余弦定理练习题(含答案)

合集下载

两角和与差的正弦余弦正切公式练习题(含答案)

两角和与差的正弦余弦正切公式练习题(含答案)

两角和与差的正弦余弦正切公式练习题(含答案)两角和差的正弦余弦正切公式练题一、选择题1.给出如下四个命题:①对于任意的实数α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;②存在实数α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;③公式tan(α+β)=tanα+tanβ成立的条件是α≠kπ+π(k∈Z)且β≠kπ+π(k∈Z);1-tanαtanβ/2④不存在无穷多个α和β,使sin(α-β)=sinαcosβ-cosαsinβ。

其中假命题是()A。

①②B。

②③C。

③④D。

②③④2.函数y=2sinx(sinx+cosx)的最大值是()A。

1+2B。

2-1C。

2D。

2/33.当x∈[-π/2,π/2]时,函数f(x)=sinx+3cosx的()A。

最大值为1,最小值为-1B。

最大值为1,最小值为-1/2C。

最大值为2,最小值为-2D。

最大值为2,最小值为-14.已知tan(α+β)=7,tanαtanβ=2/3,则cos(α-β)的值()A。

1/2B。

2/2C。

-2D。

±25.已知π/2<β<α<3π/4,cos(α-β)=12/13,sin(α+β)=-3/5,则sin2α=()A。

56/65B。

-56/65C。

6565/56D。

-5/66.sin15°sin30°sin75°的值等于()A。

3/4B。

3/8C。

1/8D。

1/47.函数f(x)=tan(x+π/4)+1+tanx/4,g(x)=1-tanx,h(x)=cot(π/4-x)。

其中为相同函数的是()A。

f(x)与g(x)B。

g(x)与h(x)C。

h(x)与f(x)D。

f(x)与g(x)及h(x)8.α、β、γ都是锐角,tanα=1/2,tanβ=1/5,tanγ=1/8,则α+β+γ等于()A。

π/3B。

π/4C。

π/5D。

余弦定理练习题

余弦定理练习题

A 组 基础巩固1.△ABC 中,a =3,b =7,c =2,那么B 等于( )A . 30°B .45°C .60°D .120°2.已知△ABC 中,sinA:sinB:sinC =1∶3∶2,则A ∶B ∶C 等于 ( ) A .1∶2∶3 B .2∶3∶1 C .1∶3∶2D .3∶1∶23.在ABC 中,60B =,2b ac =,则ABC 一定是 ( ) A 、锐角三角形 B 、钝角三角形 C 、等腰三角形 D 、等边三角形 4.若三条线段的长为5、6、7,则用这三条线段( )A 、能组成直角三角形B 、能组成锐角三角形C 、能组成钝角三角形D 、不能组成三角形 5.在△ABC 中,若8,3,7===c b a ,则其面积等于( ) A .12 B .221C .28D .36 6.在△ABC 中,若)())((c b b c a c a +=-+,则∠A=( ) A .090 B .060 C .0120 D .0150 7.在△ABC 中,若1413cos ,8,7===C b a ,则最大角的余弦是( ) A .51- B .61- C .71- D .81-8.三角形的两边分别为5和3,它们夹角的余弦是方程06752=--x x 的根,则三角形的另一边长为( )A. 52B. 213C. 16D. 49.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、由增加的长度决定 10.在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A 其中成立的个数是 ( )A .0个B .1个C .2个D .3B 组 巩固提高11.已知锐角三角形的边长分别是2,3,x ,则x 的取值范围是 ( )A 、15x << Bx << C、0x << D5x << 12.是△ABC 中的最小角,且1cos 1a A a -=+,则实数a 的取值范围是 ( )A. a ≥3B. a >-1C. -1<a ≤3D. a >013.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC =________. 14.在△ABC 中,()()()6:5:4::=+++b a a c c b ,则△ABC 的最大内角的度数是15..在△ABC 中,∠C =60°,a 、b 、c 分别为∠A 、∠B 、.C 的对边,则ca bc b a +++=________.16.若平行四边形两条邻边的长度分别是4 6 cm 和4 3 cm ,它们的夹角是45°,则这个平行四边形的两条对角线的长度分别为 . 17.△A BC 中,,26-=AB ∠C=300,则AC+BC 的最大值是________。

余弦定理练习题含答案

余弦定理练习题含答案

余弦定理练习题1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( ) A .6 B .2 6 C .3 6 D .4 62.在△ABC 中,a =2,b =3-1,C =30°,那么c 等于( )A. 3B. 2C. 5 D .23.在△ABC 中,a 2=b 2+c 2+3bc ,那么∠A 等于( )A .60°B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,假设(a 2+c 2-b 2)tan B =3ac ,那么∠B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,那么a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,那么这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定8.在△ABC 中,b =3,c =3,B =30°,那么a 为( )A. 3 B .2 3 C.3或2 3 D .2 9.△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________.10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,假设a =4,b =5,S =53,那么边c 的值为________.12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,那么cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,那么b =________. 15.△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,那么角C =________. 16.三角形的三边为连续的自然数,且最大角为钝角,那么最小角的余弦值为________.17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)假设△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.余弦定理答案1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( A )A .6 B .26C .3 6 D .4 6 2.在△ABC 中,a =2,b =3-1,C =30°,那么c 等于( B )A. 3 B.2C. 5 D .23.在△ABC 中,a 2=b 2+c 2+3bc ,那么∠A 等于( D )A .60° B .45°C .120° D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,假设(a 2+c 2-b 2)tan B =3ac ,那么∠B 的值为( D ) A.π6 B.π3C.π6或5π6 D.π3或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3. 5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,那么a cos B +b cos A 等于( C )A .aB .BC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,那么这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2.设增加的长度为m ,那么c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2,∴三角形各角均为锐角,即新三角形为锐角三角形.8.在△ABC 中,b =3,c =3,B =30°,那么a 为( )A. 3 B .23C.3或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a ,∴a 2-33a +6=0,解得a =3或2 3.9.△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3. 在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B = 1+4-2×1×2×12= 3.答案: 3 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0),∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12,又C ∈(0°,180°),∴C =120°. 11.a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,假设a =4,b =5,S =53,那么边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C , ∴c 2=21或61,∴c =21或61.答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,那么cos A ∶cos B ∶cos C =________.解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4,设a =2k (k >0),那么b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k =1116, 同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4).答案:14∶11∶(-4) 13.在△ABC 中,a =32,cos C =13,S △ABC =43,那么b =________. 解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43,∴b =2 3.答案:2 3 15.△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,那么角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2=12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.答案:45°16.三角形的三边为连续的自然数,且最大角为钝角,那么最小角的余弦值为________.解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N),那么⎩⎪⎨⎪⎧k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4, ∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12. 又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2.∴AB 2=AC 2+BC 2-2AC ·BC ·cos C =a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab =(23)2-2=10,∴AB =10. 18.△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)假设△ABC 的面积为16sin C ,求角C 的度数. 解:(1)由题意及正弦定理得AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13, 由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =AC +BC 2-2AC ·BC -AB 22AC ·BC =12,所以C =60°. 19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值. 解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A ,得AB =sin C sin ABC =2BC =2 5. (2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255,于是sin A =1-cos 2A =55. 从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2 A =35. 所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b .由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b. 又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc, 即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。

(完整版)余弦定理练习题及答案

(完整版)余弦定理练习题及答案

积累巩固1.已知a ,b ,c 是∆ABC 中角A ,B ,C 的对边,若a =21,b =5,c =4,则A =.3,b =3,c =30︒,则A =.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知a =3.在△ABC 中,三个角A ,B ,C 的对边边长分别为a =3,b =4,c =6,则bc cos A +ca cos B +ab cos C 的值为.4.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为.5.在△ABC 中,已知a =1,b =7,B =60°,求边C .延伸拓展6.在△ABC 中,已知a =2,b =2,A =45°,解此三角形.7.已知a 、b 、c 分别是∆ABC 的三个内角A 、B 、C 所对的边,若∆ABC 面积S∆ABC=3,c =2,A =60︒,求a 、b 的值.28.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a ⋅cos 2.C A 3+c ⋅cos 2=b ,求证:2229.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b +c =a +3bc ,求:(1)A 的大小;(2)2sin B cos C -sin(B -C )的值.10.设∆ABC 的内角A,B,C 的对边分别为a,b,c,且A=60o ,c=3b.求:(1)222cos B cos C a的值;(2)的值.+c sin B sin C 创新应用11.在△ABC 中,a 、b 是方程x -23x +2=0的两根,且2cos(A +B )=1.求:(1)角C 的度数;(2)c ;(3)△ABC 的面积.12.已知A 、B 、C 为∆ABC 的三内角,且其对边分别为a 、b 、c ,若2cos B cos C -sin B sin C =1.2(1)求A ;(2)若a =23,b +c =4,求∆ABC 的面积.13.当甲船位于A 处时获悉,在其正东方方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°、相距10海里C 处的乙船,试问乙船直接赶往B 处救援最少要走多少海里?参考答案b 2+c 2-a 21=,∠A =60o .1.60解析:cos A =2bc 2o 2.解:由余弦定理可得c 2=3+9-2⨯3⨯3cos30o =3,解得c =a =3⇒A =C =30o (或).616+36-99+36-1616+9-36613.解:由余弦定理,所求式=++=.22224.解:设顶角为C ,因为l =5c ,∴a =b =2c ,由余弦定理得πa 2+b 2-c 24c 2+4c 2-c 27cos C ===.2ab 2⨯2c ⨯2c 85.解:由余弦定理得(7)2=1+c 2-2c cos60°,∴c 2-c -6=0,解得c 1=3,c 2=-2(舍去);∴c =3.6.解:由a 2=b 2+c 2-2bc cos A 得22=(2)2+c 2-22c cos45°,∴c 2-2c -2=0,解得c =1+3或c =1-3(舍去);∴c =1+3.c 2+a 2-b 222+(1+3)2-(2)23又cos B ===,且B 为三角形内角;2ca 22×2×(1+3)∴B =30°;∴C =180°-(A +B )=180°-(45°+30°)=105°.7.解:ΘS∆ABC=1bc sin A =3,∴1b ⋅2sin 60︒=3,得b =12222由余弦定理得a =b +c -2bc cos A =1+2-2⨯1⨯2⋅cos60︒=3,∴a =2222223.8.证明:由已知得:,∴,∴,∴,即222.9.解:(1)由余弦定理得a b c2bccosA,b2c2a23bc3故cosA,所以A.2bc2bc26(2)2sinB cosC sin(B C)2sin B cos C(sinB cos C cos B sinC)sinB cos C cos B sinC1sin(B C)sin(A)sin A.210.解:(1)由余弦定理得1117a7 a2b2c22b cosA(c)2c22g cg cg c2.3329c3(2)由余弦定理及(1)的结论有72212c c(c)a c b539. cosB2ac7272g cg c3222故sin B1cos2B1253. 282772122c c ca2b2c2919,同理可得cosC2ab71272g cg c33sin C1cos2C1133. 2827从而cosB cosC5114333. sinB sin C39911.解:(1)∵2cos(A +B )=1,∴cos C =-21,∴角C 的度数为120°.2(2)∵a 、b 是方程x -23x +2=0的两根,∴由求根公式计算得a +b =23,ab =2,222由余弦定理得c =a +b -2ab cos C =(a +b )-2ab (cos C +1)=12-2=10.2∴c =10.(3)S =13ab sin C =.2212.解:(1)Θcos B cos C -sin B sin C =又Θ0<B +C <π,∴B +C =22211,∴cos(B +C )=;223;ΘA +B +C =π,∴A =π2π.3(2)由余弦定理得a =b +c -2bc ⋅cos A ,∴(23)=(b +c )-2bc -2bc ⋅cos 222π,3即12=16-2bc -2bc ⋅(-),∴bc =4;12∴S∆ABC=113bc ⋅sin A =⋅4⋅=3.222o o o 13.解:在△ABC 中,∠BAC =90+30=120,∴BC =AB 2+AC 2-2AB g AC cos A =202+102-2⨯20⨯10cos120o =107.答:乙船直接赶往B 处救援最少要走107海里.。

根据正弦与余弦原理练习题及答案

根据正弦与余弦原理练习题及答案

根据正弦与余弦原理练习题及答案
以下是一些根据正弦与余弦原理的练题和答案,希望对你的研
究有所帮助:
1. 问题:已知三角形ABC中,角A的度数为30°,BC边长为6,AC边长为10。

求角B的度数和边AB的长度。

答案:根据正弦定理,我们可以得到正弦B的值:sin B = (AB / AC) = (AB / 10),因此 AB = 10 * sin B。

又由于三角形ABC是直角三角形,我们知道角A + 角B + 角
C = 180°,所以角C = 180° - 30° - B。

根据余弦定理,我们可以得到:
AB^2 = BC^2 + AC^2 - 2 * BC * AC * cos C
将已知的数值代入计算即可得到答案。

2. 问题:已知三角形DEF中,角D的度数为60°,EF边长为8,DF边长为12。

求角E的度数和边DE的长度。

答案:根据正弦定理,我们可以得到正弦E的值:sin E = (DE / DF) = (DE / 12),因此 DE = 12 * sin E。

同样地,由于三角形DEF是直角三角形,我们知道角D + 角E + 角F = 180°,所以角F = 180° - 60° - E。

根据余弦定理,我们可以得到:
DE^2 = EF^2 + DF^2 - 2 * EF * DF * cos F
将已知的数值代入计算即可得到答案。

请根据以上原理和计算方法,练习更多的题目,加深对正弦与余弦原理的理解和应用能力。

正余弦定理练习题(含答案)[1]

正余弦定理练习题(含答案)[1]

在“ABC 中,0, b, c 分別是角4 8. C 所对的边,若^ = 105% 8=45% 则c=(A. 1C. 2在茲 ABC 中,已知 a=3y[2. cosC=j, Sg=4品 则 b= ____________. 在茲ABC 中,b=4{i, C=30。

,c=2,则此三角形有 ________组解. 如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方 向线的水平转角)为140。

的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110% 航行半小时后船到达C 点,观测灯塔人的方位角是65。

・则货轮到达C 点时,与灯塔A 的距离是多少18. ii :A ABC 中,0、b 、c 分別为角 A 、8. C 的对边•若 a=2晶 sin|cos|=^r sin Bsin C=cos^.求 A 、 6 及 b 、c.19. (2009年高考四川卷)^A ABC 中,久B 为锐角•角久B 、C 所对应的边分別为6 b 、c,且cos 2A= sin ⑴求 A+B 的值:(2)若 o —/?=匹一1,求 a, b, c 的值.20. 'ABC 中,0b=65/5,sin fi=sinC △ ABC 的面枳为 15 羽,求边 b 的长.在AAfiC 中,Z&=45°, ZB=60°, a=2.2. 3. 已知 0=8, S=60°, C=75°, B ・ 45/3 C. 角A 、B 、C 的对边分別为a 、 B ・ 135" 正弦定理练习题则b 等于()D. 2& 则b 等于()4& b. G &=60。

,0=4羽,b=4品则角 5为( D.以上答案都不对 4. 在△ ABC 中, A. 4迈在△ ABC 中, A. 45°或 135° B ・ 135" C・ 45° 在 A ABC 中,o: b : c=i: 5 : 6.贝 IJsiM: sinB : sinC 等于( ) A. 1:5:6 B. 6:5:1 C. 6:1:5解析J 选 A.由正弦定理知 siM : 5in8 : sinC=o : b : c=l : 5 : 6.D-不确泄5. 6. 8.9.10. 在^ ABC 中,若签?=夕,则^ ABC 是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰三角形或直角三角形 己知A ABC 中,AB=E AC=1, Z 8 = 30% 则A ABC 的面积为()或或誓'ABC 的内角A 、B 、C 的对边分别为a 、b. c •若c=迈,b=E S=120\则o 等于( B ・ 2 c"在4 ABC 中,角久B 、C 所对的边分別为6 b 、G 若0=1, c=Ql C 岭 则A=_ 已知 a=響,fa=4,4 = 30% 则 sin8= _____________________________________ .li:A ABC 中,11. 12. 在茲ABC 中, 在4 ABC 中, 已知ZA=30°, Z S = 120\ 6=12,贝I] o+c=o=2facosC,贝ijA^fiC 的形状为 ________ • 13.14- 在△AB C 中,人= 60°, O = 6A /3, 6=12, S“8c=18 羽,则;;活三篇行花a — 2b + cc —已知"阮中,ZA :ZB :Z C=l: 2:3. a-1,则 sM_2sinB+sinC15. 16. 17.2.3. 4. 5. 6- 1. 8. 9. 10. 11. 12. 13. 14- IS 16. 17. 余弦定理练习题在“ABC 中,如果BC=6, AB=4, cosB=p 那么AC 等于( A. 6 B. 2& C ・ 3yf6 在A ABC 中,0=2, C=30\ 则 c 等于( D. 2 在AAfiC 中,Q2=b2+s+羽be.则ZA 等于( ) A. 60° B ・ 45° C ・ 120° 在4 ABC 中,厶A 、Z 8、ZC 的对边分别为6 b 、c, T 、5n 2n riv tfV 以6 以3 在A ABC 中,0、b 、c 分别是A 、B 、C 的对边,则a cosB+bcosA 等于( A. o B. b C ・c D.以上均不对D. 150" 若(a^+c^—b2)tanB=dlac,则Z B 的值为( 如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为() A-锐角三角形 B.直角三角形 C.钝角三角形 D ・由增加的长度决;4^ 已知锐角三角形A3C 中,I 為1=4, I 為1=1., A- 2 B. -2 C. 4在4 ABC 中,b=y[3, c=3, 0=30。

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ­ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。

正弦与余弦定理练习题及答案

正弦与余弦定理练习题及答案

正弦定理练习题1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. B. C.D .262362.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4B .4C .4D.2363233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =4,b =4,则角B 为( )32A .45°或135° B .135°C .45°D .以上答案都不对4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =,则c =( )2A .1B.C .2D.12146.在△ABC 中,若=,则△ABC 是( )cos Acos B ba A .等腰三角形 B .等边三角形 C .直角三角形D .等腰三角形或直角三角形7.已知△ABC 中,AB =,AC =1,∠B =30°,则△ABC 的面3积为( )A.B.C.或D.或323432334328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =,b =2,B =120°,则a 等于( )6 A.B .2C.D.6329.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =,C =,则A =________.3π310.在△ABC 中,已知a =,b =4,A =30°,则433sin B =________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =6,b =12,S △ABC =18,则33=________,c =________.a +b +csin A +sin B +sin C 14.在△ABC 中,已知a =3,cos C =,S △ABC =4,则2133b =________.15.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =2,sin cos =,sin B sin C =cos 2,求A 、B 及b 、c .3C 2C 214A216.△ABC 中,ab =60,sin B =sin C ,△ABC 的面积为315,求边b 的长.3余弦定理练习题1.在△ABC 中,如果BC =6,AB =4,cos B =,那么AC 等于( )13A .6 B .2 C .3 66D .462.在△ABC 中,a =2,b =-1,C =30°,则c 等于( )3A. B.C.D .23253.在△ABC 中,a 2=b 2+c 2+bc ,则∠A 等于( )3A .60° B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =ac ,则∠B 的值为( )3A.B.C.或D.或π6π3π65π6π32π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.已知锐角三角形ABC 中,||=4,||=1,△ABC 的面积为AB → AC→ ,则·的值为( )3AB → AC → A .2 B .-2 C .4D .-47.在△ABC 中,b =,c =3,B =30°,则a 为( )3A.B .2C.或2D .233338.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.9.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =5,则边c 的值为________.310.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.11.在△ABC 中,a =3,cos C =,S △ABC =4,则2133b =________.12.已知△ABC 的三边长分别是a 、b 、c ,且面积S =,则角C =________.a 2+b 2-c 2413.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-2x +2=03的两根,且2cos(A +B )=1,求AB 的长.14.在△ABC 中,BC =,AC =3,sin C =2sin A .(1)求AB 的值;5(2)求sin(2A -)的值.π4正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. B. C. D .26236解析:选A.应用正弦定理得:=,求得b ==.a sin Ab sin B a sin B sin A 62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4B .4C .4D.236323解析:选C.A =45°,由正弦定理得b ==4.a sin Bsin A 63.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =4,b =4,则角32B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理=得:sin B ==,又∵a >b ,∴B <60°,a sin A b sin B b sin Aa 22∴B =45°.4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =,2则c =( )A .1B.C .2D.1214解析:选A.C =180°-105°-45°=30°,由=得c ==1.b sin Bc sin C 2×sin 30°sin45°6.在△ABC 中,若=,则△ABC 是( )cos A cos B ba A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形解析:选D.∵=,∴=,b a sin B sin A cos A cos B sin Bsin A sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =.π27.已知△ABC 中,AB =,AC =1,∠B =30°,则△ABC 的面积为( )3A. B.3234C.或D.或3233432解析:选D.=,求出sin C =,∵AB >AC ,ABsin C ACsin B 32∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =AB ·AC sin A 可求面积.128.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =,b =,B =120°,则a 等26于( )A. B .26C. D.32解析:选D.由正弦定理得=,6sin120°2sin C ∴sin C =.12又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c =.29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =,C =,则3π3A =________.解析:由正弦定理得:=,a sin A csin C 所以sin A ==.a ·sin C c12又∵a <c ,∴A <C =,∴A =.π3π6答案:π610.在△ABC 中,已知a =,b =4,A =30°,则sin B =________.433解析:由正弦定理得=a sin A bsin B ⇒sin B ===.b sin Aa 4×1243332答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由=得,a ==4,a sin Ab sin B 12×sin30°sin120°3∴a +c =8.3答案:8312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C .答案:等腰三角形13.在△ABC 中,A =60°,a =6,b =12,S △ABC =18,则33=________,c =________.a +b +c sin A +sin B +sin C 解析:由正弦定理得===12,又S △ABC =bc sin A ,∴a +b +c sin A +sin B +sin C a sin A 63sin60°12×12×sin60°×c =18,123∴c =6.答案:12 614.在△ABC 中,已知a =3,cos C =,S △ABC =4,则b =________.2133解析:依题意,sin C =,S △ABC =ab sin C =4,223123解得b =2.3答案:2315.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =2,sin cos =,sin3C 2C214B sin C =cos 2,求A 、B 及b 、c .A 2解:由sin cos =,得sin C =,C 2C 21412又C ∈(0,π),所以C =或C =.π65π6由sin B sin C =cos 2,得A 2sinB sinC =[1-cos(B +C )],12即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =,B =C =(舍去),π65π6A =π-(B +C )=.2π3由正弦定理==,得a sin A bsin B csin C b =c =a =2×=2.sin Bsin A 31232故A =,B =,b =c =2.2π3π6=×-×=.2553101055101022又0<A +B <π,∴A +B =.π4(2)由(1)知,C =,∴sin C =.3π422由正弦定理:==得a sin Ab sin Bc sin Ca =b =c ,即a =b ,c =b .510225∵a -b =-1,∴b -b =-1,∴b =1.222∴a =,c =.2516.△ABC 中,ab =60,sin B =sin C ,△ABC 的面积为15,求边b 的长.33解:由S =ab sin C 得,15=×60×sin C ,123123∴sin C =,∴∠C =30°或150°.12又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =60,=,∴b =2.3a sin A bsin B 15当∠C =150°时,∠B =150°(舍去).故边b 的长为2.15余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =,那么AC 等于( )13A .6 B .26C .3 D .466解析:选A.由余弦定理,得AC =AB 2+BC 2-2AB ·BC cos B==6.42+62-2×4×6×132.在△ABC 中,a =2,b =-1,C =30°,则c 等于( )3A. B.32C. D .25解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C=22+(-1)2-2×2×(-1)cos30°33=2,∴c =.23.在△ABC 中,a 2=b 2+c 2+bc ,则∠A 等于( )3A .60° B .45°C .120° D .150°解析:选D.cos ∠A ===-,b 2+c 2-a 22bc -3bc2bc 32∵0°<∠A <180°,∴∠A =150°.4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =ac ,则∠B 的值为( )3A.B.π6π3C.或D.或π65π6π32π3解析:选D.由(a 2+c 2-b 2)tan B =ac ,联想到余弦定理,代入得3cos B ==·=·.a 2+c 2-b 22ac321tan B 32cos B sin B 显然∠B ≠,∴sin B =.∴∠B =或.π232π32π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .a B .b C .c D .以上均不对解析:选C.a ·+b ·==c .a 2+c 2-b 22ac b 2+c 2-a 22bc2c 22c 6.已知锐角三角形ABC 中,||=4,||=1,△ABC 的面积为,则·的AB → AC → 3AB → AC→ 值为( )A .2B .-2C .4D .-4解析:选A.S △ABC ==||·||·sin A 312AB → AC→ =×4×1×sin A ,12∴sin A =,又∵△ABC 为锐角三角形,32∴cos A =,12∴·=4×1×=2.AB → AC→127.在△ABC 中,b =,c =3,B =30°,则a 为( )3A. B .233C.或2 D .233解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-3a ,3∴a 2-3a +6=0,解得a =或2.3338.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =.π3在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B==.1+4-2×1×2×123答案:39.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =5,3则边c 的值为________.解析:S =ab sin C ,sin C =,∴C =60°或120°.1232∴cos C =±,又∵c 2=a 2+b 2-2ab cos C ,12∴c 2=21或61,∴c =或.2161答案:或216110.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cosB ∶cosC =________.解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4,设a =2k (k >0),则b =3k ,c =4k ,cos B ===,a 2+c 2-b 22ac2k 2+ 4k 2- 3k 22×2k ×4k1116同理可得:cos A =,cos C =-,7814∴cos A ∶cos B ∶cos C =14∶11∶(-4).答案:14∶11∶(-4)11.在△ABC 中,a =3,cos C =,S △ABC =4,则b =________.2133解析:∵cos C =,∴sin C =.13223又S △ABC =ab sin C =4,123即·b ·3·=4,1222233∴b =2.3答案:2312.已知△ABC 的三边长分别是a 、b 、c ,且面积S =,则角a 2+b 2-c 24C =________.解析:ab sin C =S ==·12a 2+b 2-c 24a 2+b 2-c 22abab2=ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.12答案:45°13.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-2x +2=0的两根,且2cos(A +B )3=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=,即cos C =-.1212又∵a ,b 是方程x 2-2x +2=0的两根,3∴a +b =2,ab =2.3∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-)12=a 2+b 2+ab =(a +b )2-ab =(2)2-2=10,3∴AB =.1014.在△ABC 中,BC =,AC =3,sin C =2sin A .5(1)求AB 的值;(2)求sin(2A -)的值.π4解:(1)在△ABC 中,由正弦定理=,ABsin C BCsin A 得AB =BC =2BC =2.sin C sin A 5(2)在△ABC 中,根据余弦定理,得cos A ==,AB 2+AC 2-BC 22AB ·AC255于是sin A ==.1-cos2A 55从而sin 2A =2sin A cos A =,45cos 2A =cos 2 A -sin 2 A =. 所以sin(2A -)=sin 2A cos -cos 2A sin =.35π4π4π4210。

高二数学人教A必修5练习:1.1.2 余弦定理 Word版含解析

高二数学人教A必修5练习:1.1.2 余弦定理 Word版含解析

课时训练2 余弦定理一、利用余弦定理解三角形1.在△ABC 中,a=1,B=60°,c=2,则b 等于( )A.1B.√2C.√3D.3答案:C解析:b 2=a 2+c 2-2ac cos B=1+4-2×1×2×12=3,故b=√3. 2.在△ABC 中,c 2-a 2-b 2=√3ab ,则角C 为( ) A.60° B.45°或135° C.150° D.30°答案:C解析:∵cos C=a 2+b 2-c 2=-√3ab =-√3,∴C=150°.3.在△ABC 中,已知sin A ∶sin B ∶sin C=3∶5∶7,则此三角形的最大内角的度数等于 . 答案:120°解析:由正弦定理可得a ∶b ∶c=3∶5∶7,不妨设a=3,b=5,c=7,则c 边最大,∴角C 最大.∴cos C=a 2+b 2-c 2=32+52-72=-1. ∵0°<C<180°,∴C=120°.4.(2015河南郑州高二期末,15)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A=√3sin C ,B=30°,b=2,则边c= . 答案:2解析:∵在△ABC 中,sin A=√3sin C ,∴a=√3c.又B=30°,由余弦定理,得cos B=cos 30°=√32=a 2+c 2-b22ac=22√3c 2,解得c=2.二、判断三角形形状5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b+c=2c cos 2A2,则△ABC 是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形答案:A解析:∵b+c=2c cos 2A2,且2cos 2A2=1+cos A ,∴b+c=c (1+cos A ),即b=c cos A.由余弦定理得b=c ·b 2+c 2-a 22bc ,化简得a 2+b 2=c 2,∴△ABC 是直角三角形.6.在△ABC 中,若sin 2A+sin 2B<sin 2C ,则△ABC 的形状是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.不能确定答案:A解析:由sin 2A+sin 2B<sin 2C ,得a 2+b 2<c 2,所以cos C=a 2+b 2-c 2<0,所以∠C 为钝角, 即△ABC 为钝角三角形.7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a=2b cos C ,试判断△ABC 的形状.解法一:∵cos C=a 2+b 2-c 2,代入a=2b cos C ,得a=2b ·a 2+b 2-c 2,∴a 2=a 2+b 2-c 2,即b 2-c 2=0. ∴b=c.∴△ABC 为等腰三角形.解法二:根据正弦定理asinA =bsinB =csinC =2R ,得a=2R sin A ,b=2R sin B ,代入已知条件得2R sin A=4R sin B cos C , 即sin A=2sin B cos C ,∵A=π-(B+C ),∴sin A=sin(B+C ). ∴sin B cos C+cos B sin C=2sin B cos C. ∴sin B cos C-cos B sin C=0.∴sin(B-C )=0.又-π<B-C<π,∴B-C=0,即B=C.∴△ABC 是等腰三角形.三、正弦定理、余弦定理的综合应用8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知b-c=14a ,2sin B=3sin C ,则cos A 的值为( ) A.-14 B.14C.12D.-13答案:A解析:∵2sin B=3sin C ,∴2b=3c.又b-c=a4,∴a=2c ,b=32c.∴cos A=b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c×c=-14. 9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=√3bc ,sin C=2√3sin B ,则A= . 答案:π6解析:∵sin C=2√3sin B ,∴由正弦定理得c=2√3b. ∵a 2-b 2=√3bc ,∴cos A=b 2+c 2-a 2=c 2-√3bc=2√3bc -√3bc2bc=√32,∴A=π6.10.(2015山东威海高二期中,17)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 且满足4a cos B-b cos C=c cos B.(1)求cos B 的值;(2)若ac=12,b=3√2,求a ,c.解:(1)已知等式4a cos B-b cos C=c cos B ,利用正弦定理,得4sin A cos B-sin B cos C=sin C cos B ,整理,得4sin A cos B=sin(B+C ), 即4sin A cos B=sin A ,∵sin A ≠0,∴cos B=14.(2)∵ac=12,b=3√2,cos B=14,∴由b 2=a 2+c 2-2ac cos B ,得a 2+c 2=24,联立a 2+c 2=24与ac=12,解得a=c=2√3.(建议用时:30分钟)1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a=1,b=2,cos C=14 ,则sin B=( )A.15B.√15C.√15D.7答案:B解析:由已知根据余弦定理得c 2=a 2+b 2-2ab cos C=4,∴c=2,即B=C , ∴sin B=√1-116=√154.2.(2015河北邯郸三校联考,3)在△ABC 中,如果sin A ∶sin B ∶sin C=2∶3∶4,那么cos C 等于( ) A.23B.-23C.-13D.-14答案:D解析:由正弦定理可得sin A ∶sin B ∶sin C=a ∶b ∶c=2∶3∶4,可设a=2k ,b=3k ,c=4k (k>0), 由余弦定理可得cos C=a 2+b 2-c 2=4k 2+9k 2-16k 2=-1,故选D .3.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c.若C=120°,c=√2a ,则( ) A.a>b B.a<b C.a=bD.a 与b 的大小关系不能确定 答案:A解析:由余弦定理c 2=a 2+b 2-2ab cos C 得2a 2=a 2+b 2+ab ,∴a 2-b 2=ab>0,∴a 2>b 2,∴a>b. 4.△ABC 的三边长分别为AB=7,BC=5,AC=6,则BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为( ) A.19 B.14 C.-18 D.-19答案:A解析:cos B=72+52-62=19,∴BA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =|BA ⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗ |cos B=7×5×1935=19. 5.在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B+C )<sin 2B+sin 2C ,则角A 的取值范围为( ) A.(0,π2)B.(π4,π2) C.(π6,π3) D.(π3,π2) 答案:D解析:由题意得sin 2A<sin 2B+sin 2C ,再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0, 则cos A=b 2+c 2-a 22bc >0,∵0<A<π,∴0<A<π.又a 为最大边,∴A>π3.因此得角A 的取值范围是(π3,π2).6.已知在△ABC 中,2B=A+C ,b 2=ac ,则△ABC 的形状为 .答案:等边三角形解析:∵2B=A+C ,又A+B+C=180°,∴B=60°.又b 2=ac ,由余弦定理可得b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 60°=a 2+c 2-ac ,∴有a 2+c 2-ac=ac ,从而(a-c )2=0, ∴a=c ,故△ABC 为等边三角形.7.(2015北京高考,12)在△ABC 中,a=4,b=5,c=6,则sin2AsinC = . 答案:1解析:在△ABC 中,由正弦定理知,sin2AsinC =2sinAcosA sinC =2cos A ·a c =2cos A×46=43cos A ,再根据余弦定理,得cos A=36+25-162×6×5=34,所以sin2A sinC=43×34=1.8.在△ABC 中,角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cos A+ac cos B+ab cos C 的值为 . 答案:612解析:由余弦定理得bc cos A+ac cos B+ab cos C=b 2+c 2-a 22+a 2+c 2-b 22+a 2+b 2-c 22=a 2+b 2+c 22=32+42+622=612.9.在△ABC 中,已知(a+b+c )(a+b-c )=3ab ,且2cos A sin B=sin C ,试判定△ABC 的形状. 解:由(a+b+c )(a+b-c )=3ab ,得(a+b )2-c 2=3ab , 即a 2+b 2-c 2=ab.∴cos C=a 2+b 2-c 22ab=ab 2ab =12.∵0°<C<180°,∴C=60°. ∵A+B+C=180°, ∴sin C=sin(A+B ).又∵2cos A sin B=sin C ,∴2cos A sin B=sin A cos B+cos A sin B , ∴sin(A-B )=0.∵A ,B 均为△ABC 的内角,∴A=B.因此△ABC 为等边三角形.10.在△ABC 中,C=2A ,a+c=10,cos A=34,求b.解:由正弦定理得c a =sinC sinA=sin2AsinA=2cos A , ∴c a =32.又a+c=10,∴a=4,c=6. 由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+20=3,∴b=4或b=5.当b=4时,∵a=4,∴A=B. 又C=2A ,且A+B+C=π,∴A=π4,与已知cos A=34矛盾,不合题意,舍去.当b=5时,满足题意,∴b=5.。

高中数学必修二 6 4 2 正余弦定理(精练)(含答案)

高中数学必修二  6 4 2 正余弦定理(精练)(含答案)

6.4.2 正余弦定理(精练)【题组一 余弦定理】1.(2020·福建宁德市·高一期末)在三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中2a =,b =3B π=,则边c 的长为______.【答案】4【解析】因为2a =,b =3B π=,所以2222222cos 222cos3b ac ac B c c π=+-∴=+-⋅⋅⋅,228004c c c c ∴--=>∴=故答案为:42.(2020·上海高一课时练习)在ABC中,若a b c ===,则A =________.【答案】60°【解析】由余弦定理的推论得2222221cos 22b c aA bc +-+-===, 0180A <<,60A ∴=.故答案为:60°3.(2020·长春市第二实验中学高一期中)在ABC 中,若::5:7:8a b c =,则B 的大小是_______. 【答案】3π【解析】::5:7:8a b c =设5a k =,7b k =,8c k =,由余弦定理可得2221cos 22a cb B ac +-==;3B π∴∠=.故答案为:3π. 3.(2020·湖北荆门外语学校高一期中)在ABC 中,内角、、A B C 对应的边分别为ab c 、、,若120,2Ab =︒=,1c =,则边长a 为( )A B C D .2【答案】A【解析】在ABC 中, 120,2A b =︒=,1c =,所以22212cos 4122172a b c bc A =+-=+-⨯⨯⨯=,a ∴= A.4.(2020·安徽高一期末)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知3b =,c =4A π=,则a =( )A .5 BC .29D【答案】B【解析】由余弦定理得a ===.故选:B 5.(2020·吉林长春市)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,::3:2:4a b c =,则cos C 。

余弦定理练习含答案

余弦定理练习含答案

课时作业2 余弦定理时间:45分钟 满分:100分课堂训练1.在△ABC 中,已知a =5,b =4,∠C =120°.则c 为( ) A.41B.61 C.41或61D.21 【答案】B【解析】c =a 2+b 2-2ab cos C =52+42-2×5×4×⎝ ⎛⎭⎪⎪⎫-12=61.2.△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,若a ,b ,c 满足b 2=ac ,且c =2a ,则cos B =( )A.14B.34C.24D.23 【答案】B【解析】由b 2=ac ,又c =2a ,由余弦定理cos B =a 2+c 2-b 22ac =a 2+4a 2-a ×2a 2a ·2a =34.3.在△ABC 中,三个角A 、B 、C 的对边边长分别为a =3、b =4、c =6,则bc cos A +ca cos B +ab cos C =________.【答案】612【解析】bc cos A +ca cos B +ab cos C =bc ·b 2+c 2-a 22bc +ca ·c 2+a 2-b 22ac +ab ·a 2+b 2-c 22ab =12(b 2+c 2-a 2)+12(c 2+a 2-b 2)+12(a 2+b 2-c 2)=12(a 2+b 2+c 2)=612.4.在△ABC 中:(1)a =1,b =1,∠C =120°,求c ; (2)a =3,b =4,c =37,求最大角; (3)a :b :c =1: 3 :2,求∠A 、∠B 、∠C . 【分析】 (1)直接利用余弦定理即可; (2)在三角形中,大边对大角; (3)可设三边为x ,3x,2x .【解析】(1)由余弦定理,得c 2=a 2+b 2-2ab cos C =12+12-2×1×1×(-12)=3,∴c = 3.(2)显然∠C 最大,∴cos C =a 2+b 2-c 22ab =32+42-372×3×4=-12.∴∠C =120°.(3)由于a :b :c =1: 3 :2,可设a =x ,b =3x ,c =2x (x >0).由余弦定理,得cos A =b 2+c 2-a 22bc =3x 2+4x 2-x 22·3x ·2x=32,∴∠A =30°.同理cos B =12,cos C =0.∴∠B =60°,∠C =90°.【规律方法】1.本题为余弦定理的最基本应用,应在此基础上熟练地掌握余弦定理的结构特征.2.对于第(3)小题,根据已知条件,设出三边长,由余弦定理求出∠A ,进而求出其余两角,另外也可考虑用正弦定理求∠B ,但要注意讨论解的情况.课后作业一、选择题(每小题5分,共40分) 1.△ABC 中,下列结论:①a 2>b 2+c 2,则△ABC 为钝角三角形; ②a 2=b 2+c 2+bc ,则∠A 为60°; ③a 2+b 2>c 2,则△ABC 为锐角三角形; ④若∠A :∠B :∠C =1:2:3,则a :b :c =1:2:3, 其中正确的个数为( )A .1B .2C .3D .4 【答案】A【解析】①cos A =b 2+c 2-a 22bc<0,∴∠A 为钝角,正确;②cos A =b 2+c 2-a 22bc =-12,∴∠A =120°,错误;③cos C =a 2+b 2-c 22ab>0,∴∠C 为锐角,但∠A 或∠B 不一定为锐角,错误; ④∠A =30°,∠B =60°,∠C =90°,a :b :c =1: 3 :2,错误.故选A.2.△ABC 的三内角A 、B 、C 所对边长分别为a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ).若p ∥q ,则∠C 的大小为( )A.π6B.π3C.π2D.23π 【答案】B【解析】∵p =(a +c ,b ),q =(b -a ,c -a )且p ∥q , ∴(a +c )(c -a )-b (b -a )=0即a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =ab 2ab =12.∴∠C =π3.3.△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠A =π3,a =7,b =1,则c 等于( )A .22B .3C.3+1 D .2 3 【答案】B【解析】由余弦定理得,a 2=b 2+c 2-2bc cos A , 所以(7)2=1+c 2-2×1×c ×cos π3,即c 2-c -6=0,解得c =3或c =-2(舍).故选B.4.在不等边三角形ABC 中,a 为最大边,且a 2<b 2+c 2,则∠A 的取值X 围是( )A .(π2,π)B .(π4,π2)C .(π3,π2)D .(0,π2)【答案】C【解析】因为a 为最大边,所以∠A 为最大角,即∠A >∠B ,∠A >∠C ,故2∠A >∠B +∠C .又因为∠B +∠C =π-∠A ,所以2∠A >π-∠A ,即∠A >π3.因为a 2<b 2+c 2,所以cos A =b 2+c 2-a 22bc >0,所以0<∠A <π2.综上,π3<∠A <π2.5.在△ABC 中,已知a =4,b =6,∠C =120°,则sin A 的值为( ) A.5719B.217 C.338D .-5719 【答案】A【解析】由余弦定理得c 2=a 2+b 2-2ab ·cos C =42+62-2×4×6(-12)=76,∴c =76.由正弦定理得a sin A =csin C ,即4sin A =76sin120°,∴sin A =4sin120°76=5719.6.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,且2b =a +c ,∠B =30°,△ABC 的面积为32,那么b 等于( )A.1+32B .1+ 3C.2+32D .2+ 3【答案】B【解析】∵2b =a +c ,又由于∠B =30°, ∴S △ABC =12ac sin B =12ac sin30°=32,解得ac =6,由余弦定理:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac -2ac ·cos30°=4b 2-12-63, 即b 2=4+23,由b >0解得b =1+ 3.7.在△ABC 中,若a cos A +b cos B =c cos C ,则这个三角形一定是()A .锐角三角形或钝角三角形B .以a 或b 为斜边的直角三角形C .以c 为斜边的直角三角形D .等边三角形 【答案】B【解析】由余弦定理a cos A +b cos B =c cos C 可变为a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac =c ·a 2+b 2-c 22ab,a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)=c 2(a 2+b 2-c 2) a 2b 2+a 2c 2-a 4+b 2a 2+b 2c 2-b 4=c 2a 2+c 2b 2-c 42a 2b 2-a 4-b 4+c 4=0, (c 2-a 2+b 2)(c 2+a 2-b 2)=0, ∴c 2+b 2=a 2或a 2+c 2=b 2, ∴以a 或b 为斜边的直角三角形.8.若△ABC 的周长等于20,面积是103,∠A =60°,则BC 边的长是( )A .5B .6C .7D .8 【答案】C【解析】依题意及面积公式S =12bc sin A ,得103=12bc ×sin60°,即bc =40.又周长为20,故a +b +c =20,b +c =20-a .由余弦定理,得a 2=b 2+c 2-2bc cos A =b 2+c 2-2bc cos60°=b 2+c 2-bc =(b +c )2-3bc ,故a 2=(20-a )2-120,解得a =7. 二、填空题(每小题10分,共20分)9.在△ABC 中,三边长AB =7,BC =5,AC =6,则AB →·BC →的值为________.【答案】-19【解析】由余弦定理可求得cos B =1935,∴AB→·BC →=|AB →|·|BC →|·cos(π-B )=-|AB→|·|BC →|·cos B =-19. 10.已知等腰三角形的底边长为a ,腰长为2a ,则腰上的中线长为________.【答案】62a【解析】如图,AB =AC =2a ,BC =a ,BD 为腰AC 的中线,过A作AE ⊥BC 于E ,在△AEC 中,cos C =EC AC =14,在△BCD 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos C ,即BD 2=a 2+a 2-2×a ×a ×14=32a 2,∴BD =62a .三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在△ABC 中,已知b 2sin 2C +c 2sin 2B =2bc cos B ·cos C ,试判断三角形的形状.【分析】 解决本题,可分别利用正弦定理或余弦定理,把问题转化成角或边的关系求解.【解析】方法一:由正弦定理a sin A =b sin B =csin C =2R ,R 为△ABC外接圆的半径,将原式化为8R 2sin 2B sin 2C =8R 2sin B sin C cos B cos C . ∵sin B sin C ≠0,sin B sin C =cos B cos C ,即cos(B +C )=0,∴∠B +∠C =90°,∠A =90°,故△ABC 为直角三角形.方法二:将已知等式变为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C .由余弦定理可得:b 2+c 2-b 2·(a 2+b 2-c 22ab )2-c 2(a 2+c 2-b22ac)2=2bc ·a 2+b 2-c 22ab ·a 2+c 2-b 22ac.即b 2+c 2=[a 2+b 2-c 2+a 2+c 2-b2]24a 2也即b 2+c 2=a 2,故△ABC 为直角三角形.【规律方法】 在利用正弦定理实施边角转化时,等式两边a ,b ,c 及角的正弦值的次数必须相同,否则不能相互转化.12.(2013·全国新课标Ⅰ,理)如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan ∠PBA .【解析】(1)由已知得,∠PBC =60°,∴∠PBA =30°,在△PBA 中,由余弦定理得PA 2=3+14-2×3×12cos30°=74,∴PA=72. (2)设∠PBA =α,由已知得,PB =sin α,在△PBA 中,由正弦定理得3sin150°=sin αsin 30°-α,化简得,3cos α=4sin α,∴tan α=34,∴tan ∠PBA =34.。

正余弦定理专题练习(含答案)

正余弦定理专题练习(含答案)

正余弦定理专题2020.3一、选择题1、在△ABC中,a=1,B=45°,S△ABC=2,则△ABC外接圆的直径为( )A.4B.60C.5D.6【解析】选C.因为由三角形的面积公式得:S=acsin B=×1×c×=2,所以c=4,又因为a=1,cos B=,根据余弦定理得:b2=1+32-8=25,解得b=5.所以△ABC的外接圆的直径为==5.2、在△ABC中,角A,B,C所对的边分别为a,b,c,如果c=a,B=30°,那么角C等于 ( )A.120°B.105°C.90°D.75°【解析】选A.因为c=a,所以sin C=sin A=sin(180°-30°-C)=sin(30°+C)=,即sin C=-cos C.所以tan C=-.又0°<C<180°,所以C=120°.3、在△ABC中,已知sin2A+sin2B-sin Asin B=sin2C,且满足ab=4,则该三角形的面积为( )A.1B.2C.D.【解析】选D.因为sin2A+sin2B-sin Asin B=sin2C,根据正弦定理得a2+b2-ab=c2,由余弦定理得2abcos C=ab,所以cos C=,所以sin C==,4、若△ABC为钝角三角形,三边长分别为2,3,x,则x的取值范围是( )A.(1,)B.(,5)C.(,)D.(1,)∪(,5)【解析】选D.(1)若x>3,则x对角的余弦值<0且2+3>x,解得<x<5.(2)若x<3,则3对角的余弦值<0且x+2>3,解得1<x<.故x的取值范围是(1,)∪(,5).所以S=absin C=×4×=.二、填空题5、在△ABC中,已知A=60°,tan B=,a=2,则c=________. 【解析】因为tan B=,所以sin B=,cos B=.又因为A=60°,所以sin C=sin[180°-(A+B)]=sin(120°-B)=sin 120°cos B-cos 120°sin B=+.由正弦定理,得=,即c===.答案:6、在△ABC中,角A,B,C的对边分别为a,b,c.若(a2+c2-b2)tan B=ac,则角B的度数为________.【解析】由余弦定理,得2accos B·tan B=ac,整理,得sin B=,所以B=60°或120°.答案:60°或120°7、△ABC的内角A,B,C的对边分别是a,b,c且满足acos B-bcos A=c,则△ABC的形状为________.【解析】根据正弦定理,得a=2Rsin A,b=2Rsin B,C=2Rsin C(其中R是△ABC外接圆的半径),代入acos B-bcos A=c得2Rsin Acos B-2Rsin Bcos A=2Rsin C,所以sin Acos B-sin Bcos A=sin (A+B),所以sin Acos B-sin Bcos A=sin Acos B+sin Bcos A,所以2sin Bcos A=0,又因为sin B≠0,所以cos A=0,又A∈(0,π),所以A=,所以该三角形为直角三角形.答案:直角三角形8、在△ABC中,若3b=2asin B,cos A=cos C,则△ABC的形状为________.【解析】由正弦定理知b=2R·sin B,a=2R·sin A,则3b=2a·sin B可化为:3sin B=2sin A·sin B.因为0°<B<180°,所以sin B≠0,所以sin A=,所以A=60°或120°,又cos A=cos C,所以A=C,所以A=60°,所以△ABC为等边三角形.答案:等边三角形9、在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,1+2cos(B+C)=0,则边BC上的高为________.【解析】由1+2cos(B+C)=0和B+C=π-A,得1-2cos A=0,所以cos A=,sin A=.再由正弦定理,得sin B==.由b<a知B<A,所以B不是最大角,B<,从而cos B==.由上述结果知sin C=sin(A+B)=×=.设边BC上的高为h,则有h=bsin C=.答案:10、在锐角三角形ABC中,a,b,c所对的角分别为A,B,C,A=2B,则的取值范围是________.【解析】在锐角三角形ABC中,A,B,C<90°,即所以30°<B<45°.由正弦定理知:===2cos B∈(,),故的取值范围是(,).答案:(,)三、解答题11、在△ABC中,a,b,c分别是角A,B, C所对的边且b=6,a=2,A=30°,求ac的值.【解析】由正弦定理=得sin B===.由条件b=6,a=2,b>a知B>A.所以B=60°或120°.(1)当B=60°时,C=180°-A-B=180°-30°-60°=90°.在Rt△ABC中,C=90°,a=2,b=6,c=4,所以ac=2×4=24.(2)当B=120°时,C=180°-A-B=180°-30°-120°=30°,所以A=C,则有a=c=2.所以ac=2×2=12.12、△ABC的内角A,B,C所对的边分别为a,b,c.向量m=(a,b)与n=(cos A,sin B)平行.(1)求A.(2)若a=,b=2,求sin C.【解析】(1)因为m∥n,所以asin B-bcos A=0.由正弦定理,得sin Asin B-sin Bcos A=0,又因为sin B≠0,从而tan A=.由于0<A<π,所以A=.(2)由正弦定理,得=,从而sin B=,又由a>b,知A>B,所以cos B=.故sin C=sin(A+B)=sin(B+)=sin Bcos +cos Bsin=.13、在△ABC中,求证:(1)=.(2)=.【证明】(1)由余弦定理,a2=b2+c2-2bccos A,于是==1-·2cos A=1-·2cos A===.(2)方法一:==·==.方法二:====.14、在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cos Asin B=sin C,确定△ABC的形状.【解析】由正弦定理得=,由2cos Asin B=sin C,有cos A==.又由余弦定理得cos A=,所以=,即c2=b2+c2-a2,所以a2=b2,所以a=b.又因为(a+b+c)(a+b-c)=3ab,所以(a+b)2-c2=3ab,所以4b2-c2=3b2,即b2=c2.所以b=c,所以a=b=c.15、所以△ABC为等边三角形.已知a,b,c分别为△ABC三个内角A,B,C的对边,+=.(1)求角A的大小.(2)若a=2,△ABC的面积为,求边b,c.【解析】(1)由+=及正弦定理得+=,得,sin Acos B+cos Asin B=2sin Ccos A,即 sin(A+B)=2sin CcosA. 因为sin(A+B)=sin(π-C)=sin C,且sin C≠0,所以,cos A=.又0<A<π,所以,A=.(2)因为△ABC的面积S=bcsin A=bcsin=,所以,bc=4.①由余弦定理得,a2=b2+c2-2bccos A,22=b2+c2-2bccos所以,b2+c2=8,②联立①②解得,b=c=2.16、在△ABC中,角A,B,C的对边分别为a,b,c,且a2-(b-c)2=(2-)bc,sin Asin B=cos2,BC边上的中线AM的长为.(1)求角A和角B的大小.(2)求△ABC的周长.【解析】(1)由a2-(b-c)2=(2-)bc,得a2-b2-c2=-bc所以cos A==.又0<A<π,所以A=.由sin Asin B=cos2,得sin B=,即sin B=1+cos C,则cos C<0,即C为钝角.所以B为锐角,且B+C=,则sin=1+cos C,化简得cos=-1,解得C=,所以B=.(2)由(1)知,a=b,在△ACM中,由余弦定理得AM2=b2+-2b··cos C=b2++=()2,解得b=2,所以a=2.在△ABC中c2=a2+b2-2abcos C=22+22-2×2×2×cos =12,所以c=2.所以△ABC的周长为4+2.。

正弦定理与余弦定理练习题共3套(附答案)

正弦定理与余弦定理练习题共3套(附答案)

正弦定理与余弦定理练习第一套正弦定理(一)●作业导航掌握正弦定理,会利用正弦定理求已知两角和任意一边或两边和一边对角的三角形问题.一、选择题(本大题共5小题,每小题3分,共15分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于()A .30°B .30°或150°C .60°D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为()A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于()A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶24.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为()A .(2,+∞)B .(-∞,0)C .(-21,0)D .(21,+∞) 5.在△ABC 中,sin A >sin B 是A >B 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本大题共5小题,每小题3分,共15分)1.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________.2.在△ABC 中,若b =2c sin B ,则∠C =________.3.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.4.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.5.在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为________.三、解答题(本大题共5小题,每小题6分,共30分)1.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16.(1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.2.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .3.在△ABC 中,求证2tan 2tanBA BA b a b a +-=+-.4.△ABC 中,A 、B 、C 成等差数列,b =1,求证:1<a +c ≤2.5.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.参考答案一、选择题(本大题共5小题,每小题3分,共15分)1.D 分析:由正弦定理得,B bA a sin sin =,∴sin B =23sin =aA b ,∴∠B =60°或∠B =120°.2.C 分析:∵∠A =30°,∠B =120°,∴∠C =30°,∴BA =BC =6,∴S △ABC =21×BA ×BC ×sin B =21×6×6×23=93.3.A 分析:由正弦定理得,C cB b A a sin sin sin ==,∴sin A ∶sin B ∶sin C =1∶3∶2=21∶23∶1,∴A ∶B ∶C =30°∶60°∶90°=1∶2∶3.4.D 分析:利用正弦定理及三角形两边之和大于第三边.5.C 分析:A >B ⇔a >b ⇔2Rsin A >2Rsin B ⇔sin A >sin B .二、填空题(本大题共5小题,每小题3分,共15分)1.23或3分析:sin C =23230sin 32=︒,于是,∠C =60°或120°,故∠A =90°或30°,由S △ABC =21×AB ×AC ×sin A ,可得S △ABC =23或S △ABC =3.2.30°或150°分析:由b =2c sin B 及正弦定理C cB B c Cc B b sin sin sin 2sin sin ==得,∴sin C =21,∴∠C =30°或150°.3.22分析:∵c =2R sin C ,∴R =22sin 2=C c.4.60°或120°分析:∵S △ABC =21bc sin A ,∴23=21×2×3sin A ,∴sin A=23,∴∠A =60°或120°.5.6+23分析:∵B bA a sin sin =,∴︒=︒-︒-︒+45sin )6045180sin()13(2b,∴b =4.∴S △ABC =21ab sin C =6+23.三、解答题(本大题共5小题,每小题6分,共30分)1.解:(1)∵a +b =16,∴b =16-aS =21ab sin C =21a (16-a )sin60°=43(16a -a 2)=-43(a -8)2+163(0<a <16)(2)由(1)知,当a =8时,S 有最大值163.2.解:∵sin C ∶sin A =4∶13∴c ∶a =4∶13设c =4k ,a =13k ,则⎪⎩⎪⎨⎧-=++=-38213)4(213132k b k k b kk∵k =133时b <0,故舍去.∴k =1,此时a =13,b =2135-,c =4.3.证明:由正弦定理,知a =2R sin A ,b =2R sin B2tan2tan2cos 2sin 22cos 2sin 2)22sin(22sin()22sin()22sin(sin sin sin sin sin 2sin 2sin 2sin 2B A B A B A B A B A B A B A B A B A B A B A B A B A B A BA BA B R A R B R A R b a b a +-=-++-=--++-++--+--++=+-=+-=+-∴4.证明:∵A 、B 、C 成等差数列,∴2B =A +C ,又A +B +C =π,∴B =3π,A +C =32π.∵b =1,设△ABC 的外接圆半径为R ,∴b =2R sin 3π∴1=2R ·23,∴3R =1.∴a +c =2R sin A +2R sin C =2R (sin A +sin C )=2R [sin(32π-C )+sin C ]=2R (23cos C +23sin C )=23R (21cos C +23sin C )=23R sin(C +6π)=2sin(C +6π)∵A +C =32π,∴0<C <32π∴6π<C +6π<65π∴21<sin(C +6π)≤1∴1<2sin(C +6π)≤2 ∴1<a +c ≤2.5.证明:在△ABC 中,设C ≥120°,则c 最长,令最短边为a ,由正弦定理得A B A A C a c sin )sin(sin sin +==∵A ≤B∴2A ≤A +B ≤180°-C ≤60°∵正弦函数在(0,3π)上是增函数,∴sin(A +B )≥sin2A >0∴A B A a c sin )sin(+=≥A A A A A sin cos sin 2sin 2sin ==2cos A ∴a c≥2cos A ∵2A ≤60° ∴0°<A ≤30°∴cos A ≥cos30°=23∴a c ≥2·23∴a c≥3∴最长边与最短边之比不小于第二套正弦定理练习(二)1.在ABC ∆中,已知角04345,2,,3B c b ===则角A 的值是()A.15°B.75°C.105°D.75°或15°2.ABC ∆中,bsinA<a<b,则此三角形有()A.一解B.两解C.无解D.不确定3.若sin cos cos ,A B CABC a b c==∆则是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在ABC ∆中,已知0060,45,8,B C BC AD BC ===⊥于D,则AD 长为()A.4(31)- B.4(3+1)3+3)D.4(33)5.在ABC ∆中,A>B 是sinA>sinB 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在ABC ∆中,060,6,14B b a ===,则A=7.在ABC ∆ABC ∆中,已知cos 2cos 21sin 2sin cos ,cos sin B C A B C C B +=+==求证:b=c 且A=900。

利用余弦定理解决问题练习题

利用余弦定理解决问题练习题

利用余弦定理解决问题练习题余弦定理是三角学中常用的定理之一,用于计算三角形的边长和角度。

通过应用余弦定理,我们可以解决一系列与三角形相关的问题。

本文将介绍一些关于余弦定理的问题练习,并通过具体例子来解答。

问题一:已知一个三角形ABC,边长分别为a=5cm,b=6cm,夹角C=60°,求边c的长度。

解答:根据余弦定理可得到如下公式:c² = a² + b² - 2abcosC将已知数据代入公式计算,得到:c² = 5² + 6² - 2 * 5 * 6 * cos60°= 25 + 36 - 60= 61因此,边c的长度约为√61 cm。

问题二:一个三角形的边长分别为a=7cm,b=9cm,c=10cm,判断该三角形是锐角三角形、直角三角形还是钝角三角形。

解答:根据余弦定理可得到如下公式:cosC = (a² + b² - c²) / 2ab将已知数据代入公式计算,得到:cosC = (7² + 9² - 10²) / (2 * 7 * 9)= (49 + 81 - 100) / 126= 30 / 126≈ 0.23810根据余弦值的大小可以判断三角形的类型,余弦值大于0时为锐角三角形,等于0时为直角三角形,小于0时为钝角三角形。

在本题中,cosC的值为0.23810,大于0,因此该三角形为锐角三角形。

问题三:已知一个三角形ABC,边长分别为a=4cm,b=7cm,c=9cm,求角A的大小。

解答:根据余弦定理可得到如下公式:cosA = (b² + c² - a²) / 2bc将已知数据代入公式计算,得到:cosA = (7² + 9² - 4²) / (2 * 7 * 9)= (49 + 81 - 16) / 126= 114 / 126≈ 0.90476角A的大小可以通过反余弦函数来计算,即A = arccos(0.90476) ≈ 25.84°。

余弦定理基础练习题

余弦定理基础练习题

余弦定理基础练习题1.在三角形△ABC中,已知a=3,b=7,c=2,求角B的度数。

解:根据余弦定理,$b^2=a^2+c^2-2ac\cos B$,代入已知数据得$7^2=3^2+2^2-2\times3\times2\cos B$。

化简得$\cos B=-\frac{11}{12}$,因为$0^\circ\leq B\leq 180^\circ$,所以$B=120^\circ$,选项C正确。

2.在三角形△ABC中,已知$\sin A:\sin B:\sin C=1:3:2$,求角A、B、C的度数。

解:由于$\sin A:\sin B:\sin C=1:3:2$,所以令$\sin A=k$,则$\sin B=3k$,$\sin C=2k$。

根据正弦定理,$\frac{a}{k}=\frac{b}{3k}=\frac{c}{2k}$,即$a: b: c=1: 3: 2$。

又因为三角形三个角度之和为$180^\circ$,所以$A+B+C=180^\circ$。

代入正弦定理得$\frac{a}{2R}+\frac{b}{2R}+\frac{c}{2R}=1$,化简得$a+b+c=2R$。

因此,$A=\sin^{-1}k$,$B=\sin^{-1}(3k)$,$C=\sin^{-1}(2k)$。

选项B正确。

3.在三角形△ABC中,已知$B=60^\circ$,$b=ac$,求三角形的类型。

解:根据正弦定理,$\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}$。

因为$B=60^\circ$,所以$\sinB=\frac{\sqrt{3}}{2}$。

又因为$b=ac$,所以$\frac{b}{c}=a$,代入正弦定理得$\frac{a}{\sinA}=\frac{ac}{\frac{\sqrt{3}}{2}}$,化简得$\sinA=\frac{\sqrt{3}}{2}$,所以$A=60^\circ$。

正弦定理余弦定理练习题及答案(供参考)

正弦定理余弦定理练习题及答案(供参考)

正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为B.D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为°°°°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.C.D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是△B.锐角△ C.钝角△ D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=+(-1) C.(+1)10.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为12.在△ABC中,a2=b2+c2+bc,则A等于°°°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.C.+1D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于+cos2B+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A.B.C.D.20.在△ABC中,,则k为D.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C 和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC 的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1.2(-1) 23. 45°4. 85.等腰三角形6.:钝角三角形7.a=b sin A或b<a8.60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13.120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶4=6,b=5,c=48.当θ=时,S四边形OACB最大, 最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3 (2)C=45°,B=15°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余弦定理练习题1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .462.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )A. 3B. 2C. 5 D .23.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定8.在△ABC 中,b =3,c =3,B =30°,则a 为( )A. 3 B .2 3 C.3或2 3 D .29.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 16.三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.余弦定理答案1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( A )A .6 B .26C .3 6 D .462.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( B )A. 3 B.2C. 5 D .23.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( D )A .60° B .45°C .120° D .150° 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( D )A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( C )A .aB .BC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2.设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2,∴三角形各角均为锐角,即新三角形为锐角三角形.8.在△ABC 中,b =3,c =3,B =30°,则a 为( )A. 3 B .23C.3或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a ,∴a 2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3.在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B = 1+4-2×1×2×12= 3.答案:3 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0),∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12,又C ∈(0°,180°),∴C =120°.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61.答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4,设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =?2k ?2+?4k ?2-?3k ?22×2k ×4k=1116, 同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4).答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43,∴b =2 3.答案:2315.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2=12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.答案:45°16.三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N),则⎩⎪⎨⎪⎧k 2+?k -1?2-?k +1?2<0k +k -1>k +1?2<k <4, ∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12.又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2.∴AB 2=AC 2+BC 2-2AC ·BC ·cos C =a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab =(23)2-2=10,∴AB =10.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =?AC +BC ?2-2AC ·BC -AB 22AC ·BC=12,所以C =60°. 19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A ,得AB =sin C sin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255,于是sin A =1-cos 2A =55.从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2 A =35. 所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b .由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b .又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc, 即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。

相关文档
最新文档