宽禁带紫外光电探测器资料
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LOGO
一、引言
❖ 由于SiC、GaN等宽禁带半导体材料在军事领域具有巨大的应用潜力, 很多国家都开展了相关材料与器件的研究:
◆ 美国军方十分重视SiC、GaN器件,美国国防部高级研究计划局(DARPA)、ONR、 空军研究实验室(AFRL)、美国弹道导弹防御组织(BMDO)等部门一直把GaN微波 功率器件作为重点支持的领域。
h h 0 Eg
可得到本征吸收长波限的公式为
0
hc Eg
Leabharlann Baidu
1.24 (m) Eg (eV )
LOGO
二、宽禁带半导体紫外探测器概述
(1) 光谱响应特性
根据半导体材料的禁带宽度,可以算出相应的本征吸收长波限。 ★ 对于GaN材料而言,Eg=3.4eV,则GaN探测器的长波限λ0≈365nm。 ★ 对于4H-SiC材料,Eg=3.26eV,则其长波限λ0≈380nm 。
LOGO
二、宽禁带半导体紫外探测器概述
(1) 光谱响应特性
◆ 当不同波长的光照射探测器时,只有能量满足一定条件的光子才能激发出光生 载流子从而产生光生电流。 ◆ 对于半导体材料,要发生本征吸收,光子能量必须大于或者等于禁带宽度,即 对应于本征吸收光谱,探测器对光的响应在长波方面存在一个波长界限λ0,根据 发生本征吸收的条件
◆ 在美国军方的支持下,CREE公司于2001年已将GaN HEMT器件与相关的外延材 料用航天飞机运载到空间站并将它们安置在空间站的舱外,进行轨道运行试验, 以便真实地评估器件的可靠性和抗辐照能力。
◆ 为了进一步推进宽禁带半导体器件的发展,美国国防部在2001年启动宽禁带半导 体技术创新计划(WBSTI),重点解决材料质量和器件制造技术问题,促进此类器 件工程化应用的进展。
◆ 紫外探测器的性能受到多方面因素的影响,要制备性能优越的紫外探测器, 可以从以下几个问题入手:1)宽禁带半导体材料的生长技术;2)宽禁带 半导体紫外探测器的关键工艺技术;3)探测器结构的设计与优化。
LOGO
二、宽禁带半导体紫外探测器概述
1、紫外探测器的性能参数
紫外探测器的主要参数包括暗电流、光电流、响应度、量子效 率和响应时间等。
LOGO
一、引言
◆ 相比之下,我国对宽禁带半导体材料与器件的研究起步晚,而且研究单位较 少,存在生长设备落后、投入不足、缺少高质量大尺寸的衬底、外延生长 技术不成熟等问题,进展较慢,还处在初步阶段。
◆ 虽然军事上、民用上都迫切需要高性能、高可靠性的紫外探测器,但目前所 研制的宽禁带半导体紫外探测器还未达到商品化的程度。
一、引言
材料 带隙类型
表1 Si、GaAs和宽带隙半导体材料的特性对比
Si和GaAs
宽带隙半导体材料
Si
GaAs
SiC
金刚石
GaN
间接 直接
间接
间接
直接
ZnO 直接
禁带宽度(eV)
1.119 1.428 2.994
5.5
3.36
3.37
熔点(℃)
1420
1238
2830
4000
1700 1975
热导率(W/cm•K)
◆ 但是由于工艺技术上的问题,特别是材料生长和晶片加工的难题,进展一直十 分缓慢。直到20世纪80年代后期至90年代初,SiC单晶生长技术和GaN异质结 外延技术的突破,使得宽禁带半导体器件的研制和应用得到迅速的发展。
◆ 用SiC、GaN材料制造实用化器件已经在电力电子、射频微波、蓝光激光器、紫 外探测器和MEMS器件等重要领域显示出比硅和GaAs更优异的特性,并开始取 得非常引人注目的进展。
由上式可知,R与λ成正比,所以短波长探测器的响应度比起长波长的探测器 来说响应度较小。假设η=1,则当波长为365nm时,响应率R=0.294A/W;当 波长为200nm时,响应率R=0.161A/W。
LOGO
二、宽禁带半导体紫外探测器概述
(3) 量子效率
量子效率分为内量子效率和外量子效率: ◆ 内量子效率定义为入射至器件中的每一个光子所产生的电子-空穴对数目,即
◆ 在过去十几年中,为了避免使用昂贵的滤光器,实现紫外探测器在太 阳盲区下运行,以材料和外延技术较为成熟的SiC、GaN为代表的宽 带隙半导体紫外探测器引起世界各国重视。
LOGO
一、引言
◆ 宽禁带半导体材料具有卓越的物理化学特性和潜在的技术优势,用它们制作的 器件在军用、民用领域有更好的发展前景,一直受到半导体业界人士的关注。
◆ 第三代宽带隙半导体材料主要包括SiC、GaN、ZnO和金刚石等,同第一、 二代电子材料相比,具有禁带宽度大、电子漂移饱和速度高、介电常数小、 导热性能好等特点,适合于制作抗辐射、高频、大功率和高密度集成的电 子器件;而利用其特有的宽禁带,还可以制作蓝、绿光和紫外光的发光器 件和光探测器件。
LOGO
宽禁带半导体紫外 探测器
LOGO
主要内容
一 引言 二 宽禁带半导体紫外探测器概述 三 紫外探测器的应用
LOGO
一、引言
◆ 第一代元素半导体材料Si以及第二代化合物半导体GaAs、InP等材料由于具 有禁带宽度小、器件长波截止波长大、最高工作温度低等特点而使得器件 的特性及使用存在很大局限性,满足不了目前军事系统的要求。
1.40
0.54
4.9
20
1.5
-
电子迁移率(cm2/V•s) 1350
8000
1000
2200
900
-
介电常数
11.9 13.18
9.7
5.5
8.9
-
饱和速率(cm/s)
1×107 2×107 2×107 2.7×107 2.5×107
-
LOGO
一、引言
◆ 在紫外探测器方面,目前已投入商业和军事应用的比较常见的是光电 倍增管和硅基紫外光电管。光电倍增管需要在高电压下工作,而且体 积笨重、易损坏,对于实际应用有一定的局限性。硅基紫外光电管需 要附带滤光片,这无疑会增加制造的复杂性并降低性能。
i
产生的电子 空穴对个数 入射的光子数
◆ 在实际应用中,入射光的一部分在器件表面被反射掉,在有源层中被吸收部分 的大小又取决于材料的吸收系数和厚度,所以实际上只是部分的Popt能被器件有效 地吸收而转化为光电流。定义外量子效率为
从计算结果可以看出,GaN、4H-SiC材料的本征吸收长波限都在紫外区。
LOGO
二、宽禁带半导体紫外探测器概述
(2) 响应度
光电响应度是表征探测器将入射光转换为电信号能力的一个参数。光电 响应度也称光电灵敏度,定义为单位入射光功率与所产生的平均光电流之比, 单位为A/W。
R I ph q (m) Popt h 1.24
一、引言
❖ 由于SiC、GaN等宽禁带半导体材料在军事领域具有巨大的应用潜力, 很多国家都开展了相关材料与器件的研究:
◆ 美国军方十分重视SiC、GaN器件,美国国防部高级研究计划局(DARPA)、ONR、 空军研究实验室(AFRL)、美国弹道导弹防御组织(BMDO)等部门一直把GaN微波 功率器件作为重点支持的领域。
h h 0 Eg
可得到本征吸收长波限的公式为
0
hc Eg
Leabharlann Baidu
1.24 (m) Eg (eV )
LOGO
二、宽禁带半导体紫外探测器概述
(1) 光谱响应特性
根据半导体材料的禁带宽度,可以算出相应的本征吸收长波限。 ★ 对于GaN材料而言,Eg=3.4eV,则GaN探测器的长波限λ0≈365nm。 ★ 对于4H-SiC材料,Eg=3.26eV,则其长波限λ0≈380nm 。
LOGO
二、宽禁带半导体紫外探测器概述
(1) 光谱响应特性
◆ 当不同波长的光照射探测器时,只有能量满足一定条件的光子才能激发出光生 载流子从而产生光生电流。 ◆ 对于半导体材料,要发生本征吸收,光子能量必须大于或者等于禁带宽度,即 对应于本征吸收光谱,探测器对光的响应在长波方面存在一个波长界限λ0,根据 发生本征吸收的条件
◆ 在美国军方的支持下,CREE公司于2001年已将GaN HEMT器件与相关的外延材 料用航天飞机运载到空间站并将它们安置在空间站的舱外,进行轨道运行试验, 以便真实地评估器件的可靠性和抗辐照能力。
◆ 为了进一步推进宽禁带半导体器件的发展,美国国防部在2001年启动宽禁带半导 体技术创新计划(WBSTI),重点解决材料质量和器件制造技术问题,促进此类器 件工程化应用的进展。
◆ 紫外探测器的性能受到多方面因素的影响,要制备性能优越的紫外探测器, 可以从以下几个问题入手:1)宽禁带半导体材料的生长技术;2)宽禁带 半导体紫外探测器的关键工艺技术;3)探测器结构的设计与优化。
LOGO
二、宽禁带半导体紫外探测器概述
1、紫外探测器的性能参数
紫外探测器的主要参数包括暗电流、光电流、响应度、量子效 率和响应时间等。
LOGO
一、引言
◆ 相比之下,我国对宽禁带半导体材料与器件的研究起步晚,而且研究单位较 少,存在生长设备落后、投入不足、缺少高质量大尺寸的衬底、外延生长 技术不成熟等问题,进展较慢,还处在初步阶段。
◆ 虽然军事上、民用上都迫切需要高性能、高可靠性的紫外探测器,但目前所 研制的宽禁带半导体紫外探测器还未达到商品化的程度。
一、引言
材料 带隙类型
表1 Si、GaAs和宽带隙半导体材料的特性对比
Si和GaAs
宽带隙半导体材料
Si
GaAs
SiC
金刚石
GaN
间接 直接
间接
间接
直接
ZnO 直接
禁带宽度(eV)
1.119 1.428 2.994
5.5
3.36
3.37
熔点(℃)
1420
1238
2830
4000
1700 1975
热导率(W/cm•K)
◆ 但是由于工艺技术上的问题,特别是材料生长和晶片加工的难题,进展一直十 分缓慢。直到20世纪80年代后期至90年代初,SiC单晶生长技术和GaN异质结 外延技术的突破,使得宽禁带半导体器件的研制和应用得到迅速的发展。
◆ 用SiC、GaN材料制造实用化器件已经在电力电子、射频微波、蓝光激光器、紫 外探测器和MEMS器件等重要领域显示出比硅和GaAs更优异的特性,并开始取 得非常引人注目的进展。
由上式可知,R与λ成正比,所以短波长探测器的响应度比起长波长的探测器 来说响应度较小。假设η=1,则当波长为365nm时,响应率R=0.294A/W;当 波长为200nm时,响应率R=0.161A/W。
LOGO
二、宽禁带半导体紫外探测器概述
(3) 量子效率
量子效率分为内量子效率和外量子效率: ◆ 内量子效率定义为入射至器件中的每一个光子所产生的电子-空穴对数目,即
◆ 在过去十几年中,为了避免使用昂贵的滤光器,实现紫外探测器在太 阳盲区下运行,以材料和外延技术较为成熟的SiC、GaN为代表的宽 带隙半导体紫外探测器引起世界各国重视。
LOGO
一、引言
◆ 宽禁带半导体材料具有卓越的物理化学特性和潜在的技术优势,用它们制作的 器件在军用、民用领域有更好的发展前景,一直受到半导体业界人士的关注。
◆ 第三代宽带隙半导体材料主要包括SiC、GaN、ZnO和金刚石等,同第一、 二代电子材料相比,具有禁带宽度大、电子漂移饱和速度高、介电常数小、 导热性能好等特点,适合于制作抗辐射、高频、大功率和高密度集成的电 子器件;而利用其特有的宽禁带,还可以制作蓝、绿光和紫外光的发光器 件和光探测器件。
LOGO
宽禁带半导体紫外 探测器
LOGO
主要内容
一 引言 二 宽禁带半导体紫外探测器概述 三 紫外探测器的应用
LOGO
一、引言
◆ 第一代元素半导体材料Si以及第二代化合物半导体GaAs、InP等材料由于具 有禁带宽度小、器件长波截止波长大、最高工作温度低等特点而使得器件 的特性及使用存在很大局限性,满足不了目前军事系统的要求。
1.40
0.54
4.9
20
1.5
-
电子迁移率(cm2/V•s) 1350
8000
1000
2200
900
-
介电常数
11.9 13.18
9.7
5.5
8.9
-
饱和速率(cm/s)
1×107 2×107 2×107 2.7×107 2.5×107
-
LOGO
一、引言
◆ 在紫外探测器方面,目前已投入商业和军事应用的比较常见的是光电 倍增管和硅基紫外光电管。光电倍增管需要在高电压下工作,而且体 积笨重、易损坏,对于实际应用有一定的局限性。硅基紫外光电管需 要附带滤光片,这无疑会增加制造的复杂性并降低性能。
i
产生的电子 空穴对个数 入射的光子数
◆ 在实际应用中,入射光的一部分在器件表面被反射掉,在有源层中被吸收部分 的大小又取决于材料的吸收系数和厚度,所以实际上只是部分的Popt能被器件有效 地吸收而转化为光电流。定义外量子效率为
从计算结果可以看出,GaN、4H-SiC材料的本征吸收长波限都在紫外区。
LOGO
二、宽禁带半导体紫外探测器概述
(2) 响应度
光电响应度是表征探测器将入射光转换为电信号能力的一个参数。光电 响应度也称光电灵敏度,定义为单位入射光功率与所产生的平均光电流之比, 单位为A/W。
R I ph q (m) Popt h 1.24