二阶常微分方程解
二阶微分方程的3种通解
二阶微分方程的3种通解“二阶微分方程的3种通解”是微积分中的一门重要课题。
它是研究复杂的动态系统的重要研究工具,也是理解现实世界的运行规律的有力手段。
本文旨在介绍二阶微分方程的三种通解。
一、什么是二阶微分方程二阶微分方程是一种常微分方程,它可以用来描述复杂的动态系统。
定义上它就是将变量y和它的导数y1放入一个非齐次微分方程中,使得它们的值随时间的变化满足这个方程,即:a1(t)y(t)+a2(t)y(t)+a3(t)F(t)=0其中,a1(t)、a2(t)、a3(t)是方程的系数函数,而F(t)是方程右边的非齐次项,是外界作用而引入的。
二、二阶微分方程的3种通解1.特解特解是指对具体二阶微分方程求出的特殊解,它是由具体方程确定的。
这种解与普通解不一样,它是一个全体解,不需要任何约束条件,而普通解需要满足初值条件。
特解的形式是由双曲函数表示的。
2.普通解普通解是指满足二阶微分方程的通用解,它可以用不同的参数来描述多个解,用来满足不同的初值条件。
它的形式是由一个线性组合的两个线性无关的解所组成,即:y=c1y1+c2y2,其中c1,c2是常数,而y1,y2则是线性无关的解。
3.通用解通用解是指二阶微分方程可以求得的最一般的解,它由两个线性无关的特解的线性组合所组成,即:y=a1y1+a2y2,其中a1,a2是常数,而y1,y2则是线性无关的特解。
三、总结从本文所介绍的二阶微分方程的三种通解的形式来看,可以不难发现:特解是满足特定方程的特定解;普通解是满足特定方程的通用解;而通用解则是满足特定方程的最一般解。
因此,二阶微分方程求解的3种通解形式是有用的,可以帮助我们研究复杂的动态系统,并理解真实世界的运行规律。
本文介绍了二阶微分方程的三种通解,即特解、普通解和通用解,以及它们之间的区别。
它们可以用来描述复杂的动态系统,是理解现实世界的运行规律的有力手段。
同时我们也可以看到,二阶微分方程的求解是一个复杂但又有趣的问题,它不仅需要我们掌握许多数学知识,还需要我们借助计算机等工具来解决实际问题。
二阶常系数线性微分方程的解法word版
第八章 讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' 1的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 1变成0=+'+''qy y p y 2我们把方程2叫做二阶常系数齐次线性方程,把方程式1叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式2的两个解, 则2211y C y C y +=也是式2的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程2的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程2的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程2的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式2的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间a,b 内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式2的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数是方程式2的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=21,C C 是任意常数是方程0=+''y y 的通解.由于指数函数rxe y =r 为常数和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rxe y =满足方程2.将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程2,得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r 3只要r 满足方程式3,rx e y =就是方程式2的解.我们把方程式3叫做方程式2的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程2y y y ,,'''的系数. 特征方程3的两个根为 2422,1q p p r -±-=, 因此方程式2的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程2的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程2的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程2的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程2, 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程3的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程2的另一个解 x r xe y 12=.那么,方程2的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程3有一对共轭复根 βαβαi r i r -=+=21, 0≠β于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程2的解具有叠加性,所以-1y ,-2y 还是方程2的解,并且≠==--x x e x e y y x x βββααtan cos sin 12常数,所以方程2的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:1写出方程2的特征方程02=++q pr r2求特征方程的两个根21,r r3根据21,r r 的不同情形,按下表写出方程2的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为t e t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程1的一个特解,Y 是式1所对应的齐次方程式2的通解,则*+=y Y y 是方程式1的通解.证明 把*+=y Y y 代入方程1的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程1的两端恒等,所以*+=y Y y 是方程1的解. 定理4 设二阶非齐次线性方程1的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' 4 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程4的特解, 非齐次线性方程1的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程1的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程1的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程1并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ 5以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:1 若λ不是方程式2的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式5的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入5式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*2 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式5成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.3 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使5式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式1中的x m e x P x f λ)()(=,则式1的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令xe xb y 20-=*,代入原方程解得230-=b故所求特解为 xxe y 223--=* .例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 xe x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去x e 得126-=+x b ax比较系数,得61=a 21-=b于是 xe x x y )216(2-=*所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法 ,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式1成为x B x A q y p y ωωsin cos +=+'+'' 7这种类型的三角函数的导数,仍属同一类型,因此方程式7的特解*y 也应属同一类型,可以证明式7的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a 解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=*** 代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x sin 51cos 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。
二阶常微分方程的特解
二阶常微分方程的特解(原创版)目录1.二阶常微分方程的一般形式2.特解的定义和性质3.求解二阶常微分方程特解的方法4.二阶常微分方程特解的应用实例正文二阶常微分方程的一般形式为:a * y"" +b * y" +c * y = 0其中,a、b、c 为常数,y 为函数,y"表示 y 的一阶导数,y""表示y 的二阶导数。
二阶常微分方程的解法有多种,其中一种较为常见的方法是求解特解。
特解是指二阶常微分方程的一组特例解,它具有以下性质:1.特解是二阶常微分方程的解,即满足微分方程;2.特解是线性无关的,即不同特解之间不能通过线性组合得到;3.特解是特例的,即特解的存在性和性质与微分方程的系数有关。
求解二阶常微分方程特解的方法有多种,其中较为常见的有以下几种:1.常数变易法:适用于 a*y"" + b*y" + c*y = 0 型微分方程,通过变易常数,将微分方程转化为一阶线性微分方程求解;2.待定系数法:适用于形如 a * y"" + b * y" + c * y = f(x) 的微分方程,通过设定特解的形式,将系数与待定系数联系起来求解;3.矩阵法:适用于高阶微分方程,通过构造齐次线性微分方程组,利用矩阵的性质求解特解。
二阶常微分方程特解在实际应用中有广泛的应用,例如在物理、化学、生物等学科中,常常需要通过求解微分方程特解来描述某一现象或过程。
以下是一个二阶常微分方程特解的应用实例:考虑以下一阶线性微分方程:y" + 3y = exp(x)该微分方程的特解为:y = C * exp(-3x)其中,C 为任意常数。
二阶常微分方程的解法
二阶常微分方程的解法二阶常微分方程是微积分中的一个重要概念,涉及到求解具有两个未知函数的微分方程。
本文将介绍二阶常微分方程的一些解法方法。
一、可分离变量法对于形如f''(x) = g(x)的二阶常微分方程,可以通过分离变量的方法求解。
首先将方程进行变形,得到f''(x)-g(x) = 0。
然后令y=f'(x),将方程转化为一阶方程y'-g(x)=0,再次进行变形得到dy/dx=g(x)。
接下来,对方程两边进行积分,得到y的表达式,再次积分即可得到f(x)的解。
二、特征方程法对于形如f''(x) + a1f'(x) + a0f(x) = 0的二阶常微分方程,可以通过特征方程法求解。
首先假设f(x)的解为f(x) = e^(rx),其中r为待求解的常数。
代入原方程,得到特征方程r^2 + a1r + a0 = 0。
解特征方程,可以得到两个根r1和r2,然后f(x)的解可以表示为f(x) = C1e^(r1x) +C2e^(r2x),其中C1和C2为待定常数。
三、常系数齐次线性微分方程法对于形如f''(x) + af'(x) + bf(x) = 0的二阶常微分方程,可以通过常系数齐次线性微分方程法求解。
首先假设f(x)的解为f(x) = e^(rx),代入原方程,得到特征方程r^2 + ar + b = 0。
解特征方程,可以得到两个根r1和r2。
根据根的不同情况,可以得到不同的解形式。
1)当r1和r2是不相等的实根时,f(x)的解可以表示为f(x) =C1e^(r1x) + C2e^(r2x),其中C1和C2为待定常数。
2)当r1和r2是相等的实根时,f(x)的解可以表示为f(x) = (C1x +C2)e^(r1x),其中C1和C2为待定常数。
3)当r1和r2是共轭复数根时,f(x)的解可以表示为f(x) =e^(ax)[C1cos(bx) + C2sin(bx)],其中C1和C2为待定常数。
二阶常微分方程的求解方法和应用
二阶常微分方程的求解方法和应用二阶常微分方程是指包含了二阶导数或者二次项的一类微分方程。
解决这类微分方程是理应掌握的技能,因为它们在许多自然科学和工程学科中都有着广泛的应用。
在本文中,我们将讨论二阶常微分方程的求解方法以及它们的常见应用。
一、二阶常微分方程的基本形式二阶微分方程的一般形式是:$f''(x)+p(x)f'(x)+q(x)f(x)=g(x)$其中,函数f是要求解的未知函数,x是自变量,p(x)和q(x)是已知函数,g(x)是已知的函数或常数。
通常,二阶微分方程左侧的三项可以看作是二阶导数f''(x)、一阶导数f'(x)和f(x)对自变量x的线性组合。
这个线性组合中的系数p(x)和q(x)通常是自变量x的函数。
二、二阶微分方程的解法1.特解法特解法适用于在右侧有特殊类型函数的情况下,比如方程右侧是常数、指数函数、三角函数等。
因为这种情况下函数在取微分后与自身的形式变化不大,因此我们可以借助类似的解来猜测:如果右侧的g(x)是Acos(ax)+Bsin(ax),那么我们可以尝试将函数f(x)猜测为Ccos(ax)+Dsin(ax)的形式,其中C和D是待求解的常数。
特解法的主要优点是简单易懂,特别是对于初学者而言。
但是,它有一个缺点:并不能解决更复杂的情况,比如右侧是分段函数的情况,因此需要用到其他解法。
2.变量分离法变量分离法是二阶微分方程求解的一种另类方法,它将原方程转换成一个含有单个未知函数但双变量的方程。
比如:$y''+y=0$方程左边的两项y''和y可以看作是函数y和y'的函数。
将方程拆开成两个修正的一阶方程,使用变量分离法来解决,得到:$\frac{dy}{dx}=u$$\frac{du}{dx}=-y$求解上述方程后,我们可以得到原始二阶微分方程的一般解:$y=Acos(x)+Bsin(x)$在实际应用中,变量分离法非常实用,例如在电工电子工程学里,它被用于模拟LC振荡器、无源滤波器等等。
二阶常微分方程解法
二阶常微分方程解法二阶常微分方程是数学中常见的方程形式,可以通过不同的方法来求解。
本文将介绍二阶常微分方程的解法,并通过例题来说明具体步骤。
一、齐次二阶常微分方程的解法齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = 0齐次二阶常微分方程的解法步骤如下:1. 首先,设y=e^(λx)为方程的解,其中λ为待定常数。
2. 求解特征方程λ^2 + P(x)λ + Q(x) = 0的根。
设该方程的根为λ1和λ2。
3. 根据特征根λ1和λ2的值,分别列出对应的解y1=e^(λ1x)和y2=e^(λ2x)。
4. 则原方程的通解为y=C1y1 + C2y2,其中C1和C2为任意常数。
例题1:求解二阶常微分方程y'' - 4y' + 4y = 0。
解题步骤:1. 特征方程为λ^2 - 4λ + 4 = 0,解得λ=2。
2. 因此,对应的特解为y1=e^(2x)。
3. 原方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。
二、非齐次二阶常微分方程的解法非齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = f(x)非齐次二阶常微分方程的解法步骤如下:1. 首先,求解对应的齐次方程y'' + P(x)y' + Q(x)y = 0的通解,假设为y=C1y1 + C2y2。
2. 再根据待定系数法,设非齐次方程的特解为y*,代入原方程得到特解的形式。
3. 求解特解形式中的待定系数,并将特解形式代入原方程进行验证。
4. 特解形式正确且验证通过后,非齐次方程的通解为y=C1y1 +C2y2 + y*。
例题2:求解二阶常微分方程y'' - 4y' + 4y = x^2 + 3x + 2。
解题步骤:1. 对应的齐次方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。
二阶常系数线性微分方程的解法
二阶常系数齐次线性方程解的性质 回顾
一阶齐次线性方程 y P( x) y 0 (1)
1、方程(1)的任意两个解的和仍是(1)的解; 2、方程(1)的任意一个解的常数倍仍是(1)的解;
2
二阶常系数齐次线性方程解的性质 y ay by 0 (2)
1、方程(2)的任意两个解的和仍是(2)的解; 2、方程(2)的任意一个解的常数倍仍是(2)的解;
Q( x) Qm ( x) , 即 y Qm ( x) erx 情形2 若 r 是特征方程的单根, 即 r2 ar b 0 ,
而 2r a 0 , 则令 Q( x) xQm ( x) , 即
y xQm ( x)erx
14
Q (2r a)Q (r 2 ar b)Q Pm ( x) (*) 情形3 若 r 是特征方程的二重根, 即 r2 ar b 0 ,
2
2
此时原方程的通解为
y
(C1
C 2 x)e2x
1 2
x 2e2x
;
Q( x) Ax2 , Q Pm ( x) , 2 A 1
21
y 4 yAe x ,
代入原方程,得
A
(
1 2)2
,
即特解为
y
(
1 2)2
e
x
,
此时原方程的通解为
于是 y x( 1 x 1)e2x ,
2
2
原方程通解为
y
C1e x
C 2e2 x
x(1 2
x
1) e2 x
.
18
例6 求微分方程 y 6 y 9 y x e3x 的通解.
解 特征方程 2 6 9 0 , 特征根 1,2 3 ,
对应齐次方程通解 Y (C1 C2 x)e3x . 因为 r 3 是二重特征根,
二阶常微分方程的几种解法
二阶常系数非齐次线性微分方程的几种解法一 公式解法目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]:'''()y ay by f x ++=通解的一般方法是将其转化为对应的齐次方程的通阶与它本身的特解之和。
微分方程阶数越高, 相对于低阶的解法越难。
那么二阶常系数齐次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系数非齐次微分方程降为一阶微分方程求解。
而由此产生的通解公式给出了该方程通解的更一般的形式。
设二阶常系数线性非齐次方程为'''()y ay by f x ++= (1) 这里b a 、都是常数。
为了使上述方程能降阶, 考察相应的特征方程20k ak b ++= (2) 对特征方程的根分三种情况来讨论。
1 若特征方程有两个相异实根12k 、k 。
则方程(1) 可以写成'''1212()()y k k y k k y f x --+=即 '''212()()()y k y k y k y f x ---=记'2z y k y =- , 则(1) 可降为一阶方程'1()z k z f x -=由一阶线性方程的通解公()()[()]p x dx p x dx y e Q x e dx c -⎰⎰=+⎰[5] (3) 知其通解为1130[()]x k x k t z e f t e dt c -=+⎰这里0()xh t dt ⎰表示积分之后的函数是以x 为自变量的。
再由11230[()]x k x k t dy k y z e f t e dt c dx--==+⎰ 解得12212()()340012[(())]k k x x u k x k k u e y e e f t dt du c c k k --=++-⎰⎰ 应用分部积分法, 上式即为1212212()()34001212121[()()]k k xk k x x x k x k t k t e e y e f t e dt f t e dt c c k k k k k k ----=-++---⎰⎰ 1122121200121[()()]x x k x k t k x k t k k x e f t e dt e f t e dt c e c e k k --=-++-⎰⎰ (4) 2 若特征方程有重根k , 这时方程为'''22()y ky k y f x -+=或'''()()()y ky k y ky f x ---=由公式(3) 得到'10[()]xkx kt y ky e e f t dt c --=+⎰再改写为'10()xkx kx kt e y ke y e f t dt c ----=+⎰ 即10()()xkx kt de y ef t dt c dx --=+⎰故120()()xkx kt kx kx y e x t e f t dt c xe c e -=-++⎰(5)例1 求解方程'''256x y y y xe -+=解 这里2560k k -+= 的两个实根是2 , 32()x f x xe =.由公式(4) 得到方程的解是332222321200x x x t t x t t xxy e e te dt e e te dt c e c e --=-++⎰⎰32321200x xx t x x x e te dt e tdt c e c e -=-++⎰⎰2232132x x xx x e c e c e ⎡⎤=--++⎢⎥⎣⎦这里321c c =-.例2 求解方程'''2ln x y y y e x -+=解 特征方程2210k k -+= 有重根1 , ()ln x f x e x =.由公式(5) 得到方程的解是 120()ln x x t t x x y ex t e e tdt c xe c e -=-++⎰120()ln x x x x e x t tdt c xe c e =-++⎰ 1200[ln ln ]x xxx x e x tdt t tdt c xe c e =-++⎰⎰ 21213ln 24x x x x e x c xe c e ⎡⎤=-++⎢⎥⎣⎦ 二 常数变易法二阶常系数非齐次线性微分方程的一般形式是'''()y py qy f x ++=, (6) '''0y py qy ++= , (7) 其中p q 、 为常数,根构造方程(7) 的两个线性无关的解,再由这两个解构造出方程(7) 的通解。
二阶线性常微分方程求解
二阶线性常微分方程求解
二阶线性常微分方程是一种重要的微分方程,它是一个双重阶的微分方程,包含一个高阶导数和一个一阶导数,可以用来描述物理过程中特定变量之间的变化。
它可以用来描述复杂系统的行为,从而为我们提供一种有效的解决方法。
二阶线性常微分方程的一般形式为:y''+P(x)y'+Q(x)y=f(x),其中y是一个未知函数,P(x)和Q(x)是确定的函数,f(x)是给
定的函数。
二阶线性常微分方程的解法有多种,但是最常用的是牛顿迭代法。
牛顿迭代法是一种迭代法,它可以解决二阶线性常微分方程。
牛顿迭代法的基本思想是:将二阶线性常微分方程分解为两个一阶线性常微分方程,然后采用牛顿迭代法迭代求解。
牛顿迭代法的步骤如下:(1)确定初值,即设定y(x0)和
y'(x0)的初始值;(2)求解y'(x0)的值,即求解一阶线性常微
分方程;(3)求解y(x0)的值,即求解二阶线性常微分方程;(4)将求得的y(x0)和y'(x0)作为下一次迭代的初始值,重复
步骤(2)和(3),直到满足给定精度要求为止。
二阶线性常微分方程在工程学和物理学中都有着广泛的应用,例如,可以用它来模拟物理系统的运动,从而获得精确的解决方案;也可以用它来解决水利工程中的洪水问题,从而获得最优的解决方案。
总之,二阶线性常微分方程可以用来模拟各种复杂物理过程,牛顿迭代法是一种有效的解决方法,它可以帮助我们获得更准确的解决方案。
二阶常微分方程的几种解法
二阶常系数非齐次线性微分方程的几种解法一 公式解法目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]:通解的一般方法是将其转化为对应的齐次方程的通阶与它本'''()y ay by f x ++=身的特解之和。
微分方程阶数越高, 相对于低阶的解法越难。
那么二阶常系数齐次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系数非齐次微分方程降为一阶微分方程求解。
而由此产生的通解公式给出了该方程通解的更一般的形式。
设二阶常系数线性非齐次方程为(1)'''()y ay by f x ++=这里都是常数。
为了使上述方程能降阶, 考察相应的特征方程b a 、(2)20k ak b ++=对特征方程的根分三种情况来讨论。
1 若特征方程有两个相异实根。
则方程(1) 可以写成12k 、k'''1212()()y k k y k k y f x --+=即 '''212()()()y k y k y k y f x ---= 记 , 则(1) 可降为一阶方程'2z y k y =-由一阶线性方程的通解公'1()z k z f x -= [5]()()[()]p x dx p x dxy e Q x e dx c -⎰⎰=+⎰(3)知其通解为这里表示积分之后的函数是以为自变量的。
1130[()]xk xk tz e f t edt c -=+⎰0()xh t dt ⎰x 再由11230[()]x k xk t dy k y z e f t e dt c dx--==+⎰解得12212()()34012[(())]k k xxuk xk k ue y e ef t dt du c c k k --=++-⎰⎰应用分部积分法, 上式即为1212212()()34001212121[()()]k k xk k xxxk xk tk te e y ef t edt f t edt c c k k k k k k ----=-++---⎰⎰(4)1122121200121[()()]x x k x k t k xk t k k x e f t e dt e f t e dt c e c e k k --=-++-⎰⎰2 若特征方程有重根, 这时方程为k 或'''22()y ky k y f x -+='''()()()y ky k y ky f x ---=由公式(3) 得到'10[()]x kx kt y ky e e f t dt c --=+⎰再改写为'1()xkxkx kt ey key e f t dt c ----=+⎰即10()()x kxkt d e y e f t dt c dx--=+⎰故(5)120()()xkx kt kx kx y ex t e f t dt c xe c e -=-++⎰例1 求解方程'''256xy y y xe -+=解 这里 的两个实根是2 , 32560k k -+=.由公式(4) 得到方程的解是2()x f x xe =332222321200xxx t t x t t x xy e e te dt e e te dt c e c e --=-++⎰⎰32321200xxx t x x xe te dt e tdt c e c e -=-++⎰⎰2232132xx x x x e c e c e ⎡⎤=--++⎢⎥⎣⎦这里.321c c =-例2 求解方程'''2ln x y y y e x-+=解 特征方程 有重根1 , .由公式(5) 得到方程的解是2210k k -+=()ln x f x e x =120()ln xx t t x xy ex t e e tdt c xe c e -=-++⎰120()ln xxx xe x t tdt c xe c e =-++⎰1200[ln ln ]xxxx xe x tdt t tdt c xe c e =-++⎰⎰21213ln 24x x xx e x c xe c e ⎡⎤=-++⎢⎥⎣⎦二 常数变易法二阶常系数非齐次线性微分方程的一般形式是, (6)'''()y py qy f x ++= , (7)'''0y py qy ++=其中 为常数,根构造方程(7) 的两个线性无关的解,再由这两个解构造出方p q 、程(7) 的通解。
二阶线性常系数齐次微分方程的解
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
例 3 求微分方程y2y5y 0的通解
解 微分方程的特征方பைடு நூலகம்为
r22r50
特征方程的根为r112i r212i 是一对共轭复根 因此微分方程的通解为yex(C1cos2xC2sin2x)
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
•第一步 写出微分方程的特征方程
r2prq0 •第二步 求出特征方程的两个根r1、r2 •第三步 根据特征方程的两个根的不同情况 写出微分方程的 通解
首页
上页
返回
下页
结束
铃
❖特征方程的根与通解的关系
首页
上页
返回
下页
结束
铃
❖特征方程的根与通解的关系
方程r2prq0的根的情况 方程ypyqy0的通解
有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
有一对共轭复根 r1, 2i
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
例2 求方程y2yy0的通解
中p、q均为常数 ❖特征方程及其根
方程r2prq0叫做微分方程ypyqy0的特征方程 特征方程的求根公式为
r1, 2
p
p2 4q 2
首页
上页
返回
下页
结束
铃
❖特征方程的根与通解的关系
方程r2prq0的根的情况 有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
有一对共轭复根 r1, 2i
二阶常微分方程的解法
二阶常微分方程的解法常微分方程是数学中的一个重要分支,涵盖了许多不同类型的方程,其中二阶常微分方程是比较常见、比较典型的一种类型。
二阶常微分方程的解法可以分为多种方法,每种方法都有其适用范围和特点。
本文将介绍几种常见的二阶常微分方程的解法。
一、特征方程法特征方程法是求解齐次线性二阶常微分方程的一种经典方法。
对于形如 $y''+p(t)y'+q(t)y=0 $ 的二阶齐次线性常微分方程,其中$p(t)$ 和 $q(t)$ 是已知函数,我们可以先设其解为 $y=e^{rt}$,将其代入原方程中得到:$$ r^2e^{rt}+p(t)re^{rt}+q(t)e^{rt}=0 $$将 $e^{rt}$ 提出来得到:$$ e^{rt}(r^2+p(t)r+q(t))=0 $$由于 $e^{rt}$ 为非零函数,因此必然有 $r^2+p(t)r+q(t)=0$,这就是我们所说的特征方程。
我们可以根据特征方程的解来确定$y$ 的形式,这个过程不再详细阐述,这里只列出几个例子:1. 当特征方程有两个不同实根 $r_1$ 和 $r_2$ 时,我们可以得到 $y=c_1e^{r_1t}+c_2e^{r_2t}$,其中 $c_1$ 和 $c_2$ 是常数。
2. 当特征方程有一个二重实根 $r$ 时,我们可以得到$y=(c_1+c_2t)e^{rt}$,其中 $c_1$ 和 $c_2$ 是常数。
3. 当特征方程有一对共轭复根 $a\pm bi$ 时,我们可以得到$y=e^{at}(c_1\cos bt+c_2\sin bt)$,其中 $c_1$ 和 $c_2$ 是常数。
二、常数变易法当二阶非齐次线性常微分方程的函数形式很规则时,我们可以使用常数变易法来求解。
常数变易法是将待求的函数拆分成两部分,一部分为齐次方程的通解(这部分已经通过特征方程法求出),另一部分为非齐次方程的特解。
这里只列出一些常见的非齐次方程及其特解:1. $y''+k^2y=f(t)$。
二阶常微分方程解
第七节 二阶常系数线性微分方程的解法在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解.本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法.先讨论二阶常系数线性齐次方程的求解方法.§ 二阶常系数线性齐次方程及其求解方法设给定一常系数二阶线性齐次方程为22dx y d +p dxdy +qy =0 其中p 、q 是常数,由上节定理二知,要求方程的通解,只要求出其任意两个线性无关的特解y 1,y 2就可以了,下面讨论这样两个特解的求法.我们先分析方程可能具有什么形式的特解,从方程的形式上来看,它的特点是22dx y d ,dx dy,y 各乘以常数因子后相加等于零,如果能找到一个函数y,其22dx y d ,dxdy ,y 之间只相差一个常数因子,这样的函数有可能是方程的特解,在初等函数中,指数函数e rx,符合上述要求,于是我们令y =e rx其中r 为待定常数来试解将y =e rx,dxdy=re rx,22dx y d =r 2e rx代入方程得 r 2e rx +pre rx +qe rx=0或 e rxr 2+pr +q =0因为e rx≠0,故得r 2+pr +q =0由此可见,若r 是二次方程r 2+pr +q =0的根,那么e rx 就是方程的特解,于是方程的求解问题,就转化为求代数方程的根问题.称式为微分方程的特征方程.特征方程是一个以r 为未知函数的一元二次代数方程.特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论.1若特证方程有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程的两个特解.因为 x r xr 21e e =e x)r r (21-≠常数所以e r1x ,e r2x 为线性无关函数,由解的结构定理知,方程的通解为y =C 1e r1x +C 2e r2x2若特征方程有两个相等的实根r 1=r 2,此时p 2-4q =0,即有r 1=r 2=2p-,这样只能得到方程的一个特解y 1=e r 1x,因此,我们还要设法找出另一个满足12y y ≠常数,的特解y 2,故12y y 应是x 的某个函数,设12y y =u,其中u =ux 为待定函数,即 y 2=uy 1=ue r 1x对y 2求一阶,二阶导数得dx dy 2=dxdu e r1x+r 1ue r1x=dx du +r 1uer1x 222dx y d =r 21u +2r 1dx du +22dx ud e r1x将它们代入方程得r 21u +2r 1dx du +22dxu d e r1x+p dxdu +r 1uer1x+que r1x =0或22dx u d +2r 1+p dxdu+r 21+pr 1+que r1x =0因为e r1x ≠0,且因r 1是特征方程的根,故有r 21+pr 1+q =0,又因r 1=-2p故有2r 1+p =0,于是上式成为 22dxu d =0 显然满足22dxud =0的函数很多,我们取其中最简单的一个 ux =x则y 2=xe rx 是方程的另一个特解,且y 1,y 2是两个线性无关的函数,所以方程的通解是y =C 1e r1x +C 2xe r1x =C 1+C 2xe r1x3若特征方程有一对共轭复根 r 1=α+i β,r 2=α-i β此时方程有两个特解y 1=eα+i βxy 2=eα-i βx则通解为y =C 1e α+i βx +C 2e α-i βx其中C 1,C 2为任意常数,但是这种复数形式的解,在应用上不方便.在实际问题中,常常需要实数形式的通解,为此利用欧拉公式e ix =cosx +isinx,e -ix =cosx -isinx有 21e ix+e -ix=cosxi 21e ix-e -ix=sinx21 y 1+y 2=21e αxe i βx+e -i βx=e αxcos βxi 21 y 1-y 2=i21e αxe i βx-e -i βx=e αxsin βx由上节定理一知,21 y 1+y 2,i21y 1-y 2是方程的两个特解,也即eαxcosβx,e αx sin βx 是方程的两个特解:且它们线性无关,由上节定理二知,方程的通解为y =C 1e αx cos βx +C 2e αx sin βx或 y =e αx C 1cos βx +C 2sin βx其中C 1,C 2为任意常数,至此我们已找到了实数形式的通解,其中α,β分别是特征方程复数根的实部和虚部.综上所述,求二阶常系数线性齐次方程的通解,只须先求出其特征方程的根,再根据他的三种情况确定其通解,现列表如下特征方程r 2+pr +q =0的根微分方程22dx y d +p dx dy+qy =0的通解有二个不相等的实根r 1,r 2y =C 1e r1x+C 2e r2x有二重根r 1=r 2y =C 1+C 2xe r1x有一对共轭复根β-α=β+α=i r i r 21y =e αx C 1cos βx +C 2sin βx例1. 求下列二阶常系数线性齐次方程的通解1 22dx y d +3dx dy-10y =0 2 22dx y d -4dx dy +4y =0 3 22dx y d +4dxdy +7y =0 解 1特征方程r 2+3r -10=0有两个不相等的实根r 1=-5,r 2=2所求方程的通解 y =C 1e -5r+C 2e 2x2特征方程r 2-4r +4=0,有两重根 r 1=r 2=2所求方程的通解y =C 1+C 2xe 2x3特征方程r 2+4r +7=0有一对共轭复根r 1=-2+3i r 2=-2-3i所求方程的通解 y =e -2x C 1cos3x +C 2sin 3x§ 二阶常系数线性非齐次方程的解法由上节线性微分方程的结构定理可知,求二阶常系数线性非齐次方程22dx y d +p dxdy +qy =fx 的通解,只要先求出其对应的齐次方程的通解,再求出其一个特解,而后相加就得到非齐次方程的通解,而且对应的齐次方程的通解的解法,前面已经解决,因此下面要解决的问题是求方程的一个特解.方程的特解形式,与方程右边的fx 有关,这里只就fx 的两种常见的形式进行讨论.一、fx =p n xe αx ,其中p n x 是n 次多项式,我们先讨论当α=0时,即当fx =p n x 时方程22dx y d +p dx dy +qy =p nx 的一个特解.1如果q ≠0,我们总可以求得一n 次多项式满足此方程,事实上,可设特解~y =Q nx =a 0x n+a 1xn -1+…+a n,其中a 0,a 1,…a n 是待定常数,将~y 及其导数代入方程,得方程左右两边都是n 次多项式,比较两边x 的同次幂系数,就可确定常数a 0,a 1,…a n .例1. 求22dx y d +dxdy+2y =x 2-3的一个特解. 解 自由项fx =x 2-3是一个二次多项式,又q =2≠0,则可设方程的特解为~y =a 0x 2+a 1x +a 2求导数~'y =2a 0x +a1~"y =2a代入方程有2a 0x 2+2a 0+2a 1x +2a 0+a 1+2a 2=x 2-3比较同次幂系数⎪⎩⎪⎨⎧-=++=+=3a 2a a 20a 2a 21a 2210100 解得 47a 21a 21a 210-=-==所以特解~y =21x 2-21x -472如果q =0,而p ≠0,由于多项式求导一次,其次数要降低一次,此时~y =Q n x 不能满足方程,但它可以被一个n +1次多项式所满足,此时我们可设~y =xQ n x =a 0x n +1+a 1x n +…+a n x代入方程,比较两边系数,就可确定常数a 0,a 1,…a n .例2. 求方程22dx y d +4dxdy=3x 2+2的一个特解. 解 自由项 fx =3x 2+2是一个二次多项式,又q =0,p =4≠0,故设特解~y =a 0x 3+a 1x 2+a 2x求导数~'y =3a 0x 2+2a 1x +a2~"y =6a 0x +2a1代入方程得12a 0x 2+8a 1+6a 0x +2a 1+4a 2=3x 2+2,比较两边同次幂的系数⎪⎩⎪⎨⎧=+=+=2a 4a 20a 6a 83a 1221010 解得 3219a 163a 41a 210=-==所求方程的特解 ~y =41x 3-163x 2+3219x3如果p =0,q =0,则方程变为22dxyd =p nx,此时特解是一个n +2次多项式,可设~y =x 2Q nx,代入方程求得,也可直接通过两次积分求得.下面讨论当α≠0时,即当fx =p n xe αx 时方程22dx y d +p dxdy +qy =p nxe αx的一个特解的求法,方程与方程相比,只是其自由项中多了一个指数函数因子e αx ,如果能通过变量代换将因子e αx 去掉,使得化成式的形式,问题即可解决,为此设y =ue αx ,其中u =ux 是待定函数,对y =ue αx ,求导得dx dy =e αxdxdu+αue αx 求二阶导数 22dx y d =e αx22dx u d +2αe αxdxdu+α2ue αx代入方程得e αx22dx u d +2αdx du +α2u +pe αxdx du +αu +que αx=p n xeαx消去e αx得22dx u d +2α+p dxdu +α2+p α+qu =p nx 由于式与形式一致,于是按的结论有:1如果α2+p α+q ≠0,即α不是特征方程r 2+pr +q =0的根,则可设的特解u =Qn x,从而可设的特解为~y =Q n xe αx2如果α2+p α+q =0,而2α+p ≠0,即α是特征方程r 2+pr +q =0的单根,则可设的特解u =xQ n x,从而可设的特解为~y =xQ n xe αx3如果r 2+p α+q =0,且2α+p =0,此时α是特征方程r 2+pr +q =0的重根,则可设的特解u =x 2Q n x,从而可设的特解为~y =x 2Q n xe αx例3. 求下列方程具有什么样形式的特解122dx y d +5dx dy +6y =e 3x 2 22dx y d +5dx dy +6y =3xe -2x 3 22dx y d +αdxdy +y =-3x 2+1e -x解 1因α=3不是特征方程r 2+5r +6=0的根,故方程具有形如~y =a 0e3x 的特解.2因α=-2是特征方程r 2+5r +6=0的单根,故方程具有形如~y =xa 0x +a 1e -2x的特解.3因α=-1是特征方程r 2+2r +1=0的二重根,所以方程具有形如~y =x 2a 0x 2+a 1x +a 2e -x的特解.例4. 求方程22dxyd +y =x -2e 3x的通解.解 特征方程 r 2+1=0特征根 r =±i 得,对应的齐次方程22dxyd +y =0的通解为 Y =C 1cos x +C 2sin x由于α=3不是特征方程的根,又p n x =x -2为一次多项式,令原方程的特解为~y =a 0x +a 1e 3x此时u =a 0x +a 1,α=3,p =0,q =1,求ux 的导数dxdu =a 0,22dx u d =0,代入22dx u d +2α+p dxdu+α2+αp +qu =x -2得: 10a 0x +10a 1+6a 0=x -2比较两边x 的同次幂的系数有⎩⎨⎧-=+=2a 6a 101a 10010 解得 a 0=101,a 1=-5013于是,得到原方程的一个特解为~y =101x -5013e3x所以原方程的通解是y =Y +~y =C 1cosx +C 2sinx +101x -5013e 3x例5. 求方程22dx y d -2dxdy-3y =x 2+1e -x的通解. 解 特征方程 r 2-2r -3=0特征根 r 1=-1,r 2=3所以原方程对应的齐次方程22dx y d -2dxdy-3y =0的通解Y =C 1e -x +C 2e 3x ,由于α=-1是特征方程的单根,又p n x =x 2+1为二次多项式,令原方程的特解~y =xa 0x 2+a 1x +a 2e -x此时 u =a 0x 3+a 1x 2+a 2x,α=-1,p =-2,q =-3对ux 求导dx du=3a 0x 2+2a 1x +a 222dx ud =6a 0x +2a 1代入22dx u d +2α+p dxdu +α2+pr +qu =x 2+1,得-12a 0x 2+6a 0-8ax +2a 1-4a 2=x 2+1比较x 的同次幂的系数有⎪⎪⎩⎪⎪⎨⎧=--==-0a 8a 6121a 1a 121000 解得 329a 0a 4a 2161a 2011-==--=故所求的非齐次方程的一个特解为~y =-4x 3x 2+4x +89e-x二、fx =p n xe αx cos βx 或p n xe αx sin βx,即求形如22dx y d +p dx dy +qy =p nxe αx cos βx 22dx y d +p dx dy+qy =p nxe αx sin βx 这两种方程的特解.由欧拉公式知道,p n xe αx cos βx,p n xe αx sin x 分别是函数p n xe α+i βx 的实部和虚部.我们先考虑方程22dx y d +p dxdy +qy =p nxe α+i βx方程与方程类型相同,而方程的特解的求法已在前面讨论.由上节定理五知道,方程的特解的实部就是方程的特解,方程的特解的虚部就是方程的特解.因此,只要先求出方程的一个特解,然而取其实部或虚部即可得方程或的一个特解.注意到方程的指数函数e α+i βx 中的α+i ββ≠0是复数,而特征方程是实系数的二次方程,所以α+i β最多只能是它的单根.因此方程的特解形为Q n xeα+i βx或x Qn xeα+i βx.例6. 求方程22dxyd -y =e xcos2x 的通解. 解 特征方程 r 2-1=0特征根 r 1=1,r 2=-1于是原方程对应的齐次方程的通解为Y =C 1e x +C 2e -x为求原方程的一个特解~y .先求方程22dxyd -y =e 1+2ix的一个特解,由于1+2i 不是特征方程的根,且p n x 为零次多项式,故可设u =a 0,此时α=1+2i,p =0,q =-1代入方程22dx u d +2α+p dxdu+α2+αp +qu =1 得1+2i 2-1a 0=1 ,即4i -4a 0=1,得a 0=)1i (41 =-81i +1这样得到22dx y d -y =e 1+2ix的一个特解y =-81i +1e 1+2ix由欧拉公式y =-81i +1e 1+2ix=-81i +1e xcos 2x +isin2x=-81e xcos2x -sin2x +icos2x +sin2x取其实部得原方程的一个特解~y =-81e xcos 2x -sin2x故原方程的通解为y =Y +~y =C 1e x+C 2e-x-81e x cos2x -sin2x 例7. 求方程22dxyd +y =x -2e 3x+xsinx 的通解.解 由上节定理三,定理四,本题的通解只要分别求22dxyd +y =0的特解Y,22dxy d +y =x -2e 3x的一个特解~1y , 22dxy d +y =x sin x 的一个特解~2y 然而相加即可得原方程的通解,由本节例4有Y =C 1cosx +C 2sinx,~1y =101x -5013e3x下面求~2y ,为求~2y 先求方程22dxy d +y =xe ix由于i是特征方程的单根,且pn x=x为一次式,故可设u=xax+a1=a0x2+a1x,此时α=i,p=0,q=1,对u 求导dxdu=2ax+a1,22dxud=2a代入方程22dxud+2α+pdxdu+α2+pα+qu=x得 2a0+2i2ax+a1+0=x即 4iax+2ia1+2a=x比较x的同次幂的系数有:⎩⎨⎧=+=a2ia21ia41得41a41i41a1=-==即方程22dxyd+y=xe ix的一个特解~y=-4ix2+41xe ix=-4ix2+41cosx+isinx=41x2sinx+41xcosx+i-41x2cosx+41xsinx取其虚部,得~2y=-41x2cos x+41x sin x 所以,所求方程的通解y =Y+~1y+~2y=C 1cosx +C 2sinx +101-513e3x-41x 2cosx +41xsinx综上所述,对于二阶常系数线性非齐次方程22dx y d +p dxdy +qy =fx 当自由项fx 为上述所列三种特殊形式时,其特解~y 可用待定系数法求得,其特解形式列表如下:自由项fx 形式特解形式fx =p n x当q ≠0时~y =Q n x当q =0,p ≠0时~y =Q n x当q =0,p =0时~y =x 2Q n xfx =p n xeαx当α不是特征方程根时~y =Q nxeαx当α是特征方程单根时~y =xQ n xe αx当α是特征方程重根时~y =x 2Q n xe αxfx =p n xe αx cos βx 或fx =p n xe αx sin βx利用欧拉公式e i βx =cos βx +isin βx,化为fx =p n xe α+i βx 的形式求特解,再分别取其实部或虚部以上求二阶常系数线性非齐次方程的特解的方法,当然可以用于一阶,也可以推广到高阶的情况.例8. 求y+3y ″+3y ′+y =e x 的通解解 对应的齐次方程的特征方程为r 3+3r 2+3r +1=0 r 1=r 2=r 3=-1所求齐次方程的通解Y =C 1+C 2x +C 3x 2e -x由于α=1不是特征方程的根因此方程的特解~y =a 0e x代入方程可解得a 0=81故所求方程的通解为y =Y +~y =C 1+C 2x +C 3x 2e -x+81e x.§ 欧拉方程下述n 阶线性微分方程a 0xnn n ax y d +a 1x n -11n 1n dxyd --+…+a n -1x dxdy+a ny =fx 称为欧拉方程,其中a 0,a 1,…a n 都是常数,fx 是已知函数.欧拉方程可通过变量替换化为常系数线性方程.下面以二阶为例说明.对于二阶欧拉方程a 0x 222dx y d +a 1x dxdy +a 2y =fx 作变量替换令x =e t,即t =ln x引入新变量t,于是有dx dy =dt dy dx dt =dt dy x 1=x 1dtdy22dx y d =dx d x 1dt dy =x 1dx d dt dy +dt dy dx d x 1 =x 122dt y d dx dt -2x 1dt dy =2x 122dt y d -2x 1dt dy 代入方程得a 022dt y d -dt dy +a 2dtdy+a 1y =fe t即 22dty d +002a a a dt dy +01a a y =0a 1fe t它是yt 的常系数线性微分方程.例9. 求x 222dx y d +x dx dy =6lnx -x1的通解. 解 所求方程是二阶欧拉方程作变换替换,令x =e t ,则dx dy =x 1dxdy22dx y d =2x 122dt y d -2x 1dt dy 代入原方程,可得 22dty d =6t -e -t两次积分,可求得其通解为 y =C 1+C 2t +t 3-e -t代回原来变量,得原方程的通解y =C 1+C 2lnx +lnx3-x1第八节 常系数线性方程组前面讨论的微分方程所含的未知函数及方程的个数都只有一个,但在实际问题中常遇到含有一个自变量的两个或多个未知函数的常微分方程组.本节只讨论常系数线性方程组,并且用代数的方法将其化为常系数线性方程的求解问题.下面以例说明.例1. 求方程组⎪⎩⎪⎨⎧=--=--)2(0y 3x 4dtdy)1(e y 2x dtdx t的通解.解 与解二元线性代数方程组中的消元法相类似,我们设法消去一个未知函数,由1得y =21 dtdx -x -e t3将其代入2得 21 22dt x d -dt dx -e t-4x -23 dtdx -x -e t=0 化简得22dt x d -4dtdx -5x =-2e t它是一个二阶常系数非齐次方程它的通解为 x =C 1e 5t+C 2e -t+41e t代入3得 y =2C 1e 5t-C 2e -t-21e t即所求方程组的通解为⎪⎪⎩⎪⎪⎨⎧--=++=--t t 2t 51t t2t 51e 21e C e C 2y e 41e C e C x例2. 求解方程组⎪⎩⎪⎨⎧++=+-=+)2(t 2y x dtdy dt dx )1(yt dt dydt dx 2的通解解 为消去y,先消去dtdy,为此将1-2得dtdx +x +2y +t =0即有 y =-21 dtdx+x +t 3代入2得dt dx -21dt d dt dx +x +t -x +21 dtdx +x +t -2t =0 即 22dt x d -2dtdx+x =3t -1 这是一个二阶常系数线性非齐次方程,解得x =C 1e t +C 2te t -3t -7代入3得 y =-C 1e t-C 221+te t+t +5 所以原方程组的通解为⎪⎩⎪⎨⎧+++--=--+=5t e )t 21(C e C y 7t 3te C e C x t2t 1t 2t 1。
(整理)二阶常系数线性微分方程的解法版.
第八章 8.4讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' (1)的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 (1)变成0=+'+''qy y p y (2)我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程(2)的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=( 21,C C 是任意常数)是方程0=+''y y 的通解.由于指数函数rxe y =(r 为常数)和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rxe y =来试着看能否选取适当的常数r ,使rx e y =满足方程(2).将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程(2),得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r (3)只要r 满足方程式(3),rx e y =就是方程式(2)的解.我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数. 特征方程(3)的两个根为 2422,1q p p r -±-=, 因此方程式(2)的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程(2)的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程(2)的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程(2)的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程(2), 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程(3)的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解 x r xe y 12=.那么,方程(2)的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程(3)有一对共轭复根 βαβαi r i r -=+=21, (0≠β)于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程(2)的解具有叠加性,所以-1y ,-2y 还是方程(2)的解,并且≠==--x x e x e y y x x βββααt a n c o s s i n 12常数,所以方程(2)的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:(1)写出方程(2)的特征方程02=++q pr r(2)求特征方程的两个根21,r r(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为te t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.证明 把*+=y Y y 代入方程(1)的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解. 定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' (4) 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程(1)的右端)(x f 是多项式)(x P m 与指数函数xe λ乘积的导数仍为同一类型函数,因此方程(1)的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程(1)并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ (5) 以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*(2) 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.(3) 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令x e xb y 20-=*,代入原方程解得230-=b 故所求特解为 x xe y 223--=* . 例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 x e x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去xe 得 126-=+x b ax比较系数,得61=a 21-=b 于是 x e x x y )216(2-=* 所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式(1)成为x B x A q y p y ωωsin cos +=+'+'' (7)这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=*例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为 0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=***代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x s i n 51c o s 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。
二阶常微分方程的解
二阶常微分方程的解二阶常微分方程是数学中常见且重要的一类方程,可以描述许多自然现象和物理问题。
解二阶常微分方程需要一定的数学知识和技巧,但掌握了解的性质和求解方法,我们就能更好地理解和应用它们。
首先,我们来研究二阶常微分方程的解的性质。
对于形如f''(x) + p(x)f'(x) + q(x)f(x) = 0的二阶常微分方程,其中p(x)和q(x)是已知函数,f(x)是未知函数,我们可以得到以下结论:1. 零解:如果f(x) ≡ 0是方程的解,那么它被称为零解。
2. 常数解:如果f(x) ≡ C是方程的解,其中C是常数,那么它被称为常数解。
3. 特征根法:对于二阶齐次线性常微分方程,我们可以通过求解特征方程来得到通解。
特征方程是通过将方程中的f(x)替换为e^(rx),然后解得的关于r的二次方程。
特征方程的根决定了通解的形式。
4. 叠加原理:对于二阶齐次线性常微分方程,如果f1(x)和f2(x)分别是该方程的解,那么它们的线性组合C1f1(x) + C2f2(x)也是该方程的解,其中C1和C2是任意常数。
其次,我们来探讨二阶常微分方程的求解方法。
除了特征根法外,还有几种常用的方法:1. 变量分离法:将二阶常微分方程转化为两个一阶常微分方程,通过变量分离和积分求解。
2. 微分算子法:使用微分算子D = d/dx,将二阶常微分方程转化为代数方程。
3. 幂级数法:假设解可以表示为幂级数的形式,然后通过求导和代入方程来确定系数。
4. 矩阵法:将二阶常微分方程转化为矩阵形式,然后求解矩阵的特征值和特征向量。
最后,我们来看一些二阶常微分方程在实际问题中的应用。
例如,振动系统、电路和传热问题等都可以建模为二阶常微分方程。
通过求解方程,我们可以获得系统的振动频率、电流变化和温度分布等重要信息,从而对实际问题进行分析和优化。
总结起来,二阶常微分方程的解具有多样性和丰富性,我们可以通过掌握解的性质和求解方法来更好地理解和应用它们。
二阶常系数 齐次微分方程的解
通解的表达式
y C1e r1 x C2e r2 x y (C1 C2 x)e r2 x y ex(C1 cosx C2 sin x)
故所求通解为 y (C C x)e2x .
1
2
例2 求方程 y 2 y 5 y 0 的通解. 解 特征方程为 r 2 2r 5 0,
解得 r1,2 1 2 j ,
故所求通解为
y e x (C cos 2 x C sin 2x).
1
2
三、n阶常系数齐次线性方程解
法
y(n) P y(n1) P y P y 0
1
n1
n
特征方程为 rn P rn1 P r P 0
1
n1
n
特征方程的根 若是k重根r
通解中的对应项
(C C x C xk1)erx
0
1
k1
若是k重共轭 复根 j
[(C C x C xk1)cosx
01
k1
(D D x D xk1)sinx]ex
0
1
k1
注意
n次代数方程有n个根, 而特征方程的每一个 根都对应着通解中的一项, 且每一项各一个 任意常数.
1
1
1
知 u 0,
取 u( x) x,
则
y2
xe , r1x
得齐次方程的通解为 y (C 1 C 2x )e r1x ;
有一对共轭复根 ( 0)
特征根为 r1 j, r2 j,
y e (j)x 1
,
y e (j)x 2
,
重新组合
y1
1( 2
y1
y2 )
ex
二阶线性常微分方程的解的结构
二阶线性常微分方程的解的结构 二阶线性常系数微分方程的解的求法二阶线性常微分方程:y ’’+p(x)y ’+q(x)y=r(x) p(x)、q(x)、r(x)是区间I 上的已知函数 y ’’+p(x)y ’+q(x)y=0 齐次 y ’’+p(x)y ’+q(x)y=r(x),r(x)≠0, 非齐次【一】对齐次方程:y ’’+p(x)y ’+q(x)y=01.若y 1(x)和y 2(x)都是上述齐次方程的解,则C 1y 1(x)+C 2y 2(x )仍是上述方程的解.2.若y 1(x)和y 2(x)在区间I 上线性无关,即αy 1(x)+βy 2(x)=0仅当α=β=0时成立, 则y=C 1y 1(x)+C 2y 2(x )即是y ’’+p(x)y ’+q(x)y=0的通解。
【y ’’+p(x)y ’+q(x)y=0的任何一个解可表示成y=C 1y 1(x)+C 2y 2(x )的形式】由上述1和2,求y ’’+p(x)y ’+q(x)y=0的通解,只需找到两个其两个线性无关的特解.【二】对非齐次方程:y ’’+p(x)y ’+q(x)y=r(x),r(x)≠0y*(x)是其一y ’’+p(x)y ’+q(x)y=r(x),r(x)≠0的一个特解Y(x)是对应齐次方程y ’’+p(x)y ’+q(x)y=0的某个解则1)y*’’+py*’+qy*=r 2) y ’’+py ’+qy=r两式相减:(y-y*)’’ + p(y-y*) ‘+q(y-y*)=0记Y=y-y*,则Y 是对应齐次方程y ’’+p(x)y ’+q(x)y=0的通解 y=y*+Y即:y ’’+p(x)y ’+q(x)y=r(x),r(x)≠0的任何一个解y(x)都可以表示为:y(x)=y*(x)+Y(x) 即:非齐次方程的通解=非齐次方程的一个特解+对应其次方程的通解.如何求二阶线性常系数齐次微分方程y ’’+p(x)y ’+q(x)y=0 的通解?设y(x)是 y ’’+p(x)y ’+q(x)y=0 的解,p 、q 均为常数 则在I 内y ’’(x)+py ’(x)+qy(x)=0,恒成立所以y ’、py ’、qy 必须能够抵消掉,即y 、y ’、y ’’必须是同一类型的函数. 只能是指数函数令kxe =y 是方程y ’’+py ’+qy=0(p 、q 为常数)的解 即0k 2≡++kxe q pk )(,可得02=++q pk k02=++q pk k 是一个一元二次方程,称为y ’’+py ’+qy=0的特征方程解一元二次方程得.24,24k 2221q p p k q p p ---=-+-=则与k 1k 2对应的.,y 2121xk xk e y e ==必是y ’’+py ’+qy=0(p 、q 为常数)的解但是.,y 2121xk xk e y e ==是否线性无关?【能否构成通解y ’’+py ’+qy=0(p 、q 为常数)】 分类讨论: 1.04p 2>-q即k 1k 2是两个不等实根,且常数≠=-)(2121e x k x k x k x k e e ,即.,y 2121xk x k e y e ==线性无关所以x k xk e C eC 2121y +=2.04p 2<-q.,k 21βαβα-=+=k i 是一对共轭的复根则)s i n (c o s )()s i n (c o s )()(2)(121x i x e eex y x i x e e e x y xxi xk x x i x k -===+===-+ββαβααβα 线性无关复函数用起来不方便,不用其来构造y ’’+py ’+qy=0(p 、q 为常数)的通解取其线性组合:x e e e ix yx e e e x yx x k x k x x k xk ββααsin )(21)(ˆcos )(21)(ˆ212121=-==+=)(y ˆ),(yˆ21x x 是y ’’+py ’+qy=0(p 、q 为常数)的解,且)(y ˆ),(y ˆ21x x 线性无关. y ’’+py ’+qy=0(p 、q 为常数)的通解:)sin cos ()(21x C x C e x y xββα+= 3.042=-q p此时k 1=k 2,即重根,记重根为k ,kxe x =)(y 1必是y ’’+py ’+qy=0(p 、q 为常数)的一个解 求通解,只需再找一个与kxe x =)(y 1线性无关的解.将上述这个解表示成为待定函数但非常数)(,)(y x u e x u kx=,代入y ’’+py ’+qy=0(p 、q 为常数),得到0])(')2(''[e 2=++++++u q pk k u p k u kx ,)2,0(k 212pk k q pk -===++ 所以u ’’=0.取u(x)=x,则得到y ’’+py ’+qy=0(p 、q 为常数)的另一个解kxxe y = 此时y ’’+py ’+qy=0(p 、q 为常数)的通解为kx e x C C x )()(y 21+=如何求二阶线性常系数非齐次微分方程y ’’+p(x)y ’+q(x)y=r(x),r(x)≠0的通解?由刚开始的分析,只需求出它的一个特解y*(x)设齐次方程通解为)()()(2211x y C x y C x y +=,)()(y 21x y x 、是齐次方程的两个线性无关解 设非齐次方程有一个形如)()()()()(2211*x y x C x y x C x y +=的解.上一行中的21,C C 已变易为待定函数接下来的任务是选择)(),(21x C x C ,使)()()()()(2211*x y x C x y x C x y +=是y ’’+p(x)y ’+q(x)y=r(x),r(x)≠0的一个解将)()()()()(2211*x y x C x y x C x y +=代入y ’’+p(x)y ’+q(x)y=r(x),r(x)≠0中得到:()()()()()()()()()x y x C x y x C x y x C x y x C x '''''y 22112211*+++=因为只要求出一个特解,即只要确定一组函数)(),(21x C x C ,我们就有比较大的自由度对)(),(21x C x C 加以限制,如选择)(),(21x C x C 使()()()()0''2211=+x y x C x y x C这样,()()()()()()()()()()()()()()x y x C x y x C x y x C x y x C x x y x C x y x C x 22112211*2211*'''''''''y'''y'+++=+=将()()()()()()()()()()()()()()()()()()()x y x C x y x C x y x C x y x C x x y x C x y x C x x y x C x y x C x 22112211*2211*2211*'''''''''y'''y'y +++=+=+=代入y ’’+p(x)y ’+q(x)y=r(x),r(x)≠0()()()()()()()()()()()()()()()()()()()x r x y x C x y x C q x y x C x y x C p x y x C x y x C x y x C x y x C =+++++++2211221122112211''''''''''()()x x 21y ,y 都是齐次方程的解,可将上式化简为()()()()()x r x y x C x y x C =+2211''()()()()0''2211=+x y x C x y x C 与()()()()()x r x y x C x y x C =+2211''是关于()()x C x C 21,的线性代数方程组,解之,得()()()()()()()()()()()()()()()()x y x y x y x y x r x y x y x C x y x y x y x y x y x r x y x C 21211122121221'''0','''0'==再积一次分即可求出()()x C x C 21,.这就是参数变易法求二阶线性常系数非齐次微分方程.。
2.2二阶常系数线性微分方程的解法
13
2.2 二阶常系数线性微分方程的解法
1. f (x) Pm(x)ex ( 其中 pm ( x)是 x 的 m 次多项式 )
这时方程②为 ay by cy Pm ( x)ex
③
可以设 y Q( x)ex ( 其中Q( x) 是多项式 ) 。
例 1.求方程 y 5 y 6 y 2x 3 的特解。
解: f ( x) 2x 3 (2x 3)e0x ,
属 f ( x) Pm ( x)e x 型( m 1, 0 ),
特征方程为 r2 5r 6 0 , r1 2 , r2 3 ,
∵ 0 不是特征根,
∴设特解为 y Q1( x)e0x Aox A1 ,
得 erx (ar 2 br c) 0 ,但 erx 0 ,故有
ar 2 br c 0 ,
②
2
2.2 二阶常系数线性微分方程的解法
ar 2 br c 0 ,
②
若 r 是一元二次方程②的一个根,则 y erx 就是 方程①的一个特解。
方程②叫做方程①的特征方程。
按特征方程的两个根 r1, r2 的三种可能情况: 1. r1 r2 是两个不相等的实根; 2. r1 r2 是两个相等的实根;
9
2.2 二阶常系数线性微分方程的解法
高阶常系数线性齐次方程的解法 n 阶常系数线性齐次方程为
a0 y(n) a1 y(n1) an1 y an y 0 , ③
其特征方程为 a0r n a1r n1 an1r an 0 . ④
方程②是一个一元 n 次方程, 有 n 个根。类似二阶常系
Q( x) 应为 m 次多项式 , Q( x) 应为 m 1 次多项式 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二阶常微分方程解 Document number:BGCG-0857-BTDO-0089-2022第七节 二阶常系数线性微分方程的解法在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。
本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。
先讨论二阶常系数线性齐次方程的求解方法。
§ 二阶常系数线性齐次方程及其求解方法设给定一常系数二阶线性齐次方程为22dx y d +p dxdy +qy =0 其中p 、q 是常数,由上节定理二知,要求方程的通解,只要求出其任意两个线性无关的特解y 1,y 2就可以了,下面讨论这样两个特解的求法。
我们先分析方程可能具有什么形式的特解,从方程的形式上来看,它的特点是22dx y d ,dx dy,y 各乘以常数因子后相加等于零,如果能找到一个函数y ,其22dx y d ,dxdy,y 之间只相差一个常数因子,这样的函数有可能是方程的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令y =e rx(其中r 为待定常数)来试解将y =erx,dxdy =re rx,22dxy d =r 2e rx代入方程得 r 2e rx +pre rx+qe rx=0或 e rx(r 2+pr +q )=0因为e rx ≠0,故得r 2+pr +q =0由此可见,若r 是二次方程r 2+pr +q =0的根,那么e rx 就是方程的特解,于是方程的求解问题,就转化为求代数方程的根问题。
称式为微分方程的特征方程。
特征方程是一个以r 为未知函数的一元二次代数方程。
特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。
(1)若特证方程有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程的两个特解。
因为 x r x r 21e e =e x)r r (21-≠常数所以e r1x ,e r2x 为线性无关函数,由解的结构定理知,方程的通解为y =C 1e r1x +C 2e r2x(2)若特征方程有两个相等的实根r 1=r 2,此时p 2-4q =0,即有r 1=r 2=2p-,这样只能得到方程的一个特解y1=e r 1x ,因此,我们还要设法找出另一个满足12y y ≠常数,的特解y 2,故12y y 应是x 的某个函数,设12y y =u ,其中u =u(x)为待定函数,即y 2=uy 1=ue r 1x对y 2求一阶,二阶导数得dx dy 2=dxdu e r1x+r 1ue r1x=(dx du +r 1u)er1x222dx y d =(r 21u +2r 1dx du +22dx ud )e r1x将它们代入方程得(r 21u +2r 1dx du +22dxu d )e r1x+p(dxdu +r 1u)er1x+que r1x =0或[22dx u d +(2r 1+p) dxdu+(r 21+pr 1+q)u ]e r1x =0因为e r1x ≠0,且因r 1是特征方程的根,故有r 21+pr 1+q =0,又因r 1=-2p故有2r 1+p =0,于是上式成为22dxu d =0 显然满足22dxud =0的函数很多,我们取其中最简单的一个 u(x)=x则y 2=xe rx 是方程的另一个特解,且y 1,y 2是两个线性无关的函数,所以方程的通解是y =C 1e r1x +C 2xe r1x =(C 1+C 2x)er1x(3)若特征方程有一对共轭复根 r 1=α+i β,r 2=α-i β此时方程有两个特解y 1=e (α+i β)xy 2=e (α-i β)x则通解为y =C 1e (α+i β)x +C 2e (α-i β)x其中C 1,C 2为任意常数,但是这种复数形式的解,在应用上不方便。
在实际问题中,常常需要实数形式的通解,为此利用欧拉公式e ix =cosx +isinx ,e -ix =cosx -isinx有 21(e ix+e -ix)=cosxi 21(e ix-e -ix)=sinx21 (y 1+y 2)=21e αx(e i βx+e -i βx)=e αxcos βxi 21 (y 1-y 2)=i21e αx(e i βx-e -i βx)=e αxsin βx由上节定理一知,21 (y 1+y 2),i21(y 1-y 2)是方程的两个特解,也即e αx cos βx ,e αx sin βx 是方程的两个特解:且它们线性无关,由上节定理二知,方程的通解为y =C 1e αx cos βx +C 2e αx sin βx或 y =e αx (C 1cos βx +C 2sin βx)其中C 1,C 2为任意常数,至此我们已找到了实数形式的通解,其中α,β分别是特征方程复数根的实部和虚部。
综上所述,求二阶常系数线性齐次方程的通解,只须先求出其特征方程的根,再根据他的三种情况确定其通解,现列表如下特征方程r 2+pr +q =0的根微分方程22dx y d +p dx dy+qy =0的通解有二个不相等的实根r 1,r 2y =C 1e r1x+C 2e r2x有二重根r 1=r 2y =(C 1+C 2x)e r1x有一对共轭复根β-α=β+α=i r i r 21y =e αx (C 1cos βx +C 2sin βx)例1. 求下列二阶常系数线性齐次方程的通解(1) 22dx y d +3dx dy-10y =0 (2) 22dx y d -4dx dy +4y =0 (3) 22dx y d +4dxdy +7y =0 解 (1)特征方程r 2+3r -10=0有两个不相等的实根r 1=-5,r 2=2所求方程的通解 y =C 1e -5r+C 2e 2x(2)特征方程r 2-4r +4=0,有两重根 r 1=r 2=2所求方程的通解y =(C 1+C 2x)e 2x(3)特征方程r 2+4r +7=0有一对共轭复根r 1=-2+3i r 2=-2-3i所求方程的通解 y =e -2x(C 1cos3x +C 2sin 3x)§ 二阶常系数线性非齐次方程的解法由上节线性微分方程的结构定理可知,求二阶常系数线性非齐次方程22dx y d +p dxdy +qy =f(x) 的通解,只要先求出其对应的齐次方程的通解,再求出其一个特解,而后相加就得到非齐次方程的通解,而且对应的齐次方程的通解的解法,前面已经解决,因此下面要解决的问题是求方程的一个特解。
方程的特解形式,与方程右边的f(x)有关,这里只就f(x)的两种常见的形式进行讨论。
一、f(x)=p n (x)e αx ,其中p n (x)是n 次多项式,我们先讨论当α=0时,即当f(x)=p n (x )时方程22dx y d +p dx dy +qy =p n(x) 的一个特解。
(1)如果q ≠0,我们总可以求得一n 次多项式满足此方程,事实上,可设特解~y =Q n(x)=a 0x n+a 1xn -1+…+a n ,其中a 0,a 1,…a n 是待定常数,将~y 及其导数代入方程,得方程左右两边都是n 次多项式,比较两边x 的同次幂系数,就可确定常数a 0,a 1,…a n 。
例1. 求22dx y d +dxdy+2y =x 2-3的一个特解。
解 自由项f(x)=x 2-3是一个二次多项式,又q =2≠0,则可设方程的特解为~y =a 0x 2+a 1x +a 2求导数~'y =2a 0x +a1~"y =2a代入方程有2a 0x 2+(2a 0+2a 1)x +(2a 0+a 1+2a 2)=x 2-3比较同次幂系数⎪⎩⎪⎨⎧-=++=+=3a 2a a 20a 2a 21a 2210100 解得 47a 21a 21a 210-=-==所以特解~y =21x 2-21x -47(2)如果q =0,而p ≠0,由于多项式求导一次,其次数要降低一次,此时~y =Q n (x)不能满足方程,但它可以被一个(n +1)次多项式所满足,此时我们可设~y =xQ n (x)=a 0x n +1+a 1x n +…+a n x代入方程,比较两边系数,就可确定常数a 0,a 1,…a n 。
例2. 求方程22dx y d +4dxdy=3x 2+2的一个特解。
解 自由项 f(x)=3x 2+2是一个二次多项式,又q =0,p =4≠0,故设特解~y =a 0x 3+a 1x 2+a 2x求导数~'y =3a 0x 2+2a 1x +a2~"y =6a 0x +2a1代入方程得12a 0x 2+(8a 1+6a 0)x +(2a 1+4a 2)=3x 2+2,比较两边同次幂的系数⎪⎩⎪⎨⎧=+=+=2a 4a 20a 6a 83a 1221010 解得 3219a 163a 41a 210=-==所求方程的特解 ~y =41x 3-163x 2+3219x(3)如果p =0,q =0,则方程变为22dxyd =p n(x),此时特解是一个(n +2)次多项式,可设~y =x 2Q n(x),代入方程求得,也可直接通过两次积分求得。
下面讨论当α≠0时,即当f(x)=p n (x)e αx 时方程22dx y d +p dxdy +qy =p n(x)e αx的一个特解的求法,方程与方程相比,只是其自由项中多了一个指数函数因子e αx,如果能通过变量代换将因子e αx去掉,使得化成式的形式,问题即可解决,为此设y =ue αx ,其中u =u(x)是待定函数,对y =ue αx ,求导得dx dy =e αxdxdu+αue αx求二阶导数 22dx y d =e αx22dx u d +2αe αxdxdu+α2ue αx代入方程得eαx[22dx u d +2αdxdu +α2u ]+pe αx[dxdu+αu ]+que αx=p n (x)e αx消去e αx 得22dx u d +(2α+p) dxdu +(α2+p α+q)u =p n(x ) 由于式与形式一致,于是按的结论有:(1)如果α2+p α+q ≠0,即α不是特征方程r 2+pr +q =0的根,则可设的特解u =Qn (x),从而可设的特解为~y =Q n (x)e αx(2)如果α2+p α+q =0,而2α+p ≠0,即α是特征方程r 2+pr +q =0的单根,则可设的特解u =xQ n (x),从而可设的特解为~y =xQ n (x)e αx(3)如果r 2+p α+q =0,且2α+p =0,此时α是特征方程r 2+pr +q =0的重根,则可设的特解u =x 2Q n (x),从而可设的特解为~y =x 2Q n (x)e αx例3. 求下列方程具有什么样形式的特解(1)22dx y d +5dx dy +6y =e 3x (2) 22dx y d +5dx dy +6y =3xe -2x (3) 22dx y d +αdxdy +y =-(3x 2+1)e -x解 (1)因α=3不是特征方程r 2+5r +6=0的根,故方程具有形如~y =a 0e3x 的特解。