2018年中考数学模拟试卷1

合集下载

2018年浙江省金华市中考数学冲刺模拟卷(1)

2018年浙江省金华市中考数学冲刺模拟卷(1)

2018年浙江省金华市中考数学冲刺模拟卷(1)一、选择题1.已知a,b互为相反数,c,d互为倒数,|e|=,则代数式5(a+b)2+cd﹣2e的值为()A、﹣B、C、或﹣D、﹣或+2.一个几何体由若干大小相同的小立方块搭成,图分别是从它的正面、上面看到的形状图,则搭成该几何体的小立方块至少需要(??)A、5块B、6块C、7块D、8块+3.以下列各组长度的线段为边,能构成三角形的是(??)A、3cm、4cm、8cmB、5cm、5cm、11cmC、12cm、5cm、6cmD、8cm、6cm、4cm+4.如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是()A、B、C、D、+5.下列计算正确的是(??)A、a2?a3=a6B、a6÷a3=a2C、4x2﹣3x2=1D、(﹣2a2)3=﹣8a6+6.由二次函数y=2(x﹣3)2+1,可知(??)A、其图象的开口向下B、其图象的对称轴为直线x=﹣3C、其最小值为1D、当x<3时,y随x的增大而增大+7.若小李同学掷出的铅球在场地航砸出一个直径为10厘米,深2厘米的小坑,则该铅球的直径为()A、20厘米B、19.5厘米C、14.5厘米D、10厘米+8.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A 、B 、C 、D 、以上都有可能+9.若关于的一元一次不等式组 无解,则的取值范围 是()A 、 ≥1B 、>1C 、 ≤D 、< +10.如左图,图1表示正六棱柱形状的高式建筑物,图2中的正六边形部分是从该建筑物的正上方看到的俯视图,P 、Q 、M 、N 表示小明在地 面上的活动区域.小明想同时看到该建筑物的三个侧面,他应 在()A 、P 区域B 、Q 区域C 、M 区域D 、N 区域 +二、填空题11.分解因式:x 2﹣(x ﹣3)2=.+ 12.已知 则+13.某广告公司全体员工年薪的具体情况如表: 年薪/万元 25 115 110 36 34 2人数则该公司全体员工年薪的中位数是 万元+14.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.+15.(2017?长春)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC 与△A'B'C'关于点P成中心对称,则点A'的坐标为.+16.如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上,C点在斜边上,设矩形的一边AB=xm,矩形的面积为ym2,则y的最大值为.+三、解答题17.计算:()﹣2﹣﹣)0+2sin30°+|﹣3|.(+18.解方程.+19.如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:①将△ABC向上平移3个单位长度,画出平移后的△A1B1C1,写出A1、C1的坐标;②将△A1B1C1绕B1逆时针旋转90°,画出旋转后的△A2B1 C2,求线段B1C1旋转过程中扫过的面积(结果保留π).+20.企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,1 50元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)、宣传小组抽取的捐款人数为人,请补全条形统计图;(2)、在扇形统计图中,求100元所对应扇形的圆心角的度数;(3)、已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?+21.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)、当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)、若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.+22.如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)、求证:AE=BF.(2)、连接GB,EF,求证:GB∥EF.(3)、若AE=1,EB=3,求DG的长.+23.如图1,点P为四边形ABCD所在平面上的点,如果∠PAD=∠PBC,则称点P为四边形ABCD关于A、B的等角点,以点C为坐标原点,BC所在直线为x轴建立平面直角坐标系,点B的横坐标为﹣6.(1)、如图2,若A、D两点的坐标分别为A(﹣6,4)、D(0,4),点P在DC边上,且;点P为四边形ABCD关于A、B的等角点,则点P的坐标为(2)、如图3,若A、D两点的坐标分别为A(﹣2,4)、D(0,4).①若P在DC边上时,求四边形ABCD关于A、B的等角点P的坐标;②在①的条件下,将PB沿x轴向右平移m个单位长度(0<m<6)得到线段P′B′,连接P′D,B′D,试用含m的式子表示P′D2+B′D2,并求出使P′D2+B′D2取得最小值时点P′的坐标;③如图4,若点P为四边形ABCD关于A、B的等角点,且点P坐标为(1,t),求t 的值;④以四边形ABCD的一边为边画四边形,所画的四边形与四边形ABCD有公共部分,若在所画的四边形内存在一点P,使点P分别是各相邻两顶点的等角点,且四对等角都相等,请直接写出所有满足条件的点P的坐标.+24.如图1所示,在?ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿射线AC的方向匀速平移得到△PNM,速度为1cm/s,同时,点Q从点C出发,沿射线CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动,如图2所示,设运动时间为t(s)(0<t<4).(1)、当t为何值时,PQ∥MN?(2)、设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)、是否存在某一时刻t,使得PQ=QM,若存在,求出t的值;若不存在,请说明理由.+。

2018年浙江省杭州市中考数学一模试卷

2018年浙江省杭州市中考数学一模试卷

2018年浙江省杭州市中考数学一模试卷一、选择题:本题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的.1.(3分)已知⊙O的半径是5cm,点O到同一平面内直线a的距离为4cm,则直线a与⊙O 的位置关系是()A.相交B.相切C.相离D.相交或相离2.(3分)二次函数y=2(x﹣1)(x﹣2)的图象与y轴的交点坐标是()A.(0,1)B.(0,2)C.(0,4)D.(0,﹣4)3.(3分)如图,已知Rt△ABC中,∠C=90°,AC=4,tan A=,则BC的长是()A.2B.8C.2D.44.(3分)酒店厨房的桌子上摆放着若干碟子,小辉分别从三个方向上看,把它们的三视图画了下来(如图所示),则桌子上共有碟子()A.17 个B.12 个C.10 个D.7 个5.(3分)已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于0点,对于各图中的两个三角形而言,下列说法正确的是()A.都相似B.都不相似C.只有(1)相似D.只有(2)相似6.(3分)已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值2,有最小值﹣2.5B.有最大值2,有最小值1.5C.有最大值1.5,有最小值﹣2.5D.有最大值2,无最小值7.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°8.(3分)如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r9.(3分)已知点(x0,y0)是二次函数y=ax2+bx+c(a>0)的一个点且x0满足关于x的方程4ax+2b=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y010.(3分)已知如图,Rt△ABC中,∠ACB=90°,E是斜边AB的中点,D是线段AC延长线上的一点,连结DB、DE,DE与BC交于点G.给出下列结论:①若AD=BD,则AC•AD=AE•AB;②若AB=BD,则DG=2GE;③若CD=BE,则∠A=2∠ADE.其中正确的是()A.①②B.①③C.②③D.①②③二、填空题:本题有6个小题,每小题3分,共24分.第10题图11.(3分)某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是.12.(3分)若0°<α<90°,tanα=1,则sinα=.13.(3分)一个圆锥的主视图是底边为12,底边上的高为8的等腰三角形,则这个圆锥的表面积为cm2.14.(3分)如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为.15.(3分)若抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,且两抛物线的顶点相距3个单位长度,则c的值为.16.(3分)如图,边长为12的正△ABC中,D是BC边的中点,一束光线自D发出射到AC上的点E后,依次反射到AB、BC上的点F和G(根据光学原理∠DEC=∠AEF,∠AFE=∠BFG).(1)若∠FGB=45°,CE=;(2)若BG=9,则tan∠DEC的值是.三、解答题:本题有7小题,共66分.解答应写出文字说明,证明过程或推演步骤.17.(8分)已知二次函数y=x2+2x+m的图象过点A(3,0).(1)求m的值;(2)当x取何值时,函数值y随x的增大而增大.18.(10分)一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.19.(10分)如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.(1)求证:AB与⊙O相切;(2)若AB=16,sin A=,求⊙O的面积.20.(10分)如图,已知CD为Rt△ABC斜边上的中线,过点D作AC的平行线,过点C 作CD的垂线,两线相交于点E.(1)求证:△ABC∽△DEC;(2)若CE=3,CD=4,求CB的长.21.(10分)如图,在Rt△ABC中,∠ACB=90°,E是边BC上的点,过点E作AB的垂线交AB于点F,交射线AC于点D,连结AE,(1)若S△AFD:S△EFB=2,求sin∠BAE的值;(2)若tan∠BAE=,AC=2,AF=4,求BE的值.22.(12分)在平面直角坐标系xOy中,抛物线y=2x2﹣8x+6与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.点D的坐标为(0,m),过D作y轴垂线与抛物线相交于点P(x1,y1),Q(x2,y2)(点P在点Q的左侧),与直线BC相交于点N(x3,y3).(1)在同一坐标系内画出抛物线y=2x2﹣8x+6与直线BC的草图;(2)当2<m<4时,比较x1,x2,x3的大小关系;(3)若x1<x2<x3,求x1+x2+x3的取值范围.23.(12分)如图,在边长为4的等边△ABC中,点D是射线BC上的任意一点(不含端点C),连结AD,以AD为边作等边△ADE(E与B在直线AD的两侧),连结CE.(1)当点D在线段BC上时,①求证:∠ABD=∠ACE.②记△DCE的面积为s,问s是否有最大值?请说明理由.(2)当△ABD的面积是△DCE面积的两倍时,求线段DE的长.2018年浙江省杭州市中考数学一模试卷参考答案与试题解析一、选择题:本题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的.1.(3分)已知⊙O的半径是5cm,点O到同一平面内直线a的距离为4cm,则直线a与⊙O 的位置关系是()A.相交B.相切C.相离D.相交或相离【分析】设圆的半径为r,点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离,从而得出答案.【解答】解:设圆的半径为r,点O到直线l的距离为d,∵d=4,r=5,∴d<r,∴直线l与圆相交.故选:A.【点评】本题考查的是直线与圆的位置关系,解决此类问题的关键是通过比较圆心到直线距离d与圆半径大小关系完成判定.2.(3分)二次函数y=2(x﹣1)(x﹣2)的图象与y轴的交点坐标是()A.(0,1)B.(0,2)C.(0,4)D.(0,﹣4)【分析】代入x=0求出y值,进而即可得出二次函数图象与y轴的交点坐标.【解答】解:当x=0时,y=2(x﹣1)(x﹣2)=2×(0﹣1)(0﹣2)=4.∴二次函数y=2(x﹣1)(x﹣2)的图象与y轴的交点坐标是(0,4).故选:C.【点评】本题考查了二次函数图象上点的坐标特征,代入x=0求出y值是解题的关键.3.(3分)如图,已知Rt△ABC中,∠C=90°,AC=4,tan A=,则BC的长是()A.2B.8C.2D.4【分析】根据锐角三角函数定义得出tan A=,代入求出即可.【解答】解:∵tan A==,AC=4,∴BC=2,故选:A.【点评】本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sin A =,cos A=,tan A=.4.(3分)酒店厨房的桌子上摆放着若干碟子,小辉分别从三个方向上看,把它们的三视图画了下来(如图所示),则桌子上共有碟子()A.17 个B.12 个C.10 个D.7 个【分析】从俯视图中可以看出最底层的碟子个数及形状,从主视图可以看出每一层碟子的层数和个数,从而算出总的个数.【解答】解:由图可看出,桌子上的碟子可以分成三摞,他们的个数分别是5,4,3,因此桌子上碟子的个数应该是4+5+3=12个.故选:B.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出碟子的个数.5.(3分)已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于0点,对于各图中的两个三角形而言,下列说法正确的是()A.都相似B.都不相似C.只有(1)相似D.只有(2)相似【分析】图(1)根据三角形的内角和定理,即可求得△ABC的第三角,由有两角对应相等的三角形相似,即可判定(1)中的两个三角形相似;图(2)根据图形中的已知条件,即可证得,又由对顶角相等,即可根据对应边成比例且夹角相等的三角形相似证得相似.【解答】解:如图(1)∵∠A=35°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=70°,∵∠E=75°,∠F=70°,∴∠B=∠E,∠C=∠F,∴△ABC∽△DEF;如图(2)∵OA=4,OD=3,OC=8,OB=6,∴,∵∠AOC=∠DOB,∴△AOC∽△DOB.故选:A.【点评】此题考查了相似三角形的判定.注意有两角对应相等的三角形相似与对顶角相等,即可根据对应边成比例且夹角相等的三角形相似的定理的应用.6.(3分)已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值2,有最小值﹣2.5B.有最大值2,有最小值1.5C.有最大值1.5,有最小值﹣2.5D.有最大值2,无最小值【分析】直接利用利用函数图象得出函数的最值.【解答】解:∵二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,∴x=1时,有最大值2,x=4时,有最小值﹣2.5.故选:A.【点评】此题主要考查了二次函数的最值,利用数形结合分析是解题关键.7.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【分析】根据切线的性质求出∠OAC,结合∠C=40°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.【点评】本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.8.(3分)如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.【解答】解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则=2πr,解得:R=3r.根据勾股定理得圆锥的高为2r,故选:B.【点评】本题主要考查圆锥侧面面积的计算,正确理解圆的周长就是扇形的弧长是解题的关键.9.(3分)已知点(x0,y0)是二次函数y=ax2+bx+c(a>0)的一个点且x0满足关于x的方程4ax+2b=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y0【分析】由x0满足关于x的方程4ax+2b=0,可得出点(x0,y0)是二次函数y=ax2+bx+c 的顶点坐标,再由a>0利用二次函数的性质即可得出对于任意实数x都有y≥y0,此题得解.【解答】解:∵x0满足关于x的方程4ax+2b=0,∴x0=﹣,∴点(x0,y0)是二次函数y=ax2+bx+c的顶点坐标.∵a>0,∴对于任意实数x都有y≥y0.故选:A.【点评】本题考查了二次函数的性质,牢记“当a>0时,顶点是抛物线的最低点”是解题的关键.10.(3分)已知如图,Rt△ABC中,∠ACB=90°,E是斜边AB的中点,D是线段AC延长线上的一点,连结DB、DE,DE与BC交于点G.给出下列结论:①若AD=BD,则AC•AD=AE•AB;②若AB=BD,则DG=2GE;③若CD=BE,则∠A=2∠ADE.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据直角三角形的性质、等腰三角形的三线合一、三角形的外角的性质计算即可判断.【解答】解:①∵AD=BD,E是斜边AB的中点,∴DE⊥AB,又∠ACB=90°,∠A=∠A,∴△AED∽△ACB,∴=,即AC•AD=AE•AB,①正确;②∵AB=BD,∠ACB=90°,∴BC是△ABD的中线,又DE是△ABD的中线,∴点G是△ABD的重心,∴DG=2GE,②正确;③连接CE,∵∠ACB=90°,E是斜边AB的中点,∴EC=EA=EB,∴∠A=∠ECA,CD=CE,∴∠CDE=∠CED,∵∠ECA=∠CDE+∠CED=2∠ADE,∴∠A=2∠ADE,③正确;故选:D.【点评】本题考查的是相似三角形的性质、直角三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.二、填空题:本题有6个小题,每小题3分,共24分.第10题图11.(3分)某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是.【分析】先求出女生的人数,再用女生人数除以总人数即可得出答案.【解答】解:∵共有45位学生,其中男生有25人,∴女生有20人,∴选中女生的概率是=;故答案为:.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)若0°<α<90°,tanα=1,则sinα=.【分析】由0°<α<90°、tanα=1知∠α=45°,据此可得sinα=.【解答】解:∵0°<α<90°,tanα=1,∴∠α=45°,则sinα=,故答案为:.【点评】本题主要考查特殊锐角三角函数值,解题的关键是熟记特殊锐角的三角函数值.13.(3分)一个圆锥的主视图是底边为12,底边上的高为8的等腰三角形,则这个圆锥的表面积为96πcm2.【分析】首先求得底面的周长、面积,利用勾股定理求得圆锥的母线长,然后利用扇形的面积公式即可求得圆锥的侧面积,加上底面面积就是表面积.【解答】解:底面周长是12πcm,底面积是:π×(12÷2)2=36πcm2.母线长是:=10cm,则圆锥的侧面积是:π×(12÷2)×10=60πcm2,则圆锥的表面积为36π+60π=96πcm2.故答案是:96π.【点评】本题考查了圆锥的计算,勾股定理,圆的面积公式,圆的周长公式和扇形面积公式求解.注意圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2的应用.14.(3分)如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为48°.【分析】如图,在⊙O上取一点K,连接AK、KC、OA、OC.求出∠AOC的角度,即可解决问题;【解答】解:如图,在⊙O上取一点K,连接AK、KC、OA、OC.∵∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分别切⊙O于A、C两点,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案为48°.【点评】本题考查切线的性质、圆周角定理、圆内接四边形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.15.(3分)若抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,且两抛物线的顶点相距3个单位长度,则c的值为或﹣.【分析】根据题意求出a=,y=x2﹣x+c的顶点坐标为(3,4)或(3,﹣2),代入计算即可.【解答】解:y=2(x﹣3)2+1对称轴是x=3,顶点坐标为(3,1),∵抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,∴﹣=3,解得,a=,∵两抛物线的顶点相距3个单位长度,∴y=x2﹣x+c的顶点坐标为(3,4)或(3,﹣2),把(3,4)代入y=x2﹣x+c得,c=,把(3,﹣2)代入y=x2﹣x+c得,c=﹣,故答案为:或﹣.【点评】本题考查的是二次函数的图形和性质,正确求出二次函数的对称轴、顶点坐标、灵活运用分情况讨论思想是解题的关键.16.(3分)如图,边长为12的正△ABC中,D是BC边的中点,一束光线自D发出射到AC上的点E后,依次反射到AB、BC上的点F和G(根据光学原理∠DEC=∠AEF,∠AFE=∠BFG).(1)若∠FGB=45°,CE=3+3;(2)若BG=9,则tan∠DEC的值是.【分析】(1)根据光学原理和等边三角形的性质及三角形的内角和定理,先求出∠DEC 的度数,再利用直角三角形求出CE的长;(2)先证明△AFE∽△BFG,△AEF∽△CED,利用相似三角形的性质求出当BG=8时CE的长,再利用直角三角形求出∠DEC的正切.【解答】解:过点D作DM⊥CE,垂足为M(1)∵△ABC是正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=12,∵∠FGB=45°,∴∠BFG=∠AFE=180°﹣60°﹣45°=75°,∴∠DEC=∠AEF=∠180°﹣75°﹣60°=45°∵D是BC边的中点,∴DC=6,在Rt△DMC中,∵∠C=60°,∴DM=3,CM=3,在Rt△DME中,∵∠DEC=45°,∴EM=DM=3,∴CE=CM+EM=3+3故答案为:3+3.(2)∵△ABC是正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=12,∵∠DEC=∠AEF,∠AFE=∠BFG∴△AFE∽△BFG,△AEF∽△CED∴△AEF∽△BFG∽△CED∴设CE=x,F A=y,∵BG=9则=∴解得x=7,即CE=7.在Rt△DMC中,∵∠C=60°,DC=6∴DM=3,CM=3,在Rt△DME中,tan∠DEC====【点评】此题是一个综合性很强的题目,主要考查等边三角形的性质、三角形相似、解直角三角形、函数等知识.难度较大,有利于培养同学们钻研和探索问题的精神.三、解答题:本题有7小题,共66分.解答应写出文字说明,证明过程或推演步骤.17.(8分)已知二次函数y=x2+2x+m的图象过点A(3,0).(1)求m的值;(2)当x取何值时,函数值y随x的增大而增大.【分析】(1)把A(3,0)代入y=x2+2x+m,根据待定系数法即可求得;(2)化成顶点式即可求得.【解答】解:(1)∵二次函数y=x2+2x+m的图象过点A(3,0).∴9+6+m=0,∴m=﹣15;(2)∵y=x2+2x﹣15=(x+1)2﹣16,∴二次函数的图象的对称轴为x=﹣1,∵a=1>0,∴当x≥﹣1时,函数值y随x的增大而增大.【点评】本题考查了二次函数图象上的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.18.(10分)一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.【分析】计算两个底面的菱形的面积加上侧面四个矩形的面积即可求得直四棱柱的表面积.【解答】解:∵俯视图是菱形,∴底面菱形边长为=2.5cm,面积为×3×4=6,则侧面积为2.5×4×8=80cm2,∴直棱柱的表面积为92cm2.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解该几何体的形状,难度不大.19.(10分)如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.(1)求证:AB与⊙O相切;(2)若AB=16,sin A=,求⊙O的面积.【分析】(1)首先连接OC,然后由OA=OB,C是边AB的中点,根据三线合一的性质,可证得AB与⊙O相切;(2)首先求得OC的长,继而可求得⊙O的面积.【解答】(1)证明:连接OC,∵在△ABO中,OA=OB,C是边AB的中点,∴OC⊥AB,∵以O为圆心的圆过点C,∴AB与⊙O相切;(2)∵OA=OB,AB=16,sin A=,设OC=r,由sin A=,则AC=3r,∵AC=,由勾股定理可得:r2+82=(3r)2,解得:r2=8∴⊙O的面积为:π×r2=8π.【点评】此题考查了切线的判定、等腰三角形的性质以及三角函数的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20.(10分)如图,已知CD为Rt△ABC斜边上的中线,过点D作AC的平行线,过点C 作CD的垂线,两线相交于点E.(1)求证:△ABC∽△DEC;(2)若CE=3,CD=4,求CB的长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得出CD=AD,进而可得出∠A=∠ACD,由平行线的性质可得出∠CDE=∠ACD=∠A,再结合∠ACB=∠DCE =90°,即可证出△ABC∽△DEC;(2)在Rt△DCE中,利用勾股定理可求出DE的长度,再根据相似三角形的性质即可求出CB的长.【解答】(1)证明:∵CD为Rt△ABC斜边上的中线,∴CD=AB=AD,∴∠A=∠ACD.∵DE∥AC,∴∠CDE=∠ACD=∠A.又∵∠ACB=∠DCE=90°,∴△ABC∽△DEC.(2)解:在Rt△DCE中,CE=3,CD=4,∴DE==5.∵△ABC∽△DEC,∴=,即=,∴CB=.【点评】本题考查了相似三角形的判定与性质、直角三角形斜边上的中线、等腰三角形的性质、平行线的性质以及勾股定理,解题的关键是:(1)根据等腰三角形的性质结合平行线的性质,找出∠CDE=∠ACD=∠A;(2)利用相似三角形的性质,求出CB的长.21.(10分)如图,在Rt△ABC中,∠ACB=90°,E是边BC上的点,过点E作AB的垂线交AB于点F,交射线AC于点D,连结AE,(1)若S△AFD:S△EFB=2,求sin∠BAE的值;(2)若tan∠BAE=,AC=2,AF=4,求BE的值.【分析】(1)证明△AFD∽△EFB,推出=()2=2,推出=,设EF =a,则AF=a,AE=a,根据sin∠EAB=计算机可解决问题.(2)由△EFB∽△ACB,推出=,设EB=x,则AB=2x,BF=2x﹣4,由勾股定理构建方程即可解决问题.【解答】解:(1)∵DF⊥AB,∴∠EFB=90°,∵∠ACB=90°,∴∠ECD=∠EFB=90°,∵∠CED=∠FEB,∴∠D=∠B,∵∠AFD=∠EFB=90°,∴△AFD∽△EFB,∴=()2=2,∴=,设EF=a,则AF=a,AE=a,∴sin∠EAB==.(2)∵tan∠BAE==,AF=4,∴EF=1,∵△EFB∽△ACB,∴=,设EB=x,则AB=2x,BF=2x﹣4,由勾股定理:12+(2x﹣4)2=x2,解得x=和(舍弃),∴BE=.【点评】本题考查相似三角形的判断关系,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.22.(12分)在平面直角坐标系xOy中,抛物线y=2x2﹣8x+6与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.点D的坐标为(0,m),过D作y轴垂线与抛物线相交于点P(x1,y1),Q(x2,y2)(点P在点Q的左侧),与直线BC相交于点N(x3,y3).(1)在同一坐标系内画出抛物线y=2x2﹣8x+6与直线BC的草图;(2)当2<m<4时,比较x1,x2,x3的大小关系;(3)若x1<x2<x3,求x1+x2+x3的取值范围.【分析】(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标,依此画出草图;(2)观察图1,即可找出:当2<m<4时,x1<x3<x2;(3)根据抛物线的解析式可找出顶点坐标,利用待定系数法可求出直线BC的解析式,观察图2可找出,若x1<x2<x3,则﹣2<m<0,利用一次函数图象上点的坐标特征可得出3<x3<4,由二次函数图象的对称性结合抛物线的对称轴为直线x=2可得出x1+x2=4,结合3<x3<4即可找出x1+x2+x3的取值范围.【解答】解:(1)当y=0时,有2x2﹣8x+6=0,解得:x=1或x=3,∴点A的坐标为(1,0),点B的坐标为(3,0);当x=0时,y=2x2﹣8x+6=6,∴点C的坐标为(0,6).画出草图如图1所示.(2)由图1可知,当2<m<4时,x1<x3<x2.(3)∵抛物线的解析式为y=2x2﹣8x+6,∴抛物线的顶点坐标为(2,﹣2).设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,6)代入y=kx+b,得:,解得:,∴直线BC的解析式为y=﹣2x+6.由图2可知,若x1<x2<x3,则﹣2<m<0,∴3<x3<4.∵抛物线的对称轴为直线x=2,∴x1+x2=2×2=4,∴7<x1+x2+x3<8.【点评】本题考查了抛物线与x轴的交点、二次函数的图象、二次函数的性质、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标,依此画出草图;(2)观察图1,利用数形结合找出结论;(3)利用一次函数图象上点的坐标特征求出x3的范围.23.(12分)如图,在边长为4的等边△ABC中,点D是射线BC上的任意一点(不含端点C),连结AD,以AD为边作等边△ADE(E与B在直线AD的两侧),连结CE.(1)当点D在线段BC上时,①求证:∠ABD=∠ACE.②记△DCE的面积为s,问s是否有最大值?请说明理由.(2)当△ABD的面积是△DCE面积的两倍时,求线段DE的长.【分析】(1)①根据等边三角形的性质得出结论,判断出△BAD≌△CAE,即可得出结论;②先求出EH,利用三角形的面积公式即可得出结论;(2)先求出△ABD的面积,再分点D在边BC和BC延长线上,利用△ABD的面积是△DCE面积的两倍,建立方程,即可得出结论.【解答】解:(1)①在等边△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE=60°,在△BAD和△CAE中,,∴△BAD≌△CAE,∴∠ABD=∠ACE=60°'②如图1,过点E作EH⊥BC于H,设BD=x,(0<x<4)∵△BAD≌△CAE,∴CE=BD=x,CD=BC﹣BD=4﹣x,∠ACE=∠ABC=∠ACB=60°,∴∠ECH=60°,在Rt△CMH中,EH=CE•sin∠ECH=x,∴s=DC•EH=(4﹣x)×x=﹣(x﹣2)2+,∴x=2时,即:点D是BC中点时,s最大;(2)如图2,过点A作AG⊥BC于G,在Rt△ABG中,AB=4,∠ABC=60°,∴AG=AB•sin∠ABC=2,∴S△ABD=BD•AG=x,①当点D在边BC上时,由(1)知,S△CDE=s=﹣(x﹣2)2+,∵△ABD的面积是△DCE面积的两倍,∴x=2[﹣(x﹣2)2+],∴x=2或x=0(舍),∴CE=BD=2,EH=,根据勾股定理得,CH=1,∴DH=CD+CH=3,在Rt△DEH中,DE=2,②当点D在BC的延长线上时,如图3,同①的方法得,∠ECM=60°,过点E作EH⊥BC于H,在Rt△CEM中,EH=CE sin∠ECM=x,∴S△DCE=(x﹣4)×x=(x﹣4),∵△ABD的面积是△DCE面积的两倍,∴x=2×(x﹣4),∴x=6或x=0(舍),∴CE=BD=6,EH=3,CH=3,∴DH=1,在Rt△DEH中,DE=2.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.。

2018年四川绵阳市中考数学模拟试题(一)含答案

2018年四川绵阳市中考数学模拟试题(一)含答案

绵阳市2018年初中毕业考试暨高中阶段学校招生考试模拟试卷1(满分:140分考试时间:120分钟)第I卷选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.如图是正方体的平面展开图,每个面上标有一个汉字,与“我”字相对的面上的字是()第2题A.魅B.力C.绵D.阳3.下列运算正确的是()A.a2a3=a6B.(a2)3=a6C.a6÷a2=a3D.a6﹣a2=a4 4.2014年12月10日从省教厅获悉,今年起我省编制并实施全面改善贫困地区义务教育薄弱学校基本办学条件计划《实施方案》,目前,已安排下达2014年“全面改薄”中央专项资金19.4亿元.用科学记数法表示19.4亿为()A.19.4×108B.1.94×108C.1.94×109D.19.4×1095.如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD 的度数是()第5题A.80°B.90°C.100°D.110°6.如图,假设可以随意在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.第6题第7题7.如图,直线l1∥l2,∠1=∠2=35°,∠P=90°,则∠3等于()A.50°B.55°C.60°D.65°8.某种商品进价为每件a元,销售商先以高出进价50%定价,后又以7折的价格销售,这时一件该商品的在买卖过程中盈亏情况为()A.赢利0.05a元B.赢利0.5a元C.亏损0.05a元D.亏损0.3a元9.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=()A.B.C.D.第9题第10题10.如图,Rt△ABE中,∠B=90°,延长BE到C,使EC=AB,分别过点C,E作BC,AE 的垂线两线相交于点D,连接AD.若AB=3,DC=4,则AD的长是()A.5 B.7C.5D.无法确定11.如图所示的三角形数垒,a、b是某行的前两个数,当a=7时,b=()A.20 B.21 C.22 D.23第11题第12题12.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.B.2C.D.1第II卷非选择题(共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.因式分解:4a2b﹣b3=.14.化简:÷(+)=.15.如图所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为米.(保留根号)第15题第16题16.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O 重合.若BC=3,则折痕CE的长为.17.如图,有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去边长为的正方形.第17题第18题18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是.三、解答题(本大题共7小题,共86分,解答应写出必要的文字说明,证明过程或演算步骤)19.(16分)(1)计算:﹣(﹣1)2015×()﹣2﹣|1﹣|;(2)解不等式组.20.(11分)我们知道,每年的4月23日是”世界读书日”,某校为了鼓励学生去发现读书的乐趣,享受阅读的过程,随机调查了部分学生,就”你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表.请根据统计表提供的信息解答下列问题:(1)这次随机调查了名学生,统计表中d=.(2)假如以此统计表绘制出扇形统计图,则武侠小说对应的圆心角度数是多少?21.(11分)九年级(1)班团支书计划组织部分同学在元旦进行鲜花销售活动,在元旦当天,预计销售康乃馨和百合花,经过市场调研,他们知道康乃馨的批发价是每枝1.5元,百合花每枝4元,而市场销售价为康乃馨每枝2元,百合花每枝5元.(1)如果用300元钱进货,售出全部鲜花之后所得利润为80元,求两种鲜花各进多少枝?(2)团支部将这些鲜花平均分给甲乙两个小组去销售,由于甲组每小时售出的花是乙组的两倍,因此比乙组提前1小时售完,求甲组每小时售出多少枝花.22.(11分)已知一次函数y=2x﹣k与反比例函数y=的图象相交于A、B,其中A的横坐标为3.(1)求A、B两点的坐标;(2)若直线AB上有一点P,使得△APO∽△AOB,求P坐标.第22题23.(11分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径.第23题24.(12分)已知y=ax2+bx﹣3过(2,﹣3),与x轴交于A(﹣1,0),B(x2,0),交y 轴于C.(1)求抛物线的解析式;(2)过点C作CD∥x轴,交抛物线于D,是否存直线y=kx+1将四边形ACDB分成面积相等的两部分,若存在,请求k的值;若不存在,请说明理由;(3)若直线y=m(﹣3<m<0)与线段AC、BC分别交于D、E两点,则在x轴上是否存在点P,使得△DPE为等腰直角三角形,若存在,请求P点的坐标;若不存在,请说明理由.第24题25.(14分)如图1,在正方形ABCD中,E是BC的中点,点F在CD上,∠BAE=∠FAE.(1)指出线段AF、BC、FC之间有什么关系,证明你的结论.(2)设AB=12,求线段FC的长.(3)如图2,过AE中点G的直线分别交AB、CD于P、Q;求的值.第25题绵阳市2018年初中毕业考试暨高中阶段学校招生考试模拟试卷1(参考答案)一、1.B解析:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选B.2.D解析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以与“我”字相对的面上的字是阳.故选D.3.B解析:A、a2a3=a5,故本选项错误;B、(a2)3=a6,正确;C、a6÷a2=a4,故本选项错误;D、a6﹣a2不是同类项,不能合并,故本选项错误;故选B.4.C解析:19.4亿=19 4000 0000=1.94×109.故选C.5.C解析:∵∠A+∠B+∠ADC+∠DCB=360°,∠A+∠B=200°,∴∠ADC+∠DCB=160°.又∵∠ADC、∠DCB的平分线相交于点O,∴∠ODC=∠ADC,∠OCD=,∴∠ODC+∠OCD=80°,∴∠COD=180°﹣(∠ODC+∠OCD)=100°.故选C.6.C解析:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=.故选C.7.B解析:如图,∵l1∥l2,∴∠1+∠2+∠3+∠4=180°,∵∠1=∠2=35°,∴∠3+∠4=110°,∵∠P=90°,∠2=35°,∴∠4=90°﹣35°=55°,∴∠3=110°﹣55°=55°.故选B.8.A 解析:总售价=a(1+50%)×0.7=1.05a,∵1.05a﹣a=0.05a,∴赢利0.05a元,故选A.9.B解析:∵四边形ABCD是正方形,∴AB=AD=1,AC⊥BD,∠ABC=∠BCD=90°,∠CBO=∠BCO=45°,OB=BD,∴BD==,∠BOC=90°,∴OB=,∵PE⊥BD于点E,PF⊥AC于点F,∴∠OEP=∠OFP=90°=∠EOF,△BEP是等腰直角三角形,∴四边形OEPF是矩形,PE=BE,∴PF=OE,∴PE+PF=BE+OE=OB=.故选B.10.C解析:如图,∵∠C=∠B=90°,∠AED=90°,∴∠1=∠2.在△ABE与△ECD中,,∴△ABE≌△ECD(AAS),∴AE=ED,BE=CD=4,∴在直角△ABE中,由勾股定理,得AE2=AB2+BE2=32+42=52.则AE=5.在等腰直角△AED中,AD=AE=5.故选C.11.C解析:根据分析,可得第n行的第一个数是n,所以当a=7时,a、b是第7行的前两个数;因为4﹣2=2,7﹣4=3,11﹣7=4,所以第6行的第2个数是:11+5=16,所以第7行的第2个数是b=16+6=22.故选C.12.A解析:连结AE,OD、OE.∵AB是直径,∴∠AEB=90°,又∵∠BED=120°,∴∠AED=30°,∴∠AOD=2∠AED=60°.∵OA=OD∴△AOD是等边三角形,∴∠OAD=60°,∵点E为BC的中点,∠AEB=90°,∴AB=AC,∴△ABC是等边三角形,边长是4.△EDC是等边三角形,边长是2.∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.∴阴影部分的面积=S△EDC=×22=.故选A.二.13.b(2a﹣b)(2a+b)解析:4a2b﹣b3=b(4a2﹣b2)=b(2a﹣b)(2a+b).14.x解析:原式=÷(+)=÷=•=x.15.10解析:如图,作AD⊥CD于D点.∵∠B=30°,∠ACD=60°,∠ACD=∠B+∠CAB,∴∠CAB=30°.∴BC=AC=10m,在Rt△ACD中,CD=AC•cos60°=10×0.5=5m,∴BD=15.∴在Rt△ABD中,AB=BD÷cos30°=15÷=10m.16.2解析:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在Rt△AOE中,设OE=x,则AE=3﹣x,AE2=AO2+OE2,即(3﹣x)2=32+x2,解得x=,∴AE=EC=3﹣=2.17.5cm 解析:设切去的正方形的边长为xcm,则盒底的长为(100﹣2x)cm,宽为(50﹣2x)cm,根据题意,得(100﹣2x)(50﹣2x)=3600,展开,得x2﹣75x+350=0,解得x1=5,x2=70(不合题意,舍去),则铁皮各角应切去边长为5cm的正方形.18.①④解析:①当x=1时图象在x轴下方时,y<0,即a+b+c<0,①正确;②当x=﹣1时图象在x轴上方,y>0,即a﹣b+c>0,②错误;③由抛物线的开口向上知a>0,∵﹣<1,∴2a+b>0,③错误;④∵图象开口向上,∴a>0,∵对称轴在y轴右侧∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,④正确.三.19.解:(1)原式=3﹣(﹣1)×4﹣(﹣1)=3+4﹣+1=8﹣;(2)∵解不等式①,得x<﹣3,解不等式②,得x≥﹣5,∴不等式组的解集为﹣5≤x<﹣3.20.解:(1)调查的总人数是:30÷0.15=200,则b=32÷200=0.16,d=1﹣0.56﹣0.16﹣0.15=0.13.故答案是200,0.13;(2)360°×0.15=54°.则武侠小说对应的圆心角度数是54°.21.解:(1)设康乃馨进货x枝,百合进货y枝,根据题意,得,解得.答:康乃馨进货40枝,百合进货60枝.(2)设乙组每小时售出a枝花,根据题意,得﹣=1解得a=25,经检验:a=25是分式方程的解,2×25=50.答:甲组每小时售出50枝花.22.解:(1)∵一次函数y=2x﹣k与反比例函数y=的图象相交于A和B两点,其中有一个交点A的横坐标为3,∴,解得k=4.∴一次函数的解析式为:y=2x﹣4;反比例函数的关系式为y=.(2)解,得,,∴A(3,2),B(﹣1,﹣6);∴OA2=32+22=13,AB==4,∵△APO∽△AOB,∴=,∴OA2=AP•AB,即13=AP•4,解得AP=,∵点P在直线y=2x﹣4上,∴设P(x,2x﹣4),∴AP=,解得x=3±,∴P点坐标为(3+,2+2)或(3﹣,6﹣2).23.(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM,∴∠BCD=∠BAM,∴∠BAM=BAD,在△ANE与△ADE中,∵,∴△ANE≌△ADE,∴AD=AN;(2)解:∵AB=4,AE⊥CD,∴AE=2,又∵ON=1,∴设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连结AO,则AO=OD=2x﹣1,∵△AOE是直角三角形,AE=2,OE=x﹣1,AO=2x﹣1,∴(2)2+(x﹣1)2=(2x﹣1)2,解得x=2,∴r=2x﹣1=3.24.解:(1)∵y=ax2+bx﹣3过(2,﹣3),A(﹣1,0),∴,解得a=1,b=﹣2,∴抛物线的解析式为:y=x2﹣2x﹣3.(2)如图1,设直线y=kx+1与x轴交于点E,于CD交于点F,A(﹣1,0),B(3,0),E(),F();S四边形ACFE=(CF+AE)•OC=(1);S四边形EFDB=(DF+BE)•OC=(5);即(1)=(5),k=.(3)存在点P.直线y=m与y轴交点为F(0,m),①当DE为腰时,分别过D、E作DP1⊥x 轴于P1,作EP2⊥x轴于P2;如图2,则△DP1E和△DEP2均为等腰直角三角形,又DP1=DE=EP2=OF=﹣m,又AB=x B﹣x A=3+1=4,又△ECD∽△BCA,即,即m=;P1(,0),P2(,0);②当DE为底时,过P3作GP3⊥DE于G,如图3,又DG=GE=GP3=OF=﹣m,由△ECD∽△BCA,,即m=;P3(,0)综上所述,P1(,0),P2(,0),P3(,0).图1 图2 图325.解:(1)AF=BC+FC,证明如下:如图1,过E作EM⊥AF交AF于点M,∵∠BAE=∠FAE,∴BE=ME,在Rt△ABE和Rt△AME中,,∴Rt△ABE≌Rt△AME(HL),∴AM=AB=BC,ME=BE=EC,在Rt△MFE和Rt△CFE中,,∴Rt△MFE≌Rt△CFE(HL),∴MF=FC,∴AF=AM+MF=BC+FC;(2)设FC=x,由(1)可知MF=x,AM=AD=AB=12,则DF=12﹣x,AF=12+x,在Rt△AFD中,由勾股定理,得AD2+DF2=AF2,即122+(12﹣x)2=(12+x)2,解得x=3,即FC=3;(3)如图2,过G作RS∥BC,交AB于点R,交CD于点S,∵G为AE中点,∴R为AB 中点,∴RG=BE=BC,GS=RS﹣RG=BC﹣RG=BC﹣BC=BC,∵AB∥CD,∴===.。

2018年武汉市中考数学模拟试题及答案

2018年武汉市中考数学模拟试题及答案

2018年武汉市中考数学模拟题及答案一、选择题(共10小题,每小题 3分,共30分) 1•月球表面白天的温度可达 123 C,夜晚可降到一 A . 110C B110C C . 356C 233 C ,那么月球表面昼夜的温差为( D . — 356C 2. 如果分式 —没有意义,那么X 1x 的取值范围是 X M 0 计算 3ab 2 - 4ab A. - ab 2 B . X = 0 2的结果是(B. ab 2C . X M — 1D . X =— 1 .7ab 2 色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性, 抽取体检表,统计结果如表: D . - 1 从男性体检信息库中随机 抽取的体检表数 n 50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数 m 3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069 0.01)( )根据表中数据,估计在男性中,男性患色盲的概率为(结果精确到 A . 0.069 B . 0.07 5. 计算(a — 1)2正确的是(A . a 2— 1B .6. 在平面直角坐标系中,点 A . ( — 1, 2)C . 0.070 ) a 2 — 2a — 1 C . —2)关于 2) )D . 0.06 P (1 , B. (1 , a 2 — 2a + 1 X 轴的对称点的坐标为 C. ( — 1 , — 2) a 2— a + 1)D. ( — 2, — 1)7. 图中三视图对应的正三棱柱是( D 童老师随机调查了 每天使用零花钱(单位:元)5 10 15 20 25 人数 2 5 8 X6 30名同学,结果如下表: 则这30名同学每天使用的零花钱的众数和中位数分别是( ) B C 8 .为调查某班学生每天使用零花钱的情况, A . 15、 15 B . 20、17.5 C . 20、 20 D . 20、 15 9.如图,动点P 从(0 , 3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射 角等于入射角.当点 P 第17次碰到矩形的边时,点 P 的坐标为( )A. (3 , 0)B. (0 , 3)C. (1 , 4)D. (8 , 3)10 .如图,FA 、PB 切O O 于AB 两点,CD 切O O 于点E 交FA 、PB 于C 、D .若△ PCD 的半径 为3r ,则tan / APB 的值为()、填空题(本大题共 6个小题,每小题 3分,共18分)11 .计算J8逅的结果是 ________________16 .已知关于 x 的二次函数 y = x 2-2x -2,当a < x < a + 2时,函数有最大值 1,贝U a 的值为三、解答题(共 8题,共72 分)5,1312 3.13 512 •计算: 2x 2 x 1 x 113•学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了 从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是 4名女生和2名男生,则14•如图,将矩形 ABCD 沿BD 翻折,点 C 落在P 点处,连接AP.若/ ABP = 26 ° 贝APB =60。

2018年山西省太原市中考数学一模试卷及答案解析

2018年山西省太原市中考数学一模试卷及答案解析

2018年山西省太原市中考数学一模试卷一、选择题(每小题只有一个选项符合题意,每小题3分,共48分.请将正确选项的序号填入下面的答案栏中)1.(3分)下列是某冬季四个城市的最低温度,其中气温最低的城市是()A.哈尔滨B.漠河C.太原D.拉萨2.(3分)如图,直线a,b被直线c所截,∠1=55°,下列条件能推出a∥b的是()A.∠3=55° B.∠2=55°C.∠4=55°D.∠5=55°3.(3分)今年3月5日,第十二届全国人民代表大会第五次会议在北京召开,国务院总理李克强在政府工作报告中指出,我国经济运行缓中趋稳、稳中向好,国内生产总值达到74.4万亿元.将74.4万亿元用科学记数法表示为()A.74.4×1012元B.74.4×1013元C.7.44×1012元D.7.44×1013元4.(3分)下列计算正确的是()A.a﹣1•a﹣3=a3B.(a﹣2)2=a4C.a2÷a﹣4=a﹣2D.(﹣2a)3=﹣8a35.(3分)如图所示,该几何体的主视图是()A. B. C.D.6.(3分)已知,正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象交于两点,其中一个交点的坐标为(﹣2,﹣1),则另一个交点的坐标是()A.(2,1) B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)7.(3分)如图,一艘潜艇在海面下500米A处测得俯角为30°的海底C处有一黑匣子发出信号,继续在同一深度直线航行4000米后,在B处测得俯角为60°的海底也有该黑匣子发出的信号,则黑匣子所在位置点C在海面下的深度为()A.2000米B.4000米C.2000米D.(2000+500)米8.(3分)在不透明的袋中有一些除颜色外完全相同的白色和黑色棋子,从中随机取出一颗棋子是白色棋子的概率是;若从盒中取出3颗黑色棋子后,再随机取出一颗棋子是白色棋子的概率为,则盒中白色棋子有()A.1颗 B.2颗 C.3颗 D.4颗9.(3分)如图,四边形ABCD内接于⊙O,∠BAD=80°,若弧ABC与弧ADC的长度分别为7π,11π,则弧BAD的长度为()A.9πB.10πC.11πD.12π10.(3分)如图,△ABC中,AB=AC=12,AD⊥BC于点D,点E在AD上且DE=2AE,连接BE并延长交AC于点F,则线段AF长为()A.4 B.3 C.2.4 D.2二、填空题(本大题共5个小题,每个小题3分,共15分)11.(3分)如图,每个小正方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么C点的位置可表示为.12.(3分)如图,在▱ABCD中,AB=3,BC=4,对角线AC,BD交于点O,点E 为边AB的中点,连结OE,则OE的长为.13.(3分)某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球面上分别标有“0元”,“10元”,“20元”,“30元”的字样.顾客在该超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),超市根据两小球上所标金额的和返还等额购物券.若某顾客刚好消费200元,则他所获得购物券的金额不低于30元的概率为.14.(3分)如图,△ABC中,AB=AC=1,∠BAC=120°,以边BC为腰作第一个△CBC1,且CC1=BC,∠BCC1=120°;以边BC1为腰再作第二个△C1BC2,且C1C2=BC1,∠BC1C2=120°;…;按此规律所作的第n个三角形的腰长为(用含n的式子表示)15.(3分)如图,在正方形ABCD中,AB=2,点M为正方形ABCD的边CD上的动点(与点C,D不重合),连接BM,作MF⊥BM,与正方形ABCD的外角∠ADE 的平分线交于点F.设CM=x,△DFM的面积为y,则y与x之间的函数关系式.三、解答题(本大题共8个小题,共75分)解答时应写出必要的文字说明、推理过程或演算步骤.16.(10分)(1)计算:﹣12×﹣()﹣1+6sin60°(2)化简:÷﹣.17.(8分)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分及其以上的人数有人;(2)补全下表中空缺的三个统计量:(3)请根据上述图表对这次竞赛成绩进行分析,写出两个结论.18.(8分)小李与小王是社区图书馆整理图书的志愿者,他们在清点图书时,小王平均每分钟比小李多清点5本,小李清点200本图书所用的时间与小王清点300本图书所用的时间相同.(1)求小王平均每分钟清点图书的本数;(2)周末,该图书馆要求他们两人同时清点完3600本图书,用时不超过3小时.但小王有事需提前离开,在两人清点图书的速度不变的情况下,小王至少清点多少本图书才能离开?19.(7分)如图,直线y=kx+4(k≠0)与x轴,y轴分别交于点B,A,直线y=﹣2x+1与y轴交于点C,与直线y=kx+4交于点D,△ACD的面积.(1)求直线AB的表达式;(2)设点E在直线AB上,当△ACE是直角三角形时,请直接写出点E的坐标.20.(8分)如图,在△ABC中,∠ACB=90°.(1)尺规作图:作△ABC的外接圆⊙O,作∠ACB的平分线与⊙O交于点D,连接BD,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若AC=8,BC=6,求BD的长.21.(8分)请阅读以下材料,并完成相应的任务.如图(1),A,B两点在反比例函数y=(x>0)的图象上,直线AB与坐标轴分别交于点C,D,求证:AD=BC.下面是小明同学的部分证明过程:证明:如图(2),过点A作AM⊥y轴于点M,过点B作BN⊥x轴于点N.设直线AB的表达式为y=mx+n,A,B两点的横坐标分别为a,b,则,解得m=﹣,n=∴直线AB的表达式y=﹣x+当x=0时,y=,∴点D的坐标为(0,)∴DM=﹣=…(1)请补全小明的证明过程;(2)如图(3),直线AB与反比例函数y=(x>0)的图象交于点A(,9)和点C,与x轴交于点D,连接OC.若点B的坐标为(0,10),则点C的坐标为,△OCD的面积为.22.(13分)综合与实践:在综合实践课上,老师让同学们对一张长AB=4,宽BC=3的矩形纸片ABCD进行剪拼操作,如图(1),希望小组沿对角线AC剪开得到两张三角形纸片△ABC和△A′DC′.操作与发现:(1)将这两张三角形纸片按如图(2)摆放,连接BD,他们发现AC⊥BD,请证明这个结论;操作与探究:(2)在图(2)中,将△A′C′D纸片沿射线AC的方向平移,连接BC′,BA′.在平移的过程中:①如图(3),当BA′与C′D平行时判断四边形A′BC′D的形状,说明理由并求出此时△A′C′D平移的距离;②当BD经过点C时,直接写出△A′C′D平移的距离.操作与实践:(3)请你参照以上操作过程,利用图(1)中的两张三角形纸片,拼摆出新的图形.在图(4)中画出图形,标明字母,说明构图方法,并直接写出所要探究的问题,不必解答.23.(13分)综合与探究:如图,抛物线y=ax2+bx+与x轴交于A(﹣,0),B(,0)两点,与y轴交于点C,连接AC,BC,一动点P从点A出发,沿线段AB向终点B以每秒1个单位长度的速度运动;同时,点Q从点B出发,以相同的速度沿线段BC向终点C运动,当其中一个动点到达终点时,另一个动点也随之停止运动,连接PQ.设P,Q两点运动时间为t秒.(1)求抛物线的表达式;(2)在点P,Q运动的过程中,△BPQ能否成为等腰三角形?若能,请求出t 的值;若不能,请说明理由;(3)作点B关于直线PQ的对称点为D,连接PD,QD.当四边形APQC的面积最小时,判断点D是否在该抛物线上.2018年山西省太原市中考数学一模试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意,每小题3分,共48分.请将正确选项的序号填入下面的答案栏中)1.(3分)下列是某冬季四个城市的最低温度,其中气温最低的城市是()A.哈尔滨B.漠河C.太原D.拉萨【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣52.3℃<﹣42.9℃<﹣23.3℃<﹣16.5℃,∴气温最低的城市是最低气温﹣52.3℃,漠河.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)如图,直线a,b被直线c所截,∠1=55°,下列条件能推出a∥b的是()A.∠3=55° B.∠2=55°C.∠4=55°D.∠5=55°【分析】根据同位角相等,两直线平行即可作出判断.【解答】解:∵∠1=55°,∠3=55°,∴∠1=∠3,∴a∥b,故选A.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.3.(3分)今年3月5日,第十二届全国人民代表大会第五次会议在北京召开,国务院总理李克强在政府工作报告中指出,我国经济运行缓中趋稳、稳中向好,国内生产总值达到74.4万亿元.将74.4万亿元用科学记数法表示为()A.74.4×1012元B.74.4×1013元C.7.44×1012元D.7.44×1013元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列计算正确的是()A.a﹣1•a﹣3=a3B.(a﹣2)2=a4C.a2÷a﹣4=a﹣2D.(﹣2a)3=﹣8a3【分析】分别利用同底数幂的乘除运算法则结合幂的乘方运算法则化简求出答案.【解答】解:A、a﹣1•a﹣3=a﹣4,故此选项错误;B、(a﹣2)2=a﹣4,故此选项错误;C、a2÷a﹣4=a6,故此选项错误;D、(﹣2a)3=﹣8a3,故此选项正确.故选:D.【点评】此题主要考查了同底数幂的乘除运算、幂的乘方运算等知识,正确掌握运算法则是解题关键.5.(3分)如图所示,该几何体的主视图是()A. B. C.D.【分析】找到从正面看所得到的图形即可.【解答】解:几何体是由一个圆柱体和一个长方体组成,所以它的主视图应该是上面下面各一个矩形,下面的矩形大很多.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.(3分)已知,正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象交于两点,其中一个交点的坐标为(﹣2,﹣1),则另一个交点的坐标是()A.(2,1) B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:∵正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象交于两点,正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象均关于原点对称.则两点关于原点对称,一个交点的坐标为(﹣2,﹣1),则另一个交点的坐标为(2,1).故选:A.【点评】本题考查了反比例函数与一次函数的交点以及反比例函数图象的中心对称性;熟练掌握反比例函数图象关于原点对称是解决问题的关键.7.(3分)如图,一艘潜艇在海面下500米A处测得俯角为30°的海底C处有一黑匣子发出信号,继续在同一深度直线航行4000米后,在B处测得俯角为60°的海底也有该黑匣子发出的信号,则黑匣子所在位置点C在海面下的深度为()A.2000米B.4000米C.2000米D.(2000+500)米【分析】由C点向AB作垂线,交AB的延长线于E点,并交海面于F点,易证∠BAC=∠BCA,所以有BA=BC.然后在直角△BCE中,利用正弦函数求出CE的长.【解答】解:由C点向AB作垂线,交AB的延长线于E点,并交海面于F点.已知AB=4000(米),∠BAC=30°,∠EBC=60°,∵∠BCA=∠EBC﹣∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=4000(米).在Rt△BEC中,EC=BC•sin60°=4000×=2000(米).∴CF=CE+EF=2000+500(米).故选D.【点评】本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.8.(3分)在不透明的袋中有一些除颜色外完全相同的白色和黑色棋子,从中随机取出一颗棋子是白色棋子的概率是;若从盒中取出3颗黑色棋子后,再随机取出一颗棋子是白色棋子的概率为,则盒中白色棋子有()A.1颗 B.2颗 C.3颗 D.4颗【分析】设盒中白色棋子有x颗,黑色棋子为y颗,根据概率公式得到=,=,然后利用比例性质求x和y.【解答】解:设盒中白色棋子有x颗,黑色棋子为y颗,根据题意得=,=,解得x=2,y=6,即盒中白色棋子有2颗.故选B.【点评】本题考查了概率公式:用某事件发生的结果数除以总的结果数得到这个事件的概率.9.(3分)如图,四边形ABCD内接于⊙O,∠BAD=80°,若弧ABC与弧ADC的长度分别为7π,11π,则弧BAD的长度为()A.9πB.10πC.11πD.12π【分析】设⊙O的半径为r,根据弧ABC与弧ADC的长度分别为7π,11π求出r 的值,再根据圆内接四边形的性质求出∠C的度数,利用弧长公式即可得出结论.【解答】解:设⊙O的半径为r,∵弧ABC与弧ADC的长度分别为7π,11π,∴7π+11π=2πr,解得r=9.∵∠BAD=80°,∴∠C=180°﹣80°=100°,∴所对的圆心角是200°,∴弧BAD的长度==10π.故选B.【点评】本题考查的圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.10.(3分)如图,△ABC中,AB=AC=12,AD⊥BC于点D,点E在AD上且DE=2AE,连接BE并延长交AC于点F,则线段AF长为()A.4 B.3 C.2.4 D.2【分析】作DH∥BF交AC于H,根据等腰三角形的性质得到BD=DC,得到FH=HC,根据平行线分线段成比例定理得到==2,计算即可.【解答】解:作DH∥BF交AC于H,∵AB=AC,AD⊥BC,∴BD=DC,∴FH=HC,∵DH∥BF,∴==2,∴AF=AC=2.4,故选:C.【点评】本题考查的是等腰三角形的性质、平行线分线段成比例定理,掌握等腰三角形的三线合一、平行线分线段成比例定理是解题的关键.二、填空题(本大题共5个小题,每个小题3分,共15分)11.(3分)如图,每个小正方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么C点的位置可表示为(6,1).【分析】可根据平移规律解答;也可根据已知两点的坐标建立坐标系后解答.【解答】解:以原点(0,0)为基准点,则C点为(0+6,0+1),即(6,1).故答案为:(6,1).【点评】本题考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.12.(3分)如图,在▱ABCD中,AB=3,BC=4,对角线AC,BD交于点O,点E 为边AB的中点,连结OE,则OE的长为2.【分析】根据平行四边形的性质可得OA=OC,再由E为AB边中点可得EO是△ABC的中位线,利用三角形中位线定理可得答案.【解答】解:在▱ABCD中,OA=OC,∵点E是AB的中点,∴OE是△ABC的中位线,∴OE=BC=×4=2.故答案为:2.【点评】此题主要考查了平行四边形的性质和三角形中位线定理,关键是掌握平行四边形的对角线互相平分.13.(3分)某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球面上分别标有“0元”,“10元”,“20元”,“30元”的字样.顾客在该超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),超市根据两小球上所标金额的和返还等额购物券.若某顾客刚好消费200元,则他所获得购物券的金额不低于30元的概率为.【分析】根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:根据题意画树状图如下:从图上可以看出,共有12种可能的情况数,其中他所获得购物券的金额不低于30元的有8种可能结果,因此P(不低于30元)==;故答案为:.【点评】此题考查的是用列表法或树状图法求概率;用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,△ABC中,AB=AC=1,∠BAC=120°,以边BC为腰作第一个△CBC1,且CC1=BC,∠BCC1=120°;以边BC1为腰再作第二个△C1BC2,且C1C2=BC1,∠BC1C2=120°;…;按此规律所作的第n个三角形的腰长为()n(用含n 的式子表示)【分析】过点A作AD⊥BC于点D,根据等腰三角形的性质以及解直角三角形即可求出BC的值,同理可得出BC1、BC2、…、的值,根据边长的变化即可找出第n 个三角形的腰长BC n的长度,此题得解.﹣1【解答】解:过点A作AD⊥BC于点D,如图所示.∵AB=AC=1,∠BAC=120°,∴∠ABD=30°,BD=CD,∴AD=AB,BD=AB=,∴BC=.同理,可得:BC1=BC=3,BC2=BC1=3,…,==.∴第n个三角形的腰长BC n﹣1故答案为:()n.【点评】本题考查了等腰三角形的性质、含30度角的直角三角形以及规律型中数的变化类,根据等腰三角形腰长的变化找出变化规律是解题的关键.15.(3分)如图,在正方形ABCD中,AB=2,点M为正方形ABCD的边CD上的动点(与点C,D不重合),连接BM,作MF⊥BM,与正方形ABCD的外角∠ADE 的平分线交于点F.设CM=x,△DFM的面积为y,则y与x之间的函数关系式y=﹣x2+x.【分析】在BC上截取CH=CM,连接MH,则△MCH是等腰直角三角形,BH=MD,证出∠BHM=∠MDF,∠1=∠2,由ASA证明△BHM≌△MDF,再根据三角形面积公式求解即可.【解答】证明:∵四边形ABCD是正方形,∴CD=BC,∠C=∠CDA=90°=∠ADE,∵DF平分∠ADE,∴∠ADF=∠ADE=45°,∴∠MDF=90°+45°=135°.在BC上截取CH=CM,连接MH,如图,则△MCH是等腰直角三角形,BH=MD,∴∠CHM=∠CMH=45°,∴∠BHM=135°,∴∠1+∠HMB=45°,∠BHM=∠MDF,∵FM⊥BM,∴∠FMB=90°,∴∠2+∠BMH=45°,∴∠1=∠2.在△BHM与△MDF中,,∴△BHM≌△MDF(ASA),∴BH=MD=2﹣x,∴y与x之间的函数关系式为y=x(2﹣x)=﹣x2+x.故答案为:y=﹣x2+x.【点评】本题考查了根据实际问题列二次函数关系式,正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.三、解答题(本大题共8个小题,共75分)解答时应写出必要的文字说明、推理过程或演算步骤.16.(10分)(1)计算:﹣12×﹣()﹣1+6sin60°(2)化简:÷﹣.【分析】(1)根据实数运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=﹣1×3﹣2+6×=﹣2,(2)原式=÷﹣=×﹣=﹣=【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.17.(8分)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分及其以上的人数有21人;(2)补全下表中空缺的三个统计量:(3)请根据上述图表对这次竞赛成绩进行分析,写出两个结论.【分析】(1)根据条形统计图得到参赛人数,然后根据每个级别所占比例求出成绩在70分以上的人数;(2)由上题中求得的总人数分别求出各个成绩段的人数,然后可以求平均数、中位数、众数;(3)根据其成绩,作出合理的分析即可.【解答】解:(1)一班参赛人数为:6+12+2+5=25(人),∵两班参赛人数相同,∴二班成绩在70分以上(包括70分)的人数为25×84%=21人;(2)平均数:90×44%+80×4%+70×36%+60×16%=77.6(分);中位数:70(分);众数:80(分).填表如下:(3)①平均数相同的情况下,二班的成绩更好一些.②请一班的同学加强基础知识训练,争取更好的成绩.故答案为:21;80,77.6,70.【点评】本题考查了各种统计图之间的相互转化的知识,在解决本题时关键的地方是根据题目提供的信息得到相应的解决下一题的信息,考查了学生们加工信息的能力.18.(8分)小李与小王是社区图书馆整理图书的志愿者,他们在清点图书时,小王平均每分钟比小李多清点5本,小李清点200本图书所用的时间与小王清点300本图书所用的时间相同.(1)求小王平均每分钟清点图书的本数;(2)周末,该图书馆要求他们两人同时清点完3600本图书,用时不超过3小时.但小王有事需提前离开,在两人清点图书的速度不变的情况下,小王至少清点多少本图书才能离开?【分析】(1)根据题意可以列出相应的分式方程,从而可以解答本题;(2)根据题意可以列出相应的不等式,从而可以求得小王至少清点多少本图书才能离开.【解答】解:(1)设小王平均每分钟清点图书x本,,解得,x=15,经检验x=15是原分式方程的解,即小王平均每分钟清点图书15本;(2)小王清点y本图书才能离开,,解得,y≥1800,即小王至少清点1800本图书才能离开.【点评】本题考查分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式,注意分式方程要检验.19.(7分)如图,直线y=kx+4(k≠0)与x轴,y轴分别交于点B,A,直线y=﹣2x+1与y轴交于点C,与直线y=kx+4交于点D,△ACD的面积.(1)求直线AB的表达式;(2)设点E在直线AB上,当△ACE是直角三角形时,请直接写出点E的坐标.【分析】(1)将x=0分别代入两个一次函数表达式中求出点A、C的坐标,进而即可得出AC的长度,再根据三角形的面积公式结合△ACD的面积即可求出点D 的横坐标,利用一次函数图象上点的坐标特即可求出点D的坐标,由点D的坐标利用待定系数法即可求出直线AB的表达式;(2)由直线AB的表达式即可得出△ACE为等腰直角三角形,分∠ACE=90°和∠AEC=90°两种情况考虑,根据点A、C的坐标利用等腰直角三角形的性质即可得出点E的坐标,此题得解.【解答】解:(1)当x=0时,y=kx+4=4,y=﹣2x+1=1,∴A(0,4),C(0,1),∴AC=3.=AC•(﹣x D)=﹣x D=,∵S△ACD∴x D=﹣1.当x=﹣1时,y=﹣2x+1=3,∴D(﹣1,3).将D(﹣1,3)代入y=kx+4,﹣k+4=3,解得:k=1.∴直线AB的表达式为y=x+4.(2)∵直线AB的表达式为y=x+4,∴△ACE为等腰直角三角形.当∠ACE=90°时,∵A(0,4),C(0,1),AC=3,∴E1(﹣3,1);当∠AEC=90°时,∵A(0,4),C(0,1),AC=3,∴E2(﹣,).综上所述:当△ACE是直角三角形时,点E的坐标为(﹣3,1)或(﹣,).【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积以及等腰直角三角形的性质,解题的关键是:(1)根据△ACD的面积找出点D的坐标;(2)分∠ACE=90°和∠AEC=90°两种情况,利用等腰直角三角形的性质找出点E的坐标.20.(8分)如图,在△ABC中,∠ACB=90°.(1)尺规作图:作△ABC的外接圆⊙O,作∠ACB的平分线与⊙O交于点D,连接BD,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若AC=8,BC=6,求BD的长.【分析】(1)作AB的垂直平分线得到AB的中点O,再以O点为圆心,OA为半径作⊙O,然后作∠ACB的平分线交⊙O于点D;(2)先利用勾股定理计算出AB=10,再利用圆周角定理得到∠ADB=90°,∠ACD=∠BCD=∠ABD=∠BAD=45°,则△ADB为等腰直角三角形,于是得到BD=AB=5.【解答】解:(1)如图,⊙O和CD为所作;(2)连接AD,如图,在Rt△ABC中,AB==10,∵∠ACB=90°,∴AB为直径,∴∠ADB=90°,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∴∠ABD=∠BAD=45°,∴△ADB为等腰直角三角形,∴BD=AB=5.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外接圆和圆周角定理.21.(8分)请阅读以下材料,并完成相应的任务.如图(1),A,B两点在反比例函数y=(x>0)的图象上,直线AB与坐标轴分别交于点C,D,求证:AD=BC.下面是小明同学的部分证明过程:证明:如图(2),过点A作AM⊥y轴于点M,过点B作BN⊥x轴于点N.设直线AB的表达式为y=mx+n,A,B两点的横坐标分别为a,b,则,解得m=﹣,n=∴直线AB的表达式y=﹣x+当x=0时,y=,∴点D的坐标为(0,)∴DM=﹣=…(1)请补全小明的证明过程;(2)如图(3),直线AB与反比例函数y=(x>0)的图象交于点A(,9)和点C,与x轴交于点D,连接OC.若点B的坐标为(0,10),则点C的坐标为(,1),△OCD的面积为.【分析】(1)证明:如图(2),过点A作AM⊥y轴于点M,过点B作BN⊥x轴于点N.得到直线AB的表达式y=﹣x+当x=0时,y=,得到点D的坐标为(0,)于是得到DM=﹣=,当y=0时,x=a+b,求得点C的坐标为(a+b,0)于是得到CN=a+b﹣b=a,据勾股定理即可得到结论;(2)把点A(,9)代入反比例函数y=得k=,求得反比例函数的解析式为y=,把A(,9),点B的坐标为(0,10)代入y=mx+n得,求得直线AB的解析式为:y=﹣2x+10,解方程组得到C(,1),根据三角形的面积公式即可得到结论.【解答】(1)证明:如图(2),过点A作AM⊥y轴于点M,过点B作BN⊥x轴于点N.设直线AB的表达式为y=mx+n,A,B两点的横坐标分别为a,b,则,解得m=﹣,n=∴直线AB的表达式y=﹣x+当x=0时,y=,∴点D的坐标为(0,)∴DM=﹣=,当y=0时,x=a+b,∴点C的坐标为(a+b,0)∴CN=a+b﹣b=a,∴AD====,CB====,∴AD=BC;(2)解:把点A(,9)代入反比例函数y=得k=,∴反比例函数的解析式为y=,把A(,9),点B的坐标为(0,10)代入y=mx+n得,∴,∴直线AB的解析式为:y=﹣2x+10,解得或,∴C(,1),在y=﹣2x+10中,令y=0,则x=5,∴直线AB于x轴的交点D(5,0),=×1=,∴S△OCD故答案为:(,1),.【点评】本题考查了一次函数的图象于反比例函数的图象的交点问题,求函数的解析式,勾股定理,三角形面积的计算,正确的理解题意是解题的关键.22.(13分)综合与实践:在综合实践课上,老师让同学们对一张长AB=4,宽BC=3的矩形纸片ABCD进行剪拼操作,如图(1),希望小组沿对角线AC剪开得到两张三角形纸片△ABC和△A′DC′.操作与发现:(1)将这两张三角形纸片按如图(2)摆放,连接BD,他们发现AC⊥BD,请证明这个结论;操作与探究:(2)在图(2)中,将△A′C′D纸片沿射线AC的方向平移,连接BC′,BA′.在平移的过程中:①如图(3),当BA′与C′D平行时判断四边形A′BC′D的形状,说明理由并求出此时△A′C′D平移的距离;②当BD经过点C时,直接写出△A′C′D平移的距离.操作与实践:(3)请你参照以上操作过程,利用图(1)中的两张三角形纸片,拼摆出新的图形.在图(4)中画出图形,标明字母,说明构图方法,并直接写出所要探究的问题,不必解答.【分析】(1)根据AB=AD,BC=DC,可得点A在BD的垂直平分线上,点C在BD 的垂直平分线上,进而得到AC是线段BD的垂直平分线,即可得到结论;(2)①先判定四边形A′BC′D是平行四边形,再根据∠A'DC'=90°,即可得出四边形A′BC′D是矩形;过B作BH⊥AA'于H,则C'H=CH,根据等腰三角形的性质以及勾股定理,即可得到△A′C′D平移的距离;②当BD经过点C时,过D作DG⊥A'C'于G,根据∠A'=∠ACB=∠DCA',可得DC=DA'=3,再根据Rt△A'C'D中,GD=,运用勾股定理即可得出CG=,进而得到A'C=2CG=;(3)根据图形的平移变换,将(2)中的矩形判定问题转化为菱形的判定问题,以及菱形的面积计算问题即可,答案不唯一.【解答】解:(1)如图2,∵AB=AD,BC=DC,∴点A在BD的垂直平分线上,点C在BD的垂直平分线上,∴AC是线段BD的垂直平分线,∴AC⊥BD;(2)①四边形A′BC′D是矩形,理由:如图3,∵BA′与C′D平行,∴∠D'C'A=∠BA'C',又∵∠DC'A'=∠A,∴∠BA'C'=∠A,∴AB=A'B,又∵AB=C'D,∴A'B=C'D,∴四边形A′BC′D是平行四边形,又∵∠A'DC'=90°,∴四边形A′BC′D是矩形,∴BC'=A'D=3,又∵BC=3,∴BC=BC',。

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)一.选择题(每小题3分,共30分)1.(3分)化简的结果为()A .±5B .25C .﹣5D .52.(3分)若代数式在实数范围内有意义,则实数x 的取值范围是()A .x <3B .x >3C .x ≠3D .x=33.(3分)下列计算结果是x 5的为()A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)24.(3分)在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.504.604.654.704.754.80人数232341则这些运动员成绩的中位数、众数分别是()A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.705.(3分)计算(x +2)(x +3)的结果为()A .x 2+6B .x 2+5x +6C .x 2+5x +5D .x 2+6x +66.(3分)点P (2,﹣3)关于x 轴对称点的坐标为()A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,2)7.(3分)如图所示的正方体的展开图是()A .B .C .D .8.(3分)按照一定规律排列的n 个数:1,﹣2,4,﹣8,16,﹣32,64…若最后两个数的差为﹣1536,则n为()A.9B.10C.11D.129.(3分)已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.210.(3分)已知抛物线y1=(x﹣x1)(x﹣x2)交x轴于A(x1,0)B(x2,0)两点,且点A在点B的左边,直线y2=2x+t经过点A.若函数y=y1+y2的图象与x轴只有一个公共点时,则线段AB的长为()A.4B.8C.16D.无法确定二.填空题(每小题3分,共18分)11.(3分)计算﹣2+3×4的结果为12.(3分)计算:=.13.(3分)将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,则摸出两个颜色不同小球的概率是.15.(3分)如图,等边△ABC的边长为8,D、E两点分别从顶点B、C出发,沿边BC、CA以1个单位/s、2个单位/s的速度向顶点C、A运动,DE的垂直平分线交BC边于F点,若某时刻tan∠CDE=时,则线段CF的长度为.16.(3分)在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为.三、解答题(共8小题,满分72分)17.(8分)解方程:7x﹣5=3x﹣1.18.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工的平时成绩(得分为整数,满分为160分)分为5组,第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)写出本次调查共抽取的职工数为(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,求该公司1500名工作人员中,成绩评为“B”的人员大约有多少名?20.(8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.21.(8分)如图,⊙O为正方形ABCD的外接圆,E为弧BC上一点,AF⊥DE于F,连OF、OD.(1)求证:AF=EF;(2)若=,求sin∠DOF的值.22.(10分)如图,在△ABC中,AC=BC,AB⊥x轴于A,反比例函数y=(x >0)的图象经过点C,交AB于点D,已知AB=4,BC=.(1)若OA=4,求k的值.(2)连接OC,若AD=AC,求CO的长.23.(10分)如图,在四边形ABCD中,AB∥CD,∠ADC=90°,DE⊥BC于E,连AE,FE⊥AE交CD于点F.(1)求证:△AED∽△FEC;(2)若AB=2,求DF的值;(3)若AD=CD,=2,则=.24.(12分)如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y 轴交于点C,OB=OC,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE 上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(每小题3分,共30分)1.【解答】解:∵表示25的算术平方根,∴=5.故选:D.2.【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.【解答】解:A、x10÷x2=x8,不符合题意;B、x6﹣x不能进一步计算,不符合题意;C、x2•x3=x5,符合题意;D、(x3)2=x6,不符合题意;故选:C.4.【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.5.【解答】解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,故选:B.6.【解答】解:点P(2,﹣3)关于x轴对称点的坐标为(2,3),故选A.7.【解答】解:根据带有各种符号的面的特点及位置,可得如图所示的正方体的展开图是.故选:A.8.【解答】解:观察数列,可知:第n个数为(﹣2)n﹣1.设倒数第二个数为x,则最后一个数为﹣2x,根据题意得:x﹣(﹣2x)=﹣1536,解得:x=﹣512,∴﹣2x=1024,∴(﹣2)n﹣1=1024,∴n=11.故选:C.9.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为2,故选:D.10.【解答】解:∵线y2=2x+t经过点A(x1,0),∴2x1+t=0∴x1=﹣,A(﹣,0)∵若函数y=y1+y2的图象与x轴只有一个公共点,∴这个公共点就是点A,∴可以假设y=(x+)2=x2+tx+,∴y1=y﹣y2=x2+(t﹣2)x+﹣t.∴AB=====8.故选:B.二.填空题(每小题3分,共18分)11.【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.12.【解答】解:==x+2.故答案为x+2.13.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:62°.14.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色不同的有12种结果,∴两次取出的小球颜色不同的概率为=,故答案为:.15.【解答】解:作EH⊥BC于H,设线段DE的垂直平分线交DE于G.∵△ABC是等边三角形,∴∠C=60°,在Rt△EHC中,EC=2t,∴CH=t,EH=2t,在Rt△DEH中,∵tan∠CDE==,∴DH=4t,∵BD=t,BC=8,∴t+4t+t=8,∴t=,∴DH=,EH=,CH=,∵GF垂直平分线段DE,∴DF=EF,设DF=EF=x,在Rt△EFH中,∵EF2=EH2+FH2,∴x2=()2+(﹣x)2,解得x=,∴CF=﹣+=2.故答案为2.16.【解答】解:如图,过点P作PE⊥OA,垂足为E,过点Q作QF⊥BP,垂足为F,∵BP∥OA,PE⊥OA,∴∠EPF=∠PEO=90°.∵∠APQ=90°,∴∠EPA=∠FPQ=90°﹣∠APF.在△PEA和△PFQ中,∵,∴△PEA≌△PFQ(AAS),∴PE=PF,EA=QF,若点P的坐标为(a,6),则PF=PE=6,QF=AE=|4﹣a|.∴点Q的坐标为(a+6,10﹣a).∵无论a为何值,点Q的坐标(a+6,10﹣a)都满足一次函数解析式y=﹣x+16,∴点Q始终在直线y=﹣x+16上运动.当点P的横坐标满足0≤x≤8时,点Q的横坐标满足6≤x≤14,纵坐标满足2≤y≤10,则Q的运动路径长为=8,故答案为:8.三、解答题(共8小题,满分72分)17.【解答】解:(1)移项得7x﹣3x=5﹣1,合并同类项得4x=4,系数化为1得x=1.18.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.【解答】解:(1)本次调查共抽取的职工数为20÷40%=50(人),故答案为:50;(2)1500×=420(人),答:成绩评为“B”的人员大约有420名.20.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得(3分)解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320(8分)解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.(10分)21.【解答】证明:(1)如图,过B作BG⊥AF于G,连接BE、OB,∵AF⊥DE,∴∠AGB=∠AFD=90°,∴∠BAF+∠ABG=90°,∵四边形ABCD是正方形,∴BD为⊙O的直径,AD=AB,∠BAD=90°,∴∠DAF+∠BAF=90°,∠BED=90°,∴∠ABG=∠DAF,∴△ABG≌△DAF,∴BG=AF,∵∠BED=∠BGF=∠AFE=90°,∴四边形GBEF是矩形,∴EF=BG,∴AF=EF;(2)作OH⊥BE于H,连接AO,GO.∵OH⊥BE,∴BH=HE,∴OH垂直平分线段BE,∵四边形GBEF是矩形,∴BE=GF,BE∥GF,∴OH垂直平分线段FG,∴OG=OF,∵∠AOD=∠AFD=90°,∴A、D、F、O四点共圆,∴∠DOF=∠DAF,∠OFG=∠ADO=45°,∴△FOG是等腰直角三角形,∴FG=OF,∵EF=BG=AF=2OF,∴AF=2FG,AG=FG=DF,设DF=a,则AF=2a,AD=a,∴sin∠DOF=sin∠DAF==.22.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在y=(x>0)的图象上,∴k=11;(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m+,2).∵点C,D都在y=(x>0)的图象上,∴m=2(m+),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC==.23.【解答】解:(1)∵DE⊥BC,EF⊥AE,∴∠BED=∠CED=90°,∵∠2+∠3=90°,∠2+∠CEF=90°,∴∠CEF=∠3,∵∠AEF=∠ADF=90°∴∠6+∠4=180°,∵∠5+∠6=180°,∴∠5=∠4,∴△ADE∽△FEC.(2)∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,∵AB∥CD,∠ADC=90°,∴∠BAD+∠ADC=180°,∴∠BAD=90°,∵∠BED+∠BAD=180°,∴四边形ABCD四点共圆,∵∠AEF+∠ADF=180°,∴四边形AEFD四点共圆,∴A、B、E、F、D五点共圆,∵∠1=∠2,∴DF=AB=2.(3)作CN⊥AB交AB的延长线于N,过点E作EG⊥AN垂足为G交CD于H,延长DE交CN于M.∵==2,AB=FD,∴EG=2EH,∵GB∥CH,∴△EGB∽△EHC,∴==2,设EC=a,AB=x,CD=y,则EB=2a,∵∠NCD=∠ADC=∠DAN=90°,∴四边形ADCN是矩形,∵AD=DC∴四边形ADCN是正方形,∴AN=CN=CD=y,NB=y﹣x,∵∠NCB+∠CMD=90°,∠CMD+∠MDC=90°∴∠NCB=∠MDC,∵CN=CD,∴△CNB≌△DCM,∴CM=BN=y﹣x,DM=BC=3a,∵∠MCD=∠MEC,∠CME=∠CMD,∴△MCE∽△MDC,∴=,∴=,∴y2﹣xy=3a2①∵CM2+CD2=MD2,∴(y﹣x)2+y2=9a2②由①②消去a得x2+xy﹣y2=0∴x=y,(或x=y舍弃)∴=,∴=.故答案为:.24.【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴﹣=1,b=2.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=﹣c2+2c+c,解得c=3或c=0(舍去),∴c=3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),∵直线BE经过点B(3,0),E(1,4),∴利用待定系数法可得直线BE的表达式为y=﹣2x+6.∵点F在BE上,∴m=﹣2×2+6=2,即点F的坐标为(0,2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,=S△APM,∵S△PQN∴(n+1)(3﹣n)=(﹣n2+2n+3)•QR,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,﹣n2+4n),R点的坐标为(n,﹣n2+4n),N点的坐标为(n,﹣n2+2n+3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,);②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,).综上可知存在满足题意的点Q,其坐标为(,)或(,).。

福建省厦门市2018年中考数学模拟卷

福建省厦门市2018年中考数学模拟卷

2018年福建省厦门市中考数学模拟试卷一.选择题(共10小题,满分40分)1.(4分)“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.某市预计投入31600辆共享单车服务于人们,31600用科学记数法表示为()A.3.16×104B.3.16×105C.3.16×106D.31.6×1052.(4分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(4分)下列计算正确的是()A.(x+y)2=x2+y2B.(﹣xy2)3=﹣x3y6C.(﹣a)3÷a=﹣a2D.x6÷x3=x24.(4分)如图所示,四边形ABCD是平行四边形,已知AB=4,BC=3,则AC2+BD2的值是()A.45 B.50 C.55 D.605.(4分)有一个数值转换器,流程如下,当输入的x为256时,输出的y是()A.B.C.2 D.46.(4分)图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣47.(4分)某青年排球队12名队员的年龄情况如表:则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,198.(4分)图象的顶点为(﹣2,﹣2),且经过原点的二次函数的关系式是()A.y=(x+2)2﹣2 B.y=(x﹣2)2﹣2 C.y=2(x+2)2﹣2 D. y=2(x﹣2)2﹣2 9.(4分)身份证号码告诉我们很多信息,某人的身份证号码是××××××199704010012,其中前六位数字是此人所属的省(市、自治区)、市、县(市、区)的编码,1997、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是××××××200306224522的人的生日是()A.5月22日B.6月22日C.8月22日D.2月24日10.(4分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.(4分)计算:|﹣2|+(2018﹣π)0﹣cos60°=.12.(4分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠C OE=34°,则∠BOD= 度.13.(4分)若对图1中星形截去一个角,如图2,再对图2中的角进一步截去,如图3,则图中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N= 度.14.(4分)一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12S22(填“>”、“=”或“<”).15.(4分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB 为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.16.(4分)如图,点D,E分别为△ABC的边AB,AC上,若△ADE≌△CFE.则下列结论①AD=CF;②AB∥CF;③AC⊥DF;④点E是AC的中点;不一定正确的是(填写序号).三.解答题(共9小题,满分86分)17.(8分)若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求(2a+b+1)(2a﹣b ﹣1)﹣(a+2b)(﹣2b+a)+2b的值.18.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.19.(8分)“校园安全”受到全社会的广泛关注,我县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)已知对校园安全知识达到“了解”程度的学生中有3个女生,其余为男生,若从中随机抽取2人参加校园安全知识竞赛,请用画树状图或列表法求出恰好抽到1个男生和1个女生的概率.20.(8分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点C和点D的坐标;(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标,并直接写出△MDB的周长最小值.21.(8分)已知:如图,在▱ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD 于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求四边形DEBF的周长和面积.22.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.23.如图,平面直角坐标系中,点A是直线y=x(a≠0)上一点,过点A作AB⊥x轴于点B(2,0),(1)若=,求∠AOB的度数;(2)若点C(4﹣a,b),且AC⊥OC,∠AOC=45°,OC与AB交于点D,求AB的长.24.如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于D,E为BC中点,连ED.(1)求证:ED是⊙O的切线;(2)若⊙O半径为3,ED=4,求AB长.25.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ 与OQ的比值为y,求y与m的函数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin ∠ODC的值最大时,求点M的坐标.参考答案1.A.2.B.3.C.4.B.5.A.6.D.7.A.8.A.9.B10.A.11..12.56.13.1080°.14.= 15.3+.16.③.17.解:(x﹣2)(x2+ax+b)=x3+ax2+bx﹣2x2﹣2ax﹣2b=x3+(a﹣2)x2+(b﹣2a)x﹣2b,∵(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,∴a﹣2=0且b﹣2a=0,解得:a=2、b=4,(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b=(2a)2﹣(b+1)2﹣(a2﹣4b2)+2b=4a2﹣b2﹣2b﹣1﹣a2+4b2+2b=3a2+3b2﹣1,当a=2、b=4时,原式=3×22+3×42﹣1=12+48﹣1=59.18.(1)解:如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠BDC=∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠B=90°,∴∠ACD=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.19.解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90°;(2)“了解”的人数为:60﹣15﹣30﹣10=5;补全条形统计图得:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.20.解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0),此时△MDB的周长为2+6.21.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF 即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2,∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=ADcos∠A=4×=2,∴四边形DEBF的面积=BE×DG=2×2=4.22.解:(1)设第一次购书的进价为x元/本,根据题意得: +100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+(2500﹣2000)×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.23.解:(1)∵点A是直线y=x(a≠0)上一点,AB⊥x轴于点B(2,0),若=,∴tan∠AOB=,即∠AOB=60°,(2)过点C作CE⊥x轴于点E,CF⊥AB于F.则四边形ECFB是矩形.∵∠ACO=∠FCE,∴∠ACF=∠OCE,∵AC=CO,∠AFC=∠CEO,∴△ACF≌△OCE,∴AF=OE=4﹣a,CF=CE=b,∴四边形ECFB是正方形,∴CF=CE=BE=2﹣a,∴b=2﹣a,∴AB=4﹣a+2﹣a=6﹣2a,令x=2代入y=,∴y=,∴A(2,)∴AB=,24.解:(1)方法一:连接OD,OE,CD,∵∠ADC=90°,∴∠CDB=90°,∵E是BC的中点,∴DE=CE,∴∠EDC=∠ECD,∵OC=OD,∴∠ODC=∠OCD,∴∠ODC+∠EDC=∠OCD+∠ECD=90°,即OD⊥ED,∴ED与⊙O相切.方法二:连接OE,OD,∵E是BC的中点,∠BDC=90°,∴DE=CE,又∵OD=OC,OE=OE,∴△ODE≌△OCE,∴∠ODE=∠OCE=90°,即OD⊥ED,∵D在⊙O上,∴ED与⊙O相切.(2)∵⊙O半径为3,即OC=3,ED=4,∴CE=ED=4,∴OE==5,∵E为BC中点,OC=OA,∴OE为△ACB的中位线,∴OE=AB,∴AB=10.答:AB长为10.25.解:(1)在y=﹣x+3种,令y=0得x=4,令x=0得y=3,∴点A(4,0)、B(0,3),把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线解析式为y=﹣x2+x+3;(2)如图1,过点P作y轴的平行线交AB于点E,则△PEQ∽△OBQ,∴=,∵=y、OB=3,∴y=PE,∵P(m,﹣m2+m+3)、E(m,﹣m+3),则PE=(﹣m2+m+3)﹣(﹣m+3)=﹣m2+m,∴y=(﹣m2+m)=﹣m2+m=﹣(m﹣2)2+,∵0<m<3,∴当m=2时,y最大值=,∴PQ与OQ的比值的最大值为;(3)由抛物线y=﹣x2+x+3易求C(﹣2,0),对称轴为直线x=1,∵△ODC的外心为点M,∴点M在CO的垂直平分线上,设CO的垂直平分线与CO交于点N,连接OM、CM、DM,则∠ODC=∠CMO=∠OMN、MC=MO=MD,∴sin∠ODC=sin∠OMN==,又MO=MD,∴当MD取最小值时,sin∠ODC最大,此时⊙M与直线x=1相切,MD=2,MN==,∴点M(﹣1,﹣),根据对称性,另一点(﹣1,)也符合题意;综上所述,点M的坐标为(﹣1,)或(﹣1,﹣).。

盐城市滨海县2018届中考数学模拟试卷(1)有答案

盐城市滨海县2018届中考数学模拟试卷(1)有答案

1 2
D.
1 2
2.下列计算正确的是( ) A.a2+a3=a5 B.a2•a3=a6 C. (a2)3=a6 D. (ab)2=ab2 3.如图 1,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其主视图是( )
4.下列图形中,是中心对称图形,但不是轴对称图形的是(

A. B. C. D. 5.已知一组数据 x1,x2,x3 的平均数为 8,方差为 3.2,那么数据 x1-2, x2-2,x3-2 的平均数和方差分别是 ( ) A.6,2 B.6,3.2 C.8,2 D.8,3.2 6.根据函数表达式 y
25. (本题满分 10 分)如图,在△ABC 中,AB=AC,AE 是∠BAC 的平分线,∠ABC 的平分线 BM 交 AE 于点 M,点 O 在 AB 上,以点 O 为圆心,OB 的长为半径的圆经过点 M,交 BC 于点 G,交 AB 于点 F. (1)求证:AE 为⊙O 的切线; (2)当 BC=4,AC=6 时,求⊙O 的半径;
k2 (x>0)相交于点 P(2,4) .已知点 A(4,0) ,B(0,3) ,连 2
接 AB,将 Rt△AOB 沿 OP 方向平移,使点 O 移动到点 P,得到△A'PB'.过点 A'作 A'C∥y 轴交双曲线于点 C. (1)求 k1 与 k2 的值; (2)求直线 PC 的表达式; (3)直接写出线段 AB 扫过的面积.
3
(3)在(2)的条件下,求线段 BG 的长.
图 10 26. (本题满分 12 分)已知二次函数图像的顶点在原点 O,并且 经过点 M(2,-1) .点 A(0,-1)在 y 轴上,直线 y=1 与 y 轴 交于点 B. (1)求二次函数的解析式; (2)点 P 是(1)中图象上的点,过点 P 作 x 轴的垂线与直线 y=1 交于点 C,求证:AC 平分∠PAB; (3)当△PAC 是等边三角形时,求点 P 的坐标.

山东省青岛市2018年中考数学模拟试题1(含解析)

山东省青岛市2018年中考数学模拟试题1(含解析)

2018年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.52.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=17.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = .10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= °.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了根木棒.(只填结果)24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.5【解答】解:|﹣|=.故选:C.2.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s【解答】解:0.000 000 001=1×10﹣9,故选:D.3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【解答】解:a•a5﹣(2a3)2=a6﹣4a6=﹣3a6.故选:D.5.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选:A.6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.7.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【解答】解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π=350πcm2,故选:B.8.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或x>2.故选:D.二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = 2 .【解答】解:原式===2.故答案为:2.10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有2400 名.【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为:2400.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= 62 °.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.故答案为:.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为144 cm3.【解答】解:如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4cm,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=cm,∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×=6(cm),∴无盖柱形盒子的容积=×12×6×=144(cm3);故答案为:144.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【解答】解::①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O为圆心,OE长为半径作圆;如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.【解答】解:(1)原式=•=•=;(2)∵方程2x2+3x﹣m=0有两个不相等的实数根,∴△=9+8m>0,解得:m>﹣.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中数字之和大于5的情况有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种,故小颖获胜的概率为: =,则小丽获胜的概率为:,∵<,∴这个游戏对双方不公平.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)【解答】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt △ADC 中,∠ACD=35°, ∴tan ∠ACD=, ∴=,解得,x ≈233m .19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员? 【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?【解答】解:(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,,解得:x=0.5,经检验x=0.5是原方程的解,∴(1+20%)x=0.6(米),答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料.(2)根据题意得:l=0.6n+0.5(3000﹣n)=0.1n+1500,∵甲盒的数量不少于乙盒数量的2倍,∴n≥2(3000﹣n)解得:n≥2000,∴2000≤n<3000,∵k=0.1>0,∴l随n增大而增大,∴当n=2000时,l最小1700米.21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了672 根木棒.(只填结果)【解答】解:探究二:(1)7=1+1+5(舍去);7=2+2+3(符合要求);7=3+3+1(符合要求);(2)8=1+1+6(舍去);8=2+2+4(舍去);8=3+3+2(符合要求);9=1+1+7(舍去);9=2+2+5(舍去);9=3+3+3(符合要求);9=4+4+1(符合要求);10=1+1+8(舍去);10=2+2+6(舍去);10=3+3+4(符合要求);10=4+4+2(符合要求);填表如下:解决问题:令n=a+a+b=2a+b,则:b=n﹣2a,根据三角形三边关系定理可知:2a>b且b>0,∴,解得:,若n=4k﹣1,则,a的整数解有k个;若n=4k,则k<a<2k,a的整数解有k﹣1个;若n=4k+1,则,a的整数解有k个;若n=4k+2,则,a的整数解有k个;填表如下:问题应用:(1)∵2016=4×504,∴k=504,则可以搭成k﹣1=503个不同的等腰三角形;(2)当等腰三角形是等边三角形时,面积最大,∴2016÷3=672.24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)过点O作OH⊥BC交BC于点H,则OH=CD=AB=3cm.由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE,∴BE=PD=8﹣t,则S△BOE=BE•OH=×3(8﹣t)=12﹣t.∵FQ∥AC,∴△DFQ∽△DOC,相似比为=,∴=∵S△DOC=S矩形ABCD=×6×8=12cm2,∴S△DFQ=12×=∴S五边形OECQF=S△DBC﹣S△BOE﹣S△DFQ=×6×8﹣(12﹣t)﹣=﹣t2+t+12;∴S与t的函数关系式为S=﹣t2+t+12;(3)存在,∵S△ACD=×6×8=24,∴S五边形OECQF:S△ACD=(﹣t2+t+12):24=9:16,解得t=3,或t=,∴t=3或时,S五边形S五边形OECQF:S△ACD=9:16;(4)如图3,过D作DM⊥PE于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=D N=,∴ON=OM==,∵OP•DM=3PD,∴O P=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t )2=(﹣t )2+()2,解得:t=16(不合题意,舍去),t=,∴当t=时,OD 平分∠COP .。

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟试卷(3月份)一、选择题(本题有12小题,每小题4分,共48分)1.计算-1X2的结果是()A.1B.2C.-3D.-22.下列计算正确的是()A.x+x=x2B.x*x=2xC.(x2)3=x5D.x34-x=x23.2015年我国大学生毕业人数将达到7490000A,这个数据用科学记数法表示为()A.7.49X107B.7.49X106C.74.9X105D.0.749X1074.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.185.实数a在数轴上的位置如图所示,则下列说法不正确的是()~~a0~2>A.a的相反数大于2B.a的相反数是2C.\a\>2D.2aV06.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172B.171C.170D.1687.如图,平行四边形ABCD的顶点A、B、。

在上,顶点C在。

的直径BE上,连接AE,ZE=36°,则ZADC的度数是()8.不等式3x2x-5的最小整数解是(9.在平面直角坐标系中,点P(m,2m-2),则点F不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCQ中,AD=1,AB>1,AG平分Z8AQ,分别过点8、C作BELAG于点E,CF±AG于点F,贝ij(A£-GF)的值为()11.将抛物线(x+2) 2+5绕着点(0,3)旋转180。

以后,所得图象的解析式是()A.y=- —(x+2)2+5B.y=-—(x-2)2-522C.y———(x- 2)?+2D.y=——(x- 2)?+12212.如图,在矩形曲CD中,AB=5,AD=3,动点F满足S^PAB=^S^ABCD>则点F到A、B两点距离之和PA+PB的最小值为()A.V29B.V34C.5扼D.V41二、填空题(本题有6小题,每小题4分,共24分)13.分解因式:x3 -9x=.14.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是.15.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=.16.在uABCD中,AB=3,BC=4,当口ABCD的面积最大时,下列结论:①AC=5;(2)ZA+ZC=180°;@AC±BD;@AC=BD.其中正确的有.(填序号)17.一个圆锥的三视图如图,则此圆锥的表面积为正视图左视图俯视图18,如图,RtZXABC中,AC=3,BC=4,ZACB=90°,P为AB上一点,S.AP=2BP,若点A绕点C顺时针旋转60°,则点F随之运动的路径长是.三、解答题(本题有8小题,共78分,各小题都必须写出解答过程)19.(6分)计算:(T)2016-(号)2+-(/16- cos60°20.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A2两名男生,Bp彪两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(9分)如图是8X8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,。

江西省2018年中考数学模拟试卷(Word版,1)(Word版,带答案)

江西省2018年中考数学模拟试卷(Word版,1)(Word版,带答案)

2018年江西中考模拟卷(一)时间:120分钟 满分:120分题号 一 二 三 四 五 六 总分 得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.|-2|的值是( ) A .-2 B .2 C .-12 D.122.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为( )A .4.64×105B .4.64×106C .4.64×107D .4.64×1083.观察下列图形,其中既是轴对称又是中心对称图形的是( )4.下列计算正确的是( )A .3x 2y +5xy =8x 3y 2B .(x +y )2=x 2+y 2C .(-2x )2÷x =4x D.y x -y +xy -x=15.已知一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则1x 1+1x 2的值为( )A .2B .-1C .-12D .-26.如图,在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE ∥AC ,DF ∥AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A .若AD ⊥BC ,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD =CD ,则四边形AEDF 是菱形D .若AD 平分∠BAC ,则四边形AEDF 是菱形第6题图 第8题图二、填空题(本大题共6小题,每小题3分,共18分) 7.计算:-12÷3=________.8.如图,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为________.9.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=-1,那么(1+i )·(1-i )=________.10.已知某几何体的三视图如图所示,根据图中数据求得该几何体的表面积为____________.第10题图 第12题图11.一个样本为1,3,2,2,a ,b ,c ,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________. 12.如图,在平面直角坐标系中,△ABC 为等腰直角三角形,点A (0,2),B (-2,0),点D 是x 轴上一个动点,以AD 为一直角边在一侧作等腰直角三角形ADE ,∠DAE =90°.若△ABD 为等腰三角形,则点E 的坐标为__________.三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:⎩⎪⎨⎪⎧3x -1≥x +1,x +4<4x -2.(2)如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:△ADF ≌△BCE .14.先化简,再求值:⎝⎛⎭⎫m m -2-2m m 2-4÷m m +2,请在2,-2,0,3当中选一个合适的数代入求值.15.为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.16.根据下列条件和要求,仅使用无刻度的直尺画图,并保存画图痕迹:(1)如图①,△ABC中,∠C=90°,在三角形的一边上取一点D,画一个钝角△DAB;(2)如图②,△ABC中,AB=AC,ED是△ABC的中位线,画出△ABC的BC边上的高.17.某市需要新建一批公交车候车厅,设计师设计了一种产品(如图①),产品示意图的侧面如图②所示,其中支柱DC长为2.1m,且支柱DC垂直于地面DG,顶棚横梁AE长为1.5m,BC为镶接柱,镶接柱与支柱的夹角∠BCD =150°,与顶棚横梁的夹角∠ABC=135°,要求使得横梁一端点E在支柱DC的延长线上,此时经测量得镶接点B 与点E的距离为0.35m(参考数据:2≈1.41,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,结果精确到0.1m).(1)求EC的长;(2)求点A到地面DG的距离.四、(本大题共3小题,每小题8分,共24分)18.某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是________°; (2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.19.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20页时,每页收费0.12元;一次复印页数超过20页时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数).(1)一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.5 2 … 乙复印店收费(元)0.62.4…(2)1212的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.20.如图,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为点E .过点B 作BD ⊥y 轴,垂足为点D ,且点D 的坐标为(0,-2),连接DE .(1)求k 的值;(2)求四边形AEDB 的面积.五、(本大题共2小题,每小题9分,共18分)21.如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC,AC.(1)求证:AC平分∠DAO;(2)若∠DAO=105°,∠E=30°:①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.22.二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.六、(本大题共12分)23.综合与实践【背景阅读】早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或32,42,52的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.【实践操作】如图①,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图③,将图②中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF .第三步:如图④,将图③中的矩形纸片沿AH 折叠,得到△AD ′H ,再沿AD ′折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.【问题解决】(1)请在图②中证明四边形AEFD 是正方形; (2)请在图④中判断NF 与ND ′的数量关系,并加以证明; (3)请在图④中证明△AEN 是(3,4,5)型三角形.【探索发现】(4)在不添加字母的情况下,图④中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.参考答案与解析1.B 2.C 3.D 4.C 5.D 6.D7.-4 8.60° 9.2 10.(225+252)π 11.2 12.(2,2)或(2,4)或(2,22)或(2,-22) 解析:连接EC .∵∠BAC =∠DAE =90°,∴∠BAD =∠CAE .在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ,∴BD =EC ,∠ABD =∠ACE =45°.∵∠ACB =45°,∴∠ECD=90°,∴点E 在过点C 且垂直x 轴的直线上,且EC =DB .①当DB =DA 时,点D 与O 重合,则BD =OB =2,此时E 点的坐标为(2,2).②当AB =AD 时,BD =CE =4,此时E 点的坐标为(2,4).③当BD =AB =22时,E 点的坐标为(2,22)或(2,-22).故答案为(2,2)或(2,4)或(2,22)或(2,-22).13.(1)解:解不等式3x -1≥x +1,得x ≥1.解不等式x +4<4x -2,得x >2,∴不等式组的解集为x >2.(3分) (2)证明:∵AE =BF ,∴AE +EF =BF +EF ,∴AF =BE .(4分)在△ADF 与△BCE 中,⎩⎪⎨⎪⎧AD =BC ,∠A =∠B ,AF =BE ,∴△ADF ≌△BCE (SAS).(6分)14.解:原式=⎣⎡⎦⎤m m -2-2m (m -2)(m +2)·m +2m =m m -2·m +2m -2m (m -2)(m +2)·m +2m =m +2m -2-2m -2=mm -2.(4分)∵m ≠±2,0,∴m 只能选取3.当m =3时,原式=3.(6分) 15.解:(1)∵垃圾要按A ,B ,C 三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类的概率为13.(2分)(2)如图所示:(4分)由树状图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以P (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=1218=23.(6分)16.解:(1)如图①所示.(3分)(2)如图②所示,AF 即为BC 边上的高.(6分)17.解:(1)连接EC .∵∠ABC =135°,∠BCD =150°,∴∠EBC =45°,∠ECB =30°.过点E 作EP ⊥BC ,则EP =BE ×sin45°≈0.25m ,CE =2EP ≈0.5m.(2分)(2)过点A 作AF ⊥DG ,过点E 作EM ⊥AF ,∴四边形EDFM 是矩形,∴MG =ED ,∠DEM =90°,∴∠AEM =180°-∠ECB -∠EBC -90°=15°.在Rt △AEM 中,AM =AE ×sin15°≈0.39m ,(4分)∴AF =AM +CE +DC ≈0.39+0.5+2.1≈3.0(m),∴点A 到地面的距离约是3.0m.(6分)18.解:(1)126(2分)(2)根据题意得抽取学生的总人数为40÷40%=100(人),∴3小时以上的人数为100-(2+16+18+32)=32(人),补全条形统计图如图所示.(5分)(3)根据题意得1200×32+32100=768(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有768人.(8分)19.解:(1)1 3 1.2 3.3(2分)(2)y 1=0.1x (x ≥0);y 2=⎩⎪⎨⎪⎧0.12x (0≤x ≤20),0.09x +0.6(x >20).(5分)(3)顾客在乙复印店复印花费少.(6分)理由如下:当x >70时,y 1=0.1x ,y 2=0.09x +0.6,∴y 1-y 2=0.1x -(0.09x+0.6)=0.01x -0.6.(6分)∵x >70,∴0.01x -0.6>0.1,∴y 1>y 2,∴当x >70时,顾客在乙复印店复印花费少.(8分)20.解:(1)∵一次函数y =-2x +1的图象经过点A (-1,m ),∴m =2+1=3,∴A (-1,3).(2分)∵反比例函数y =kx的图象经过A (-1,3),∴k =-1×3=-3.(4分)(2)延长AE ,BD 交于点C ,则∠ACB =90°.∵BD ⊥y 轴,垂足为点D ,且点D 的坐标为(0,-2),∴令y =-2,则-2=-2x +1,∴x =32,即B ⎝⎛⎭⎫32,-2,∴C (-1,-2),∴AC =3-(-2)=5,BC =32-(-1)=52,(6分)∴S 四边形AEDB =S △ABC -S △CDE =12AC ·BC -12CE ·CD =12×5×52-12×2×1=214.(8分)21.(1)证明:∵CD 是⊙O 的切线,∴OC ⊥CD .∵AD ⊥CD ,∴AD ∥OC ,∴∠DAC =∠OCA .∵OC =OA ,∴∠OCA=∠OAC ,∴∠OAC =∠DAC ,∴AC 平分∠DAO .(3分)(2)解:①∵AD ∥OC ,∴∠EOC =∠DAO =105°.∵∠E =30°,∴∠OCE =180°-105°-30°=45°.(5分)②过点O 作OG ⊥CE 于点G ,则CG =FG .∵OC =2,∠OCE =45°,∴CG =OG =2,∴FG = 2.(7分)在Rt △OGE 中,∵∠E =30°,∴GE =OG tan30°=6,∴EF =GE -FG =6- 2.(9分)22.解:(1)由函数y 1的图象经过点(1,-2),得(a +1)(-a )=-2,解得a 1=-2,a 2=1.当a =-2或1时,函数y 1化简后的结果均为y 1=x 2-x -2,∴函数y 1的表达式为y =x 2-x -2.(3分)(2)当y =0时,(x +a )(x -a -1)=0,解得x 1=-a ,x 2=a +1,∴y 1的图象与x 轴的交点是(-a ,0),(a +1,0).(4分)当y 2=ax +b 经过(-a ,0)时,-a 2+b =0,即b =a 2;(5分)当y 2=ax +b 经过(a +1,0)时,a 2+a +b =0,即b =-a 2-a .(6分)(3)由题意知函数y 1的图象的对称轴为直线x =-a +a +12=12.(7分)∴点Q (1,n )与点(0,n )关于直线x =12对称.∵函数y 1的图象开口向上,所以当m <n 时,0<x 0<1.(9分)23.(1)证明:∵四边形ABCD 是矩形,∴∠D =∠DAE =90°.由折叠知AE =AD ,∠AEF =∠D =90°,∴∠D =∠DAE =∠AEF =90°,∴四边形AEFD 是矩形.∵AE =AD ,∴矩形AEFD 是正方形.(3分)(2)解:NF =ND ′.(4分)证明如下:如图,连接HN .由折叠知∠AD ′H =∠D =90°,HF =HD =HD ′.∴∠HD ′N =90°.∵四边形AEFD 是正方形,∴∠EFD =90°.在Rt △HNF 和Rt △HND ′中,⎩⎪⎨⎪⎧HN =HN ,HF =HD ′,∴Rt △HNF ≌Rt △HND ′,∴NF=ND ′.(6分)(3)证明:∵四边形AEFD 是正方形,∴AE =EF =AD =8cm.设NF =ND ′=x cm ,由折叠知AD ′=AD =8cm ,EN =EF -NF =(8-x )cm.在Rt △AEN 中,由勾股定理得AN 2=AE 2+EN 2,即(8+x )2=82+(8-x )2,解得x =2,∴AN =10cm ,EN =6cm ,∴EN ∶AE ∶AN =6∶8∶10=3∶4∶5,∴△AEN 是(3,4,5)型三角形.(9分) (4)解:∵△AEN 是(3,4,5)型三角形,∴与△AEN 相似的三角形都是(3,4,5)型三角形,故△MFN ,△MD ′H ,△MDA 也是(3,4,5)型三角形.(12分)。

2018年江苏省扬州市江都区中考数学模拟试卷(4月份)--有答案

2018年江苏省扬州市江都区中考数学模拟试卷(4月份)--有答案

2018 年江苏省扬州市江都区中考数学模拟试卷(4 月份)一.选择题(共 8 小题,满分 24 分)1. ﹣3的倒数是()A .3B .C .﹣D .﹣32.下列图形中,既是中心对称,又是轴对称的是()A. B . C . D .3. 下列计算中,正确的是( )A .(2a )3=2a 3B .a 3+a 2=a 5C .a 8÷a 4=a 2D .(a 2)3=a 64. 如图所示几何体的主视图是()A.B .C .D .5. 某小组8名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,众数是4 B .中位数是3.5,众数是4C .平均数是3.5,众数是4D .平均数是4,众数是3.5 6.如图,⊙O中,弦AB 、CD 相交于点P ,若∠A=30°,∠APD=70°,则∠B等 于()劳动时间(小时)3 3.54 4.5 人数1132A.30°B.35°C.40°D.50°7.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是08.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+3二.填空题(共 10 小题,满分 30 分,每小题 3 分)9..亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为.10.在函数中,自变量x的取值范围是.11.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.12.若两个关于x,y的二元一次方程组与有相同的解,则mn的值为.13.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.14.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.15.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为.16.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k 为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为.17.如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点B的坐标为(﹣,0),M是圆上一点,∠BMO=120°.⊙C圆心C的坐标是.18.如图,线段AB的长为4,C为AB上一个动点,分别以AC、BC为斜边在AB 的同侧作两个等腰直角三角形ACD和BCE,连结DE,则DE长的最小值是.三.解答题(共 10 小题,满分 96 分)19.(8分)(1)计算:﹣22+| ﹣4|+()﹣1+2tan60°(2)求不等式组的解集. 20.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0 的解.21.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?22.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(10分)在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?24.(10分)在如图的正方形网格中,每一个小正方形的边长均为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点B的坐标;(2)把△ABC绕坐标原点O顺时针旋转90°得到△A1B1C1,画出△A1B1C1,写出点B1的坐标;(3)以坐标原点O为位似中心,相似比为2,把△A1B1C1放大为原来的2倍,得到△A2B2C2画出△A2B2C2,使它与△AB1C1在位似中心的同侧;(4)请在x轴上求作一点P,使△PBB1的周长最小,并写出点P的坐标.25.(10分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.26.(10分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若 B、C 都在抛物线上,求 m 的值;②若点 C 在第四象限,当 AC2 的值最小时,求 m 的值.27.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.(12分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y 轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE 交 AB 于点 D,交 AC 于点 E,连接 CD,如图 2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段 AD 的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段 DE 的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.3.解:A、(2a)3=8a3,故本选项错误;B、a3+a2 不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.4.解:几何体的主视图为,故选:B.5.解:这组数据中4出现的次数最多,众数为4,∵共有 7 个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.7.解:根据图象可得k>0,b<0,所以kb<0,因为△=(﹣2)2﹣4(kb+1)=4﹣4kb﹣4=﹣4kb,所以△>0,所以方程有两个不相等的实数根.故选:A.8.解:y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.二.填空题(共 10 小题,满分 30 分,每小题 3 分)9.解:44000000=4.4×107,故答案为:4.4×107.10.解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1 且x≠﹣2.11.解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得 n=8.则这个多边形的边数是八.12.解:联立得:,①×2+②,得:10x=20,解得:x=2,将x=2代入①,得:6﹣y=6,解得:y=0,则,将x=2、y=0代入,得:,解得:,则 mn=6,故答案为:6.13.解:侧面积=4×4π÷2=8π.故答案为8π.14.解:∵AE∥BD,∠1=1 30°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°15.解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为:12.16.解:∵正方形ADEF的面积为4,∴正方形 ADEF 的边长为 2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t﹣2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t﹣2),解得t=﹣1,k=﹣6.故答案为﹣6.17.解:连接AB,OC,∵∠AOB=90°,∴AB 为⊙C 的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=OB,∠DCB=∠DCO=60°,∵B(﹣,0),∴BD=OD=在Rt△COD中.CD=OD•tan30°=,∴C(﹣,),故答案为:C(﹣,).18.解:设AC=x,BC=4﹣x,∵△CDA,△BCE 均为等腰直角三角形,∴CD=x,CE=(4﹣x),∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE2=CD2+CE2= x2+(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:2.故答案为:220.解:= =三.解答题(共 10 小题,满分 96 分) 19.解:(1)原式=﹣4+4﹣2+3+2=3;(2)由①得:x <3;由②得:x≥﹣1;所以不等式组的解集是:﹣1≤x<3.= =,由 a 2+a ﹣6=0,得 a=﹣3 或 a=2, ∵a﹣2≠0, ∴a≠2, ∴a=﹣3,当 a=﹣3 时,原式 = = . 21.解:(1)∵总人数为18÷45%=40人,∴C 等级人数为 40﹣(4+18+5)=13 人, 则C 对应的扇形的圆心角是360°×=117°,故答案为:117;(2) 补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21 个数据均落在B 等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.22.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3 种,所以这两个数字之和是3的倍数的概率为=.23.解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.24.解:(1)如图所示,点B的坐标为(﹣4,1);(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);(3)如图,△A2B2C2即为所求;(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).25.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即 EF 是⊙O 的切线;(2)解:∵AB 为⊙O 的直径,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°, ∴△AEC∽△ACB,26.解:(1)∵抛物线y=﹣x 2﹣4x+c 经过点A (2,0), ∴﹣4﹣8+c=0,即 c=12,∴抛物线解析式为y=﹣x 2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由 B (m ,n )在抛物线上可得:﹣m 2﹣4m+12=n , ∵点 B 关于原点的对称点为 C , ∴C(﹣m ,﹣n ), ∵C 落在抛物线上,∴﹣m 2+4m+12=﹣n ,即 m 2﹣4m ﹣12=n ,解得:﹣m 2+4m+12=m 2﹣4m ﹣12, 解得:m=2或m=﹣2;②∵点 C (﹣m ,﹣n )在第四象限, ∴﹣m >0,﹣n <0,即 m <0,n >0, ∵抛物线顶点坐标为(﹣2,16), ∴0<n≤16,∵ 点 B 在抛物线上, ∴﹣m 2﹣4m+12=n , ∴m 2+4m=﹣n+12,∵A(2,0),C (﹣m ,﹣n ),∴AC 2=(﹣m ﹣2)2+(﹣n )2=m 2+4m+4+n 2=n 2﹣n+16=(n ﹣)2+ ,∴ = , ∴AE== .当 n= 时,AC2 有最小值,∴﹣m2﹣4m+12= ,解得:m=,∵m<0,∴m=不合题意,舍去,则m的值为.27.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC 是等边三角形,∴PC=CE,∴AP=CE;28.解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x 轴,CB⊥y 轴,∠AOC=90°,∴四边形 OABC 是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD =AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD 为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2 或 8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2 ,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点 A,P,C 为顶点的三角形与△ABC 全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图 3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴∴AN= ,∴ ,,过点 N 作 NH⊥OA, ∴NH∥OA, ∴△ANH∽△ACO, ∴, ∴,∴NH=,AH=, ∴OH=, ∴N(,),而点 P 2 与点 O 关于 AC 对称, ∴P 2(,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣,),即:满足条件的点P 的坐标为:(0,0),(, ),(﹣ , ).。

【区级联考】北京市丰台区2018届中考数学模拟试卷(3月份)(解析版)

【区级联考】北京市丰台区2018届中考数学模拟试卷(3月份)(解析版)

2018年北京市丰台区中考数学模拟试卷(3月份)一.选择题(共8小题,满分16分,每小题2分)1. 如图,在ABCD 中,BC边上的高是()A. ECB. BHC. CDD. AF 【答案】D【解析】【分析】根据三角形的高线的定义解答.【详解】根据高的定义,AF为△ABC中BC边上的高.故选D.【点睛】本题考查了三角形的高的定义,熟记概念是解题的关键.2. 如果代数式3xx+有意义,则实数x的取值范围是()A. x≥3﹣ B. x≠0 C. x≥3﹣且x≠0 D. x≥3【答案】C【解析】【分析】根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.【详解】由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.3. 如图是某几何体的三视图,则该几何体的全面积等于( )A. 112B. 136C. 124D. 84【答案】B【解析】【详解】试题解析:该几何体是三棱柱.如图:由勾股定理22-=,543´=,326全面积为:164257267247042136.´´´+´´+´=++=2故该几何体的全面积等于136.故选B.4. 如果实数,且a在数轴上对应点的位置如图所示,其中正确的是( )A.B.C.D.【答案】C【解析】的大小,进而在数轴上找到相应的位置,即可得到答案.【详解】49911,4<<Q 由被开方数越大算术平方根越大,<<即73,2<<故选C.【点睛】考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估的大小.5. 如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数 ()A. 40°B. 50°C. 60°D. 90°【答案】B【解析】【详解】分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.详解:∵AB BC ⊥,∴∠ABC=90°,∵点B 在直线b 上,∴∠1+ABC+3=180°∠∠,∴∠3=180°-1-90°=50°∠,∵a b ∥,∴∠2=3=50°.∠故选B.点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.6. 在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为( )A. (﹣3,﹣4)或(3,4)B. (﹣4,﹣3)C. (﹣4,﹣3)或(4,3)D. (﹣3,﹣4)【答案】A【解析】【分析】分顺时针旋转,逆时针旋转两种情形求解即可.【详解】解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),故选A.【点睛】本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.7. 去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A. 最低温度是32℃B. 众数是35℃C. 中位数是34℃D. 平均数是33℃【答案】D【解析】【详解】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,++´++所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是313233334357=33℃,故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.8. 如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )D.B. 2C. 52【答案】C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形BE和a.的高DE,再由图象可知,【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2...∴AD=aDE•AD=a.∴12∴DE=2.s.当点F从D到B∴Rt△DBE中,1=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a2=22+(a-1)2..解得a=52故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二.填空题(共8小题,满分16分,每小题2分)9. 在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.【答案】13【解析】【分析】根据同时同地物高与影长成比列式计算即可得解.【详解】解:设旗杆高度为x米,,由题意得,1.5x=326解得x=13.故答案为13.【点睛】本题考查投影,解题的关键是应用相似三角形.10. 写出一个经过点(1,2)的函数表达式_____.【答案】y=x+1(答案不唯一)【解析】【分析】本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式.答案不唯一.,答案不唯一.【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1…故答案可以是:y=x+1(答案不唯一【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.11. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若S EBMF=1,则S FGDN=_____.【答案】1【解析】【分析】根据从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等得S EBMF=S FGDN,得S FGDN.【详解】∵S EBMF=S FGDN,S EBMF=1,∴S FGDN=1.【点睛】本题考查面积的求解,解题的关键是读懂题意.12. 有下列各式:①·x yy x ;②x by a¸;③62x x¸;④23·a ab b.其中,计算结果为分式的是_____.(填序号)【答案】②④【解析】【分析】根据分式的定义,将每个式子计算后,即可求解.【详解】x y·y x =1不是分式,x by a¸=xayb,62x x¸=3不是分式,2a3a·b b=323ab故选②④.【点睛】本题考查分式的判断,解题的关键是清楚分式的定义.13. 如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.【答案】50【解析】【分析】由CD是⊙O的直径,弦AB CD⊥,根据垂径定理的即可求得»AD=»BD,又由圆周角定理,可得∠AOD=50°.【详解】∵CD是⊙O的直径,弦AB CD⊥,∴»AD=»BD,BCD=25°=∵∠,AOD=2BCD=50°∴∠∠,故答案为50【点睛】本题考查角度的求解,解题的关键是利用垂径定理.14. 《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为______.【答案】10031003x y y x +=ìïí+=ïî【解析】【分析】根据题意可以列出相应的方程组,从而可以解答本题.【详解】由题意可得,10031003x y y x +=ìïí+=ïî,故答案为:10031003x y y x +=ìïí+=ïî【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15. 标号分别为1,2,3,4……,,n 的n 张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n 可以是_____.【答案】奇数.【解析】【分析】根据概率的意义,分n 是偶数和奇数两种情况分析即可.【详解】若n 为偶数,则奇数与偶摸得奇数号标签的概率为0.5,若n 为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5,故答案为奇数.【点睛】本题考查概率公式,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=.16. 阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l 和直线l 外一点P.用直尺和圆规作直线PQ ,使PQ l ⊥于点Q ”.小艾的作法如下:(1)在直线l 上任取点A ,以A 为圆心,AP 长为半径画弧.(2)在直线l 上任取点B ,以B 为圆心,BP 长为半径画弧.(3)两弧分别交于点P 和点M(4)连接PM ,与直线l 交于点Q ,直线PQ 即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是_____.【答案】到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss 或全等三角形对应角相等或等腰三角形的三线合一【解析】【分析】从作图方法以及作图结果入手考虑其作图依据..【详解】解:依题意,AP =AM ,BP =BM ,根据垂直平分线的定义可知PM ⊥直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.【点睛】本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.三.解答题(共12小题,满分68分)17. 计算:27﹣(﹣2)0+|1|+2cos30°.【答案】2-.【解析】【分析】(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果.【详解】原式1122=++´,11=+-,2=.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. 解不等式组()()303129x x x -³ìí->+î.【答案】x <﹣3.【解析】【详解】分析:按照解一元一次不等式组的一般步骤解答即可.详解:()()303129x x x -³ìïí->+ïî①②,由①得x≤3,由②得x <﹣3,∴原不等式组的解集是x <﹣3.点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.19. 如图,在ABC D 中,AB AC =,D 是BC 边上的中点,DE AB ^于点E ,DF AC ^于点F .求证:DE DF =.【答案】见解析【解析】【分析】如图,连接AD .根据AB AC =,点D 是BC 边上的中点,得出AD 平分BAC Ð,DE 、DF 分别垂直AB 、AC 于点E 和F ,DE DF =即可.【详解】证明:如图,连接AD.AB AC =Q ,点D 是BC 边上的中点,AD \平分BAC Ð,DE Q 、DF 分别垂直AB 、AC 于点E 和F .DE DF \=.【点评】本题考查的是等腰三角形的性质,角平分线性质,熟知等腰三角形三线合一的性质是解答此题的关键.20. 已知关于x 的一元二次方程22220x kx k k +++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数时,求方程的根.【答案】(1)2k < (2)1202x x ==-,【解析】【分析】(1)根据一元二次方程22220x kx k k +++-=有两个不相等的实数根,利用判别式大于零即可解答;(2)根据k 的取值范围,结合k 为正整数即可确定k 的值,将其代入原方程,解方程即可.【小问1详解】解:根据题意,得2224242b ac k k k -=()-(+-)=480k -+>.解得2k <.【小问2详解】解:∵k 为正整数且2k <,∴1k =.∴方程可化为220x x +=,解得1202x x ==-,.【点睛】此题主要考查了根的判别式,解一元二次方程,解题关键是熟练掌握根与判别式关系.21. 如图,已知菱形ABCD,AB=AC,E、F分别是BC,AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=2,求菱形的面积.【答案】(1)见解析;(2)23【解析】【分析】(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.【详解】(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,⊥(等腰三角形三线合一),∴AE BC∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∥且AD=BC,∴AD BC∥且AF=EC,∴AF EC∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠AEC=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)在Rt ABE△中,AE=,所以,S菱形ABCD=2×=2.【点睛】本题考查平行四边形的性质和矩形的判断,解题的关键是获取题中的信息.22. 如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.【答案】(1)y=6x ,y=x1﹣;(2)x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C,点C的坐标为(﹣3,﹣2),(43,92),(﹣43,﹣92).【解析】【分析】(1)设反比例函数解析式为y=kx,将B点坐标代入,求出反比例函数解析式,将A点坐标代入反比例解析式求出m的值,确定出点A的坐标,设直线AB的解析式为y=ax+b,将A与B的坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;(2)根据图像写出答案即可;(3)分3中情况求解,延长AO交双曲线于点C1,由点A与点C1关于原点对称,求出点点C1的坐标;如图,过点C1作BO的平行线,交双曲线于点C2,将OB的解析式与C1C2的解析式联立,求出点C2的坐标;A作OB的平行线,交双曲线于点C3,,将AC3的解析式与反比例函数的解析式联立,求出点C3的坐标.【详解】解:(1)设反比例函数解析式为y=kx,把B (﹣2,﹣3)代入,可得k=2×﹣(﹣3)=6,∴反比例函数解析式为y=6x;把A (3,m )代入y=6x,可得3m=6,即m=2,∴A (3,2),设直线AB 的解析式为y=ax+b ,把A (3,2),B (﹣2,﹣3)代入,可得2332a ba b=+ìí-=-+î,解得11a b =ìí=-î,∴直线AB 的解析式为y=x 1﹣;(2)由题可得,当x 满足:x <﹣2或0<x <3时,直线AB 在双曲线的下方;(3)存在点C .如图所示,延长AO 交双曲线于点C 1,∵点A 与点C 1关于原点对称,∴AO=C 1O ,∴△OBC 1的面积等于△OAB 的面积,此时,点C 1的坐标为(﹣3,﹣2);如图,过点C 1作BO 的平行线,交双曲线于点C 2,则△OBC 2的面积等于△OBC 1的面积,∴△OBC 2的面积等于△OAB 的面积,由B (﹣2,﹣3)可得OB 的解析式为y=32x ,可设直线C 1C 2的解析式为y=32x+b',把C 1(﹣3,﹣2)代入,可得﹣2=32×(﹣3)+b',解得b'=52,∴直线C 1C 2的解析式为y=32x+52,解方程组63522y x y x ì=ïïíï=+ïî,可得C 2(43,92);如图,过A 作OB 的平行线,交双曲线于点C 3,则△OBC 3的面积等于△OBA 的面积,设直线AC 3的解析式为y=32x+''b ,把A (3,2)代入,可得2=32×3+''b ,解得''b =﹣52,∴直线AC 3的解析式为y=32x ﹣52,解方程组63522y x y x ì=ïïíï=-ïî,可得C 3(﹣43,﹣92);综上所述,点C 的坐标为(﹣3,﹣2),(43,92),(﹣43,﹣92).【点睛】此题考查了反比例函数与一次函数的综合,涉及的知识有:坐标与图形性质,一次函数图像的交点与二元一次方程组的关系,反比例函数与一次函数的交点问题,利用函数图像解不等式,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.23. 如图,AB 是⊙O 的直径,PO AB ⊥,PE 是⊙O 的切线,交AB 的延长线于点C ,切点为E ,AE 交PO 于点F .(1)求证:V PEF 是等腰三角形;(2)在图中,作EH AB ⊥,垂足为H ,作弦BD PC ∥,交EH 于点G .若EG=5,sinC=35,求直径AB 的长.【答案】(1)见解析;(2)直径AB 的长为20m 【解析】【分析】(1)由切线性质得:OE PC ⊥,根据垂直定义和三角形定理可得:∠AEP=PFE ∠,根据等角对等边可得结论;(2)先根据sinC=35=OH OE ,设OH=3x ,OE=5x ,则EH=4x ,OA=OB=5x ,由平行线性质得:∠GBH=C ∠,列式为:452x x -=34,解方程可得结论.【详解】(1)证明:∵PE 为⊙O 的切线,∴OE PC ⊥,∴∠OEP=90°,∴∠OEA+AEP=90°∠,∵OP AC ⊥,∴∠AOF=90°,∴∠A+AFO=90°∠,∵∠AFO=PFE ∠,∴∠PFE+A=90°∠,∵OA=OE,∠,∴∠A=OEA∠,∴∠AEP=PFE∴PE=PF;∴△PEF是等腰三角形;∠,∠,∠COE+OEH=90°(2)解:∵∠C+COE=90°∠,∴∠C=OEH∵sin C=∠,∠=sin OEH=设OH=3x,OE=5x,则EH=4x,OA=OB=5x,﹣,∴BH=OB OH=2x﹣,GH=4x5∥,∵BG PC∠,∴∠GBH=C∠,∵sin C=∠=tan GBH∠,∴tan C=∴,x=2,∴AB=10x=20,答:直径AB的长为20m.【点睛】本题考查等腰三角形的判定与性质,垂径定理及其推论,圆周角定理及其推论,切线的性质,解题的关键是分析图形.24. 某工厂甲、乙两个部门各有员工200人,为了解这两个部门员工的生产技能情况,相关部门进行了抽样调查,过程如下.从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制,单位:分)如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 75 80 85 70 83 77乙:92 71 83 81 72 81 91 83 75 82 80 81 69 81 73 74 82 80 70 59整理、描述数据本数据:按如下分数段整理、描述这两组样(说明:成绩80分及以上为生产技能优秀,7079﹣﹣分为生产技能良好,6069﹣﹣分为生产技能合格)根据上述表格绘制甲、乙两部门员工成绩的频数分布图.分析数据两组样本数据的平均数、中位数、众数如下表所示:(1)请将上述不完整的统计表和统计图补充完整;(2)请根据以上统计过程进行下列推断;①估计乙部门生产技能优秀的员工人数是多少;②你认为甲、乙哪个部门员工的生产技能水平较高,说明理由.(至少从两个不同的角度说明推断的合理性)【答案】(1)见解析;(2)①120人;②甲或乙.【解析】【分析】(1)根据题干数据整理即可得;(2)①总人数乘以样本中优秀的人数所占比例;②根据中位数和众数等意义解答可得.【详解】解:(1)补全图表如下:=120人;(2)①估计乙部门生产技能优秀的员工人数是200×1220②甲或乙,1°、甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;2°、甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高;或1°、乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;2°、乙部门生产技较高,表示乙部门员工的生产技能水平较高.【点睛】本题考查调查收集数据的过程与方法频数(率)分布表,频数(率)分布直方图,算术平均数,中位数,众数,利用频率估计概率,解题的关键是获取题文信息. 25. 问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=2.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.建立模型:(1)y 与x 的函数关系式为:_(02)_(24)x y x --££ì=í--<£î,解决问题:(2)为进一步研究y 随x 变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:(3)观察所画的图象,写出该函数的两条性质: .【答案】(1) ①y=212x ;②221(02)212(24)2x x y x x x 죣ïï=íï-+<£ïî;(2)见解析;(3)见解析【解析】【分析】(1)根据线段相似的关系得出函数关系式(2)代入①中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x ①当0≤x≤2时∵MN BD ∥∴△APM AOD ∽△∴AP AO 2PM DO==∴MP=12x∵AC 垂直平分MN ∴PN=PM=12x∴MN=x ∴y=12AP•MN=212x ②当2<x≤4时,P 在线段OC 上,∴CP=4x ﹣∴△CPM COD ∽△∴CP CO 2PII DO==∴PM=1(4)2x -∴MN=2PM=4x﹣∴y=11AP MN x(4x)22×=-=﹣2122x x+∴y=221(02)212(24)2x x x x x 죣ïïíï+<£ïî(2)由(1)当x=1时,y=12当x=2时,y=2当x=3时,y=32(3)根据(1)画出函数图象示意图可知1、当0≤x≤2时,y 随x 的增大而增大2、当2<x≤4时,y 随x 的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.26. 已知抛物线212y x bx c =-++经过点()10,,302æöç÷èø,.1()求该抛物线的函数表达式;2()将抛物线212y x bx c =-++平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】(1)抛物线解析式为21322y x x =--+;(2)向右平移一个单位,向下平移2个单位(方法不唯一),212y x =-.【解析】【分析】(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.【详解】(1)把()1,0,30,2æöç÷èø代入抛物线解析式得:10232b c c ì-++=ïïíï=ïî,解得:132b c =-ìïí=ïî,则抛物线解析式为21322y x x =--+;(2)抛物线解析式为22131(1)2222y x x x =--+=-++,将抛物线向右平移一个单位,向下平移2个单位,解析式变为212y x =-.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.27. 如图,△ABC 中,∠ACB=90°,AC=BC ,在△ABC 外侧作直线CP ,点A 关于直线CP 的对称点为D ,连接AD ,BD ,其中BD 交直线CP 于点E .(1)如图1,∠ACP=15°.①依题意补全图形;②求∠CBD 的度数;(2)如图2,若45°<∠ACP <90°,直接用等式表示线段AC ,DE ,BE 之间的数量关系.【答案】(1)①见解析;②30°;(2)DE2+BE2=2AC2,理由见解析【解析】【分析】(1)根据题意作图,进而求∠CBD的度数(2)由45°<∠ACP<90°,根据题意和图形可得DE2+BE2=2AC2 .【详解】(1)如图1所示,(2)如图1,连接CD,∵点A关于直线CP的对称点为D,∴CP是AD的垂直平分线,∴CD=AC,∠DCP=ACP=15°∠,∵∠ACB=90°,∴∠BCD=90°+15°+15°=120°,∵AC=BC=CD,∠,∴∠CBD=CDB=30°(3)DE2+BE2=2AC2,理由是:如图2,连接CD、AE,∵DC=BC=AC,∠∠,∴∠CDB=CBD=CAE∠,∵∠CGA=EGB∠,∴∠GEB=ACB=90°∴AE2+BE2=AB2,∵CP是AD的垂直平分线,∴ED=AE,∴DE2+BE2=AB2,∵△ABC是等腰直角三角形,∴AB2=AC2+BC2,且AC=BC,∴DE2+BE2=2AC2.【点睛】本题考查图形应用题,解题的关键是利用题文信息.28. 如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB 于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择 题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)8,4,45;(2)①AD=5;②P(0,2)或(0,8).【解析】【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A.①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.﹣x+8的图象与x轴,y轴分别交于点A,点C,【详解】解:(1)∵一次函数y=2∴A(4,0),C(0,8),∴OA=4,OC=8.∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4.在Rt△ABC中,根据勾股定理得,AC故答案为8,4,(2)选A.①由(1)知,BC=4,AB=8,由折叠知,CD=AD.在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5;②由①知,D(4,5),设P(0,y).∵A(4,0),﹣)2.∴AP2=16+y2,DP2=16+(y5∵△APD为等腰三角形,∴分三种情况讨论:Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3);Ⅱ、AP=DP,﹣)2,∴16+y2=16+(y5,∴y=52);∴P(0,52﹣)2,Ⅲ、AD=DP,25=16+(y5∴y=2或8,∴P(0,2)或(0,8).)或P(0,2)或(0,8).综上所述:P(0,3)或(0,﹣3)或P(0,52AC,DE⊥AC于E.选B.①由A①知,AD=5,由折叠知,AE=1在Rt△ADE中,DE②∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CP A≌△ABC,∴∠APC=∠ABC=90°.∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0);如图3,过点O 作ON ⊥AC 于N ,易证,△AON ∽△ACO ,∴AN OA OA AC=,∴4AN =,∴AN =5,过点N 作NH ⊥OA ,∴NH ∥OA ,∴△ANH ∽△ACO ,∴AN NH AH AC OC OA==,∴84NH AH==,∴NH =85,AH =45,∴OH =165,∴N (16855,),而点P 2与点O 关于AC 对称,∴P 2(321655,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣122455,).综上所述:满足条件的点P 的坐标为:(0,0),(321655,),(﹣122455,).【点睛】本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.。

2018年浙江省中考数学模拟试卷和答案

2018年浙江省中考数学模拟试卷和答案

浙江省2018年中考数学模拟试卷与答案一、选择题(共16小题.1~6小题.每小题2分;7~16小题.每小题2分.共42分.在每小题给出的四个选项中.只有一项是符合题目要求的)1.(2分)﹣2是2的()A.倒数B.相反数C.绝对值D.平方根考点:相反数.分析:根据只有符号不同的两个数互为相反数.可得一个数的相反数.解答:解:﹣2是2的相反数.故选:B.点评:本题考查了相反数.在一个数的前面加上负号就是这个数的相反数.2.(2分)如图.△ABC中.分别是边的中点.若DE=2.则BC=()A.2B.3C.4D.5考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.解答:解:∵分别是边的中点.∴DE是△ABC的中位线.∴BC=2DE=2×2=4.故选C.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半.熟记定理是解题的关键.3.(2分)计算:852﹣152=()A.70B.700C.4900D.7000考点:因式分解-运用公式法.分析:直接利用平方差进行分解.再计算即可.解答:解:原式=(85+15)(85﹣15)=100×70=7000.故选:D.点评:此题主要考查了公式法分解因式.关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).4.(2分)如图.平面上直线分别过线段OK两端点(数据如图).则相交所成的锐角是()A.20°B.30°C.70°D.80°考点:三角形的外角性质分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:相交所成的锐角=100°﹣70°=30°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质.熟记性质是解题的关键.5.(2分)是两个连续整数.若a<<b.则分别是()A.B.C.D.考点:估算无理数的大小.分析:根据.可得答案.解答:解:.故选:A.点评:本题考查了估算无理数的大小.是解题关键.6.(2分)如图.直线l经过第二、三、四象限.l的解析式是y=(m﹣2)x+n.则m的取值范围在数轴上表示为()A.B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0.解得m<2.然后根据数轴表示不等式的方法进行判断.解答:解:∵直线y=(m﹣2)x+n经过第二、三、四象限.∴m﹣2<0且n<0.∴m<2且n<0故选C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数.k≠0)是一条直线.当k >0.图象经过第一、三象限.y随x的增大而增大;当k<0.图象经过第二、四象限.y随x的增大而减小;图象与y轴的交点坐标为().也考查了在数轴上表示不等式的解集.7.(3分)化简:﹣=()A.0B.1C.x D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算.约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法.熟练掌握运算法则是解本题的关键.8.(3分)如图.将长为2、宽为1的矩形纸片分割成n个三角形后.拼成面积为2的正方形.则n≠()A.2B.3C.4D.5考点:图形的剪拼分析:利用矩形的性质以及正方形的性质.结合勾股定理得出分割方法即可.解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后.拼成面积为2的正方形.则n可以为:故n≠2.故选:A.点评:此题主要考查了图形的剪拼.得出正方形的边长是解题关键.9.(3分)某种正方形合金板材的成本y(元)与它的面积成正比.设边长为x厘米.当x=3时.y=18.那么当成本为72元时.边长为()A.6厘米B.12厘米C.24厘米D.36厘米考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2.由待定系数法就可以求出解析式.当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2.由题意.得18=9k.解得:k=2.∴y=2x2.当y=72时.72=2x2.∴x=6.故选A.点评:本题考查了待定系数法求函数的解析式的运用.根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.10.(3分)如图1是边长为1的六个小正方形组成的图形.它可以围成图2的正方体.则图1中小正方形顶点围成的正方体上的距离是()A.0B.1C.D.考点:展开图折叠成几何体分析:根据展开图折叠成几何体.可得正方体.根据勾股定理.可得答案.解答:解;AB是正方体的边长.AB=1.故选:B.点评:本题考查了展开图折叠成几何体.勾股定理是解题关键.11.(3分)某小组做“用频率估计概率”的实验时.统计了某一结果出现的频率.绘制了如图的折线统计图.则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中.小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后.从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球.它们只有颜色上的区别.从中任取一球是黄球D.掷一个质地均匀的正六面体骰子.向上的面点数是4考点:利用频率估计概率;折线统计图.分析:根据统计图可知.试验结果在附近波动.即其概率P≈.计算四个选项的概率.约为者即为正确答案.解答:解:A、在“石头、剪刀、布”的游戏中.小明随机出的是“剪刀“的概率为.故此选项错误;B、一副去掉大小王的普通扑克牌洗匀后.从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球.它们只有颜色上的区别.从中任取一球是黄球的概率为.故此选项错误;D、掷一个质地均匀的正六面体骰子.向上的面点数是4的概率为≈.故此选项正确.故选:D.点评:此题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(3分)如图.已知△ABC(AC<BC).用尺规在BC上确定一点P.使PA+PC=BC.则符合要求的作图痕迹是()A.B.C.D.考点:作图—复杂作图分析:要使PA+PC=BC.必有PA=PB.所以选项中只有作AB的中垂线才能满足这个条件.故D正确.解答:解:D选项中作的是AB的中垂线.∴PA=PB.∵PB+PC=BC.∴PA+PC=BC故选:D.点评:本题主要考查了作图知识.解题的关键是根据作图得出PA=PB.13.(3分)在研究相似问题时.甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张.得到新三角形.它们的对应边间距为1.则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张.得到新的矩形.它们的对应边间距均为1.则新矩形与原矩形不相似.对于两人的观点.下列说法正确的是()A.两人都对B.两人都不对C.甲对.乙不对D.甲不对.乙对考点:相似三角形的判定;相似多边形的性质分析:甲:根据题意得:AB∥A′B′.AC∥A′C′.BC∥B′C′.即可证得∠A=∠A′.∠B=∠B′.可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD==BC=5.则A′B′=C′D′=3+2=′D′=B′C′=5+2=7.则可得.即新矩形与原矩形不相似.解答:解:甲:根据题意得:AB∥A′B′.AC∥A′C′.BC∥B′C′.∴∠A=∠A′.∠B=∠B′.∴△ABC∽△A′B′C′.∴甲说法正确;乙:∵根据题意得:AB=CD==BC=5.则A′B′=C′D′=3+2=′D′=B′C′=5+2=7.∴..∴.∴新矩形与原矩形不相似.∴乙说法正确.故选A.点评:此题考查了相似三角形以及相似多边形的判定.此题难度不大.注意掌握数形结合思想的应用.14.(3分)定义新运算:a⊕b=例如:4⊕5=.4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象专题:新定义.分析:根据题意可得y=2⊕x=.再根据反比例函数的性质可得函数图象所在象限和形状.进而得到答案.解答:解:由题意得:y=2⊕x=.当x>0时.反比例函数y=在第一象限.当x<0时.反比例函数y=﹣在第二象限.又因为反比例函数图象是双曲线.因此D选项符合.故选:D.点评:此题主要考查了反比例函数的性质.关键是掌握反比例函数的图象是双曲线.15.(3分)如图.边长为a的正六边形内有两个三角形(数据如图).则=()A.3B.4C.5D.6考点:正多边形和圆分析:先求得两个三角形的面积.再求出正六边形的面积.求比值即可.解答:解:如图.∵三角形的斜边长为a.∴两条直角边长为.∴S空白=a a=a2.∵AB=a.∴OC= a.∴S正六边形=6×a a=a2.∴S阴影=S正六边形﹣S空白=a2﹣a2=a2.∴==5.故选C.点评:本题考查了正多边形和圆.正六边形的边长等于半径.面积可以分成六个等边三角形的面积来计算.16.(3分)五名学生投篮球.规定每人投20次.统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7.则他们投中次数的总和可能是()A.20B.28C.30D.31考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列.位于最中间的一个数或两个数的平均数为中位数.众数是一组数据中出现次数最多的数据.注意众数可以不止一个.则最大的三个数的和是:6+7+7=20.两个较小的数一定是小于5的非负整数.且不相等.则可求得五个数的和的范围.进而判断.解答:解:中位数是6.唯一众数是7.则最大的三个数的和是:6+7+7=20.两个较小的数一定是小于5的非负整数.且不相等.则五个数的和一定大于20且小于29.故选B.点评:本题属于基础题.考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚.计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序.然后再根据奇数和偶数个来确定中位数.如果数据有奇数个.则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.二、填空题(共4小题.每小题3分.满分12分)17.(3分)计算:=2.考点:二次根式的乘除法.分析:本题需先对二次根式进行化简.再根据二次根式的乘法法则进行计算即可求出结果.解答:解:.=2×.=2.故答案为:2.点评:本题主要考查了二次根式的乘除法.在解题时要能根据二次根式的乘法法则.求出正确答案是本题的关键.18.(3分)若实数满足|m﹣2|+(n﹣2014)2=0.则m﹣1+n0=.考点:负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.分析:根据绝对值与平方的和为0.可得绝对值与平方同时为0.根据负整指数幂、非0的0次幂.可得答案.解答:解:|m﹣2|+(n﹣2014)2=0.m﹣2=﹣2014=0.m==2014.m﹣1+n0=2﹣1+20140=+1=.故答案为:.点评:本题考查了负整指数幂.先求出m、n的值.再求出负整指数幂、0次幂.19.(3分)如图.将长为8cm的铁丝尾相接围成半径为2cm的扇形.则S扇形=4cm2.考点:扇形面积的计算.分析:根据扇形的面积公式S扇形=×弧长×半径求出即可.解答:解:由题意知.弧长=8cm﹣2cm×2=4 cm.扇形的面积是×4cm×2cm=4cm2.故答案为:4.点评:本题考查了扇形的面积公式的应用.主要考查学生能否正确运用扇形的面积公式进行计算.题目比较好.难度不大.20.(3分)如图.点在数轴上表示的数分别是将线段OA 分成100等份.其分点由左向右依次为 (99)再将线段OM1.分成100等份.其分点由左向右依次为 (99)继续将线段ON1分成100等份.其分点由左向右依次为. (99)则点P37所表示的数用科学记数法表示为×10﹣6.考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为×=10﹣表示的数为0×10﹣3=10﹣表示的数为10﹣5×=10﹣7.进一步表示出点P37即可.解答:解:M1表示的数为×=10﹣3.N1表示的数为0×10﹣3=10﹣5.P1表示的数为10﹣5×=10﹣7.P37=37×10﹣7=×10﹣6.故答案为:×10﹣6.点评:此题考查图形的变化规律.结合图形.找出数字之间的运算方法.找出规律.解决问题.三、解答题(共6小题.满分66分.解答应写出文字说明、证明过程或演算步骤)21.(10分)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时.对于b2﹣4ac>0的情况.她是这样做的:由于a≠0.方程ax2++bx+c=0变形为:x2+x=﹣.…第一步x2+x+()2=﹣+()2.…第二步(x+)2=.…第三步x+=(b2﹣4ac>0).…第四步x=.…第五步嘉淇的解法从第四步开始出现错误;事实上.当b2﹣4ac>0时.方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法专题:阅读型.分析:第四步.开方时出错;把常数项24移项后.应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中.开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项.得x2﹣2x=24.配方.得x2﹣2x+1=24+1.即(x﹣1)2=25.开方得x﹣1=±5.∴x1==﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项.把常数项移到右边;第二步配方.左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步.直接开方即可.(2)形如ax2+bx+c=0型.方程两边同时除以二次项系数.即化成x2+px+q=0.然后配方.22.(10分)如图是三个垃圾存放点.点分别位于点A的正北和正东方向.AC=100米.四人分别测得∠C 的度数如下表:甲乙丙丁∠C(单位:度)34363840他们又调查了各点的垃圾量.并绘制了下列尚不完整的统计图2.图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量.并将图2补充完整;(3)用(1)中的作为∠C的度数.要将A处的垃圾沿道路AB都运到B处.已知运送1千克垃圾每米的费用为元.求运垃圾所需的费用.(注:sin37°=)考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比.进而求出垃圾总量.进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长.进而得出运垃圾所需的费用.解答:解:(1)==37;(2)∵C处垃圾存放量为:320kg.在扇形统计图中所占比例为:50%.∴垃圾总量为:320÷50%=640(kg).∴A处垃圾存放量为:(1﹣50%﹣%)×640=80(kg).占%.补全条形图如下:(3)∵AC=100米.∠C=37°.∴tan37°=.∴AB=ACtan37°=100×=75(m).∵运送1千克垃圾每米的费用为元.∴运垃圾所需的费用为:75×80×=30(元).答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用.利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)如图.△ABC中.AB=AC.∠BAC=40°.将△ABC绕点A按逆时针方向旋转100°.得到△ADE.连接交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:(1)根据旋转角求出∠BAD=∠CAE.然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等.得出∠ACE=∠ABD.即可求得.(3)根据对角相等的四边形是平行四边形.可证得四边形ABEF是平行四边形.然后依据邻边相等的平行四边形是菱形.即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°.∴∠BAC=∠DAE=40°.∴∠BAD=∠CAE=100°.又∵AB=AC.∴AB=AC=AD=AE.在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°.AC=AE.∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE.∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°.∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°.∴∠BAE=∠BFE.∴四边形ABEF是平行四边形.∵AB=AE.∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质.等腰三角形的性质以及菱形的判定.熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)如图.2×2网格(每个小正方形的边长为1)中有、九个格点.抛物线l的解析式为y=(﹣1)nx2+bx+c(n为整数).(1)n为奇数.且l经过点H()和C().求的值.并直接写出哪个格点是该抛物线的顶点;(2)n为偶数.且l经过点A()和B().通过计算说明点F()和H()是否在该抛物线上;(3)若l经过这九个格点中的三个.直接写出所有满足这样条件的抛物线条数.考点:二次函数综合题专题:压轴题.分析:(1)根据﹣1的奇数次方等于﹣1.再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值.然后把函数解析式整理成顶点式形式.写出顶点坐标即可;(2)根据﹣1的偶数次方等于1.再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值.从而得到函数解析式.再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论.将抛物线平移.可以确定抛物线的条数.解答:解:(1)n为奇数时.y=﹣x2+bx+c.∵l经过点H()和C().∴.解得.∴抛物线解析式为y=﹣x2+2x+1.y=﹣(x﹣1)2+2.∴顶点为格点E();(2)n为偶数时.y=x2+bx+c.∵l经过点A()和B().∴.解得.∴抛物线解析式为y=x2﹣3x+2.当x=0时.y=2.∴点F()在抛物线上.点H()不在抛物线上;(3)所有满足条件的抛物线共有8条.当n为奇数时.由(1)中的抛物线平移又得到3条抛物线.如答图3﹣1所示;当n为偶数时.由(2)中的抛物线平移又得到3条抛物线.如答图3﹣2所示.点评:本题是二次函数综合题型.主要利用了待定系数法求二次函数解析式.二次函数图象上点的坐标特征.二次函数的对称性.要注意(3)抛物线有开口向上和开口向下两种情况.25.(11分)图1和图2中.优弧所在⊙O的半径为=2.点P为优弧上一点(点P不与重合).将图形沿BP折叠.得到点A的对称点A′.(1)点O到弦AB的距离是1.当BP经过点O时.∠ABA′=60°;(2)当BA′与⊙O相切时.如图2.求折痕的长:(3)若线段BA′与优弧只有一个公共点B.设∠ABP=α.确定α的取值范围.考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°.从而得到∠ABA′=120°.就可求出∠ABP.进而求出∠OBP=30°.过点O作OG⊥BP.垂足为G.容易求出OG、BG的长.根据垂径定理就可求出折痕的长.(3)根据点A′的位置不同.分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时.线段BA′与优弧都只有一个公共点B.α的范围是0°<α<30°;当点A′在⊙O的外部时.从BA′与⊙O 相切开始.以后线段BA′与优弧都只有一个公共点B.α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时.α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB.垂足为H.连接OB.如图1①所示.∵OH⊥=2.∴AH=BH=.∵OB=2.∴OH=1.∴点O到AB的距离为1.②当BP经过点O时.如图1②所示.∵OH==⊥AB.∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP.垂足为G.如图2所示.∵BA′与⊙O相切.∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°.∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP.∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B.Ⅰ.当点A′在⊙O的内部时.此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时.此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时.α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识.考查了用临界值法求α的取值范围.有一定的综合性.第(3)题中α的范围可能考虑不够全面.需要注意.26.(13分)某景区内的环形路是边长为800米的正方形ABCD.如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发.1号车顺时针、2号车逆时针沿环形路连续循环行驶.供游客随时免费乘车(上、下车的时间忽略不计).两车速度均为200米/分.探究:设行驶寸间为t分.(1)当0≤t≤8时.分别写出1号车、2号车在左半环线离出口A的路程(米)与t(分)的函数关系式.并求出当两车相距的路程是400米时t的值;(2)t为何值时.1号车第三次恰好经过景点C并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2.游客甲在BC上的一点K(不与点重合)处候车.准备乘车到出口A.设CK=x米.情况一:若他刚好错过2号车.便搭乘即将到来的1号车;情况二:若他刚好错过1号车.便搭乘即将到来的2号车.比较哪种情况用时较多(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P (不与点重合)时.刚好与2号车迎面相遇.(1)他发现.乘1号车会比乘2号车到出口A用时少.请你简要说明理由:(2)设PA=s(0<s<800)米.若他想尽快到达出口A.根据s的大小.在等候乘1号车还是步行这两种方式中.他该如何选择考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:探究:(1)由路程=速度×时间就可以得出(米)与t(分)的函数关系式.再由关系式就可以求出两车相距的路程是400米时t的值;(2)求出1号车3次经过A的路程.进一步求出行驶的时间.由两车第一次相遇后每相遇一次需要的时间就可以求出相遇次数;发现:分别计算出情况一的用时和情况二的用时.在进行大小比较就可以求出结论决策:(1)根据题意可以得出游客乙在AD上等待乘1号车的距离小于边长.而成2号车到A出口的距离大于3个边长.进而得出结论;(2)分类讨论.若步行比乘1号车的用时少.就有.得出s<320.就可以分情况得出结论.解答:解:探究:(1)由题意.得y1==﹣200t+1600当相遇前相距400米时.﹣200t+1600﹣200t=400.t=3.当相遇后相距400米时.200t﹣(﹣200t+1600)=400.t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;(2)由题意.得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000.∴1号车第三次经过景点C需要的时间为:8000÷200=40分钟.两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8.∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发现:由题意.得情况一需要时间为:=16﹣.情况二需要的时间为:=16+∵16﹣<16+∴情况二用时较多.决策:(1)∵游客乙在AD边上与2号车相遇.∴此时1号车在CD边上.∴乘1号车到达A的路程小于2个边长.乘2号车的路程大于3个边长.∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少..∴s<320.∴当0<s<320时.选择步行.同理可得当320<s<800时.选择乘1号车.当s=320时.选择步行或乘1号车一样.点评:本题考查了一次函数的解析式的运用.一元一次方程的运用.一元一次不等式的运用.分类讨论思想的运用.方案设计的运用.解答时求出函数的解析式是解答本题的关键.。

江苏省扬州市梅岭中学2018届中考第一次模拟数学试卷及答案

江苏省扬州市梅岭中学2018届中考第一次模拟数学试卷及答案

梅岭中学 2017-2018 学年第二学期九年级数学试卷(满分 150 分,考试时间 120 分钟)一、选择题(本大题共有 8 小题,每小题 3 分,共 24 分) 1、下列各数中,是无理数的是( )A. 0.010010001B.【答案】B 【分析】C. 3.14D. - 12无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的 统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.2、下面调查中,适合采用普查的是 ( )A. 调查全国中学生心理健康现状B. 调查你所在的班级同学的身高情况C. 调查 50 枚导弹的杀伤半径D. 调查扬州电视台《今日生活》收视率 【答案】B 【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似. 3、下列各式计算正确的是()A. a 2 + 2a 3 = 3a5B. (a2 )3= a 5C. a 6 ÷ a 2 = a3D. a 2 ⋅ a 3 = a5【答案】D 【分析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相 加对各选项分析判断即可得解.4、下列函数中,自变量 x 的取值范围为 x>3 的是( )A. y=x-3B. y =1x - 3C. y =D.y =1【答案】D 【分析】根据被开方数大于等于 0,分母不等于 0 求出各选项的自变量 x 的取值范围,从而得解.3x -325、如图,下列选项中不是正六棱柱三视图的是( )A. B. C. D.【答案】A【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6、请仔细观察用直尺和圆规作一个角∠A’O’B’等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A’O’B’=∠AOB 的依据是 ( )A. (SAS )B. (SSS )C. (AAS )D. (ASA ) 【答案】B 【分析】根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依 据.7、如图,A,B,P 是半径为 2 的 O 上的三点,∠APB=45∘ ,则弦 AB 的长为()A. 2B. 4C. 【答案】C2 D.2【分析】首先连接 OA,OB,由圆周角定理即可求得∠AOB=90°,又由 OA=OB=2,利用勾股定理即可求得弦AB 的长.8、一种包装盒的设计方法如图所示,ABCD 是边长为 80cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得 A、B、C、D 四点重合于图中的点 O,形成一个底面为正方形的长方体包装盒,设 BE=CF=xcm,要使包装盒的侧面积最大,则 x 应取()A、30cmB、25cmC、20cmD、15cm【答案】C【分析】侧面积=4×2x×80-2x=-8(x-20)2+3200 2∴当 x=20cm 时,S 取最大值.二、填空题(本大题共有 10 小题,每小 3 分,共 30 分)9、我国的南海资源丰富,其面积为3500000 平方千米,相当于渤海、黄海和东海总面积的3 倍。

2018年中考数学模拟试题及答案定稿

2018年中考数学模拟试题及答案定稿

数学试题卷注意事项:1.本试卷分为试题卷(1-4页)和答题卡两部分。

考试时间120分钟,满分120分。

2.考生答题前,请先将姓名、准考证号等信息用黑色字迹签字笔填写在答题卡上的指定位置,待监考教师粘贴条形码后,认真核对条形码上的姓名、准考证号与自己准考证上的信息是否一致。

3.请将选择题答案用2B铅笔填涂在答题卡上的相应位置,非选择题答案用黑色字迹签字笔答在答题卡上的相应位置。

超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;作图题应先用铅笔画,确定不修改后,再用黑色字迹签字笔描黑。

4.考试结束,监考人员必须将参考学生和缺考学生的答题卡、试题卷一并收回。

一、选择题(每小题只有一个选项符合题意,请将正确选项填涂在答题卡上。

每小题3分,共30分)1.2的相反数是()11?D.-C.2A.2B.222.下列运算正确的是()326xx B.x A=·.1?2?2?1224224x+x (3 x )= =6 x C .x D.3.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×10 B.20.4×10 C.2.04×10 D.2.04×10 64354.关于2、6、1、10、6 的这组数据,下列说法正确的是()A.这组数据的众数是6B.这组数据的中位数是1D.这组数据的方差是10C .这组数据的平均数是6.要使二次根式在实数范围内有意义,则x的取值范围是( 5 )42x?A.x>2B.x≥2 C.x<2D.x=26.如图所示的几何体,上下部分均为圆柱体,其左视图是()页)9页(共1数学试题卷第7.当k<0时,一次函数y=kx-k的图象不经过()...A.第一象限B.第二象限C.第三象限D.第四象限8.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.)个其中正确的有(A.4 B.1D.3 C.24∠CDB=,CD的中点H,已知cos的直径,且经过弦9.如图,AB是⊙O5的长度为()BD=5,则OH25B.A.367C.1 D.6A轴的交点B(-1, 3),与xy=ax10.如图所示,抛物线+bx+c的顶点为2在(-3, 0)和(-2, 0)之间,以下结论:点c-a=3 2a-b=0 ④>①b-4ac=0 ②a+b+c0 ③2. )个其中正确的有(B.2A.1C.4D .318分)分,共(请把二、填空题最简答案填写在答题卡相应位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滨海县2018年中考研判数学模拟试卷2注意事项1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷上.一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............) 1.-2的相反数是( )A .-2B .2C .21-D .212.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 23.如图1,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其主视图是( )4.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .5.已知一组数据x 1,x 2,x 3的平均数为8,方差为3.2,那么数据x 1-2, x 2-2,x 3-2的平均数和方差分别是( )A .6,2B .6,3.2C .8,2D .8,3.2 6.根据函数表达式21x y =,下列关于函数21x y =图像特征叙述错误..的是( ) A .图像位于第一、二象限 B .图像既没有最高点,也没有最低点C .图像与直线y=x+2有两个公共点D .图像关于y 轴对称二、填空题(本题共10小题,每题3分,计30分,请将答案写在答题卡上相应横线上)7.请你写出一个大于0且小于3的无理数为 ▲ .8.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为 ▲ . 9.若二次函数y=x 2+2x+m 的图像与 x 轴有公共点,则m 的取值范围是 ▲ .10.如图2,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是 ▲ .图211.如图,已知l 1∥l 2,直线l 与l 1、l 2相交于C 、D 两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= ▲ .12.如果α、β是方程x 2﹣2x ﹣1=0的两个实数根,那么代数式α2﹣3α-β的值是 ▲ .13.我们规定:当k ,b 为常数,k≠0,b≠0,k≠b 时,一次函数y=kx+b 与y=bx+k 互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx-2与它的交换函数图象的交点横坐标为 ▲ . 14.如图4,扇形AOB 中,OA=5,∠AOB=36°.若将此扇形绕点B 顺时针旋转,得一新扇形A′O′B ,其中A 点在O′B 上,则点O 的运动路径长为 ▲ cm .(结果保留π)15.如图5,在Rt △ABC 中,∠C=90°,∠A=α,分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,交点分别为M 、N ,过M 、N 作直线交AB 于点D ,交AC 于点E .若tanα=31,则tan2α= ▲ .16.如图6,在正方形ABCD 内有一条折线段,其中AE ⊥EF ,EF ⊥FC ,且AE=6,EF=6,FC=2,则正方形与其外接圆之间形成的阴影部分面积为 ▲ . 三、解答题(本题共11小题,共102分,请在答题卡上写出相应的解答过程) 17.(本题满分6分)计算:|﹣tan450|﹣38+(﹣2018)0.18.(本题满分6分)解不等式组⎪⎩⎪⎨⎧-≤+->+x x x x 237121)1(315,并写出所有的整数解.19.(本题满分8分)先化简,再求值:(x ﹣xy xy 22-)÷xyx y x +-222,其中x=23+,y=23-.20.(本题满分8分)如图7,点O 是△ABC 内一点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、C AM图4第16题E 、F 、G 依次连结,得到四边形DEFG . (1)求证:四边形DEFG 是平行四边形;(2)若M 为EF 的中点,OM =3,∠OBC 和∠OCB 互余,求DG 的长度.21.(本题满分9分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项). (1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案) 22.(本题满分9分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图8①和图8②,请根据相关信息,解答下列问题:(1)图1中a 的值为 ;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛. 23.(本题满分10分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台? 24.(本题满分10分)图7图8①图8②如图9,直线y=k 1x (x ≥0)与双曲线y=22k (x >0)相交于点P (2,4).已知点A (4,0),B (0,3),连接AB ,将Rt △AOB 沿OP 方向平移,使点O 移动到点P ,得到△A'PB'.过点A'作A'C ∥y 轴交双曲线于点C .(1)求k 1与k 2的值;(2)求直线PC 的表达式;(3)直接写出线段AB 扫过的面积.25.(本题满分10分)如图,在△ABC 中,AB=AC ,AE 是∠BAC 的平分线,∠ABC 的平分线BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆经过点M ,交BC 于点G ,交AB 于点F .(1)求证:AE 为⊙O 的切线;(2)当BC=4,AC=6时,求⊙O 的半径; (3)在(2)的条件下,求线段BG 的长.26.(本题满分12分)已知二次函数图像的顶点在原点O ,并且经过点M (2,-1).点A (0,-1)在y 轴上,直线y=1与y 轴交于点B .(1)求二次函数的解析式;(2)点P 是(1)中图象上的点,过点P 作x 轴的垂线与直线y=1交于点C ,求证:AC 平分∠PAB ;(3)当△PAC 是等边三角形时,求点P 的坐标.图10y=1yxB APC图1127.(本题满分14分)如图,在平面直角坐标系中,点A 的坐标为(6,0),点B 的坐标为(0,2),点M 从点A 出发沿x 轴负方向以每秒3cm 的速度移动,同时点N 从原点出发沿y 轴正方向以每秒1cm 的速度移动.设移动的时间为t 秒.(1)若点M 在线段OA 上,试问当t 为何值时,△ABO 与以点O 、M 、N 为顶点的三角形相似? (2)是否存在这样的t 值,使得线段MN 将△ABO 的面积分成1:3的两个部分?若存在,求出t 的值;若不存在,请说明理由.(3)若直线y=x 与△OMN 外接圆的另一个交点是点C .①试说明:当0<t<2时,OM 、ON 、OC 在移动过程满足OM+ON=2OC ; ②试探究:当t>2时,OM 、ON 、OC 之间的数量关系是否发生变化,并说明理由.y xOBA 备用图y xOBA 备用图y xON MB A图122018年中考数学模拟试卷参考答案及评分标准一、选择题(共6小题,满分18分,每小题3分)二.填空题(共10小题,满分30分,每小题3分)三.解答题(共11小题,满分102分) 17.解:|﹣tan450|﹣38+(﹣2018)0=1﹣2+1 …………………………………………………………3分 =0 …………………………………………………………6分18. 解:解不等式5x+1>3(x-1),得:x >﹣2, ……………………………2分 解不等式21x+1≤7﹣23x ,得:x≤3, ……………………………………4分 则不等式组的解集为﹣2<x≤3,……………………………………5分所有它的整数解是:-1,0,1,2,3. ……………………………6分(x ﹣xy xy 22-)÷xy x y x +-22219. 解:(x ﹣xy xy 22-)÷xy x y x +-222= ()()()y x y x y x x xy xy -+++-*2x 22 =()()()()y x y x y x x x-++*y -x 2……………………………………………4分=x ﹣y …………………………………………………………6分当x=23+,y=23-时,原式= (23+)-(23-)=22.…………………………………………………………8分20.解:(1)证明:∵点D 、E 、F 、G 分别为线段AB 、OB 、OC 、AC 的中点, ∴DG 为△ABC 的中位线,EF 为△OBC 的中位线, ……………………2分 ∴DG ∥BC 且DG =21BC ,EF ∥BC 且EF =21BC , ∴DG ∥EF ,DG =EF ,∴四边形DEFG 是平行四边形. ……………4分(2)解:∵∠OBC 和∠OCB 互余,∴△OBC 是直角三角形,∠BOC =90°. ∵M 为EF 的中点,∴OM 为Rt △OEF 斜边的中线, ……………………6分∴EF =2OM =2×3=6,∴DG =EF =6. ……………………8分 21.解:(1)第一道单选题有3个选项,小明不使用“求助”答对第一道题的概率是31; ……………………2分(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项, 画树状图得:……………………5分∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为91; ……………………7分 (3)∵如果在第一题使用“求助”小明顺利通关的概率为81;如果在第二题使用“求助”小明顺利通关的概率为91;∴建议小明在第一题使用“求助”. ……………………9分22.解:(1)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a 的值是25;……………………2分(2)观察条形统计图得:=36542370.1665.1560.1455.1250.1++++⨯+⨯+⨯+⨯+⨯=1.61; ……………………4分∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65;将这组数据从小到大排列,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60. ……………………6分(3)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m >1.60m ,∴能进入复赛. ……………………9分23.解:(1)设该市这两年投入基础教育经费的年平均增长率为x ,根据题意得:5000(1+x )2=7200, ……………………3分解得:x 1=0.2=20%,x 2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%. ……………………5分 (2)2018年投入基础教育经费为7200×(1+20%)=8640(万元), …………………6分 设购买电脑m 台,则购买实物投影仪(1500﹣m )台, 根据题意得:3500m+2000(1500﹣m )≤86400000×5%, 解得:m≤880.答:2018年最多可购买电脑880台. ……………………10分24.解:(1)把点P (2,4)代入直线y=k 1x ,可得4=2k 1,∴k 1=2, 把点P (2,4)代入双曲线y=22k ,可得k 2=2×4=8; ……4分(2)∵A (4,0),B (0,3),∴AO=4,BO=3,如图,延长A'C 交x 轴于D ,由平移可得,A'P=AO=4, 又∵A'C ∥y 轴,P (2,4),∴点C 的横坐标为2+4=6, 当x=6时,y=68=34,即C (6,34), 设直线PC 的解析式为y=kx+b , 把P (2,4),C (6,34)代入可得 ⎪⎩⎪⎨⎧+=+=b k b k 63424,解得⎪⎪⎩⎪⎪⎨⎧=-=31632b k ,∴直线PC 的表达式为y=﹣32x+316; ……………………6分 (3)如图,延长A'C 交x 轴于D ,由平移可得,A'P ∥AO , 又∵A'C ∥y 轴,P (2,4),∴点A'的纵坐标为4,即A'D=4, 如图,过B'作B'E ⊥y 轴于E , ∵PB'∥y 轴,P (2,4),∴点B'的横坐标为2,即B'E=2, 又∵△AOB ≌△A'PB',∴线段AB 扫过的面积=平行四边形POBB'的面积+平行四边形AOPA'的面积=BO×B'E+AO×A'D=3×2+4×4=22. ……………………10分 25.(1)证明:连接OM ,如图1,∵BM 是∠ABC 的平分线,∴∠OBM=∠CBM ,∵OB=OM ,∴∠OBM=∠OMB ,∴∠CBM=∠OMB ,∴OM ∥BC ,∵AB=AC ,AE 是∠BAC 的平分线,∴AE ⊥BC ,∴OM ⊥AE ,∴AE 为⊙O 的切线;……………………3分(2)解:设⊙O 的半径为r ,∵AB=AC=6,AE 是∠BAC 的平分线,∴BE=CE=21BC=2, ∵OM ∥BE ,∴△AOM ∽△ABE , ∴BE OM =AB AO ,即2r =66r -,解得r=23,即设⊙O 的半径为23; ……………………7分 (3)解:作OH ⊥BE 于H ,如图,∵OM ⊥EM ,ME ⊥BE ,∴四边形OHEM 为矩形,∴HE=OM=23, ∴BH=BE ﹣HE=2﹣23=21, ∵OH ⊥BG ,∴BH=HG=21,∴BG=2BH=1. ……………………10分26.(1)解:∵二次函数图象的顶点在原点O ,∴设二次函数的解析式为y=ax 2. 将点A (2,-1)代入y=ax 2得:a= 41-,∴二次函数的解析式为y= 241x -. ……………………3分(2)证明:∵点P 在抛物线y=241x -上,∴可设点P 的坐标为(x ,241x -). 过点P 作PD ⊥y 轴于点D ,则AD=|﹣1﹣(241x -)|=|1412-x |,PD=|x|,∴Rt △PAD 中,PA=222)141(x x +-=2411x +. ……………………6分∵PC ⊥直线y=1,∴PC=2411x +.∴PA=PC . ∴∠PAC=∠PCA .又∵PC ∥y 轴,∴∠PCA=∠BAC .∴∠PAC=∠BAC . ∴AC 平分∠PAB . ……………………9分 (3)解:当△PAC 是等边三角形时,∠PCA=60°,∴∠ACB=30°. 在Rt △ACB 中,AC=2AB=2×2=4.∵PC=PA=AC ,∴ PC =4,即∴2411x +=4. 解得:x=±23.∴241x -=1241⨯-= -3.y∴满足条件的点P 的坐标为(23,-3)或(﹣23,-3).……………………12分27.解:(1)由题意,得OA=6,OB=2.当0<t<2时,OM=6-3t ,ON=t . 若△ABO ∽△MNO ,则ON OB OM OA =,即t t 2366=-.解得t=1.若△ABO ∽△NMO ,则OM OB ON OA =,即tt 3626-=.解得t=1.8. ……………………3分综上,当t 为1或1.8时,△ABO 与以点O 、M 、N 为顶点的三角形相似.……………………4分(2)由题意得:111(63)26224t t -=⨯⨯⨯.∴2210t t -+=∴121t t ==或者113(63)26224t t -=⨯⨯⨯∴23690t t -+=,此方程无解综上,当t为1时,线段MN 将△ACB 的面积分成1∶3两部分. ……………………7分DNMCy xOBA y =x(3)①当0<t <2时,在ON 的延长线的截取ND =OM . ∵直线y=x 与x 轴的夹角为450,∴OC 平分∠AOB .∴∠AOC =∠BOB . ∴⋂CN =⋂CM .∴C N =C M .又∵ 在⊙O 中∠CNO +∠CMO=180°,∠DNC +∠CNO =180°, ∴∠CND =∠CMO . ∴△CND ≌△CMO .∴CD =CO ,∠DCN =∠OCM . 又∵∠AOB =90°,∴MN 为⊙O 的直径. ∴∠MCN =90°.∴∠OCM +∠OCN =90°. ∴∠DCN +∠OCN =90°.∴∠OCD=90°.又∵CD=CO,∴OD=2OC.∴ON+ND=2OC.∴OM+ON =2OC.……………………10分DNMCyx OBAy=x②当t >2时,ON-OM=2OC.过点C作CD⊥OC交ON于点D.∵∠COD=45°,∴△CDO为等腰直角三角形∴OD=2OC.……………………12分连接MC,NC.∵MN为⊙O的直径,∴∠MCN=90°.又∵在⊙O中,∠CMN=∠CNM=45°,∴MC=NC.又∵∠OCD=∠MCN=90°,∴∠DCN=∠OCM.∴△CDN≌△COM.∴DN=OM.又∵OD=2OC.,∴ON-DN=2OC.∴ON-OM=2OC.……………………14分。

相关文档
最新文档