2016年第十四届小学“希望杯”全国数学邀请赛(五年级第2试)
2016年第14届希望杯5年级第2试模拟试题(2)-S版
2016年第14届小学“希望杯”全国数学邀请赛五年级第2试模拟试题(2)(时间:90分钟;满分120分)一、填空题。
(每小题5分,共60分)1.计算:669×670×671 - 668×670×672 = 。
2.在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在和这两个数字上。
3.已知甲乙两数的和是231,已知甲数的末位是0,如果把甲数末位的0去掉,正好等于乙数,那么,甲数是,乙数是。
4.黑板上写有一串数:1、2、3、…、2011、2012,任意擦去几个数,并写上被擦去的几个数的和被11除所得的余数,如:擦去8、9、10、11、12,因为(8+9+10+11+12)÷11=4…6,于是写上6,这样操作下去,一直到黑板上只剩下一个数,则这个数是。
5.数一数,图中有个三角形。
6.1×2×3×4×…×2010×2011的乘积是一个多位数,而且末尾许多个零,那么从右到左第一个不等于零的数是。
7.如图,由15个边长为1的小正方形拼成一个5×3的长方形,如图示小正方形中有“☆”。
那么图中含有“☆”的长方形(含正方形)有个。
8.a、b、c、d是4个非零的一位自然数,用它们组成的24个没有重复数字的四位数的和是(a + b + c + d)的倍。
9.一个四位数是奇数,它的首位数字小于其余各位数字,而第二位数字大于其他各位数字,第三位数字等于首末两位数字的和的两倍,这个四位数是。
10.我们把形如的四位数称为“对称数”,如1221、3333、5005等,那么共有个“对称数”。
11.已知两个自然数分别除以它们的最大公约数所得的商之和是18,而这两个数的最小公倍数是975,则这两个数是。
12.用0~9这10个数字组成3个三位数和1个一位数,使它们的和是999,要使得最大的三位数尽可能大,则这个最大的三位数是。
2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第1试).doc
2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第1试)2016 年第十四届小学希望杯全国数学邀请赛试卷(六年级第 1 试)一、以下每题 6 分,共 120 分 1.(6 分)计算:121 +12 . 2.(6 分)将化成小数,小数部分从左到右第 2016 个数字是. 3.(6 分)观察下面一列数的规律,这列数从左到右第 100 个数是.,,,, 4.(6 分)已知 a 是 1 到 9 中的一个数字,若循环小数 0.1 = ,则 a= . 5.(6 分)若四位数能被 13 整除,则 A+B+C 的最大值是. 6.(6 分)某自行车前轮的周长是 1 米,后轮的周长是 1 米,则当前轮比后轮多转 25 圈时,自行车行走了米. 7.(6 分)定义 a*b=2{ }+3{ },其中符号{x}表示 x 的小数部分,如{2.016}=0.016.那么,1.4*3.2= .【结果用小数表示】 8.(6 分)下列两个算式中,不同的字母代表不同的数字,相同的字母代表相同的数字,则 x+y+z+u= . 9.(6 分)如图,时钟显示 9:15,此时分针与时针的夹角是度.10.(6 分)如图,在正方形 ABCD 中,点 E 在边 AD 上,AE=3ED,点 F 在边 DC 上,当 S △ BEF 最小时,S △ BEF :S 正方形 ABCD 的值是. 11.(6 分)如图,三张卡片的正面各有一个数,它们的反面分别写有质数 m,n,p,若三张卡片正反两面的两个数的和都相等,则 m+n+p 的最小值是. 12.(6 分)3 2014 +4 2015 +5 2016 的个位数字是.(注:a m 表示 m 个 a 相乘) 13.(6 分)一个分数,若分母减 1,化简后得,若分子加 4,化简后得,这个分数是. 14.(6 分)如图是由 5 个相同的正方形拼接而成,其中点 B、P、C 在同一直线上,点 B、N、F 在同一条直线上,若直线 BF 左侧阴影部分的面积是直线 BF右侧阴影部分的面积的 2 倍,则 MN:NP= . 15.(6 分)在如图所示的 1012 的网格图中,猴子 KING 的图片是由若干圆弧和线段组成,其中最大的圆的半径是 4,图中阴影部分的面积是.(圆周率取 3)16.(6 分)若 2 a 3 b 5 c 7 d =252000,则从自然数 a、b、c、d 中任取 3 个组成三位数,这个三位数可被 3 整除并且小于 250 的概率是.17.(6 分)有一项工程,甲单独做需要 6 小时,乙单独做需 8 小时,丙单独做需 10 小时,上午 8 时三人同时开始,中间甲有事离开,如果到中午 12 点工程才完成,则甲离开的时间是上午时分. 18.(6 分)已知四位数,甲、乙、丙三人的结论如下:甲:个位数字是百位数字的一半;乙:十位数字是百位数字的 1.5 倍;丙:四个数字的平均数是 4.根据上面的信息可得: = . 19.(6 分)用棱长为 m 的小正方体拼成一个棱长为 12 的大正方体,现将大正方体的表面(6 个面)涂成红色,其中只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,则 m= . 20.(6 分)有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从A 地出发走向 B 地,全程需要 12 分钟,有一只兔子从 B 地跑步到 A 地,它出发的时候,恰有一只猴子到达 B 地,在路上它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候.恰好又有一只猴子从 A 地出发,若兔子跑步的速度是 3 千米/小时,则 A、B 两地相距.2016 年第十四届小学希望杯全国数学邀请赛试卷(六年级第 1 试)参考答案与试题解析一、以下每题 6 分,共 120 分 1.(6 分)计算:121+12 .【分析】把 121 看作 100+21,再两次根据乘法分配律简算即可.【解答】解:121 +12 =(100+21) +12 =100 +21 +12 =52+13 +12 =52+(13+12)=52+25 =52+21 =73.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算. 2.(6 分)将化成小数,小数部分从左到右第 2016 个数字是 5 .【分析】首先找到循环小数的循环节,用 2016 除以循环节找余数即可.【解答】解:依题意可知: = . 20163=672.那么第 2016 个数字就是 5.故答案为:5 【点评】本题考查对周期问题的理解和运用,关键是找到周期和余数,问题解决. 3.(6 分)观察下面一列数的规律,这列数从左到右第 100 个数是.,,,,【分析】分子是奇数列,分母是公差为 3 的等差数列,根据高斯求和相关公式:末项=首项+(项数﹣1)公差解答即可.【解答】解:分子:1+(100﹣1)2 =1+992 =199 分母:2+(100﹣1)3 =2+993 =299 所以,这列数从左到右第 100 个数是.故答案为:.【点评】本题考查了高斯求和相关公式:末项=首项+(项数﹣1)公差的灵活应用. 4.(6 分)已知 a 是1 到 9 中的一个数字,若循环小数 0.1 = ,则 a= 6 .【分析】0.1 化成分数是,则可得 = ,然后解关于 a 的一元二次方程即可.【解答】解:根据题意可, = 化简可得: a 2 +9a﹣90=0 (a+15)(a﹣6)=0 解得:a=﹣15(舍去),或 a=6,故答案为:6.【点评】本题考查了循环小数与分数的互化,以及因式分解. 5.(6 分)若四位数能被 13 整除,则 A+B+C 的最大值是 26 .【分析】要使 A+B+C 的最大值,最好使 A、B、C 三个字母都是数字 9,然后分 3个 9,2 个 9,1 个 9,来检验即可.【解答】解:首先考虑三个都是 9,即 =2999,检验可得 2999 不能被 13 整除;再考虑两个 9,一个 8,检验可得 2899 能被 13 整除,所以 a+b+c 的最大值为:8+9+9=26;故答案为:26.【点评】解答本题要结合数位知识和数字的特征解答. 6.(6 分)某自行车前轮的周长是 1 米,后轮的周长是 1 米,则当前轮比后轮多转 25 圈时,自行车行走了 300 米.【分析】可以先求得自行车后轮走的圈数,根据题意,每一圈前轮比后轮多走:1 ﹣1 = 米,前轮比后轮多转 25 圈,即多走了 251 = ,则可以求得前轮走的圈数,再用圈数乘以后轮的周长,即可得知自行车行走的路程.【解答】解:根据分析,先求得自行车后轮走的圈数,根据题意,每一圈前轮比后轮多走:1 ﹣1 = 米,前轮比后轮多转 25 圈,即多走了 251 = ,则可以求得后轮走的圈数: =200(圈);自行车行走了:2001 =300 米.故答案是:300.【点评】本题考查了分数和百分数的应用,突破点是:先求自行车后轮走的圈数,再求行程. 7.(6 分)定义 a*b=2{ }+3{ },其中符号{x}表示 x 的小数部分,如{2.016}=0.016.那么,1.4*3.2= 3.7 .【结果用小数表示】【分析】重点理解*{}的意义【解答】解: 1.4*3.2 =2{ }+3{ } =2{0.7}+3{0.7 }=20.7+3 =1.4+2.3 =3.7 故答案是 3.7 【点评】理解新定义内容,结合分数和小数之间的转换计算比较方便. 8.(6 分)下列两个算式中,不同的字母代表不同的数字,相同的字母代表相同的数字,则 x+y+z+u= 18 .【分析】显然,由第一个算式可知,x、y 中肯定有一个为 0,由第二个算式可知,x 不能为 0,故 y=0,又 y﹣x=x,得 x=5,由第二个算式,两个两位数相减和为一位数,则 z=4,再由第一个算式,不难求得其它字母代表的数字,最后求和.【解答】解:根据分析,由第一个算式可知,x、y 中肯定有一个为 0,由第二个算式可知, x 不能为 0,故 y=0,又 y﹣x=x,得 x=5;由第二个算式,两个两位数相减和为一位数,则 z=4;再由第一个算式,u=9,综上,x+y+z+u=5+0+4+9=18.故答案是:18.【点评】本题考查了整数的裂项和拆分,本题突破点是:从两个算式中求得每个字母代表的数字. 9.(6 分)如图,时钟显示 9:15,此时分针与时针的夹角是 172.5 度.【分析】在 9 点整时,分针每转一个大格式是 30 度,分针每分钟转 6 度,分针与时针的夹角是330=90 度,分针每分钟比时针多转(6﹣0.5)=5.5 度的夹角,15 分后,分针每分钟比时针多转 5.515=82.5(度),所以 9 点 15 分,时钟的分针与时针的夹角是:90+82.5=172.5(度);据此解答.【解答】解:根据分析,按顺时针计算: 330=90(度),(6﹣0.5)15 =5.515 =82.5(度),90+82.5=172.5(度);答:时钟显示 9:15,此时分针与时针的夹角是 172.5 度.故答案为:172.5.【点评】本题是钟面追及问题,难点是确定分针比时针每份追及的角度;注意分针每转一个大格式是 30 度,分针每分钟转 6 度. 10.(6 分)如图,在正方形 ABCD 中,点 E 在边 AD 上,AE=3ED,点 F 在边 DC上,当 S △ BEF 最小时,S △ BEF :S 正方形 ABCD 的值是 1:8 .【分析】按题意,显然 F 点在 DC 边上运动,当 F 点运动到 D 点时,三角形 BEF的面积最小,此时不难求得 S △ BEF :S 正方形 ABCD 的值.【解答】解:根据分析,F 点在 DC 边上运动,当 F 点运动到 D 点时,三角形 BEF 的面积最小,故如图:∵AE=3EDS △ BEF=S △ BDE== =S △ BEF : S 正方形 ABCD=1 : 8 故答案是:1:8 【点评】本题考查了三角形的面积,突破点是:利用 BEF 的面积的最小值,求得S △ BEF :S 正方形 ABCD 的值. 11.(6 分)如图,三张卡片的正面各有一个数,它们的反面分别写有质数 m,n,p,若三张卡片正反两面的两个数的和都相等,则 m+n+p 的最小值是 57 .【分析】根据题意可得,47+m=53+n=71+p,则 m=71+p﹣47,n=71+p﹣53,然后代入式子 m+n+p,讨论 p 的取值即可求出最小值.【解答】解:根据题意可得, 47+m=53+n=71+p,则 m=71+p﹣47=24+p,n=71+p﹣53=18+p,代入式子 m+n+p 可得, m+n+p =71+p﹣47+71+p﹣53+p =42+3p p=2、3、5、7 偶质数 2 不和题意舍去;当 p=3 时,n=18+p=18+3=21,21 不是质数,舍去;当 p=5 时,n=18+p=18+5=23,m=24+5=29,21、29 都是质数符合题意;所以,m+n+p 的最小值是: m+n+p =42+3p =42+35 =42+15 =57.故答案为:57.【点评】本题考查了极值问题与质数问题的综合应用,关键是统一到一个未知数上进行列举讨论.12.(6 分)3 2014 +4 2015 +5 2016 的个位数字是 8 .(注:a m 表示 m 个 a 相乘)【分析】可以分别求出 3 2014 、4 2015 、5 2016 的个位数字,再求和,即可得出原式结果的个位数字.【解答】解:根据分析,先求 3 2014 的个位数字,∵3 1 =3,3 2 =9,3 3 =27,3 4 =81,3 5 =243,显然 3 n 个位数为 3、9、7、1 按周期 4 循环出现,而 3 2014 =3 503*4+ 2 ,3 2014的个位数字为 9;然后求 4 2015 的个位数字,∵4 1 =4,4 2 =16,4 3 =64,4 4 =256,45 =1024,显然 4 n 个位数为 4、6 按周期 2 循环出现,而 4 2015 =4 1007 2 + 1 ,4 2015的个位数字为 4;最后求 5 2016 的个位数字,∵5 1 =5,5 2 =25,5 3 =125,5 4 =625,显然 5 n 个位数均为 5,5 2016 的个位数字为 5, 3 2014 +4 2015 +5 2016 的个位数字=9+4+5=18,故个位数字为:8 故答案是:8.【点评】本题考查了乘积的个位数,突破点是:利用乘积个位数的周期性求得原式的个位数. 13.(6 分)一个分数,若分母减 1,化简后得,若分子加 4,化简后得,这个分数是.【分析】设原来这个分数是,若分母减去 1,就变成,这与相等,若分子加 4,这个分数就变成了,这与相等,由此列出方程进行求解,得出x 和 y 的取值,从而得出这个分数.【解答】解:设原来这个分数是,则: = 那么 3y=x﹣1 x=3y+1; =x=2y+8,则: 3y+1=2y+8 3y﹣2y=8﹣1 y=7 x=27+8=22 所以这个分数就是.故答案为:.【点评】解决本题先设出数据,根据分数的变化情况找出等量关系列出方程求解即可. 14.(6 分)如图是由 5 个相同的正方形拼接而成,其中点 B、P、C 在同一直线上,点 B、N、F 在同一条直线上,若直线 BF 左侧阴影部分的面积是直线 BF右侧阴影部分的面积的 2 倍,则 MN:NP= 1:5 .【分析】可以将图形进行分割和拼接,最后得出两个长方形的面积之比,从而线段之比不难求得.【解答】解:根据分析,设正方形的边长为a,如图,过 P 点作 PDBD 交 BD于 D,∵OF=AB,PE=DP,S △ ONF =S △ ABN ,S △ PEC =S △ BDP ,左边阴影部分的面积=S △ ONF +S 四边形 BNMG =S 四边形 ABGM ;右边阴影部分的面积=S △ ABP +S △ PEC =S 矩形 APDB ,由题意,左边阴影部分的面积=2右边阴影部分的面积,(AMAB):(APAB)=2:1AM:AP=2:1故 AP= AM=EC,FC=EF+EC=2.5a,又因 NP= FC= ,故 MN=MP﹣NP=1.5a﹣ = a,MN:NP= a: =1:5,故答案为:1:5.【点评】本题考查了三角形的面积,突破点是:利用线段的比例关系,求得面积比,再求得线段的比例. 15.(6 分)在如图所示的 1012 的网格图中,猴子 KING 的图片是由若干圆弧和线段组成,其中最大的圆的半径是 4,图中阴影部分的面积是 21.5 .(圆周率取 3)【分析】按题意,可以将猴子 KING 的图中空白部分分割,而阴影部分的面积可以用圆的面积减去中间空白部分的面积,中间空白部分由一个长方形和两个半圆,以及两个圆组成.【解答】解:由图可知,圆的直径有 8 个方格,故可得:每个小方格的边长=88=1, a 和 b 部分的面积=2 1 2 = = =4.5;c 和d 部分的面积= =4=43=12;矩形的面积=25=10;最大的圆的面积=4 2 =163=48,故阴影部分的面积=最大的圆的面积﹣a 和 b 部分的面积﹣c 和 d 部分的面积﹣c和 d 之间的矩形的面积 =48﹣4.5﹣12﹣10=21.5.故答案是:21.5.【点评】本题考查了圆的面积,突破点是:利用大圆的面积减去中间空白部分的面积即可求得阴影部分的面积. 16.(6 分)若 2 a 3 b 5 c 7d =252000,则从自然数 a、b、c、d 中任取 3 个组成三位数,这个三位数可被3 整除并且小于 250 的概率是.【分析】首先分析将数字 252000 分解质因数求出 abcd 分别代表的数字是多少,同时枚举法即可.【解答】解:首先将 252000 分解质因数为 73 2 2 5 5 3 a=5,b=2,c=3,d=1.组成三位数共有 =432=24 个.小于 250 的数字有 1 开头的数字共 123,125,132,135,152,153 共 6 种.能被 3 整除的数有 123,132,153,135.数字 2 开头的有 213,215,231,235 共 4 个.3 的倍数有 213,231 共 2 种.概率为 = 故答案为:.【点评】本题考查对概率的理解和运用,关键问题是找到组成的三位数共有多少个.问题解决. 17.(6 分)有一项工程,甲单独做需要 6 小时,乙单独做需 8 小时,丙单独做需 10 小时,上午 8 时三人同时开始,中间甲有事离开,如果到中午 12 点工程才完成,则甲离开的时间是上午 8 时 36 分.【分析】甲乙丙的工作时间知道,工作效率即可知道.乙丙的工作时间已知,工作量可求.剩余的总量就是甲的总量,甲的效率已知,可以求出甲的工作时间.【解答】解:甲乙丙的效率分别为,乙丙工作共 4 小时,()4= ,甲工作总量为:1﹣ = ,甲的工作时间: = (小时),甲工作时间为:(分),甲离开的时间为 8:36.故答案为:8:36.【点评】此题为典型的分人工程,可根据乙丙工作效率和时间求出工作总量.再根据工作总量差求出甲的总量和所求的工作时间,问题解决. 18.(6 分)已知四位数,甲、乙、丙三人的结论如下:甲:个位数字是百位数字的一半;乙:十位数字是百位数字的 1.5 倍;丙:四个数字的平均数是 4.根据上面的信息可得: = 4462 .【分析】可以根据每个人的话判断 ABCD 的值,由甲的话可知,百位上的数字必为偶数,由三人的话可得出关系式,再求解,分别求得ABCD 的值.【解答】解:根据分析,由甲的话可知,百位上的数字必为偶数,由三人的话可得出关系式,A+B+C+D=44A+2D+21.5D+D=16 A=16﹣6D;∵1A9,116﹣6D9 ,又∵D 为非负整数,D=2,A=16﹣62=4;综上,B=22=4,C=1.54=6,=4462 故答案是:4462.【点评】本题考查位置原则,突破点是:利用千位上的数字的取值范围,确定 A的值,再判断其它的数字. 19.(6 分)用棱长为 m 的小正方体拼成一个棱长为 12 的大正方体,现将大正方体的表面(6 个面)涂成红色,其中只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,则 m= 3 .【分析】用棱长为 m 的小正方体拼成一个棱长为 12的大正方体,则大正方体的每条棱上含有 12m 个小正方体,可设 12m=n,即大正方体的每条棱上含有 n 个小正方体,由于一面涂色的处在每个面的中间,有 6(n﹣2) 2 个,两面涂色的处在 12 条棱的中间上,有 12(n﹣2)个,根据只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,列方程求得n的值,进而求得 m 的值即可.【解答】解:由题意知,大正方体的每条棱上含有 12m 个小正方体,设 12m=n,即大正方体的每条棱上含有 n 个小正方体, 6(n﹣2) 2 =12(n﹣2)(n﹣2) 2 =2(n﹣2) n﹣2=2 n=4 因为 12m=4 所以 m=3 答:m=3.故答案为:3.【点评】根据立体图形的知识可知:三个面均为红色的是各顶点处的小正方体,在各棱处,除去顶点处的正方体的有两面红色,在每个面上,除去棱上的正方体都是一面红色,所有的小正方体的个数减去有红色的小正方体的个数即是没有涂色的小正方体. 20.(6 分)有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从A 地出发走向 B 地,全程需要 12 分钟,有一只兔子从 B 地跑步到 A 地,它出发的时候,恰有一只猴子到达 B 地,在路上它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候.恰好又有一只猴子从 A 地出发,若兔子跑步的速度是 3 千米/小时,则 A、B 两地相距 300 米.【分析】首先得出兔子的速度3千米/时=50米/分钟;设猴子的速度是x 米/分钟,则 AB 相距 12x 米,从出发到达 A 地,兔子相当于碰到 6 只猴子出发,每只猴子时间相差 3 分钟,那么每两只猴子之间的路程就是 3x 米,这个路程除以猴子和兔子的速度和,就是两只猴子之间兔子需要的时间,再乘 6,就是兔子行驶的总时间;用两地之间的总路程 12x 米除以兔子的速度,也是兔子行驶的总时间,由此列出方程求出兔子行驶的时间,再乘兔子的速度,即可求出 AB之间的距离.【解答】解:3 千米/时=50 米/分设猴子的速度是 x 米/分,则: 6= 解得:x=25 1225=300(米)答:A、B 两地相距 300 米.故答案为:300 米.【点评】此题解答的关键在于分别表示出出兔子跑步的时间,再根据等量关系列出方程求解.。
第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)
2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2=.2.(5分)已知 a=0.5,b=,则a﹣b是的倍.3.(5分)若+++<,则自然数x的最小值为.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是时;分.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为.7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是.8.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是.(π=3)10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球个.12.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧分钟.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2= 6 .【解答】解:3×1.3+3÷2=3.75×1.3+3×=0.375×13+3×=×13+3×=(13+3)×=16×=6故答案为:6.2.(5分)已知 a=0.5,b=,则a﹣b是的13 倍.【解答】解:(a﹣b)÷=(0.5﹣)÷=(﹣)÷=÷=13;故答案为:13.3.(5分)若+++<,则自然数x的最小值为 3 .【解答】解:+++<+++<<x>≈2.6因为x是自然数,所以x的最小值为3.答:自然数x的最小值为3.故答案为:3.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=0.48 .【解答】解:依据题意得:0.9:0.6=0.6:x0.9x=0.6×0.60.9x=0.36x=0.36÷0.9x=0.4;:=:yy=×y=÷y=0.08x+y=0.4+0.08=0.48.故答案为:0.48.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是9 时;57 分.【解答】解:由题意可知A的效率是,B的效率是,C的效率是,A工作27分钟,转换成小时单位是,A工作量是=,剩余工作总量为,三个人的效率和是,工作时间为:(小时),在8:27分再加上1.5小时是9:57分.故答案为:9:57.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为35% .【解答】解:数字1开始的质数有11,13,17数字2开始的质数有23数字3开始的数字有31,37数字5开始的质数有53共计7个质数.组成两位数的情况有1开始的后面可以是1,2,3,5,7共5种.2,3,5开始的分别有5种.计算5+5+5+5=4×5=20种%=35%故答案为:35%7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是256410 .【解答】解:依题意可知:(+)×8=整理得:=×4992;7995与4992有公因数39,可以约分.×205=×128;此时205和128互质,说明是205的倍数,是128的倍数,根据题目要求本身要为偶数,且这六个数不可以重复.当为205的2倍时满足.故答案为:2564108.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.【解答】解:依题意可知:设正方形的边长为12.正方形的面积为12×12=144.阴影的面积为:S=144﹣(12×8+4×9+3×12)=60.△BEF的面积与正方形ABCD的面积比值为60:144化简为5:12.故答案为:.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是 4.5 .(π=3)【解答】解:见上图,根据分析可得,大等腰三角形面积为:2×(2×2)÷2=4,半圆面积为:3×(2÷2)2÷2=1.5,小等腰三角形面积为:2×(2÷2)÷2=1,弓形面积为:1.5﹣1=0.5,整体阴影面积为:4+0.5=4.5,答:图中的阴影部分面积是 4.5.故答案为:4.5.10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.【解答】解:依题可知设这三个数分别为,因为,则abc=60.将60分解60=2×2×3×5,因为三个分数均为真分数,故c=3,a=5,b=4.所以最大是.综上所述最大分数是.故答案为:.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球 6 个.【解答】解:根据分析,26盒分成:26÷4=6(组)…2(个).∵任意相邻的 4 个盒子中乒乓球的个数和都是 15,所以处于位置1,5,9…25 的盒子里球的个数均为 4.最右边的盒子中有乒乓球:100﹣(15×6+4)=6(个).故答案是:612.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧150 分钟.【解答】解:根据分析,21﹣16=5,15﹣11=4,则:两段蜡烛的比为21:16=(21×4):(16×4)=84:64;18分钟后:15:11=(15×5):(11×5)=75:55,长蜡烛燃烧了:84﹣75=9份,段蜡烛也燃烧了:64﹣55=9份,每份燃烧了:18÷9=2分钟,较长的蜡烛还能燃烧:75×2=150分钟.故答案是:150.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.【解答】解:(1)根据观察,图①中有12小正方体;图②有1+22个小正方体;图③有1+22+32个小正方体;图④有1+22+32+42个小正方体;图⑤有1+22+32+42+52个小正方体;图⑥有1+22+32+42+52+62=91个小正方体,故答案是:91.(2)堆积体的表面积包括:前后2面、左右2面和上下2面.图⑩中有12+22+32+42+52+62+72+82+92+102=385个小正方体,表面积为:2×(1+2+3+…+10)+2×(1+2+3+…+10)+2×10×10=420.故答案为:420.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)【解答】解:根据分析,设x的整数部分为a,a≥1;x的小数部分为b,0≤b<1,依题意:ab+a+b=2b+9,整理得:(a﹣1)(b+1)=8,∵1≤b+1<2,∴4<a﹣1≤8,且a﹣1为整数.①当a﹣1=8,即a=9,b=0,x=9;②当a﹣1=7,a=8,b=,x=;③当a﹣1=6,即a=7,b=,x=;④当a﹣1=5,即a=6,b=,x=.综上,方程的解为:x=9;x=;x=;x=.故答案是:x=9;x=;x=;x=.15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【解答】解:(1)根据题意,阿春是第1个取糖果的,因为阿美取了剩下的全部糖果,所以阿美是最后1个取糖果的;因为阿天和阿丽不能在倒数第2的位置,否则跟最后1个的个数相同,所以阿真是倒数第2个取糖果的,所以阿真是第4个取糖果的.(2)若使这盒糖果最少,则倒数第1个人取1颗,则倒数第2个人取:1×(÷)=2(颗)1+2+(1+2)+(1+2+3)+4=3+3+6+4=16(颗)答:这盒糖果最少有16颗.16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【解答】解法一:在离山顶 150 米处相遇时,两人的路程差为200米,甲、乙的速度比为8:7,因此甲上山路程为×8=1600,这1600米中有50米是假设继续上山的结果,因此山底到山顶的路程=1600﹣50=1550米.解法二:设甲上山的速度是x,则下山的速度是3x.乙上山的速度是y,则下山的速度是3y,山顶到山底的距离为s.,由①得,由②得,∴,∴s=1550(米),综上所述答案为1550米.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:47:00;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
2020年第十四届小学数学“梦想杯”全国数学邀请赛试卷(六年级第1试)
故答案为:5
3.(6 分)观察下面一列数的规律,这列数从左到右第 100 个数是
.
,,, , …
【解答】解:分子:1+(100﹣1)×2 =1+99×2 =199 分母:2+(100﹣1)×3
第 4页(共 14页)
=2+99×3 =299 所以,这列数从左到右第 100 个数是 .
故答案为: .
4.(6 分)已知 a 是 1 到 9 中的一个数字,若循环小数 0.1 = ,则 a= 6 .
北京天昭新闻网 ## 北京天昭新闻网,服务于北京本地用户的新闻资讯网站,为全球用户 24 小时提供全面及时的中文 新闻资讯。
第 6页(共 14页)
宁波头条新闻 ## 宁波头条新闻随时随地掌握宁波本地事、宁波头条、宁波新闻、宁波资讯、等宁波本地生活信息服务!
个数相等,则 m=
.
20.(6 分)有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从 A 地出发走
向 B 地,全程需要 12 分钟,有一只兔子从 B 地跑步到 A 地,它出发的时候,恰有一只
猴子到达 B 地,在路上它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候.恰
【解答】解:根据分析,F 点在 DC 边上运动,当 F 点运动到 D 点时,三角形 BEF 的面 积最小,故 如图:
∵AE=3ED ∴S△BEF=S△BDE=
=
=
∴S△BEF:S 正方形 ABCD=1:8 故答案是:1:8 11.(6 分)如图,三张卡片的正面各有一个数,它们的反面分别写有质数 m,n,p,若三 张卡片正反两面的两个数的和都相等,则 m+n+p 的最小值是 57 .
. .
小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
2016年第十四届希望杯五年级2试模拟卷二(3月31日-)
2016年第十四届小学“希望杯”全国数学邀请赛五年级第2试模拟卷二2016年3月31日晚上 18:10至19:40一、填空题(每题5 分,共60 分)1、计算:587÷26.8×17×2.68÷58.7×1.7= __________.2、阿里巴巴在山洞里发现一堆金币,他3块3块的数,还剩2块金币;5块5块的数,还余4块金币;8块8块的数,还剩7块金币。
阿里巴巴至少发现了_______块金币.3、 68个小朋友排队做游戏,每轮游戏有12个小朋友参加,游戏结束后,这12个小朋友按原来的先后顺序排到队尾。
如果某轮游戏开始时,小亮站在队首,那么当小亮再次站在队首时已经做了_______轮游戏了。
.4、甲乙两个桶中共装有52升水,先将乙桶中的一半水倒入甲桶,再将甲桶中的一半水倒入乙桶。
然后,从乙桶中取10升水倒入甲桶。
整个过程中无溢出。
这时,甲桶中的水比乙桶中的水多4升,则最初甲桶中有水_______升。
5 、 如图,若三角形ABC 的 面积是24,D 、E 、F 分别为BC 、AD 、AB 的中点,则三角形BEF 的面积是_______.CD B6、 思思和考考玩“石头剪刀布”的游戏,约定如果赢了就上三级台阶,输了就下二级台阶,他们从第12级台阶开始玩,玩了30次后,思思站在第42级台阶上,则思思共赢了___次.7、如图1,欢欢在一张大纸上画“长方形螺旋”,由里向外依次画长度为1cm,1cm,2cm,2cm,3cm,3cm,4cm,4cm,……的线段。
当“长方形螺旋”的总长度为3000cm 时,欢欢正在画的线段长度是 cm 。
8、 要使小数0.1234567变成循环小数,并且小数点后第100位上的数字是5,那么这个循环小数应表示为________________。
9、 (2015)6 -2016)7 +(2017)8=_________.10 、寒假期间,小强每天都坚持跑步,并对所跑的距离作了记录.如果他在寒假的最后一天跑6700 米,则平均每天跑4950 米;如果最后一天跑7780 米,则平均每天跑4980 米;如果他想平均每天跑5000 米,那么最后一天应跑多少米?11. 当爷爷的年龄是爸爸年龄的2 倍时,小明1 岁;当爸爸的年龄是小明年龄的8 倍时,爷爷61 岁.那么,爷爷比小明大________岁;当爷爷的年龄是小明年龄的20 倍时,爸爸的年龄是________岁.12. 思思新买了一个长方体形状的玻璃鱼缸,不计玻璃的厚度,量得长35 厘米,宽24 厘米,高20 厘米,缸内水深12 厘米.将一块正方体形状的石块放入玻璃缸中,水面升高至16 厘米,则石块的体积是__________立方厘米.二、解答题(每题15 分,共60 分)每题都要写出推算过程13 、甲、乙、丙、丁4 人去钓鱼,共钓到25 条鱼,按数量从多到少的排名是甲、乙、丙、丁.又知甲钓到鱼的条数是乙和丙钓到鱼的条数的和,乙钓到鱼的条数是丙和丁钓到鱼的条数的和.那么,甲、乙、丙、丁各钓到几条鱼?14、 如图14-20中,正方形ADEB 和正方形ECFG 底边对齐,两个正方形边长分别为12和8。
2016年第14届希望杯5年级第2试模拟试题(1)-S版
2016年第14届小学“希望杯”全国数学邀请赛五年级第2试模拟试题(1)(时间:90分钟;满分120分)一、填空题。
(每小题5分,共60分)1.计算:31.8÷2.3 + 386÷46 - 4.88÷0.23 = 。
2.计算:(85×64×90)÷(16×17×72)= 。
3.被13除,余数是。
4.8个三位连续自然数能依次被1,2,3,4,5,6,7,8整除,则这8个三位数中最小的是。
5.将100块糖分成5份,使每一份数量依次多2,那么最少的一份有糖块,最多的一份有糖块。
6.乙两数的差是113,甲数除以乙数商7余5,则甲数是,乙数是。
7.32 = 9,9是完全平方数;33 = 27,27是完全立方数。
在1到200(包括1和200)的自然数中,既不是完全平方数,又不是完全立方数的数有个。
8.2012×2013×2014 + 2014×2015×2016 + 2016×2017×2018 的末位数字是。
9.1到50的50个自然数排成一列,从第1个数起,数到第3个数去掉,再接着数,数到第3个数去掉,再接着数,数到第3个数去掉…一遍下来把3的倍数都去掉了.再从第1个数起,数到第3个数(这时是“4”)去掉,再接着数,数到第3个数(这时是“8”)去掉,…最后只剩下1,2和另一个数,这个数是。
10.将1至7的7个数分别填入图中的○中,使每个正方形上的5个圆圈内所填的数的和都是18。
11.一个两位数,在它的两个数字中间添一个0,所得到的数是原来的数的7倍,则原来的两位数是。
12.用相同的字母代表相同的数字,不同的字母代表不同的数字,如果×2= ,则= 。
二、解答题。
(每小题15分,共60分)每题都要写出推算过程。
13.用0,1,2,3四个数字可以组成多少个不同的四位数,所有这些四位数的平均数是多少?14.如图:A、B两地之间有一座600米长的桥,甲、乙两人分别从A、B两地同时出发,相向而行,甲每小时行10千米.那么,乙的速度大于多少千米/时,并且小于多少千米/时才能和甲在桥上相遇.15.如图,线段AE和BD将平行四边形ABCD分成四块,其中的三角形ABF和三角形AFD的面积分别是4和8.则四边形DFEC的面积是多少.16.有一批货物,用28辆货车一次运走,货车有载重8吨的和载重5吨的两种,若所有货车都满载,且载重8吨的货车运送货物的总重量比载重5吨的货车运送货物的总重量多3吨.则这批货物共有多少吨?。
第十四届小学“希望杯”全 国数学邀请赛六年级第二试试 题及解析
第十四届小学“希望杯”全国数学邀请赛六年级 第2试试题1、 填空题.1. 计算:________.【答案】6【考点】计算,提取公因数【解析】2. 已知,,则是的_______倍.【答案】13【考点】计算,分数【解析】,3. 若,则自然数的最小值是_______.【答案】3【考点】计算,分数【解析】,,则最小为3.4. 定义:如果,那么称为和的比例中项.如,则2是1和4的比例中项.已知0.6是0.9和的比例中项,是和的比例中项,则=______.【答案】0.48【考点】计算,比例【解析】根据比例的基本性质得:,,解得:,,则5. A、B、C三人单独完成一项工程所用的时间如图所示.若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工程的时刻是______时______分.Image【答案】9时57分【考点】应用题,工程问题【解析】如图得A、B、C的工作效率分别是,27分钟为小时,则A单独的工作量:,三人合作时间:(小时),共花时间:(小时),(分钟),即完成这工程时刻为9时57分.6. 如图,A,B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转运,若指针指向A盘的数字是,指针指向B盘的数字是b,则两位数是质数的概率是________.Image【答案】【考点】数论,质数【解析】根据乘法原理可得:组成两位数共有:(个),两位数是质数的情况有:11,13,17,23,31,37,53,共7个,则两位数是质数的概率为:.7. 在算式“”中,不同的汉字代表不同的数字,则所代表的六位偶数是______.【答案】256410【考点】数论,位值原理【解析】,,所以得:当时,结果不是六位偶数,当,符合要求;当扩大4倍时,出现重复数字,当扩大6倍及以上的倍数,不是六位数,不符合要求;综合得:.8. 如图,正方形ABCD中,点E在边AD上,点F在边DC上,AE=2ED,DF=3FC,则△BFE的面积与正方形ABCD的面积的比值是_______.Image【答案】5:12【考点】几何,比例模型【解析】设正方形面积ABCD为1,连接BD、AC,,,,,.9. 如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率取3)【答案】4.5【考点】几何,圆的面积【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.2个三角形的面积:;剩余阴影面积:阴影部分面积:10. 已知三个最简真分数的分母分别是6,15和20,它们的乘积是.则在这三个最简真分数中,最大的数是_______.【答案】【考点】数论,分解质因数【解析】设3个最简真分数的分子分别为,则三个最简真分数为, ,,则分析得三个最简真分数为:,最大为.11. 将100个乒乓球放入从左到右排成一行的26个盒子中.如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15.那么最右边的盒子中有乒乓球________个.【答案】6【考点】找规律【解析】由题意得:每4个盒子为一组,每组的乒乓球数之和为15个,每组的第1个盒子有4个乒乓球,,将100个乒乓球分成6组余2个盒子,,.12. 两根粗细相同,材料相同的蜡烛,长度比是,它们同时开始燃烧,18分钟后,长蜡烛与短蜡烛的长度比是,则较长的那根蜡烛还能燃烧_________分钟.【答案】150【考点】比例应用题【解析】因为是同时燃烧,两根蜡烛原来与现在的长度差是不变的原来现在原来现在第一根2115第二根1611差542020,较长那根还能燃烧:(分钟)2、 解答题13. 如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1) 图⑥由多少个棱长为1的小正方体堆成?(2) 图⑩所示的立体图形的表面积.① ② ③【答案】(1)91;(2)420【考点】几何,正方体【解析】(1)图⑥正方体个数为:(个)(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;前后左右:上下:总表面积:14. 解方程:,其中表示的整数部分,表示的小数部分,如,.(要求写出所有的解)【答案】、、、【考点】计算【解析】 因,原式可化简为:,整理得,,,因为,则,.当,;当;当;当;当不满足;则符合题意取值有:.15. 阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的的话:阿春:“大家取的糖果个数都不同!”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下糖果的.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【答案】(1)第4个;(2)15颗;【考点】逻辑推理【解析】根据题意得:由于阿天、阿真、阿美、阿丽取的是剩下的糖果,则第1个为阿春,又因为阿美取了剩下的全部糖果,则第5个为阿美.设阿美最后取1份,当第4个为阿丽或阿丽时,都取1份,矛盾,则第4个为阿真.当第4个为阿真时,阿真取2份,倒推得阿真说的“剩下的”为3份,阿天和阿丽说法一致,不妨设第3个为阿天,阿真取3份,此时“剩下的”6份,第2个为阿丽,阿丽取6份,此时“剩下的”12份,第1个为阿春,因个数不同,则阿春最少取3份,所以这盒糖果最少有(份),则最少为15颗.综上,阿真是第4个取糖果的,这盒糖果最少有15颗.16. 甲乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【答案】1550【考点】行程问题【解析】设山底到山顶全程为S,我们可以把下山的路程转化成上山的路程.在第一个过程中,甲下山的150米可以转化成上山的50米,则甲以上山的速度可以走,乙以上山的速度可以走,则;在第二个过程中,甲下山的S可以转化成上山的,则甲以上山的速度可以走,乙以上山的速度可以走,则.,计算得,米.。
第十四届小学“希望杯”全国数学邀请赛培训题五年级.docx
2016年第十四届小学“希望杯”全国数学邀请赛培训题(五年级)1、计算:2015+201.5+20.15+985+98.5+9.85的值。
2、201.5×2016.2016-201.6×2015.2015。
..3、(0.45+0.2) ÷1.2×11。
4、计算:0.875×0.8+0.75×0.4+0.5×0.2。
5、定义A&B=A×A÷B,求3&(2&1)的值。
6、定义新运算○+,它的运算规则是:a ○+b =a ×b +2a,求2.5○+9.6。
7、规定:a △b =(b -0.2a)(a -0.2b ),a □b =ab -a +b,求5△(4□3)的值。
8、在下面的每个方框中填入符号“+”,“-”,“×”,“÷”中的一个,且每个符号恰用一次,使计算结果最小。
300□9□7□5□39、a ,b ,c 都是质数,若a +b =13,b +c =28,求a ,b ,c 的乘积。
10、若两个自然数的乘积是75,且这两个自然数的差小于15,求这两个数和的个位数字。
11、A 、B 都是自然数,A >B ,且A ×B =2016,求A -B 的最大值。
12、有6个连续的奇数,其中最大的奇数是最小的奇数的3倍,求这6个奇数的和。
13、有一个两位数,在它的两个数字中间添加2个0,所得到的数是原来数的56倍,求原来的两位数。
14、有一个四位数,在它的某位数字的前面添上一个小数点后,再和原来的四位数相加得2036.16,求这个四位数。
15、已知两个自然数的乘积是2016,这两个数的最小公倍数是168,求这两个数的最大公约数。
16、两个数的最大公约数和最小公倍数分别是4和80,求这两个数。
17、2016的约数中,偶数有多少个?18、有6个数排成一列,从第2个数起每个数都是前一个数的2倍,且6个数的和是78.75,求第2个数。
(答案解析)2016年第十四届希望杯初赛五年级真题解析
10.两个数的最大公约数和最小公倍数分别是 3 和 135,则这两个数的差最小是 【答案:12】 【解析】
。
135=3×5×3×3,差最小,两个数最接近,所以一个数是 3×5=15,另一个数是 3×3× 3=27,差是 27-15=12
11. 14 袋糖果每袋的平均重量经四舍五入到小数点后一位等于 90.2 克,若每袋糖果的重量 都是整数,则这 14 袋糖果的总重量是 【答案:1263】 【解析】依题有:90.15<平均量<90.24,所以 90.15×14<总重量<90.24×14,即 1262.1<总重量<1263.36,所以总重量=1263. 克.
平方米.
15. 有一个三位数 A,在它的某位数字的前面填上小数点后得到数 B,若 A-B=478.8,则 A= . 【答案:532】 【解析】差倍问题:478.8÷(10-1)=53.2,53.2×10=532.
16. 商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的 3 倍. 如果每天卖出 30 个西 瓜和 20 个柚子,3 天后,西瓜个数比柚子个数的 4 倍少 26,则商店里原有 【答案:176】 【解析】解:设柚子是 x 个,则西瓜是 3x 个,有 3x-90+26=4(x-60),得 x=176. 个柚子.
17. 已知 a,b,c 是 Байду номын сангаас 个彼此不同的质数,若 a b c 37 ,则 a b c 最大是
. 4
【答案:32】 【解析】根据奇偶分析,a,b,c 中一定有一数为 2,若 a 为 2,则 b=7,c=5,差最大为 6;若 c=2,则 a=31,b=3,最大为 31+3-2=32.
18. 李双骑车以 320 米/分钟的速度从 A 地驶向 B 地,途中因自行车故障推车继续向前步行 5 分钟到距 B 地 1800 米的某地修车,15 分钟后以原来骑车速度的 1.5 倍继续向前驶向 B 地,到达 B 地时,比预计时间多用 17 分钟,则李双推车步行的速度是 【答案:72】 米/分钟.
2016第十四届希望杯2试_五年级解析
3/5
资料下载、家长交流、信息分享权威论坛:
左斜侧方圆圈中数之和. M 12 3 5 7 81
12 3 81 40 2
12 1680 1692
11. 一堆珍珠共 6468 颗, 若每次取相同的质数颗, 若干次后刚好取完, 不同的取法有 a 种; 若每次取相同的奇数颗,若干次后刚好取完,不同的取法有 b 种,则 a b _________. 【答案】16 【考点】分解质因数 【解析】 6468 2 2 7 7 3 11 ,其中质数有:2、3、7、11,即取法有 4 种, a 4 ;其 中奇数有: 1、 3、 7、 11、3 7 、3 11 、7 7 、7 11 、3 7 7 、3 7 11 、7 7 11 、 3 7 7 11 ,即取法有 12 种, b 12 ;所以, a b 4 12 16 .
【答案】0.25 【考点】计算 【解析】 10 2 0.3 0.3 0.04 0.04 0.05
10 2 0.3 0.3 0.04 0.04 0.05 10 2 0.05
0.25
2.
小磊买 3 块橡皮, 5 支铅笔需付 10.6 元.若他买同品种的 4 块橡皮, 4 支铅笔需付 12 元, 则一块橡皮的价格是_________元. 【答案】2.2 元 【考点】消去问题 【解析】 3 橡+5 铅=10.6 元 4 橡+4 铅=12 元 橡+铅=3 元 橡-铅=1.4 元 橡皮: 3 1.4 2 2.2 (元)
小书灯家长社区整理发布 让家长无忧·让学习无忧
4பைடு நூலகம்5
资料下载、家长交流、信息分享权威论坛:
2016年第14届希望杯4年级第2试模拟试题(1)-T版
2016年第14届小学“希望杯”全国数学邀请赛四年级第2试模拟试题(1)(时间:90分钟;满分120分)一、填空题。
(每小题5分,共60分) 1.计算:3333×3333+11111 = 。
【难度】:★★【考点】:积不变性质,乘法分配律 【答案】:11120000 【解析】: 3333×3333+11111 =9999×1111+11111 =(9999+1)×1111+10000 =10000×1111+10000 =11110000+10000 =111200002.计算:20162017×2015-20152015×2016= 。
【难度】:★★ 【考点】:重叠数 【答案】:2015 【解析】:20162017×2015-20152015×2016 =20162016×2015-20152015×2016+2015 =2016×10001×2015-2015×10001×2016+2015 =0+2015 =20153.如果a △b=a+b-6,a ☆b=2a+2b+ab 。
计算()[]84822÷☆☆△=。
【难度】:★★ 【考点】:定义新运算 【答案】:25 【解析】:2☆82△3632☆4200÷8=25=2×2+2×8+2×8 =2+36-6 =2×32+2×4+4×32=4+16+16 =32 =64+8+128=36 =2004.9个自然数从小到大排列,相邻两个数的差是2.其中最大的数与第二大的数之和是中间数的3倍,那么这9个自然数的和是。
【难度】:★★★【考点】:等差数列【答案】:126【解析】:把9个数从小到大依次排列、表示出来:①②③④⑤⑥⑦⑧⑨a a+2 a+4 a+6 a+8把中间数表示为a,则第二大的数为a+6,最大的数为a+8由此,题意可以翻译为:(a+8)+(a+6)=3×a 可以算出a=14和=中间数×项数=14×9=1265.在一次慈善义卖中,丹丹自制的蛋挞和布丁共卖了200个,收入479元。
小学五年级希望杯数学全国数学邀请赛试题 (1)
第十五届小学“希望杯”全国数学邀请赛五年级 第1试试题2017年3月19日 上午8:30至10:00 以下每题6分,共120分。
1、计算:1.25×6.21×16+5.8= .2、观察下面数表中的规律,可知=x .3、图1是一个由26个相同的小正方体堆成的几何体,它的底层由45⨯个小正方体构成。
如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块。
4、非零数字a , b , c 能组成6个没有重复数字的三位数,且这6个数的和是5994,则这6个数中任意一个数都被9整除.(填“能”或“不能”)5、将4个边长为 2 的正方形如图放置在桌面上,则它们在桌面上所能覆盖的面积是 .6、6个大于0的连续奇数的乘积是135135,则这6个数中最大的是 .7、A ,B 两桶水同样重,若从A 桶中倒2.5千克水到B 桶中,则B 桶中水的重量是A 桶中水的重量的6倍,那么B 桶原来有水 千克. 8、如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则c b a ⨯-的值是 .9、同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人。
若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学有 人。
10、如图,小正方形的面积是1,则图中阴影部分的面积是 .11、6个互不相同的非零自然数的平均数是12,若将其中一个两位数ab 换成ba (a ,b 是非零数字),那么这6个数的平均数变为15,所以满足条件的ab 共有 个。
12、如图,在ABC ∆中,D ,E 分别是AB ,AC 的中点,且图中两个阴影部分(甲和乙)的面积差是5.04,则ABC ∆的面积是 。
13、松鼠A ,B ,C 共有松果若干,松鼠A 原有松果26颗,从中拿出10颗平凡给B ,C ,然后松鼠B 拿出自己的18颗松果平分给A ,C ,最后松鼠C 把自己现有松果的一半平分给A ,B ,此时3只松鼠的松果数量相同。
2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第2试)
2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题(每题5分,共60分).1.(5分)10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)= .2.(5分)小磊买3块橡皮,5支铅笔需付10.6元,若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是元.3.(5分)将1.41的小数点向右移动两位,得a,则a﹣1.41的整数部分是.4.(5分)定义:m⊗n=m×m﹣n×n,则2⊗4﹣4⊗6﹣6⊗8﹣…﹣98⊗100= .5.(5分)从1~100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是.6.(5分)如图,四边形ABCD是正方形,ABGF和FGCD都是长方形,点E在AB 上,EC交FG于点M.若AB=6,△ECF的面积是12,则△BCM的面积是.7.(5分)在一个除法算式中,被除数是12,除数是小于12的自然数,则可能出现的不同余数之和是.8.(5分)如图,是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方形垒成的,则这个几何体的体积最小是.9.(5分)正方形A、B、C、D的边长依次是15,b,10,d(b,d都是自然数),若它们的面积满足SA =SB+SC+SD,则b+d= .10.(5分)根据图所示的规律,推知M= .11.(5分)一堆珍珠共6468颗,若每次取质数颗,若干次后刚好取完,不同的取法有a种;若每次取奇数颗,若干次后刚好取完,不同的取法有b种,则a+b= (每次取珍珠的颗数相同)12.(5分)若A是质数,并且A﹣4,A﹣6,A﹣12,A﹣18也是质数,则A= .二、解答题(每题15分,共60分).13.(15分)张强骑车从公交的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟.若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?14.(15分)如图,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,则五边形EFGHI的面积是.15.(15分)定义:[a]表示不超过数a的最大自然数,如[0.6]=0,[1.25]=1.若[5a﹣0.9]=3a+0.7,则a的值.16.(15分)有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第2试)参考答案与试题解析一、填空题(每题5分,共60分).1.(5分)10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)= 0.25 .【分析】根据除法的性质a÷(b÷c)=a÷b×c以及乘法的交换律与结合律简算即可.【解答】解:10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)=10÷2×0.3÷0.3×0.04÷0.04×0.05=(10÷2)×(0.3÷0.3)×(0.04÷0.04)×0.05=5×1×1×0.05=0.25故答案为:0.25.【点评】仔细观察算式特点,通过转化的数学思想,使复杂的问题简单化.2.(5分)小磊买3块橡皮,5支铅笔需付10.6元,若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是 2.2 元.【分析】根据“3块橡皮,5支铅笔需付10.6元;”知道买12块橡皮和20支铅笔需付的钱数,再根据“他买同品种的4块橡皮,4支铅笔需付12元.“可求出他买同品种的20块橡皮,20支铅笔的总钱数;两数相减就是8块橡皮的钱数,那问题即可解决.【解答】解:解:(12×5﹣10.6×4)÷(5×4﹣3×4)=(60﹣42.4)÷8=17.6÷8=2.2(元);答:每每块橡皮2.2元.故答案为:2.2.【点评】解答除以的关键是,合理利用题中的条件,构造新的数量关系,列式解答即可.(5分)将1.41的小数点向右移动两位,得a,则a﹣1.41的整数部分是139 .3.【分析】将1.41的小数点向右移动两位就变成141,再用141减1.41求出差,从而得出其整数部分即可.【解答】解:将1.41的小数点向右移动两位是141,即a=141,a﹣1.41=141﹣1.41=139.59,139.59的整数部分是139.故答案为:139.【点评】解决本题关键是掌握小数点移动的规律:一个小数的小数点向左移动一位,这个小数就缩小了10倍;移动两位,这个小数就缩小了100倍;移动三位,这个小数就缩小了1 000倍…;同理,如果一个小数的小数点向右移动一位,这个小数就扩大了10倍;移动两位,这个小数就扩大了100倍;移动三位,这个小数就扩大了1 000倍….4.(5分)定义:m⊗n=m×m﹣n×n,则2⊗4﹣4⊗6﹣6⊗8﹣…﹣98⊗100= 9972 .【分析】m⊗n=m×m﹣n×n=m2﹣n2【解答】解:原式=2⊗4﹣4⊗6﹣6⊗8﹣…﹣98⊗100=(22﹣42)﹣(42﹣62)﹣(62﹣82)﹣…﹣(982﹣1002)=22﹣42﹣42+62﹣62+82﹣…﹣982+1002=1002+22﹣42﹣42=10000+4﹣16﹣16=9972故答案为:9972.【点评】充分理解新定义,注意数列的加减抵消.同时注意每一个符号都是“﹣”.计算过程中添加括号减少失误率.注意此题并不需要平方差公式展开.5.(5分)从1~100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是5624 .【分析】首先求出从1~100这100个自然数的和是多少,再用剩下的数的平均数乘100﹣2,求出剩下的数的和是多少,进而求出去掉的两个数是多少;然后把去掉的两个数相乘即可.【解答】解:(1+2+…+99+100)﹣50×(100﹣2)=(1+100)×100÷2﹣4900=5050﹣4900=150因为去掉的两个数是相邻的偶数,所以去掉的两个数是:74、76,所以去掉的两个数的乘积是:74×76=5624故答案为:5624.【点评】此题主要考查了平均数问题,要熟练掌握,解答此题的关键是分别求出从1~100这100个自然数的和、剩下的数的和各是多少.6.(5分)如图,四边形ABCD是正方形,ABGF和FGCD都是长方形,点E在AB 上,EC交FG于点M.若AB=6,△ECF的面积是12,则△BCM的面积是 6 .【分析】可以先利用线段之间的比例,求得面积比,FM和MG的比例,可以通过三角形ECF的面积求得.【解答】解:根据分析,由△ECF的面积是12,可知,×FM×BG+×FM×CG=12,⇒×FM×(BG+GC)=×FM×BC=12⇒FM=,⇒MG=6﹣4=2,∴△BCM的面积:△ECF的面积=MG:FM=2:4=1:2,∴△BCM的面积=△ECF的面积=×12=6.故答案是:6【点评】本题考查了三角形的面积,突破点是:利用线段之间的比例,求得面积比,FM和MG的比例,可以通过三角形ECF的面积求得.7.(5分)在一个除法算式中,被除数是12,除数是小于12的自然数,则可能出现的不同余数之和是15 .【分析】被除数÷除数=商…余数,除数是小于12的自然数.0不能做除数,从1到11分类枚举.1,2,3,4,6都是12的因数余数为0,然后枚举其他除数.【解答】解:因为1,2,3,4,6是12的因数,所以余数为0,12÷5=2…2,12÷7=1…5,12÷8=1…4,12÷9=1…3,12÷10=1…2,12÷11=1…1,则不同余数相加为5+4+3+2+1=15.故答案为:15.【点评】本题需要特别注意的是说不同余数的和.不是所有余数的和,因此出现两个2只能加1个.8.(5分)如图,是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方形垒成的,则这个几何体的体积最小是 6 .【分析】首先分析图中的2个方块的位置,左视图中在左边是正视图是在第四个位置,需要同时满足这2个条件即可.【解答】解:依题意可知:画出俯视图的一种:在4号木块上是有2个木块即可满足条件.那么这个几何体的最小体积就是6块,1×6=6.故答案为:6【点评】本题考查对三视图的理解和分析,关键是找到图中的2个木块的位置.问题解决.9.(5分)正方形A、B、C、D的边长依次是15,b,10,d(b,d都是自然数),若它们的面积满足SA =SB+SC+SD,则b+d= 13或15 .【分析】按题意,则有:SA =SB+SC+SD⇒152=b2+102+d2,故可以求得b和d的平方和,根据b和d是自然数,可以得到b和d的值,从而求得b+d的值.【解答】解:根据分析,SA =SB+SC+SD⇒152=b2+102+d2,⇒b2+d2=125,∵b和d是自然数,∴①b=2,d=11,b+d=13;②b=10,d=5,b+d=15,故答案是:13或15.【点评】本题考查了等积变形,本题突破点是:可以求得b和d的平方和,根据b和d是自然数,可以得到b和d的值,从而求得b+d的值.10.(5分)根据图所示的规律,推知M= 1692 .【分析】首先发现数字的规律是数字和的关系,每一个方块都是前面所有的圆圈与12的和.根据这个规律即可求解.【解答】解:依题意可知:首先看规律是12+3=15;15+5=20;…每一个方块加上圆圈就是下一各数字.同时发现20=12+3+527=12+3+5+7规律总结圆圈的数字是以3为首项的公差为2的等差数列,每下一个方块就是之前的所以数字和.M=12+3+5+7+9+11+ (81)项数为+1=40.M=12+=12+84×20=1692故答案为:1692【点评】本题考查对数字规律的理解与运用,关键是发现数字和的规律结合等差数列.同时注意求项数时有加1,问题解决.11.(5分)一堆珍珠共6468颗,若每次取质数颗,若干次后刚好取完,不同的取法有a种;若每次取奇数颗,若干次后刚好取完,不同的取法有b种,则a+b= 13 (每次取珍珠的颗数相同)【分析】由于每次取珍珠的颗数相同,若干次正好取完,则取的个数是6468的因数,可先将6468分解质因数后,根据因数中质数与奇数的多少,即可确定分别有多少种取法,进而求出共有多少种取法.【解答】解:6468=2×2×3×7×7×11.由此可知,6468的因数中质数有2,3,7、11.则若每次取质数颗,若干次后刚好取完,不同的取法有4种.又3×7=21,3×7×7=147,7×7=49,7×7×11=539,3×7×7×11=1617,则若每次取奇数颗,若干次后刚好取完,不同的取法有9种:每次分别取:1、3,7,11,21,49,147,539,1617颗.则a+b=4+9=13.故答案为:13.【点评】首先将6468分解质数是完成本题的关键.完成本题要注意确定6468奇数因数的个数.12.(5分)若A是质数,并且A﹣4,A﹣6,A﹣12,A﹣18也是质数,则A= 23 .【分析】首先分析100以内的质数,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.共25个,找到数字相差2的A﹣4,A﹣6质数工有多少组.再找出数字A.A﹣4相差4和相差6的.最后找到一定是大于18的质数.【解答】解:依题意可知:A﹣18是质数,所以A>18,A﹣6>12,A﹣4>14枚举出相差2符合题意的质数共有(17,19),(29,31),(41,43),(59,61),(71,73)五组.∵A﹣4与A相差4,把组合中较大的数字加上4是质数则符合题意.∴19+4=23(符合),31+4=35(不符合),43+4=47(符合),61+4=65(不符合),73+4=77(不符合).∵A﹣6与A﹣12相差6,较小的数字减去6还是质数.17﹣6=11(符合),41﹣6=35(不符合).同时满足A﹣18也是质数,与A﹣12相差6,11﹣6=5(符合条件).∴A,A﹣4,A﹣6,A﹣12,A﹣18是23,19,17,11,5.故答案为:23.【点评】100以内的质数是重点考察内容,然后根据其中一个条件相差2的质数能够筛选出很多不符合的数字,在根据条件一步一步筛选,.在接下来的计算中比较容易枚举.同时不要忘记检验.二、解答题(每题15分,共60分).13.(15分)张强骑车从公交的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟.若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?【分析】首先分析公交车的周期时间是7分钟,然后把公交车的时间和距离对比张强的时间和距离,做差即可求解.【解答】解:依题意可知:公交车每7分钟比张强多行驶(450﹣250)×6﹣250×1=950(米);因为15÷7=2…1(分).公交车行驶2次后再行1分钟即可追上张强.所以该公交车出发时,张强行驶的距离为:950×2+(450﹣250)=2100(米);另解再15分钟内张强骑行了:250×15=3750(米);公交车实际行驶了15﹣2=13(分),行驶的距离是450×13=5850(米).再这个时间公交车落后张强5850﹣3750=2100(米);答:该公交车出发的时候,张强已经骑过的距离是2100米.【点评】本题是考查追击问题的理解和综合运用,关键问题是找到行驶的距离.根据公交车的时间周期即可求解,问题解决.14.(15分)如图,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,则五边形EFGHI的面积是28 .【分析】格点面积=(内部格点数+周界格点数÷2﹣1)×2,据此数出内部格点=23,可数、周界格点数,求出图中五边形的面积是多少即可.根据S四边形ABCD 知(10+5÷2﹣1)×2=23,那么五边形EFGHI的面积为(12+6÷2﹣1)×2,解决问题.【解答】解:(12+6÷2﹣1)×2=14×2=28答:五边形EFGHI的面积是28.古达安慰:28.【点评】先数出内部格点数和周边的格点数,然后根据毕克定理:(内部格点数+周界格点数÷2﹣1)×2求解.15.(15分)定义:[a]表示不超过数a的最大自然数,如[0.6]=0,[1.25]=1.若[5a﹣0.9]=3a+0.7,则a的值.【分析】理解新定义的意义,[5a﹣9]在两个相邻整数之间,即3a+0.7≤5a﹣0.9≤3a+1.7【解答】解:3a+0.7≤5a﹣0.9≤3a+1.73a+1.6≤5a≤3a+2.61.6≤2a≤2.60.8≤a≤1.3∴2.4≤3a≤3.93.1≤3a+0.7≤4.6∵3a+0.7是整数3a+0.7=4a=1.1综上所述:a=1.1【点评】充分理解新定义.放在两个自然数中间找出a的范围.16.(15分)有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?【分析】4个书店共订400本,每个书店订了至少98本,至多101本,可以先每个书店分98本,余下8本再分给这4个书店.【解答】解:先每个书店分98本,还余下8本,为题转化为把8本书分给4个书店,每个书店可以分0、1、2、3本,可能的分配情况有:这4类,①3、3、2、0分配情况有×=12种,②3、3、1、1分配情况有=6种,③3、2、2、1分配情况有×=12种,④2、2、2、2分配情况有1种,所以共有:12+6+12+1=31种订法,共有31种不同的订法.【点评】把分400本书转化成分8本书,有利于简化分析问题.。
五年级数学希望杯试题
第五届“希望杯”全国数学邀请赛(五年级第1试)1.2007÷ =______。
2.对不为零的自然数a ,b ,c ,规定新运算“☆”:☆(a ,b ,c )= ,则☆(1,2,3)=______。
3.判断:“小明同学把一张电影票夹在数学书的51页至52页之间”这句话是______的。
(填“正确”或“错误”)4.已知a ,b ,c 是三个连续自然数,其中a 是偶数。
则a+1,b+2,c+3的积是奇数还是偶数5.某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是______。
6.当p 和p ³+5都是质数时, +5=______.7.下列四个图形是由四个简单图形A 、B 、C 、D (线段和正方形)组合(记为*)而成。
则图中①~④中表示A*D 的是______。
(填序号)8.下面四幅图形中不是轴对称图形的是______。
(填序号)9.小华用相同的若干个小正方形摆成一个立体(如图)。
从上面看这个立体,看到的图形是图①~③中的______。
(填序号)10.图中内部有阴影的正方形共有______个。
11.下图中的阴影部分BCGF 是正方形,线段FH 长18厘米,线段AC 长24厘米,则长方形ADHE 的周长是______厘米。
12.图中的熊猫图案的阴影部分的面积是______平方厘米。
(注:阴影部分均由半圆和正方形组成,图中一个小正方形的面积是1平方厘米,π取3.14) 13.小红看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,第三天看了10页正好看完。
这本故事书共有______页。
14.有一副扑克牌中(去掉大、小王),最少取______张牌就可以保证其中3张牌的点数相同。
15.如图,摩托车里程表显示的数字表示摩托车已经行驶了24944千米,经过两小时后,里程表上显示的数字从左到右与从右到左的读数相同,若摩托车的时速不超过90千米,则摩托车在这两小时内的平均速度是______千米/时。
2020年第十四届小学数学“梦想杯”全国数学邀请赛试卷(四年级第2试)
2016年第十四届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(每题5分,共60分).1.(5分)2016×2014﹣2013×2015+2012×2015﹣2013×2016=.2.(5分)60的不同约数(1除外)的个数是.3.(5分)今年丹丹4岁,丹丹的爸爸28岁,a年后爸爸年龄是丹丹年龄的3倍,则a的值是.4.(5分)已知a比c大2,则三位自然数与的差是.5.(5分)正方形A的边长的10,若正方形B,C的边长都是自然数,且B,C的面积和等于A的面积,则B和C的边长的和是.6.(5分)已知9个数的平均数是9,如果把其中一个数改为9后,这9个数的平均数变为8,那么这个被改动的数原来是.7.(5分)在下面的格点图中,水平相邻和竖直相邻的两个格点的距离都是1,则图中阴影部分的面积是.8.(5分)两个数的和是363,用较大的数除以较小的数,得商16余6,则这两个数中较大的是.9.(5分)如图,阴影部分是一个边长为6厘米的正方形,在它的四周有四个长方形,若四个长方形的周长的和是92厘米,则四个长方形的面积的和是平方厘米.10.(5分)有一根长240厘米的木棒,先从左端开始每隔7厘米划一条线,再从右端开始每隔6厘米划一条线,并且从划线处截断木棒,则在所截得的小木棒中,长度3厘米的木棒有根.11.(5分)在如图的9个方格中,每行、每列及每条对角线上三个数的和都相等,则x+y+a+b+c+d=.12.(5分)甲、乙两人分别从A、B两地同时出发,相向而行,4小时可相遇;若两人时速都增加3千米,则出发后3小时30分可相遇.A、B两地相距千米.二、解答题(每题15分,共60分).13.(15分)如图,用正方形a、b、c、d、e拼成一个长30厘米,宽22厘米的长方形,求正方形e的面积.14.(15分)有两块地,平均亩产粮食675千克,其中第一块地5亩,亩产粮食705千克.如果第二块地亩产粮食650千克,第二块地有多少亩?15.(15分)4个连续的自然数,从小到大依次是11的倍数、7的倍数、5的倍数、3的倍数,求这4个自然数的和最小值.16.(15分)有6个密封的盒子,分别装有红球、白球和黑球,每个盒子里只有一种颜色的球,且球的个数分别是15,16,18,19,20,31,已知黑球的个数是红球个数的2倍,白球只有1盒,问:(1)装有15个球的盒子里装的是什么颜色的球?(2)有多少个盒子装的是黑球?2016年第十四届小学“希望杯”全国数学邀请赛试卷(四年级第2试)参考答案与试题解析一、填空题(每题5分,共60分).1.(5分)2016×2014﹣2013×2015+2012×2015﹣2013×2016=1.【分析】根据乘法的分配律,提取公因数简算即可.【解答】解:2016×2014﹣2013×2015+2012×2015﹣2013×2016=2016×2014﹣2013×2016﹣2013×2015+2012×2015=2016×(2014﹣2013)﹣(2013﹣2012)×2015=2016×1﹣1×2015=2016﹣2015=1故答案为:1.【点评】本题考查了学生对整数四则混合运题目进行计算的能力.完成本题要注意分析式中数据,运用合适的简便方法计算.2.(5分)60的不同约数(1除外)的个数是11.【分析】先将60分解质因数,60=2×2×3×5,再写成标准式是22×3×5,再利用约数个数公式,约数个数=不同质因数指数加1然后再相乘,最后减去1,即得答案.【解答】60分解质因数60=2×2×3×5,再下称标准式是22×3×5,再利用约数个数公式,约数个数=不同质因数指数加1然后再相乘.60的不同约数(1除外)的个数是(2+1)×(1+1)×(1+1)﹣1=11个.答:答案是11个.【点评】约数个数公式的推导要用乘法原理,当然此题也可以用列举法求解.3.(5分)今年丹丹4岁,丹丹的爸爸28岁,a年后爸爸年龄是丹丹年龄的3倍,则a的值是8.【分析】根据“今年丹丹4岁,丹丹的爸爸28岁”,知道今年爸爸与丹丹相差28﹣4=24岁,再根据年龄差不会随时间的变化而改变,利用差倍公式,用24除以倍数差(3﹣1)即可求出当爸爸的年龄是丹丹年龄的3倍时丹丹的年龄,进而求出答案.【解答】解:年龄差:28﹣4=24(岁),丹丹的年龄:24÷(3﹣1)=24÷2=12(岁),12﹣4=8(年),所以,a的值是8.答:a年后爸爸年龄是丹丹年龄的3倍,则a的值是8.故答案为:8.【点评】关键是根据年龄差不会随时间的变化而改变,再根据差倍问题{差÷(倍数﹣1)=较小数,较小数×倍数=较大数,(或较小数+差=较大数)}与基本的数量关系解决问题.4.(5分)已知a比c大2,则三位自然数与的差是198.【分析】两个数字对调顺序的字母正好是a和c,而我们知道a﹣c=2.b在中间可以约掉.所以最终的差需要用a和c的差表示出来.【解答】解:=100a+10b+c﹣(100c+10b+a)=100a+10b+c﹣100c﹣10b﹣a=99a﹣99c=99(a﹣c)∵a﹣c=2∴99×2=198故答案为:198【点评】针对位值原理必须明白什么是完全拆分和不完全拆分.知道两数的差,我们就按照位值原理展开做差即可.5.(5分)正方形A的边长的10,若正方形B,C的边长都是自然数,且B,C的面积和等于A的面积,则B和C的边长的和是14.【分析】本题是说明两个正方形B和C的面积与A的面积相等,符合勾股定理,根据勾股定理a2+b2=c2即可求解.【解答】解:根据勾股定理a2+b2=c2得,其中一个正方形的边长是10,根据6,8,10是一组勾股数得.62+82=102满足条件.6+8=14,故答案为:14.【点评】本题考查对勾股定理的理解与运用,同时要掌握一些常见的勾股数组合,做题的时候比较快同时加强准确率.(3,4,5)(6,8,10,)(5,12,13)等6.(5分)已知9个数的平均数是9,如果把其中一个数改为9后,这9个数的平均数变为8,那么这个被改动的数原来是18.【分析】改动之前的总数是9×9=81,改动后的总数是8×9=72,前后相差9×9﹣8×9=9,说明这个数比原来减少了9,这个被改动的数原来是9+9=18;据此解答即可.【解答】解:9×9﹣8×9=81﹣72=99+9=18答:这个被改动的数原来是18.故答案为:18.【点评】此题考查了平均数的意义及求平均数的方法的拓展运用;知识点:总数量=平均数×总份数.7.(5分)在下面的格点图中,水平相邻和竖直相邻的两个格点的距离都是1,则图中阴影部分的面积是17.【分析】红色正方形的面积是3×3=9,每个外部的角的面积都是2×1÷2=1,8个一共是8,然后求整个的面积即可.【解答】解:3×3+2×1÷2×8=9+8科技新闻网:##科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料,我们是国内外最新的科技新闻网。
2016年小学五年级希望杯全国数学邀请赛试题(第二试)(含解析)
得分
二、解答题
12.小磊买3块橡皮,5支铅笔需付10.6元;若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是________________元。
13.张强骑车从公交车的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟。若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?
和差基本公式:(和+差)÷2=较大数,(和—差)÷2=较大数。
1——100这100个数的和是:1+2+3+4+……+100=5050;
剩下的98个数的和是:50×98=4900,则去掉的两个偶数的和是:5050—4900=150;差是2,有和差公式可知这两个数分别为:
(150+2)÷2=76;(150—2)÷2=74,所以这两个数的乘积是:76×74=5624。
14.如图4,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,求五边形EFGHI的面积。
15.定义:[a]表示不超过数a的最大自然数,如[0.6]=0,[1.25]=1。若[5a—0.9]=3a+0.7,求a的值。
16.有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
一、填空题
1.10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)=________________。
2.将1.41的小数点向右移动两位,得a,则a—1.41的整数部分是________________。
3.定义:m n=m×m—n×n,则2 4—4 6—6 8—8 10—……—98 100=________________。
备战2014希望杯.近五年真题汇编.5年级.第2试
参考答案 第十一届小学“ 希望杯”全国数学邀请赛五年级 第 2 试 ........................................................... 13 第十届小学“希望杯”全国数学邀请赛五年级 第 2 试 ............................................................... 16 第九届小学“希望杯”全国数学邀请赛五年级 第 2 试 ............................................................... 19 第八届小学“希望杯”全国数学邀请赛五年级 第 2 试 ............................................................... 22 第七届小学“希望杯”全国数学邀请赛五年级 第 2 试 ............................................................... 25
4. 54 个小朋友排队做游戏,每轮游戏有 12 个小朋友参加,游戏结束后,这 12 个小朋友按 原来的先后顺序排到队尾.如果游戏开始时,小亮站在队首,那么当小亮再次站在队首 时,已经做了_______轮游戏. 5. 有一列数,第 1 个是 1,从第 2 个数起,每个数比它前面相邻的数大 3,最后一个数是 100,将这些数相乘,则在计算结果的末尾中有______个连续的零. 6. 公元纪年法中,每四年含一个闰年,每个平年有 365 天,每个闰年有 366 天,2012 年是 闰年,元旦是星期日,那么,下一个元旦也是星期日的年份是______年. 7. 在平面上有 7 个点,其中任意 3 个点都不在同一条直线上.如果连接这个 7 个点中的每 两个点, 那么最多可以得到_____条线段; 以这些线段为边, 最多能构成_____个三角形. 8. 如图,在一个圆周上放了 1 枚黑色的围棋子和 2012 枚白色围棋子.若从黑子开始,按 顺时针方向,每隔 1 枚,取走 1 枚,则当取到黑子时,圆周上还剩______枚白子.
11-15年五年级数学希望杯第二试试题(复赛)
第九届小学“希望杯”全国数学邀请赛五年级第2试2011 年4 月10 日上午9:00至11:00 得分_____________一、填空题(每小题5 分,共60 分)1、计算:0.15÷2.1×56=___________。
2、15+115+1115+……+1111111115=____________。
3、一个自然数除以3,得余数2,用所得的商除以4,得余数3。
若用这个自然数除以6,得余数____________。
4、数一数,图1 中共有____________个长方形。
5、有一些自然数(0 除外)既是平方数,又是立方数(注:平方数可以写成两个相同的自然数的乘积,立方数可以写成三个相同的自然数的乘积)。
如:1=1×1=1×1×1,64=8×8=4×4×4。
那么在1000 以内的自然数中,这样的数有________个。
6、有一个自然数,它的最小的两个约数的差是4,最大的两个约数的差是308,则这个自然数是___________。
7、如图2,先将4 黑1 白共5 个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的 5个棋子拿掉。
如此不断操作下去,圆圈上的 5 个棋子中最多有____________个白子。
8、甲、乙两人分别从A、B 两地同时相向而行,甲的速度是乙的速度的3 倍,经过60 分钟,两人相遇。
然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行。
那么,当甲到达B地后,再经过___________分钟,乙到达A 地。
9、如图3,将一个棱长为1 米的正方体木块分别沿长、宽、高三个方向锯开1,2,3 次,得到24 个长方体木块。
这24 块长方体木块的表面积的和是_____________平方米。
10.如图4,小丽和小明的桶中原来各装有3 千克和5 千克水。
根据图中的信息可知,小丽的桶最多可以装___________千克水,小明的桶最多可以装____________千克水。
第十四届小学“希望杯”全国数学邀请赛六年级第二试试题及解析
第十四届小学“希望杯”全国数学邀请赛六年级第2试试题一、填空题.1.计算:323 1.33243⨯+÷=________.【答案】6【考点】计算,提取公因数【解析】32 3 1.332 43⨯+÷=3.75 1.330.375⨯+⨯0.375(133)=⨯+6=2.已知0.5a=,13b=,则a b-是178的_______倍.【答案】13【考点】计算,分数【解析】110.536a b-=-=,1113678÷=3.若111123452x+++<,则自然数x的最小值是_______.【答案】3【考点】计算,分数【解析】1111773023456060x+++=<,3077x >,则x 最小为3.4. 定义:如果::a b b c =,那么b 称为a 和c 的比例中项.如1:22:4=,则2是1和4的比例中项.已知0.6是0.9和x 的比例中项,15是12和y 的比例中项,则x y +=______.【答案】0.48【考点】计算,比例【解析】根据比例的基本性质得:0.60.60.9x ⨯=,111552y ⨯=,解得:0.4x =,0.08y =,则0.40.080.48x y +=+=5. A 、B 、C 三人单独完成一项工程所用的时间如图所示.若A 上午8:00开始工作,27分钟后,B 和C 加入,三人一起工作,则他们完成这项工程的时刻是______时______分.【答案】9时57分【考点】应用题,工程问题【解析】如图得A 、B 、C 的工作效率分别是111645、、,27分钟为920小时,则A 单独的工作量:19362040⨯=,三人合作时间:31113(1)()406452-÷++=(小时),共花时间:933920220+=(小时),396011720⨯=(分钟),即完成这工程时刻为9时57分.6. 如图,A ,B 盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转运,若指针指向A 盘的数字是a ,指针指向B 盘的数字是b ,则两位数ab 是质数的概率是________.【答案】720【考点】数论,质数【解析】根据乘法原理可得:组成两位数ab 共有:4520⨯=(个),两位数ab 是质数的情况有:11,13,17,23,31,37,53,共7个,则两位数ab 是质数的概率为:720. 7. 在算式“8=5⨯⨯希望杯就是好就是好希望杯”中,不同的汉字代表不同的数字,则希望杯就是好所代表的六位偶数是______.【答案】256410【考点】数论,位值原理【解析】(1000)8(1000)5⨯+⨯=⨯+⨯希望杯就是好就是好希望杯8000850005⨯+⨯=⨯+⨯希望杯就是好就是好希望杯79954992⨯=⨯希望杯就是好,205128⨯=⨯希望杯就是好,所以得:当128,205==希望杯就是好时,结果不是六位偶数,当1282256,2052410=⨯==⨯=希望杯就是好,符合要求;当扩大4倍时,出现753213521重复数字,当扩大6倍及以上的倍数,不是六位数,不符合要求;综合得:256410=希望杯就是好.8. 如图,正方形ABCD 中,点E 在边AD 上,点F 在边DC 上,AE =2ED ,DF =3FC ,则△BFE的面积与正方形ABCD 的面积的比值是_______.【答案】5:12【考点】几何,比例模型【解析】设正方形面积ABCD 为1,连接BD 、AC ,121233AEB S ∆=⨯=,11312348EDF S ∆=⨯⨯=,111248BFC S ∆=⨯=,1115138812BEF S ∆=---=,5::15:1212BEF ABCD S S ∆==正方形.9. 如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率π取3)【答案】4.5【考点】几何,圆的面积【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.2个三角形的面积:422=4⨯÷;剩余阴影面积:2r 221231210.5π÷-⨯÷=⨯÷-=阴影部分面积:40.5=4.5+10. 已知三个最简真分数的分母分别是6,15和20,它们的乘积是130.则在这三个最简真分数中,最大的数是_______.【答案】56【考点】数论,分解质因数【解析】设3个最简真分数的分子分别为a b c ,,,则三个最简真分数为61520a b c、、,160615201800301800a b c abc ⨯⨯===,602235=⨯⨯⨯,则分析得三个最简真分数为:54361520、、,最大为56.11. 将100个乒乓球放入从左到右排成一行的26个盒子中.如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15.那么最右边的盒子中有乒乓球________个.【答案】6【考点】找规律【解析】由题意得:每4个盒子为一组,每组的乒乓球数之和为15个,每组的第1个盒子有4个乒乓球,264=62÷,将100个乒乓球分成6组余2个盒子,100156=10-⨯,104=6-.12. 两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与短蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧_________分钟.【答案】150【考点】比例应用题【解析】因为是同时燃烧,两根蜡烛原来与现在的长度差是不变的8475180.5-÷=(),较长那根还能燃烧:750.5150÷=(分钟)二、解答题13.如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.①②③【答案】(1)91;(2)420【考点】几何,正方体【解析】(1)图⑥正方体个数为:222222+++++=(个)12345691(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;+++++++++前后左右:12345678910=55⨯上下:1010=100总表面积:5541002420⨯+⨯=14. 解方程:[]{}{}29x x x x ⨯+=+,其中[]x 表示x 的整数部分,{}x 表示x 的小数部分,如[]3.143=,{}3.140.14=.(要求写出所有的解)【答案】9.0、187、173、365【考点】计算【解析】 因[]{}x x x =+,原式可化简为:[]{}[]{}{}29x x x x x ⨯++=+,整理得,[]{}[]{}+9x x x x ⨯-=,[]{}(1)(+1)8x x -⨯=,因为{}1+12x ≤≤,则[]418x ≤-≤,[]59x ≤≤.当[]9x =,9.0x =;当[]18,87x x ==;当[]17,73x x ==;当[]36,65x x ==;当[]45,54x x ==不满足;则符合题意取值有:1139.0876735x x x x ====、、、.15. 阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的的话:阿春:“大家取的糖果个数都不同!”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下糖果的23.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【答案】(1)第4个;(2)15颗;【考点】逻辑推理【解析】根据题意得:由于阿天、阿真、阿美、阿丽取的是剩下的糖果,则第1个为阿春,又因为阿美取了剩下的全部糖果,则第5个为阿美.设阿美最后取1份,当第4个为阿丽或阿丽时,都取1份,矛盾,则第4个为阿真.当第4个为阿真时,阿真取2份,倒推得阿真说的“剩下的”为3份,阿天和阿丽说法一致,不妨设第3个为阿天,阿真取3份,此时“剩下的”6份,第2个为阿丽,阿丽取6份,此时“剩下的”12份,第1个为阿春,因个数不同,则阿春最少取3份,所以这盒糖果最少有12+3=15(份),则最少为15颗.综上,阿真是第4个取糖果的,这盒糖果最少有15颗.16.甲乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【答案】1550【考点】行程问题【解析】设山底到山顶全程为S ,我们可以把下山的路程转化成上山的路程.在第一个过程中,甲下山的150米可以转化成上山的50米,则甲以上山的速度可以走50S +,乙以上山的速度可以走150S -,则50150V S V S 甲乙+=-; 在第二个过程中,甲下山的S 可以转化成上山的3S ,则甲以上山的速度可以走43S ,乙以上山的速度可以走1766S S S +=,则483776S V V S 甲乙==. 5081507S S +=-,计算得,1550S =米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四届小学“希望杯”全国数学邀请赛
五年级第2试试题
2016年4月10日上午9:00至11:00
一、填空题(每小题5分,共60分.)
1. 10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)=______.
2. 小磊买3块橡皮,5支铅笔需付10.6元.若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是______元.
3. 将1.41的小数点向右移动两位,得a,则a-1.41的整数部分是
______.
4. 定义:m⊗n=m×m-n×n,则2⊗4-4⊗6-6⊗8-8⊗10- (98)
100=______.
5. 从1~100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是______.
6. 如图1,四边形ABCD是正方形,ABGF和FGCD都是长方形,点E在AB 上,EC交FG于点M.若AB=6,△ECF的面积是12,则△BCM的面积是______.
7. 在一个除法算式中,被除数是12,除数是小于12的自然数,则可能出现的不同的余数之和是______.
8. 图2是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最小是______.
9. 正方形A 、B 、C 、D 的边长依次是15,b ,10,d (b ,d 都是自然数),若它们的面积满足A B C D S S S S =++,则b+d=______.
10. 根据图3所示的规律,推知M=______.
11. 一堆珍珠共6468颗,若每次取相同的质数颗,若干次后刚好取完,不同的取法有a 种;若每次取相同的奇数颗,若干次后刚好取完,不同的取法有b 种,则a+b=______.
12. 若A 是质数,并且A -4,A -6,A -12,A -18也是质数,则
A=______.
二、解答题(每小题15分,共60分.)每题都要写出推算过程.
13. 张强骑车从公交车的A 站出发,沿着公交路线骑行,每分钟行250米.一段时间后,一辆公交车也从A 站出发,每分钟行450米,并且每行驶6分钟需靠站停一分钟.若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?
14. 如图4,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,求五边形EFGHI的面积.
15. 定义:[a]表示不超过a的最大自然数,如[0.6]=0,[1.25]=1.若[5a -0.9]=3a+0.7,求a的值.
16. 有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?。