反比例函数的图象和性质(1) 22
反比例函数的图像和性质
> y >y.
1 2
3 (2)已知 x1,y1 和 x2,y2 是反比例函数 y 的两对自变 x 量与函数的对应值.若 x1 x2 0,则 0 > y1 > y2.
2.已知( x1,y1 ),( x2,y2),( x3,y3 )是反比例函数
2 的图象上的三个点,并且 y1 y2 y3 0 ,则 y x x1,x2,x3 的大小关系是( C )
-2
-1
0
1
2
3
4
5
6
x
-1
-2 -3
有两条曲线共同组成 一个反比例函数的图像, 叫双曲线。
-4 -5 -6
反比例函数图像的两个分支关于 原点对称,反比例函数的图像(2个分 支作为一个整体)是一个中心对称图 形。
列表(在自变量取值范围内取一些值,并计算相应的函数值)
… - -3 -2 -1 … 0 … 1 2 3 6 … 6 6 x Y= … - -2 -3 -6 … / … 6 3 2 1 … 1 · x
则y1与y2的大小关系(从大到小)
为
y2> y1
.
当k<0时:
在每一个象限内,y随x的增大而增大
1.已知点A(-2,y1),B(-1,y2) 1<0<x2 A(x1,y1),B(x2,y2)且x
k4 都在反比例函数 y y x(k<0) 的图象上, x
则y1与y2的大小关系(从大到小)
为
y1 >0>y2
性 质
1.反比例函数的图象是双曲线;
2.反比例函数图象无限向 x,y 轴逼近,但总不相交; 3.反比例函数自身都是中心对称图形,对称中心是坐 标原点.
1、反比例函数y= - 5 的图象大致是( x y y
1.2反比例函数的图象与性质
(2) 判断点A(-2,-4), B(3,5)是否在这个
函数的图象上;
解:把点A, B
的坐标分别代入
y
8
,
x
可知点A 的坐标满足函数表达式, 点B 的坐标
不满足函数表达式, 所以点A 在这个函数的图
象上, 点B 不在这个函数的图象上.
精品课件
例1.已知反比例函数y k x
(2,4).
的图象经过点P
x (2) 当 k>0 时,两支曲线分别位于第_一__、_三__象限, 在
每个象限内 y 随 x 值的增大而减小
.
(3) 当 k<0 时,两支曲线分别位于第__二_、_四__象限,在
每个象限内 y 随 x 值的增大而 增大
.
(4)反比例函数图象与坐标轴不相交.
(5)反比例函数y= —xk (k≠0) 的图象关于直角坐标系的原点
又有当 y一定时,x互 为相反数,因此它们 也关于 y 轴对称.
精品课件
小结与复习
解析式
y k (k 0) x
图象
y k (k 0) x
象限 增减性
一三象限
二四象限
在每个象限内,在每个象限内,
y随x的增大而 y随x的增大而
减小
增大
精品课件
做一做
习题一:简单图像性质
1.反比例函数 y 5 它的图象经过 二四3 x
3.为什么反比例函数
y k (k 0) x
的图象关于原点对称?
由解析式可知: 坐标点(x,y)和 坐标点(y,x)都 在函数的图象上, 因此它关于原点对称.
精品课件
说一说
从反比例函数的解析式中再分析
4. 反比例函数
y k (k 0) x
反比例函数反比例函数的图象与性质
2023-11-06
contents
目录
• 反比例函数概述 • 反比例函数的图象 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01
反比例函数概述
反比例函数的定义
反比例函数定义
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数 。
反比例函数的积分特性
反比例函数在区间(-∞,0)和(0,+∞) 上的积分等于常数k。
VS
反比例函数在区间(-∞,x)和(x,+∞)上 的积分等于常数k乘以x。
04
反比例函数的应用
用反比例函数解决实际问题
电力分布
在电力分布问题中,常常 需要使用反比例函数来计 算电力的分布情况,以便 合理规划电力设施。
反比例函数的定义域和值域
定义域为{x|x≠0},值域为{y|y≠0}。
反比例函数的单调性
在区间(-∞,0)和(0,∞)上单调递减。
反比例函数的基本形式
反比例函数的基本形式
01
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数。Biblioteka 反比例函数的解析式02
反比例函数通常被表示为y = k / x的形式,其中k是常数且不
热传导
在热传导中,可以使用反比例函数 来描述热量在介质中的传导规律。
在几何中的应用
圆的面积
在计算圆的面积时,可以使用 反比例函数来描述圆的面积与
半径之间的关系。
球的体积
在计算球的体积时,可以使用 反比例函数来描述球的体积与
半径之间的关系。
光线反射
在光线反射问题中,可以使用 反比例函数来描述光线反射的
反比例函数图像与性质定 课件
增 减 性
位 置
K<0
增 减 性
二、四 象限 从左到右下降
y随x的增大而减小
6 画出反比例函数 y = 和 x 的函数图象。 列 描 描点法 表 点
x
y= 6 x y= 6 x
y= 连 线
5 6 …
6 x
…
-2 -1 1
2
3 4
注注意:①列表时自变量 取值要均匀和对称②x≠0 ③选整数较好计算和描点。 :
y y y y
k x
(A)
0
x
(B)
0
x
(C)
0
x
(D)
0
x
2.若点(-2,y1)、(-1,y2)、(2,y3)在
反比例函数 的图象上,则( B )
A、y1>y2>y3
C、y3>y1>y2
B、y2>y1>y3
D、y3>y2>y1
正 比 例 函 数 和 反 比 例 函 数 的 比 较
B
-4 -5 -6
y
请大家结合反比例函数 6 y = y= 6 的函数图象, x x和 回答以下问题: 1、这两个函数的图象所在的象限一
y= 6 x
x
0
y
样吗?分别在哪个象限?
2、你觉得反比例函数y= 定的?
k x
y = -6 x
x
(k是常
0
数,k≠0)的图像所在象限由什么决
4 5
-6 -5 -4 -3 -2 -1 0 1 2 3
x
上升;在每个象限内y随x的增 大而增大。
bg
反比例函数的图象和性质: 1.反比例函数的图象是双曲线; 2.图象性质见下表: k y= K>0 K<0
22.6.2_反比例函数的图像与性质
自学检测:
函数 填表 分析 正比 例函 数和 反比 例函 数的 区别 正比例函数
y=kx ( k≠0 )
反比例函数
k y = x ( k是常数,k≠0 )
解析 式
图象形 状
直线
位 置
双曲线
一三 象限
y随x的增大而减小
一三 象限
y随x的增大而增大
K>0
增 减 性
位 置
二四 象限
y随x的增大而减小
二四 象限
描点法 列 表 描 点
6 x
函数图象画法
连 线
x
y= 6 x y= 6 x
注意:①列表时自变量 取值要均匀和对称②x≠0 ③选整数较好计算和描点。
x
… -6 1
y
6 5 4 36
2 3
3 2
4
5
6 1
… … …
y= 6 … x y= 6 … x
-1 -1.2 -1.5 -2 -3
垂足为 记 ΔAOB的面积为S1 , D. Rt RtΔOC D的面积为 S2 , 则 C ___.
y
A.S1>S2 B.S1<S2 C.S1 = S2 D.S1和S2的大小关系不能确定.
o
S2
S1
A
B
x
C
D
基础练习:
1 19.如图, 在y ( x 0)的图像上有三点 , B, C , A x 经过三点分别向 轴引垂线, 交x轴于A1 , B1 , C1三点, x 边结OA, OB, OC, 记OAA , OBB1 , OCC1的 1
y
6 y=x
0 x
1.当k>0时,图象的两个 分支分别在第一、三象 限内,在每个象限内, y随x的增大而减小; 2.当k<0时,图象的两个分支 分别在第二、四象限内,在 每个象限内,y随x的增大而 增大。
26.1.2反比例函数的图象与性质(1)
o
x
(6)求经过点A、B的一次函数的解析式;
(7)连OA、OB,设点C是直线AB与y轴的交点,
求三角形AOB的面积; (8)当x为何值时反比例函数的值大于一次函数的值; y 4 C
A(1,4)
(-4,-1) B
o1
x
提示: 利用图像比较大小简单明了。
2、在反比例函数 的图像上有两点 A(x1, y1)、B(x2, y2), 当x1< 0 <x2 时,有 y1 < y2, 则 m的取值范围是( C ) A. m < 0 B. m >0 C. m < 1 D. m > 1 2 2 y y
-6
-5
-4
-3
-2
-1 -1 -2 -3 -4 -5 -6
0
1
2
3
4
5
6
x
-6
-5
-4
-3
-2
-1 -1 -2 -3 -4
0
1
2
3
4
5
6
x
-5 -6
归纳:反比例函数的图象和性质 1.反比例函数的图象是双曲线. 2.图象性质见下表: y=
k x
K>0
K<0
图象
性质
当k>0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小.
跟踪练习6
考察函数
y
2 x
的图象,当x=-2时,y=
-1 ___
,当x<-2
时,y的取值范围是 -1<y<0 _____ ;当y﹥-1时,x的取值范围 或x>0 是 -2<x<0 _________ .
数学反比例函数的图象及性质知识点归纳
数学反比例函数的图象及性质知识点归纳
数学反比例函数的图象及性质知识点归纳
店铺您整理了数学反比例函数的图象及性质知识点归纳:反比例函数的图象及性质,希望帮助您提供多想法。
和店铺一起期待学期的学习吧,加油哦!
反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。
它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的'两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题:
(1)画反比例函数图象的方法是描点法;
(2)画反比例函数图象要注意自变量的取值范围是k≠0,因此不能把两个分支连接起来。
k≠0
(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y轴的变化趋势。
反比例函数的性质:
y=k/x(k≠0)的变形形式为xy=k(常数)所以:
(1)其图象的位置是:
当k﹥0时,x、y同号,图象在第一、三象限;
当k﹤0时,x、y异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数y=k/x(k≠0)的图象上,则点(—m,—n)也在此图象上,故反比例函数的图象关于原点对称。
(3)当k﹥0时,在每个象限内,y随x的增大而减小;
当k﹤0时,在每个象限内,y随x的增大而增大;
【数学反比例函数的图象及性质知识点归纳】。
人教版数学九年级下册26.1.2反比例函数图象和性质课件
在反比例函数中,自变量 $x$ 和因变量 $y$ 之间存在一种倒数关系。 当 $x$ 增大时,$y$ 减小;当 $x$ 减小时,$y$ 增大。这种关系反映 了反比例函数的基本特性。
函数值域及变化规律
函数值域:反比例函 数的值域为所有非零 实数。当 $k > 0$ 时 ,函数图象位于第一 、三象限;当 $k < 0$ 时,函数图象位于 第二、四象限。
变化规律
1. 当 $k > 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐增大到正无穷大 (或从负无穷大逐渐 减小到零)。
2. 当 $k < 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐减小到负无穷大 (或从正无穷大逐渐 增大到零)。
不具备单调性。
与一次函数比较
关系
一次函数 $y = ax + b$ (a ≠ 0) 和反比例函数无直接关联。
图象
一次函数的图象是一条直线,而反比例函数的图象是两条曲线。
性质
一次函数在其定义域内是单调的,而反比例函数在其定义域内不具备单调性。此外,一次 函数的值域为全体实数,而反比例函数的值域为除去使分母为零的点外的全体实数。
3. 在每个象限内,随 着 $x$ 的绝对值增大 ,函数值 $y$ 的绝对 值逐渐减小。
02
反比例函数图象绘制方法
列表法绘制步骤
确定自变量的取值范围,并在此范围 内选取若干个自变量的值。
列出表格,将自变量和对应的函数值 分别填入表格中。
根据反比例函数的解析式,求出与每 个自变量值对应的函数值。
根据表格中的数据,在坐标系中描出 各点,并用平滑的曲线连接各点,即 可得到反比例函数的图象。
反比例函数的图像和性质
反比函数的图象和性质是什么?
反比函数的图象是什么?反比函数的图像是在一个坐标轴上有两根相互对称的曲线而组成,性质分别为:①单调性、②面积、③图想表达、④对称性,以上就是反比函数的图象和性质。
接下来详细的看一下其中的内容吧!
①单调性:反比函数是具有单调性的,当函数内容k大于零的时候,图像分别位于第一三象限,而在每一个象限的内部,从左往右来数,y 是随着x的增大而减少,如果K小于零的时候,图像分别位于第二四象限,在每一个象限的内部,y随着x的增大而增大。
当K大于零的时候,函数在x小于零上是一个减函数,而在x大于零的时候,也是为减函数。
在k小于零的时候,函数在x小于零上为增函数,在x大于零的时候同为增函数。
②面积:在一个反比例函数上面取两个点,这两个点可以随意的取,然后过点分别做一个x轴和一个y轴的平行线,而这个平行线是可以和坐标轴围成一个矩形,而这一个矩形的面积为绝对值得K。
而在反比例函数上,找到一个点,向X/Y轴分别做一个垂线,设置一个围好的矩形,而这个矩形则为QOWM,这个垂线分别位于y轴和x 轴,则围成形状的这个面积为绝对值得K,则连接这个矩形的对角线为OM,则满足RT△OMQ的面积等于二分之一绝对值得K。
③图像表达:对于反比例函数的图像来说的话,不和x轴或者是y轴的相交渐近线为x轴和y轴,K值相等的反比例函数图像是相互重合的,k值不相等的反比例函数图像是永远都不会相交的,而绝对值得K 越大的话,反比例函数距离坐标轴就会越来越远。
④对称性:反比例函数是一种中心对称的图形,对称中心是原点,而正是这样的一个反比例函数的图像也是轴对称图形,随意反比例函数上的点是关于原点坐标对称的,图像关于原点对称。
反比例函数的图像与性质
m−5
例2:如图是反比例函数 : 的图象一支, 的图象一支, 根据图象回答下列问题 : 为什么? 为什么? (1)图象的另一支在哪个象限?常数 的取值 )图象的另一支在哪个象限?常数m的取值 范围是什么? 范围是什么? (2)在这个函数图象的某一支上任取点 (a, )在这个函数图象的某一支上任取点A( , b)和B(a′,b ′ ),如果 ) ( , ),如果a>a′,那 么b和b′有 , 和 有 如果 怎样的大小关系? 怎样 置
二四 象限
y随x的增大而减小 随 的增大而减小
K<0
增 减 性
你会做吗? 你会做吗?
k 过点(3, , Ⅰ.若双曲线 y = 过点 ,-2),则下 若双曲线 x 列点在双曲线上的是( 列点在双曲线上的是 C )
A (0,-6) , C (2,-3) ,
B (-3,0) ,
5 D ( − ,8) 4
已知反比例函数的图象经过点A(2,6). 例1:已知反比例函数的图象经过点 已知反比例函数的图象经过点 , (1)这个函数的图象分布在哪些象限 随x的增大如何 这个函数的图象分布在哪些象限?y随 的增大如何 这个函数的图象分布在哪些象限 变化? 变化 1 , −4 4 )和D(2,5)是否在 (2)点B(3,4)、C( −2 点 , 、 ( , ) Xy=k 5 2 这个函数的图象上? 这个函数的图象上? (2)解: 分别把点 分别把点B,C,D的坐标代入,可知点 的坐标代入, ) 的坐标代入 可知点B,C 的坐标满足函数解析式, 的坐标满足函数解析式,点D的坐标不 满足函数解析 的坐标不 式. 所以点B,C在函数的图象上 ,点D不在这个函数的 所以点 在函数的图象上 点 不在这个函数的 图象上. 图象上
我超越我最棒
反比例函数图象的特征及性质
性质
当x增大时,y值减小,但xy的乘积保持不变 ,等于比例系数。
对反比例函数应用的展望
01
拓展应用领域
反比例函数作为一种基本的函 数类型,在物理、化学、工程 等领域都有广泛的应用。未来 可以进一步探索其在更多领域 的应用可能性。
02
深化理论研究
虽然反比例函数的基本性质已 经比较清楚,但是关于其更深 层次的理论研究仍然有待加强 。例如,可以进一步探讨反比 例函数与其他函数类型的复合 、变换等问题。
感谢您的观看
THANKS
性质的比较
反比例函数性质
反比例函数在其定义域内是连续的,且当x趋近于0时,y趋近于无穷大或无穷小。此外,反比例函数在其定义域 内具有单调性,即当k>0时,在每个象限内随着x的增大,y值逐渐减小;当k<0时,则相反。
一次函数性质
一次函数在其定义域内是连续的,且当x趋近于无穷大或无穷小时,y也趋近于无穷大或无穷小。此外,一次函 数的斜率决定了函数的增减性,即当斜率大于0时,函数为增函数;当斜率小于0时,函数为减函数。
反比例函数的一般形式
反比例函数的一般形式为 y = k/x(k ≠ 0),其中 k 是比例系数。
当 k > 0 时,反比例函数的图象位于 第一象限和第三象限;当 k < 0 时, 反比例函数的图象位于第二象限和第 四象限。
比例系数 k 决定了反比例函数的图象 特征和性质。
02
反比例函数的图象
图象的形状
反比例函数的图象是由两支分别位于第一、三象限和第二、四象限的双曲线组成。
当$k > 0$时,两支曲线分别位于第一、三象限内;当$k < 0$时,两支曲线分别位 于第二、四象限内。
在每个象限内,随着$x$的增大,$y$值逐渐减小,曲线从坐标轴附近向无限远处延 伸。
反比例函数的图象和性质(1)课件
反比例函数的图象永远不会与坐标轴相交。
易错难点剖析指导
错误理解反比例函数的定义
学生容易将反比例函数与正比例函数混淆。正比例函数的形式是 $y = kx$,而反比例函 数的形式是 $y = frac{k}{x}$。在理解反比例函数时,要注意区分这两种函数形式。
分段连接
根据点的分布情况,可以将曲线分成 若干段进行连接。每一段都可以用一 条平滑的曲线来表示。
保持连续性
在连接各段曲线时,要确保它们之间 的连续性,避免出现断点或尖角。
调整和优化
连接完成后,可以对曲线进行调整和 优化,使其更加符合反比例函数的性 质和要求。
03
反比例函数性质分析
对称性特点
反比例函数的图象关于原点对称,即如果函数图象上有点(x, y),则点(-x, -y)也 在函数图象上。
04
反比例函数在实际问题中应用举例
面积问题求解思路及过程展示
思路
根据题目所给条件,设立反比例函数关系式,通过已知量求 解未知量。
过程
首先明确题目中的已知量和未知量,然后根据面积公式建立 反比例函数关系式,通过代入已知量求解未知量,最后进行 答案的验证和解释。
速度问题求解思路及过程展示
思路
根据题目所给条件,设立反比例函数关系式,通过已知速度和时间求解未知路 程。
工程中的应用
在工程领域中,反比例函数可以用来描述一些工程问题。例如,在电阻、电感、电容等电子元件的参数 计算中,经常涉及到反比例关系。通过利用反比例函数的性质进行计算和分析,可以简化问题的求解过 程。
THANKS
感谢观看
表达式
反比例函数的一般表达式为 $y = frac{k}{x}$,其中 $k$ 是比例系数, 且 $k neq 0$。
26.1.2反比例函数的图象和性质
随自变量x增大而增大”的是( B )
A.①③ B.③④ C.②④ D.②③
课堂检测
26.1 反比例函数/
基础巩固题
1.(2018•香坊区)对于反比例函数 y 2 ,下列说法 x
不正确的是( C )
A.点(﹣2,﹣1)在它的图象上
y
y 2 x
y
y 4 x
y y 6
x
O
x
O
x
O
x
探究新知
26.1 反比例函数/
归纳:
反比例函数
yk x
(k<0) 的图象和性质:
y
(1)由两条曲线组成,且分别位于
第二、四象限,它们与x轴、y轴都
不相交;
O
x (2)在每个象限内,y随x的增大而
增大.
探究新知
26.1 反比例函数/
y
k x
察 的图象,有哪些共同特征?
与 思
y
y 2 x
y
y 4 x
y y 6
x
考
O
x
O
x
O
x
探究新知
26.1 反比例函数/
回顾上面我们利用函数图象,从特殊到一般研究反比
例函数 y k x
(k>0) 的性质的过程,你能用类似的方法
研究反比例函数
y
k x
(k<0)的图象和性质吗?
(2) 判断点 B (-1,6),C(3,2) 是否在这个函数的 图象上,并说明理由;
解:分别把点 B,C 的坐标代入反比例函数的解析式, 因为点 B 的坐标不满足该解析式,点C的坐标满足该 解析式,所以点 B 不在该函数的图象上,点C 在该函 数的图象上.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题 反比例函数的图象和性质(1) 课时 22 班级: 姓名: ●自学 自学---质疑---解疑 ▲学习目标: 1.会用描点法画反比例函数的图象。
2.结合图象分析并掌握反比例函数的性质。
3.体会函数的三种表示方法,领会数形结合的思想方法. 4.重点:理解并掌握反比例函数的图象和性质。
难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质。
▲自学方法 1.认真看书本41-43页的内容,尝试独立完成,然后组内合作交流。
2.教材第41页的例2是让学生经历用描点法画反比例函数图象的过程,一方面能进一步熟悉作函数图象的方法,提高基本技能;另一方面可以加深学生对反比例函数图象的认识,了解函数的变化规律,从而为探究函数的性质作准备。
3.一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么?其性质有哪些?正比例函数y =kx (k ≠0)呢? 4.画函数图象的方法是什么?其一般步骤有哪些?应注意什么? 5.反比例函数的图象是什么样呢? ★达成共识:1. 用描点法画图:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值。
(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确。
(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线. (4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴。
2. 反比例函数的性质: . ●量学 自测---互查---互教 1.已知反比例函数32)1(--=m x m y 的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的变化情况? (分析:此题要考虑两个方面,一是反比例函数的定义,即1-=kx y (k ≠0)自变量x 的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k <0,则m -1<0,不要忽视这个条件)
2.如图,过反比例函数x y 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△
BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )
(A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定
●示学用学 展示---反馈---导学---点播
1.已知反比例函数x
k y -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限 (2)在第二象限内,y 随x 的增大而增大
2.函数y =-ax +a 与x
a y -=(a ≠0)在同一坐标系中的图象可能是( )
3.在平面直角坐标系内,过反比例函数x
k y =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为
●测学 巩固---运用---拓展
1.若函数x m y )12(-=与x m y -=
3的图象交于第一、三象限,则m 的取值范围是 2.反比例函数x
y 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ; 当x >-2时;y 的取值范围是
3.已知反比例函数y a x a =--()226,当x >0时y 随x 的增大而增大,求函数关系式. (答案:3.x
y a 25,5--=-
= )
●思学 回顾---总结---反思。