中,了解各部分的功能,是最好本实验的基础。
此实验是最基础的微机实验,运用最基础的知识,强调对课本知识的熟悉与掌握。要熟悉仪器的连接方法,通过此次实验,了解了实验,对课本的只是加强了理解,很有收获!
(3)按试验箱的RST键。
断开试验箱的电源,根据实验要求接线,然后编写程序,编译,连接,全速运行。
五、实验接线图
六、程序清单
实验代码
1.利用芯片74LS244作为输入接口,输入8位逻辑电平开关的状态。用芯片74LS273作为输出接口,用以驱动8个LED。
2.
CODE SEGMENT
ASSUME CS:CODE
微机原理简单io接口设计实验微机原理与接口技术微机原理及接口技术微机原理与接口微机原理及应用微机原理pdfio接口微机原理微机原理及应用pdf微机原理与应用微机原理视频教程
计算机学院实验报告
课程名称_微机原理与接口技术__实验名称_简单I/O设计____
班级_ ________姓名___________学号___________仪器组号_______实验日期______

微机原理实验报告 可编程并行IO接口8255

微机原理实验报告 可编程并行IO接口8255

《微机原理及应用技术》课程实验报告实验五可编程并行I/O接口8255【预习内容】1.怎样选中可编程I/O接口?怎样实现I/O端口的寻址?8255的CS/接地址译码/CS0,则命令字地址为8003H,PA口地址为8000H,PB口地址为8001H,PC口地址为8002H。

通过地址/数据总线,按照指定地址进行读写操作直接选中8255。

并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息。

CPU和接口之间的数据传送总是并行的,即可以同时传递8位、16位或32位等。

8255可编程外围接口芯片是Intel公司生产的通用并行I/O接口芯片。

CPU与外设交换的数据是以字节为单位进行的。

因此一个外设的数据端口含有8位。

而状态口和命令口可以只包含一位或几位信息,所以不同外设的状态口允许共用一个端口,命令口也可共用。

数据信息、状态信息和控制信息的含义各不相同,按理这些信息应分别传送。

但在微型计算机系统中,CPU通过接口和外设交换数据时,只有输入(IN)和输出(OUT)两种指令,所以只能把状态信息和命令信息也都当作数据信息来传送,且将状态信息作为输入数据,控制信息作为输出数据,于是三种信息都可以通过数据总线传送了。

但要注意,这三种信息被送入三种不同端口的寄存器,因而能实施不同的功能。

CPU对外设的访问实质上是对I/O接口电路中相应的端口进行访问,也需要由译码电路来形成I/O端口地址。

I/O端口的编址方式有两种·存储器映象寻址方式·I/O指令寻址方式2.8255A接口芯片内含几个I/O端口?它们的名称分别是?这些I/O口地址有何特点?三个数据端口,三种工作方式A口可工作于方式0、方式1和方式2中的任一种B口可工作于方式0和方式1,但不能工作于方式2C口只能工作于方式08位数据端口:A口、B口、C口A口:PA7~PA0B口:PB7~PB0C口:PC7~PC0连接外部设备A口与B口为一个8位的输入口或输出口C口单独作为一个8位的输入口或输出口配合A口和B口使用,作为控制信号和状态信号3.8255A有几个控制字?怎样设置?它有两个控制字,一个是方式选择控制字,一个是对C口进行置位或复位控制字。

华中科技大学微机原理与接口实验报告

华中科技大学微机原理与接口实验报告

一、硬件实验环境的检测(一)硬件实验环境简介TD-PIT实验装置提供了多种常用接口及控制应用部件,如定时器/计数器8254、并行接口8255、键盘输入及LED显示、二进制开/关输入及发光管显示等接口单元电路。

TD-PIT实验装置还向PC机申请了接口实验所需的配置资源。

其中包括16M的存储地址空间、256字节的I/O地址空间和一条中断请求线。

中断请求线是映射到PC机内部的15条中断线的一个。

这些信号如下表1.1所示。

表1.1 TD-PIT实验装置的仿真ISA接口信号TD-PIT实验装置提供了四个I/O设备片选信号和两个存储器设备片选信号,片选信号与偏移地址空间对应关系如下表1.2所示。

表1.2 片选地址对应偏移地址范围(二)硬件实验环境的检测检测硬件环境的好坏是每次微机原理与接口实验之前的必需工作,防止试验中出现未知的bug而无从查起。

1. 检测方法运行检测程序,用示波器检测实验装置的所有信号是否正常。

如发现故障,应检查实验装置上该信号的连线是否开路,是否短路。

查出故障,予以排除。

2. 检测工具TD-PIT实验装置、示波器、连接线若干、PC机3. 检测程序若要在示波器上观测到实验装置上各种信号的波形,则必须执行循环程序,如果只执行几条语句而不构成循环,则输出的信号一闪而过,在示波器上就无法观测到信号的波形。

计算机执行无循环程序后无法退出,这种循环称为“死循环”。

为防止“死循环”,必须在循环语句中加入退出循环命令,一般采用11号功能调用来退出循环。

测试程序如下所示:Stck segment stack 'stack'dw 32 dup(?)stck endsdata segmentdata endscode segmentbegin proc farassume ss:stck,cs:code,ds:datapush dssub ax,axpush axmov ax,datamov ds,axAGN: MOV AL,0FHMOV DX,0E060H ;送端口地址IN AL,DX ;从给出端口输入数据MOV DX,0E067HOUT DX,AL ;从给出端口输出数据MOV AH,0BH ;11号功能调用INT 21H ;检测有无键盘输入CMP AL,0 ;AL=FFH,有输入;AL=00,无输入JZ AGNretbegin endpcode endsend begin4. 地址线、数据总线及有关信号控制的波形̅̅̅̅̅̅的信号(1)片选译码输出IOY0该信号应为负脉冲选通信号,如下图1.1所示。

华科_HUST_微机原理_类MIPS单周期微处理器设计_实验报告

华科_HUST_微机原理_类MIPS单周期微处理器设计_实验报告

微机原理实验报告学号姓名华中科技大学专业通信1301指导教师罗杰院(系、所)电信学院类MIPS单周期微处理器设计一.实验目的1.了解微处理器的基本结构。

2.掌握哈佛结构的计算机工作原理。

3.学会设计简单的微处理器。

4.了解软件控制硬件工作的基本原理。

二.实验任务利用HDL语言,基于Xilinx FPGA nexys4实验平台,设计一个能够执行以下MIPS指令集的单周期类MIPS处理器,要求完成所有支持指令的功能仿真,验证指令执行的正确性,要求编写汇编程序将本人学号的ASCII码存入RAM的连续内存区域。

(1)支持基本的算术逻辑运算如add,sub,and,or,slt,andi指令(2)支持基本的内存操作如lw,sw指令(3)支持基本的程序控制如beq,j指令三.各模块实现原理1.指令存储器设计指令存储器为ROM类型的存储器,为单一输出指令的存储器。

设置一个程序计数器指针PC指向指令存储器,当时钟上升沿到来时,取出PC所指的指令,当时钟的下降沿到来时,修改PC的值,使其指向下一条要执行的指令。

因此其对外的接口为clk、存储器地址输入信号(指令指针)以及数据输出信号(指令)。

在本实验中调用ISE提供的IP核进行设计,设定的指令存储器大小为128字。

指令存储器模块在顶层模块中被调用。

输入为指令指针(PC)与时钟信号(clkin),输出为32位的机器指令,并将输出的机器指令送到后续的寄存器组模块、控制器模块、立即数符号扩展模块进行相应的处理。

2.数据存储器设计数据存储器为RAM类型的存储器,并且需要独立的读写信号控制。

因此其对外的接口为clk、we、datain、addr;输出信号为dataout。

当时钟上升沿到来时,如果写信号(we)为真,根据addr所表示的地址找到对应的存储单元,并将输入的数据(datain)写到对应的存储单元中;如果写信号为假,则根据addr所表示的地址,将对应存储单元的数据送到输出端(dataout)。

微机原理综合实验报告_nexys4_简易数字信号发生器_HUST_华中科技大学

微机原理综合实验报告_nexys4_简易数字信号发生器_HUST_华中科技大学
四、 项目操作说明……………………………………………………18 五、 附录………………………………………………………………19 六、 心得体会及建议…………………………………………………20
一、项目简介
1.设计思路
本次项目我们小组选择的是信号发生器,由于之前做过 D/A 显示锯齿波的实验,便 想到在该实验的基础上进行功能的扩充,这样思路比较清晰。首先我们想到在上次实验 的基础上加上方波、三角波和正弦波这几种常见波形,实现起来也与锯齿波较为类似, 只是在正弦波的显示上花了点功夫,最后决定通过 MATLAB 取值来实现,最后能正常 显示。而几种波形的切换我们则想到了开关,通过添加开关的 GPIO 核来获取开关的状 态,预留了三位用于波形的切换。仅仅几种波形的显示是远不够的,所以我们决定添加 频率的调节和幅度的调节部分,实现时发现幅度调节容易实现但频率调节有些难度,最 后从代码产生波形的原理上来分析想到通过改变取样的次数来调节频率的增减,而选择 用一位开关用于切换频率增加和减小,这样会节省资源。
Switch<2>---Switch<0>:选择波形 Switch<8>---Switch<3>:调节频率 Switch<9>:控制频率增加和减小 Switch<15>---Switch<10>:调节幅度 BTNU:增加占空比 BTND:减小占空比
1
二、项目构成及概要设计
1.硬件模块构成
本项目用到的硬件平台包括 SPI IP 核与 D/A 芯片构成数据的传输和数模转换的功能, 4 个 GPIO IP 核分别用于开关状态的读取,按钮状态的读取,LED 灯的显示,数码管的 段选和位选。一个 INTC IP 核用于接受来自于 SPI 和按钮的 GPIO 的中断,并将中断发 送给 microblaze 核来控制。

华科微机原理实验报告

华科微机原理实验报告

微机原理实验报告课程:微机原理指导老师姓名:学号:实验名称:Lab 02: MIPS处理器部件实现A微机原理实验报告一、实验目的本实验旨在实现MIPS处理器的部件—控制器和ALU,理解CPU控制器,理解ALU的原理,使用Verilog语言设计CPU控制器和ALU ,使用ISim进行行为仿真。

二、实验原理及说明MIPS的基本架构如图1所示,包括Control,ALU这样的组合逻辑单元,也包括如instruction memory,Data memory和Registers file存储单元。

本实验主要实现CPU Control和ALU两个部分。

(一)CPU控制器的实现CPU Control单元输入为指令的opCode字段,即操作码;以及R指令的funct编码。

操作码和Funct编码经过主控制单元的译码,给ALU,Data Memory,Registers ,Muxs等部件输出正确的控制信号。

图2. MIPS基本指令格式图: 控制模块的IO定义注:Jump指令编码是000010,Jump输出信号为1,其他输出信号都为0图3. OpCode与控制输出的编码关系图4. Funct,ALUOp与ALU Control编码关系(二) ALU的实现ALU是CPU核心的计算单元,实现诸如加,减,或,与等操作。

算术操作的编码三、实验verilog代码(一)CPU控制器的实现module Ctr(input [5:0] OpCode,input [5:0] Funct,output regRegDst,output regALUSrc,output regRegWrite,output regMemWrite,output regMemRead,output regMemtoReg,output reg Branch,output reg Jump,output reg [3:0] ALUControl);reg [1:0] ALUOp;always @(OpCode)begincase(OpCode)//R type6'b000000:beginRegDst=1; ALUSrc=0; RegWrite=1; MemWrite=0; MemRead=0; MemtoReg=0;Branch=0;ALUOp=2'b10; Jump=0;end//beq6'b000100:beginRegDst=1'bx; ALUSrc=0; RegWrite=0; MemWrite=0; MemRead=0; MemtoReg=1'bx; Branch=1;ALUOp=2'b01; Jump=0;end//lw6'b100011:beginRegDst=0; ALUSrc=1; RegWrite=1; MemWrite=0; MemRead=1; MemtoReg=1;Branch=0;ALUOp=2'b00; Jump=0;end//sw6'b101011:beginRegDst=1'bx;ALUSrc=1;RegWrite=0;MemWrite=1;MemRead=0;MemtoReg=1'bx;Branch=0;ALUOp=2'b00;Jump=0;end//Jump6'b000010:beginRegDst=0;ALUSrc=0;MemtoReg=0;RegWrite=0;MemRead=0;MemWrite=0;Branch=0;ALUOp=2'b00;Jump=1;endendcaseendalways @(ALUOp or Funct)begincasex({ALUOp,Funct})8'b00xxxxxx: ALUControl=4'b0010;8'b01xxxxxx: ALUControl=4'b0110;8'b1xxx0000: ALUControl=4'b0010;8'b1xxx0010: ALUControl=4'b0110;8'b1xxx0100: ALUControl=4'b0000;8'b1xxx0101: ALUControl=4'b0001;8'b1xxx1010: ALUControl=4'b0111;default: ALUControl=4'b0000;endcaseendendmodule(二) ALU的实现module ALU(input [31:0] SrcA,input [31:0] SrcB,input [3:0] ALUCtr,output Zero,output reg [31:0] ALURes);assign Zero=(ALURes==1'b0);always @(SrcA or SrcB or ALUCtr)begincase(ALUCtr)4'b0000: ALURes=SrcA&SrcB; //AND4'b0001: ALURes=SrcA | SrcB; //OR4'b0010: ALURes=SrcA + SrcB; //add4'b0110: ALURes=SrcA - SrcB; //substract4'b0111: ALURes=SrcA<SrcB ? 1:0; //set on less than 4'b1100: ALURes=~(SrcA | SrcB); //NORdefault ALURes=32'h0;endcaseendendmodule四、仿真测试1.代码(一)CPU控制器的实现module Ctr_tb;// Inputsreg [5:0] OpCode;reg [5:0] Funct;// Outputswire RegDst;wire ALUSrc;wire RegWrite;wire MemWrite;wire MemRead;wire MemtoReg;wire Branch;wire Jump;wire [3:0] ALUControl;// Instantiate the Unit Under Test (UUT)Ctruut (.OpCode(OpCode),.Funct(Funct),.RegDst(RegDst),.ALUSrc(ALUSrc),.RegWrite(RegWrite),.MemWrite(MemWrite),.MemRead(MemRead),.MemtoReg(MemtoReg),.Branch(Branch),.Jump(Jump),.ALUControl(ALUControl) );initial begin// R-type AddOpCode=6'b000000;Funct=6'b100000;// R-type Subtract#10;OpCode=6'b000000;Funct=6'b100010;// Lw#10;OpCode=6'b100011;Funct=6'bxxxxxx;// Sw#10;OpCode=6'b101011;Funct=6'bxxxxxx;// Beq#10;OpCode=6'b000100;Funct=6'bxxxxxx;// R-type AND#10;OpCode=6'b000000;Funct=6'b100100;// R-type OR#10;OpCode=6'b000000;Funct=6'b100101;// R-type set on less than#10;OpCode=6'b000000;Funct=6'b101010;// Jump#10;OpCode=6'b000010;endendmodule(二) ALU的实现module ALU_tb;// Inputsreg [31:0] SrcA;reg [31:0] SrcB;reg [3:0] ALUCtr;// Outputswire Zero;wire [31:0] ALURes;// Instantiate the Unit Under Test (UUT)ALU uut (.SrcA(SrcA),.SrcB(SrcB),.ALUCtr(ALUCtr),.Zero(Zero),.ALURes(ALURes));initial begin// ANDSrcA =32'hf0f0ffff;SrcB =32'h0000f0f0;ALUCtr =0;// OR#10;ALUCtr =4'b0001;// Add#10;ALUCtr =4'b0010;// Subtract#10;ALUCtr =4'b0110;// set on less than#10;ALUCtr =4'b0111;//NOR#10;ALUCtr =4'b1100;//Other situation#10;ALUCtr =4'b1111;endendmodule2.仿真截图(一)CPU控制器的实现(二) ALU的实现五、实验总结实验名称:Lab03: MIPS处理器部件实现B微机原理实验报告一、实验目的本实验旨在使读者实现MIPS处理器的部件—Data memory, Instruction memory和Registers 三大存储器件。

微机原理实验---并行接口实验

微机原理实验---并行接口实验

深圳大学实验报告课程名称:微机计算机设计实验项目名称:8255 并行接口实验学院:信息工程学院专业:电子信息工程指导教师:报告人:学号:2009100000班级:<1>班实验时间:2011. 06. 09实验报告提交时间:2011. 06. 25教务处制一、实验目的1. 学习并掌握8255的工作方式及其应用。

2. 掌握8255 典型应用电路的接法。

3. 掌握程序固化及脱机运行程序的方法。

二、实验要求1. 基本输入输出实验。

编写程序,使8255 的A 口为输入,B 口为输出,完成拨动开关到数据灯的数据传输。

要求只要开关拨动,数据灯的显示就发生相应改变。

2. 流水灯显示实验。

编写程序,使8255 的A 口和B 口均为输出,数据灯D7~D0 由左向右,每次仅亮一个灯,循环显示,D15~D8 与D7~D0 正相反,由右向左,每次仅点亮一个灯,循环显示。

三、实验设备PC 机一台,TD-PITE 实验装置或TD-PITC 实验装置一套。

四、实验原理并行接口是以数据的字节为单位与I/O 设备或被控制对象之间传递信息。

CPU 和接口之间的数据传送总是并行的,即可以同时传递8 位、16 位或32 位等。

8255 可编程外围接口芯片是Intel 公司生产的通用并行I/O 接口芯片,它具有A、B、C 三个并行接口,用+5V 单电源供电,能在以下三种方式下工作:方式0--基本输入/输出方式、方式1--选通输入/输出方式、方式2--双向选通工作方式。

8255的内部结构框图和引脚图五、实验过程1. 基本输入输出实验要求:实验使8255 端口A 工作在方式0 并作为输入口,端口B 工作在方式0 并作为输出口。

用一组开关信号接入端口A,端口B 输出线接至一组数据灯上,然后通过对8255 芯片编程来实现输入输出功能。

(1)按要求连接好实验电路。

(2)编写实验程序,经编译、无误后装入系统。

代码如下:SSTACK SEGMENT STACKDW 32 DUP(?)SSTACK ENDSCODE SEGMENTASSUME CS:CODESTART: MOV DX, 0646HMOV AL, 90HOUT DX, ALAA1: MOV DX, 0640HIN AL, DXCALL DELAYMOV DX, 0642HOUT DX, ALJMP AA1DELAY: PUSH CXMOV CX, 0F00HAA2: PUSH AXPOP AXLOOP AA2POP CXRETCODE ENDSEND START(3)运行程序,改变拨动开关,同时观察LED 显示,验证程序功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微机原理实验报告
学号
姓名
专业通信1301
指导教师罗杰
院(系、所)电信学院
并行I/O接口实验
一、实验目的
1、掌握GPIO IP核的工作原理和使用方法。

2、掌握IO接口程序控制方法
1)查询方式
2)中断方式
3)延时方式
3、掌握中断控制方式的IO接口设计原理
4、掌握中断程序设计方法
二、实验任务
使用查询、中断两个方式做独立式开关输入,将开关状态显示到console。

三、硬件电路框图
四、硬件平台建立
1 创建XPS工程
创建basesystem文件夹,建立最小系统。

启动XPS,打开system.xmp工程文件。

2 添加和配置GPIO IP核
在XPS主界面左边窗口选择IP Cataiong标签,点击General Purpose I/O展开。

添加AXI Genaral Purpose I/O。

配置开关与led灯分别有16个,将其分别设置为16
在ucf文件中添加相应代码
3、添加和配置中断控制器IP核
在XPS主界面左边窗口选择Clock, Reset and Interrupt标签,点击AXI Interrupt
Controller展开。

将INTERRUPT引脚选择axi_intc.c_INTERRUPT。

设置中断输入
4、产生外部GPIO链接
SW为开关输入,从GPIO_IO接口接入,LED灯输出,从GPIO2_IO接口接入展开External Ports项可看到SW与LED的外部接口
五、软件平台建立
1.查询
源代码
#include"stdio.h"
#include"xil_io.h"
#include"xil_types.h"
#define gpio_ctrl 0x40000004 //定义通道1地址
#define gpio_data 0x40000000 //定义数据1地址
#define gpio1_ctrl 0x4000000c //定义通道2地址
#define gpio1_data 0x40000008 //定义数据2地址
int main(void)
{
u16 SW,psw; //定义两个输入,psw作比较信号
Xil_Out16(gpio_ctrl,0xffff); //输入
Xil_Out16(gpio1_ctrl,0x0); //输出
psw=SW=0x00; //赋初值0给两个输入信号
while(1)
{
SW=Xil_In16(gpio1_data);
Xil_Out16(gpio1_data,SW);
if(psw!=SW) //判断SW与PSW是否相等
{
psw=SW;
SW=Xil_In16(gpio1_data);
xil_printf("the Switch state is 0x%X\n\r",SW);//显示开关状态}
}
return 0;
}
状态显示:
实验流程图:
2 中断
源代码:
#include"xgpio.h"
#include"xparameters.h" #include"xintc.h"
#include"stdio.h"
#include"xil_io.h"
XGpio swled;
XIntc intc;//实例化intc
int swstate;
int pshdip;
void Initialize();
void GPIOHandler(void * CallBackRef);
int main()
{
Initialize();
while(1)
{
if(pshdip)
{
xil_printf("the Switch state is 0x %x\n\r",swstate);
pshdip=0;
}
}
return 0;
}
void Initialize()
{
XGpio_Initialize(&swled, XPAR_AXI_GPIO_0_DEVICE_ID);
XGpio_SetDataDirection(&swled, 1, 0xffff);
XGpio_SetDataDirection(&swled, 2, 0x0);
XGpio_InterruptEnable(&swled, 1);
XGpio_InterruptGlobalEnable(&swled);
//XGpio_InterruptClear(&swled,1);
XIntc_Initialize(&intc,XPAR_AXI_INTC_0_DEVICE_ID );
XIntc_Connect(&intc, XPAR_AXI_INTC_0_AXI_GPIO_0_IP2INTC_IRPT_INTR, (XInterruptHandler)GPIOHandler, (void *)&swled);
XIntc_Enable(&intc, XPAR_AXI_INTC_0_AXI_GPIO_0_IP2INTC_IRPT_INTR);
microblaze_enable_interrupts();
microblaze_register_handler((XInterruptHandler)XIntc_InterruptHandler,( void *)&intc);
XIntc_Start(&intc, XIN_REAL_MODE);
void GPIOHandler(void * CallBackRef)
{
swstate= XGpio_DiscreteRead(&swled, 1); pshdip=1;
XGpio_DiscreteWrite(&swled, 2, swstate);
XGpio_InterruptClear(&swled, 1);
状态显示:
}
实验流程图:
六、实验小结
在这个实验的过程中,令我觉得最困难的不是硬件部分的理解和搭建,而是软件部分代码的理解,由于代码中利用到了中断,所以对中断状态的理解和使用上面遇到了一些问题。

通过与同学交流,和看书上的相关内容,最后我也把代码理解了,这样就很好地把整个实验的过程都理解了。

总的来说,本次实验做得还比较轻松,原理方面容易掌握,操作方面也容易实验。

希望综合项目的实验也一样顺利。

相关文档
最新文档