自动控制原理(上)第4章控制系统的根轨迹分析法
自动控制原理第第四章 线性系统的根轨迹法
2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
根轨迹法(自动控制原理)ppt课件精选全文完整版
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法
自动控制原理 第四章 根轨迹法
第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
自动控制原理第四章-根轨迹分析法
×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s
自动控制原理第四章根轨迹法
第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)
精品文档-自动控制原理(李素玲)-第4章
定满足幅值条件方程。因此,相角条件方程是决定闭环根轨
迹的充分必要条件,而幅值条件方程只用来确定根轨迹上各
点的Kg值。
16 【例4-2】 设单位反馈系统的开环传递函数为
Gk (s)
Kg (s 4) s(s 2)(s 6.6)
试检验复平面上一点s1=-1.5+j2.5是否在根轨迹上。若在, 则确定与它对应的Kg值。
的方法。
14
由于Gk(s)是关于复数s的函数,故式(4-2)为一矢量方程。 可由矢量的模值运算和相角运算分别得到
m
Kg s zj
j1 n
1
s pi
i1
(4-3)
m
n
(s z j ) (s pi ) (2k 1) π
(k 0,1,2,)
(4-4)
j1
i1
式(4-3)称为根轨迹的幅值条件方程;式(4-4)称为根轨迹的
Φ(s)
s2
Kg 2s
Kg
7
闭环特征方程为 D(s)=s2+2s+Kg=0
系统的两个闭环特征根为
s1,2 1 1 Kg 两个闭环特征根将随着Kg取值的变化而变化。例如,当Kg =0时, s1=0,s2=-2;当Kg=1时,s1=s2=-1;当Kg=2 时,s1,2=-1±j;当Kg=5时,s1,2=-1±j2;当Kg=∞时, s1,2=-1±j∞。
解 系统有3个开环极点p1=0,p2=-2,p3=-6.6;有1 个开环零点z1=-4。
将这些零、极点及s1=-1.5+j2.5标注在复平面上。绘 制从各零、极点到s1的向量,如图4-4所示。
17 图4-4 例4-2开环零、极点位置
18
可以测得:
∠(s1-z1)-∠(s1-p1)-∠(s1+p2)-∠(s1+p3) =45°-120°-79°-26°=-180°
孙炳达 自动控制原理第4章
D(s) Kg N(s) 0
K g1 2.74
j
K g 2 0.06
S1=-1.67 Kg1=2.74
σ
S1=-0.33 Kg1=0.06
15
7.渐近线
根轨迹沿渐近线倾角方向趋向无穷远的直线。
(1)渐近线条数:n-m条 (2)渐近线会与实轴交于一点(交点): 坐标为(-σ,j0)
n
m
( p0 ) (z j )
去判断;系统静态性能,由“系统型号” 即开环极点的个数和放大系数值决定, 在根轨迹图中“坐标原点上的开环极点个数”,就反映了“系统型号” ;利用根轨 迹分析动态特性时,往往采用“闭环主导极点”的思想,即认为系统的性能主要 由一对“闭环主导极点” 来决定,从而利用二阶系统相关的公式去分析或综合 系统。下面通过例题说明。
1948年伊文思根据反馈系统开环和闭环传递函数之间的关系,提出了 求解特征方程根的图解方法——根轨迹法。根轨迹法是分析、设计线性定 常系统的一种图解方法。
2
第一节 根轨迹的基本概念
定义: Gk(s)的某个参数由0→∞时,系统的闭环特征根在S平 面上的变化轨迹。
例 已知系统的结构图如下图所示,请绘出K由0→∞时的根轨迹。
5
一般而言,绘制根轨迹时的可变参量可以是系统的任意参量。但 最常用的可变参量是系统的开环传递函数Kg(也称为根轨迹增益)
Kg——常规根轨迹 Kg以外的参数——参量根轨迹 以上二阶系统的根轨迹可以用解析法来求得,但对于高阶系统来说, 解析法就不适用了,工程上常采用图解的方法来绘制。
6
第二节 绘制根轨迹的基本条件和基本规则
i1
j 1
nm
180 (2k 1) nm
16
例 已知系统的开环传递函数如下所示,请求出根轨迹的渐近线。
《自动控制原理》第4章 线性系统的根轨迹法
68
4.5 广义根轨迹
根轨迹部分是个半圆,半径是 k *
证明:根轨迹上一点S满足相角条件
s (s j2) (s j2)
代入s j
( j) ( j( 2)) ( j( 2))
arctan arctan 2 arctan 2
K* G(s)
s(s 2)(s 1)
26
法则五:根轨迹的分离点与分离角
分离点:几条根轨迹在[s]某一点相遇后又分开 的点。
说明有重根
27
实轴上的分离点(常见)
如果根轨迹位于实轴上相邻的两个开环极点之间, 其中一个可以是无限极点,则在这两个极点之间至 少存在一个分离点;
如果根轨迹位于实轴上相邻的两个开环零点之间, 其中一个可以是无限零点,则在这两个零点之间至 少存在一个分离点;
开环极点:
p1 0 p2 0 p3 2 p4 5
(2)实轴上的根轨迹 (3)根轨迹分支数
4
59
G0 ( s)
s2(s
k* 2)(s
5)
(4)渐近线
4条
渐近线与实轴的夹角
a
4
3
4
3
4
4
渐近线与实轴的交点(σa , 0)
4
pi
a
i 1
4
1.75
60
G0 ( s)
s2(s
k* 2)(s
法则二:根轨迹的分支数,对称性和 连续性
• 根轨迹的分支数与开环有限零点数m和有限 极点数n中的大者相等,它们是连续的并且 对称于实轴。
22
法则三:根轨迹的渐近线(n>m)
• 当开环有限零点数m小于有限极点数n时, 有n-m条根轨迹分支沿着与实轴交点 ,
第4章 线性系统的根轨迹法(《自动控制原理》课件)
如果用试凑的方法由相角条件来绘制根轨迹, 如果用试凑的方法由相角条件来绘制根轨迹 将会非常不方 人们利用前面介绍的几个式子, 便. 人们利用前面介绍的几个式子 导出一些绘制根轨迹的法则 利用导出的法则, 可方便地绘制出根轨迹的大至形状, 利用导出的法则 可方便地绘制出根轨迹的大至形状 叫概略根 轨迹, 轨迹 这在利用根轨迹对系统进行初步分析和设计时已基本可用 了.
(2) 当0<K<=0.25时, 一个根的绝对值随 的增大而增大 另 的增大而增大, 时 一个根的绝对值随K的增大而增大 一个根的绝对值随K的增大而减小 两根的变化轨迹如下图所示: 的增大而减小, 一个根的绝对值随 的增大而减小 两根的变化轨迹如下图所示 jω ω σ -2 -1.5 -1 0
当K=0.25时, 两根相等 均为 时 两根相等, 均为-1.5 (3) 0.25<K<+∞ 时, 两根为共軛复根 且其实部均为 两根为共軛复根, 且其实部均为-1.5 , 而 +∞ 虚部的绝对值随K的增大而增大 两根的变化轨迹如下图所示: 的增大而增大, 虚部的绝对值随 的增大而增大 两根的变化轨迹如下图所示 jω ω σ
4-2 根轨迹绘制的基本法则
本节通过一个例子, 介绍绘制根轨迹的七条法则, 本节通过一个例子 介绍绘制根轨迹的七条法则 但对法则 不予推导和证明. 不予推导和证明 需指出的是, 需指出的是 绘制根轨迹的前提是必须已知闭环系统的开环 传递函数的零点和极点的具体数值, 一般以K’为参变量 为参变量. 传递函数的零点和极点的具体数值 一般以 为参变量 某闭环系统的开环传递函数为: 例: 某闭环系统的开环传递函数为
阶数. 阶数 K叫开环系统的增益 K’叫开环系统的根轨迹增益 叫开环系统的增益, 叫开环系统的根轨迹增益, 叫开环系统的增益 叫开环系统的根轨迹增益 K与K’的本质相同 仅它们间的值有一系数关系, 即: 与 的本质相同, 仅它们间的值有一系数关系 的本质相同
孙炳达版 《自动控制原理》第4章 控制系统的根轨迹分析法-5
R(s)
s 1
k s 2 (s 2)
Y(s)
j
j
σ
-1/τ
σ
4.5 系统性能的根轨迹分析
系统开环传递函数:
Gk ( s) Kg s( s 2)(s 3)
Þ ¿ Î ª » ·Á ã µ ã
j¦ Ø 2 -3 -2 -1 0 ¦ Ò -2
增加零点-z
Gk ( s) K g (s z) s( s 2)(s 3)
4.5 系统性能的根轨迹分析
例 系统的结构图如下,
R(s)
K
s 2 2 s 5 ( s 2 )( s 0.5 )
Y(s)
要求: 1)用根轨迹法确定使系统稳定的K的取值范围; 2)用根轨迹法确定系统的阶跃响应不出现超调 量的K的最大值。
4.5 系统性能的根轨迹分析
解 由已知条件画出根轨迹如图, 其中根轨迹与虚轴的交点 分别为0和1.254j,对应的开环 增益K分别为0.2和0.75。 分离点为d=-0.409。 所以,系统稳定K的取值范围为:0.2<K<0.75 不出现超调量的K最大值出现在分离点处d=-0.409 处。将d代入 D( s ) ( s 2)(s 0.5)
由根轨迹图可测得该对主导极点为:
s1, 2 b jn n j 1 2 n 0.35 j 0.61
由根轨迹方程的幅值条件,可求得A、B两点:
Kg OA CA DA 2.3
根据闭环极点和的关系可求得另一闭环系统极 点s3=-4.3,它将不会使系统超调量增大,故取 Kg=2.3可满足要求。
4.5 系统性能的根轨迹分析
将零点z1<-10,系统根轨迹为 系统根轨迹仍有两条始 终位于S平面右半部, 系统仍无法稳定。
(自动控制原理)4.4利用根轨迹分析系统性能
根轨迹的特点和规律
根轨迹具有以下特点和规律: • 根轨迹是一条连续的曲线,代表了特征方程根的轨迹 • 根轨迹始终位于系统开环增益与相位的交点上 • 根轨迹趋近于无限远点的方向,表示系统的稳定性 • 根轨迹与该点的对称位置具有相同的特性
利用根轨迹评价系统性能
根轨迹可以评估系统的稳定性和动态响应性能,通过观察根轨迹的形状和位置,可以得出以下结论:
根轨迹的概念
根轨迹是反映闭环控制系统特征方程根随参数变化而变化的图形。通过观察 根轨迹可以分析系统的稳定性、动态响应和频率响应特性。
如何绘制根轨迹
绘制根轨迹的步骤如下: 1. 得到系统的特征方程 2. 使用根轨迹的绘制规则和技巧,画出根轨迹的大致形状 3. 通过调整系统参数,绘制出完整的根轨迹图形
自动控制原理 4.4 利用根 轨迹分析系统性能
自动控制系统的性能对于系统的稳定性和响应速度至关重要。本章将介绍根 轨迹方法,用于绘制系统的根轨迹图,并利用根轨迹图评估系统的稳定性和 动态响应性能。
系统性能的定义
系统性能是指系统对于输入信号的响应质量和稳定性。主要包括以下几个方 面:时间响应特性、频率响应特性、稳定性和误差特性。
结论和要点
1 根轨迹是分析系统
性能的重要工具
根轨迹反映了系统的稳 定性和动态响应性能。
2 根轨迹的绘制方法
可以通过特征方程和绘 制规则来绘制根轨迹。
3 根轨迹的应用
根轨迹分析在实际控制 系统中具源自广泛的应用。稳定性如果根轨迹位于左半平面,则系统是稳定的。
动态响应
根轨迹的形状和位置可以反映系统的响应速 度和超调量。
频率响应
根轨迹的形状和位置可以反映系统的频率响 应特性。
稳定裕度
根轨迹与虚轴的交点距离表示系统的稳定裕 度。
自动控制原理第四章根轨迹法(管理PPT)
根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。
《自动控制原理》第4章_根轨迹分析法
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母
(完整版)第四章根轨迹法
j
8K * (1 K * )2 j
2
2
(1 K * ) K * 2 1
2
2 8K * (1 K * )2 8(2 1) 4 2 2 4 2
4
4
2 4 4 2 2
( 2)2 2
第四章 根轨迹法
自动控制原理课程的任务与体系结构
时域:微分方程 复域:传递函数 频域:频率特性
描述
控制系统
校正
时域法 复域法 频域法
评价系统的性能指标 稳定性 快速性(动态性能) 准确性(稳态性能)
分析
自动控制原理
§4 根轨迹法
§4.1 根轨迹法的基本概念 §4.2 绘制根轨迹的基本法则 §4.3 广义根轨迹 §4.4 利用根轨迹分析系统性能
• s平面上满足相角条件的点(必定满足模值条件) 一定在根轨迹上。 满足相角条件是s点位于根轨迹上的充分必要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来确定。
§4.2
m
绘制根轨迹的基本法则(1) G(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
K*
(s zi )
i 1 n
1
(s pj)
— 模值条件
j 1
m
n
G(s)H (s) (s zi ) (s p j ) (2k 1)
i 1
j1
— 相(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
§4 根 轨 迹 法
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。 (2)适合于研究当系统中某一参数变化时,系统性能的变化
自动控制原理第四章根轨迹法
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数
自动控制原理第4章
幅值条件
s p1 s p2 s pn K s z1 s z2 s zm
注意:1. 这两个条件是从系统闭环特征方程中导出的, 所有满足以上两式的s 值都是系统的特征根,把它们 在s平面上画出,就构成了根轨迹。 2. 观察两式,均与开环零极点有关,也就是说,根 轨迹是利用开环零极点求出闭环极点。
第四章 控制系统的根轨迹分析方法
系统闭环特征方程的根的位置决定闭环系统 的稳定性和动态特性。 l 研究闭环特征根的分布与闭环系统的动态特性 之间的定性、定量关系(分析问题); l 根据控制系统动态特性要求决定闭环极点在根平 面的位置; l 研究调节器参数与闭环特征根的变化关系,设计 调节器(设计问题)。
s1, 2 0.5 0.5 1 4K
(4-1-1)
闭环特征根是K的函数。当K从0~∞变化, 闭环特征根在根平面上形成根轨迹。
K取不同值:
s1, 2 0.5 0.5 1 4K
K G( s) H ( s ) s( s 1)
(等于两个开环极点) K 0, s1 0, s2 1, 1 K , s1 0.5, s2 0.5, (两根重合于-0.5处) 4
● × ● × ﹣1 ﹣0.5 0
Re
例4-1-2 对上述单位反馈的二阶系统,希望闭环系统 的阻尼系数ξ=0.5,确定系统闭环特征根。 解: 根据以前课程,根据阻尼系数求出阻尼角。 阻尼角θ计算如下:
1 tg 3,
2
Im
0.5
3 2
60
s1, 2 j
i 1 m i 1
n
pi )
i
(s z )
l 1800
l 1,3,5
孙炳达版《自动控制原理》第4章控制系统的根轨迹分析法-2
1 1 2 3 180 (2k 1)
L1 L2 L3 再按幅值条件求得该 Kg0 点的根轨迹传递系数: l1
4.2 绘制根轨迹的基本条件和基本规则
例 已知系统的开环传递函数
2K GK ( s) ( s 2) 2
试证明复平面上点 s1 2 j 4, s2 2 j 4 是该系统的闭环极点。 证明 该系统的开环极点 p1 2, p2 2 若系统闭环极点为s1,s2,则它们应满足 相角条件。
4.2 绘制根轨迹的基本条件和基本规则
以s1为试验点,由图可得
(s1 p1 ) (s1 p2 ) 90 90 180(2k 1) (k 1)
以s2为试验点,由图可得
(s2 p1 ) (s2 p2 ) 90 90 180(2k 1) (k 0)
可见, s1和s2均满足相角条件, 均为闭环极点。 证毕。
4.2 绘制根轨迹的基本条件和基本规则
4 G ( s ) K /( s 1 ) 例 已知系统的开环传递函数 K
当 K 0 变化时其根轨迹如图所示, 求根轨迹上点 s1 0.5 j 0.5 所对应的K值。 解 根据幅值条件
自动控制原理
第四章 控制系统的根轨迹分析法
4.2 绘制根轨迹的基本条件和基本规则
4.2 绘制根轨迹的基本条件和基本规则
一、根轨迹的幅值条件和相角条件 一般的闭环系统结构框 图如图所示,其特征方程为:
1 G( s ) H ( s ) 0
其开环传递函数: Gk (s) G(s) H (s) 1 由等式两边幅角和相角分别相等的条件可得:
4.2 绘制根轨迹的基本条件和基本规则
5 实轴上的根轨迹
自动控制原理课后答案第4章
5
的不同,系统的稳定性和动态性能不一定能同时得到满足。因此,只有当附加开环零点的位 置选配得当,才有可能使系统的稳态性能和动态性能同时得到显著改善。 ② 增加开环极点 增加开环极点后,系统阶次升高,渐近线数量增加,使得渐近线与实轴的夹角变小,从 而导致根轨迹向右弯曲,致使系统不稳定成分增加。同时,实轴上的分离点也向右移动。系 统响应减缓,过渡过程延长,调节时间增加,系统的稳定性降低。当增加的极点在[-1,0]范 围内时,越靠近虚轴的极点,其产生的阶跃响应振荡越剧烈,稳定性越差;而当增加的极点 在(-∞, -1)范围内时,越远离虚轴的极点,对根轨迹的影响越小,从而对系统的动态性能影 响越小。
式中,A(s)为开环传递函数的分母多项式,B(s)为开环传递函数的分子多项式。则分离点或 会合点坐标可用下式确定,即 A( s) B '( s ) A '( s ) B ( s ) 0 3)极值法
dK 0 ds
规则 7:根轨迹的出射角和入射角 根轨迹的出射角是指根轨迹离开开环复数极点处的切线与实轴正方向的夹角,如图 4-2 中的角 p1 ; 而根轨迹的入射角是指根轨迹进入开环复数零点处的切线与实轴正方向的夹角, 如图 4-2 中的角 z1 。
n n
n l
m
s
l 1
n
(1) n pi (1) m K z j
i 1
n
j 1
( 1)
n
s
l 1
l
(1)
nLeabharlann pi 1i
K (系统无开环零点时)
5、根轨迹与系统性能之间的关系 根轨迹可以直观地反映闭环系统特征根在[s]平面上的位置以及变化情况,所以利用根轨 迹可以很容易了解系统的稳定性和动态性能。除此之外,由于根轨迹上的任意一点都有与之对 应的开环增益值,而开环增益又与系统稳态误差有一一对应的关系,因此通过根轨迹也可以 确定出系统的稳态误差,或者根据给定系统的稳态误差要求,来确定闭环极点位置的容许范 围。由此可以看出,根轨迹与系统性能之间有着比较密切的联系。
自动控制原理第4章
z2 ) p2 )
m
sm z j n1
i 1
(s zm )
(s pn )
m
(zj)
j 1
n
( pi )
i 1
自动控制原理
第四章 复域分析法-根轨迹法
如果开环零、极点的数目满足n-m 2,则 闭环特征方程为
snnp isn 1 n( p i)K *m( zj) 0
证明:系统的闭环特征方程
n
m
D(s) (spi)K* (szj)0
i1
j1
根轨迹有分离点,说明闭环特征方程有重
根。因此,
n
m
(s pi ) K* (s zj ) 0
i1
j1
d
ds
n i1
(s
pi )
K*
m j1
(s zj )
0
自动控制原理
第四章 复域分析法-根轨迹法
将上面两式相除,整理得
自动控制原理
第四章 复域分析法-根轨迹法
4.1 根轨迹的基本概念
一、根轨迹的定义
根轨迹:是指系统开环传递函数中某个参数 (如开环增益K)从零变到无穷时,闭环特征 根在s平面上移动所画出的轨迹。
常规根轨迹:当变化的参数为开环增益时 所对应的根轨迹。
广义根轨迹:当变化的参数为开环传递函 数中其它参数时所对应的根轨迹。
自动控制原理
第四章 复域分析法-根轨迹法
证明: 由根轨迹方程,得
m
(s
j 1
n
(s
zj) pi )
1 K*
i1
令K* =0,得
m
j 1 n
(s (s
zj) pi )
1 K*
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
三.相角条件和幅值条件
可以得到绘制根轨迹的相角条件和幅值条件。 相角条件
( sz ) ( sp )( 21 k )
m n j 1 j i 1 i
k 0 ,1 ,2 , . . .
幅值条件
K
n
i1 m j1
| s pi | |s zj |
从图4-4可得
o o o 0 1 3 5 4 5 1 8 0 o o o 0 2 2 5 3 1 5 5 4 0 3 满足相角条件,所以s1,s2是系统的闭环极点。
由幅值条件,有
K |s p |s p | |s p i | 1 1 1 2|
G (s) s
(T s 1 )
k 1 k
k 1 b
k 1
(s p )
k 1 k
b
H(s)
K ( l s1 ) H
l 1
c
K
H(s z ) l 1 l lc(Ts 1 )
l 1 l
d
(s p )
l 1
d
8
一.根轨迹方程
则系统开环传递函数为
从根轨迹中可以直观的看出当开环增益 K变化时,系统的闭环极 点变化的情况和分布规律 。 (1) 稳定性 从图4-2可以看到,系统对于任意的K >0 ,系统始终是稳定的。 (2)稳态性能 从图4-2可以看到,系统有一个开环极点位 于坐标原点,所以该系统是I型系统,系统在 给定输入信号下的稳态误差由静态速度误差 系数决定。 (3)动态性能 图4-1所示系统是一个典型的二阶系统,系 统的性能由系统闭环极点的性质决定。
KG (s zk ) (s pl ) k 1
a
c
(s p ) K (s z )
i 1 i j 1 j
n
l 1 m
9
一.根轨迹方程
根轨迹的绘制的实质就是在s平面标注系统闭环极点的过程,而 系统的闭环极点由下式所得 ,称为根轨迹方程。
n m
1 G () s H () s ( s p ) K ( s z ) 0 i j
3
一. 根轨迹
根轨迹就是指当系统的开环传递函数的某个参数(如开环增益K )从零变到无穷时,闭环极点,即特征方程的根在复平面上变化 的轨迹。 设控制系统如图4-1所示,其开环和闭环传递函数为
K G( s) s(0.5s 1)
Y () s 2 K K () s 2 2 R () s s 2 s 2 K s 2 s 2 K
机械工业出版社
第4章 控制系统的根轨迹分析法
第4章 控制系统的根轨迹分析法
1 2 3
4.1 引言 4.2 根轨迹法的基本概念 4.3 根轨迹的绘制 4.4 广义根轨迹的绘制 4.5 利用根轨迹图分析控制系统性能 4.6 用MATLAB进行控制系统的根轨迹分析
2
4 5
6
4.1 引言
一.根轨迹 二.根轨迹与系统性能
26
一.绘制根轨迹图的基本法则
5)根轨迹的分离点: 1 1 1 1 d 1 d 0 d 2 d 3 在[-3,-2]上取一试探点d=-2.5,带入上式,有
Ys () Gs () Rs () 1 Gs ( )Hs ()
K ( s z ( sp k) l)
b d l 1 a c k l k l
a G k 1
c
( sp ) ( sp) K ( s z) ( s z)
k 1 l 1 k 1 l 1
系统的闭环特征方程为
2 2 D ( s ) s 22 s K s 2 sK 0
系统闭环特征方程式的根为
s 1 12 K 1 1 K 1
s 1 12 K 1 1 K 2
4
一. 根轨迹
5
二.根轨迹与系统性能
( s
j 1
m
1
z j ) ( s1 pi )
i 1
n
(1 2 ) (1 2 3 4 5 ) 1 ( 3 4 ) 所以闭环极点s1是根轨迹上的点。
20
一.绘制根轨迹图的基本法则
5. 根轨迹的渐近线 如果系统的开环极点数n大于开环零点数m,当根轨迹增益K* 由0∞时,必有n-m条根轨迹沿着与实轴交角为a、交点为的 一组渐近线趋向无穷远处。其中
23
一.绘制根轨迹图的基本法则
【例4-2】 设反馈系统的开环传递函数为
K Gs ( )H (s) s(s 1 )(s2 ) 试求系统根轨迹的分离点坐标。 解 由系统的开环传递函数可以得系统的特征方程为 K 1 G () sH () s 1 0 ss ( 1 ) ( s 2 ) K ss ( 1 ) ( s 2 ) 0 则有
* G
K ( s z K K ( s z ( s z j) k) l) j 1 l 1 G ( sH ) ( s ) b d n ( s p ( s p ( s p k) l) i)
k 1 l 1 i 1
a H k 1
c
m
闭环传递函数为
渐进线与实轴的交点 a
p z
i 1 i j 1
n
m
j
nm
渐进线与实轴交角
( 2 k 1 ) a nm
( k 0 ,1 , 2 , . . . . . . . )
21
一.绘制根轨迹图的基本法则
6. 根轨迹的起始角和终止角 根轨迹起始于开环复极点处的切线与正实轴的夹角称为根轨迹 的起始角pi;根轨迹终止于开环复零点处的切线与正实轴的夹 角称为根轨迹的终止角zj,这些角度可由以下公式求出
11
二.系统闭环零点、极点和开环零点、极点的关系
4)系统的开环根轨迹增益与系统的开环增益之间只相差一个 系数,如下式所示
K GK H k l k l k 1 l 1 k 1 l 1 K K K K H b d b d G T T T T k l k l
求解 得到根
d K 2 ( 3 s 6 s 2 )0 d s
s 0 . 4 2 3 , s 1 . 5 7 7 ( 舍 去 ) 1 2
24
一.绘制根轨迹图的基本法则
【例4-3】 设反馈系统的开环传递函数为
K (s 1 ) Gs ( )H (s) s(s2 )(s3 ) 试绘制系统的根轨迹。
6
4.2 根轨迹法的基本概念
一.根轨迹方程 二.系统闭环零点、极点和开环零点、极点的关系
三.相角条件和幅值条件
7
一.根轨迹方程
设控制系统如图4-3所示,其闭环传递函数为
Y(s) G(s) R(s) 1 G(s)H(s)
式中前向通道传递函数G(s)和反馈通道传递函数H(s)分别可以表 a a 示为 * K ( k s 1 ) K (s zk ) G G
0 ( s p ) ( s p )( 21 k )
0 ( s p ) ( s p )( 21 k ) 1 1 1 2
2 1 2 2
k 0 ,1 ,2 , . . . k 0 ,1 ,2 , . . .
15
三.相角条件和幅值条件
i 1 j 1
10
二.系统闭环零点、极点和开环零点、极点的关系
在利用根轨迹方程进行根轨迹绘制之前,首先要了解系统闭环 零点、极点和开环零点、极点之间的关系。 1)系统的闭环零点由系统前向通道的零点和反馈通道的极 点组成,当系统是单位反馈系统时,即时,系统的闭环零点 等于系统的开环零点。 2)系统的闭环极点与系统的开环零点、开环极点和开环根 轨迹增益有关。 3)系统的闭环根轨迹增益等于系统前向通道的根轨迹增益 ,当系统是单位反馈系统时,即时,系统的闭环根轨迹增益 等于系统的开环根轨迹增益。
当系统无开环零点时,幅值条件可表示为
K | s pi |
i 1
n
14
三.相角条件和幅值条件
【例4-1】 已知反馈系统的开环传递函数为 K G (s)H(s) s(0.5s 1 ) 试用相角条件和幅值条件确定s1=-1+j, s2=-1-j 是系统的共轭 闭环极点,并计算此时系统开环增益K的值。 K 2 K 解 因为 G ( sH ) ( s ) s ( 0 . 5 s 1 ) ss ( 2 ) 如果s1,s2是系统的闭环极点,就要满足相角条件,即
解 1)根轨迹的分支数: 3条 2)根轨迹的起始点:0,-2,-3 终止点: -1,∞, ∞ 3)实轴上的根轨迹: [-1,0],[-3,-2]
25
一.绘制根轨迹图的基本法则
4)根轨迹的渐进线:
i 1 a n m
p z
i j 1 j
n m
( 0 2 3 ) (1 ) 2 3 1
( 2 k 1 ) ( 2 k 1 ) 9 0 , 2 7 0 a nm 31 5)根轨迹的分离点: 1 1 1 1 d 1 d 0 d 2 d 3 在[-3,-2]上取一试探点d=-2.5,带入上式,有 1 1 1 1 d 1 d 0 d 2 d 3
) 当K*=∞时,由 lim 1 j 1 得s=z 。 0 i 或s=∞ n K K ( s pi )
j i 1
(s z
19
一.绘制根轨迹图的基本法则
4. 实轴上的根轨迹 实轴上的某一区域,如果其右边开环实数零点、极点的个数之 和为奇数,则该区域必是根轨迹。 设系统的开环零点、极点分布如 图4-5所示,对于闭环极点s1,由相 角条件有