2015-2019年北京市中考数学分类对比分析与分类汇编1-选择填空题
2015中考数学真题分类汇编:规律型(图形的变化类)

2015中考数学真题分类汇编:规律型(图形的变化类)一.选择题(共7小题)1.(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒2.(2015•宜宾)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A.231πB.210πC.190πD.171π3.(2015•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A. 21 B.24 C.27 D. 304.(2015•十堰)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A. 222 B.280 C.286 D. 2925.(2015•重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A. 32 B.29 C.28 D. 266.(2015•广西)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有()A. 160 B.161 C.162 D. 1637.(2015•绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A. 14 B.15 C.16 D. 17二.填空题(共14小题)8.(2015•内江)如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)9.(2015•莆田)谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是.10.(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒根.11.(2015•福建)观察下列图形的构成规律,依照此规律,第10个图形中共有个“•”.12.(2015•聊城)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成个互不重叠的小三角形.13.(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.14.(2015•舟山)如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数b=(用含a的代数式表示).(2)设该格点多边形外的格点数为c,则c﹣a=.15.(2015•南宁)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是.16.(2015•益阳)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有根小棒.17.(2015•山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有个三角形(用含n的代数式表示)18.(2015•安顺)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).19.(2015•桂林)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n行有个点.20.(2015•随州)观察下列图形规律:当n=时,图形“●”的个数和“△”的个数相等.21.(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是,并运用这个公式求得图2中多边形的面积是.三.解答题(共2小题)22.(2015•自贡)观察下表:序号 1 2 3 …图形x xyx x x x xy yx xy yx x xx x x xy y yx xy y yx xy y yx x x x …我们把某格中各字母的和所得多项式称为“特征多项式”.例如,第1格的“特征多项式”为4x+y.回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16,求x,y的值.23.(2015•六盘水)毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:名称及图形几何点数层数三角形数正方形数五边形数六边形数第一层几何点数 1 1 1 1第二层几何点数 2 3 4 5第三层几何点数 3 5 7 9……………第六层几何点数……………第n层几何点数请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.2015中考数学真题分类汇编:规律型(图形的变化类)参考答案与试题解析一.选择题(共7小题)1.(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒考点:规律型:图形的变化类.分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项.解答:解:仔细观察图形发现:第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形,锻炼了同学们的识图能力.2.(2015•宜宾)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A.231πB.210πC.190πD.171π考点:规律型:图形的变化类.分析:根据题意分别表示出各圆环的面积,进而求出它们的和即可.解答:解:由题意可得:阴影部分的面积和为:π(22﹣12)+π(42﹣32)+π(62﹣52)+…+π(202﹣192)=3π+7π+11π+15π+ (39)=5(3π+39π)=210π.故选:B.点评:此题主要考查了图形的变化类以及圆的面积求法,分别表示出各圆环面积面积是解题关键.3.(2015•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A. 21 B.24 C.27 D. 30考点:规律型:图形的变化类.分析:仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可.解答:解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的通项公式,难度不大.4.(2015•十堰)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A. 222 B.280 C.286 D. 292考点:规律型:图形的变化类.分析:设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2016根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解解答:解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.点评:本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.5.(2015•重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A. 32 B.29 C.28 D. 26考点:规律型:图形的变化类.分析:仔细观察图形,找到图形的个数与黑色正方形的个数的通项公式后代入n=11后即可求解.解答:解:观察图形发现:图①中有2个黑色正方形,图②中有2+3×(2﹣1)=5个黑色正方形,图③中有2+3(3﹣1)=8个黑色正方形,图④中有2+3(4﹣1)=11个黑色正方形,…,图n中有2+3(n﹣1)=3n﹣1个黑色的正方形,当n=10时,2+3×(10﹣1)=29,故选B.点评:本题是对图形变化规律的考查,难点在于利用求和公式求出第n个图形的黑色正方形的数目的通项表达式.6.(2015•广西)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有()A. 160 B.161 C.162 D. 163考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中由角上的3个三角形加上中间1个小三角形再加上外围1个大三角形共有5个正三角形;下一个图形的三个角上的部分是上一个图形的全部,另外加上中间一个小的三角形和外围的一个大三角形,所以第二个图形中有5×3+1+1=17个正三角形,第三个图形中有17×3+1+1=53个正三角形,第四个图形中有53×3+1+1=161个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,故选B.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题是解答此题的关键.7.(2015•绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A. 14 B.15 C.16 D. 17考点:规律型:图形的变化类.分析:分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.解答:解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245解得:n1=16,n2=﹣15(舍去).故选:C.点评:此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.二.填空题(共14小题)8.(2015•内江)如图是由火柴棒搭成的几何图案,则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类.专题:压轴题.分析:本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);…n=n时,根数为:2n(n+1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9.(2015•莆田)谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是.考点:规律型:图形的变化类.分析:根据题意,每次挖去等边三角形的面积的,剩下的阴影部分面积等于原阴影部分面积的,然后根据有理数的乘方列式计算即可得解.解答:解:图2阴影部分面积=1﹣=,图3阴影部分面积=×=()2,图4阴影部分面积=×()2=()3,图5阴影部分面积=×()3=()4=.故答案为:.点评:本题是对图形变化规律的考查,观察出每次挖出后剩下的阴影部分面积等于原阴影部分面积的是解题的关键.10.(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒29根.考点:规律型:图形的变化类.分析:根据已知图形得出数字变化规律,进而求出答案.解答:解:如图所示:第1个图形有3+2=5根火柴棒,第2个图形有3×2+2=8根火柴棒,第3个图形有3×3+2=11根火柴棒,故第n个图形有3n+2根火柴棒,则第9个“H”需用火柴棒:3×9+2=29(根).故答案为:29.点评:此题主要考查了图形变化类,根据题意得出火柴棒的变化规律是解题关键.11.(2015•福建)观察下列图形的构成规律,依照此规律,第10个图形中共有111个“•”.考点:规律型:图形的变化类.分析:观察图形可知前4个图形中分别有:3,7,13,21个“•”,所以可得规律为:第n个图形中共有[n(n+1)+1]个“•”.再将n=10代入计算即可.解答:解:由图形可知:n=1时,“•”的个数为:1×2+1=3,n=2时,“•”的个数为:2×3+1=7,n=3时,“•”的个数为:3×4+1=13,n=4时,“•”的个数为:4×5+1=21,所以n=n时,“•”的个数为:n(n+1)+1,n=10时,“•”的个数为:10×11+1=111.故答案为111.点评:本题主要考查了规律型:图形的变化类,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,难度适中.12.(2015•聊城)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成3+2(n﹣1)个互不重叠的小三角形.考点:规律型:图形的变化类.分析:利用图形得到,△ABC的三个顶点和它内部的点P1,把△ABC分成互不重叠的小三角形的个数=3+2×0;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成互不重叠的小三角形的个数=3+2×1;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成互不重叠的小三角形的个数=3+2×2,即分成的互不重叠的小三角形的个数为3加上P点的个数与1的差的2倍,从而得到△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成的互不重叠的小三角形的个数.解答:解:如图,△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1、P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n﹣1).故答案为3+2(n﹣1).点评:本题考查了规律型:图形的变化类:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后通过分析找到各部分的变化规律后直接利用规律求解.13.(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21个太阳.考点:规律型:图形的变化类.分析:由图形可以看出:第一行小太阳的个数是从1开始连续的自然数,第二行小太阳的个数是1、2、4、8、…、2n﹣1,由此计算得出答案即可.解答:解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.故答案为:21.点评:此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.14.(2015•舟山)如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数b=82﹣2a(用含a的代数式表示).(2)设该格点多边形外的格点数为c,则c﹣a=118.考点:规律型:图形的变化类.分析:(1)将S=40代入S=a+b﹣1后用含a的代数式表示即可;(2)首先用a表示出c,然后可求得c﹣a的值.解答:解:(1)∵S=a+b﹣1,且S=40,∴a+b﹣1=40,整理得:b=82﹣2a;(2)∵a是多边形内的格点数,b是多边形边界上的格点数,总格点数为200,∴边界上的格点数与多边形内的格点数的和为b+a=82﹣2a+a=82﹣a,∴多边形外的格点数c=200﹣(82﹣a)=118+a,∴c﹣a=118+a﹣a=118,故答案为:82﹣2a,118.点评:本题考查了图形的变化类问题,解决本题的关键是根据题意表示出b,难度不大.15.(2015•南宁)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是13.考点:规律型:图形的变化类;数轴.分析:序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.解答:解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为:13.点评:本题考查了规律型,认真观察、仔细思考,找出点表示的数的变化规律是解决本题的关键.16.(2015•益阳)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有5n+1根小棒.考点:规律型:图形的变化类.分析:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…由此得出第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.解答:解:∵第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…∴第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.故答案为:5n+1.点评:此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.17.(2015•山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有3n+1个三角形(用含n的代数式表示)考点:规律型:图形的变化类.分析:由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有3n+1个三角形.解答:解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…∴第n个图案有3n+1个三角形.故答案为:3n+1.点评:此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.18.(2015•安顺)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为3n+1(用含n的式子表示).考点:规律型:图形的变化类.分析:先写出前三个图案中基础图案的个数,并得出后一个图案比前一个图案多3个基础图案,从而得出第n个图案中基础图案的表达式.解答:解:观察可知,第1个图案由4个基础图形组成,4=3+1第2个图案由7个基础图形组成,7=3×2+1,第3个图案由10个基础图形组成,10=3×3+1,…,第n个图案中基础图形有:3n+1,故答案为:3n+1.点评:此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.19.(2015•桂林)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n行有3•2n ﹣1﹣1个点.考点:规律型:图形的变化类.分析:根据前四行的点数分别是2=3•21﹣1﹣1,5=3•22﹣1﹣1,11=3•23﹣1﹣1,23=3•24﹣1﹣1,…,可得第n行有3•2n﹣1﹣1个点,据此解答即可.解答:解:∵2=3•21﹣1﹣1,5=3•22﹣1﹣1,11=3•23﹣1﹣1,23=3•24﹣1﹣1,…,∴第n行有3•2n﹣1﹣1个点.故答案为:3•2n﹣1﹣1.点评:此题主要考查了图形的变化类问题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.20.(2015•随州)观察下列图形规律:当n=5时,图形“●”的个数和“△”的个数相等.考点:规律型:图形的变化类.分析:首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.解答:解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.点评:此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.21.(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是a,并运用这个公式求得图2中多边形的面积是17.5.考点:规律型:图形的变化类.分析:分别找到图1中图形内的格点数和图形上的格点数后与公式比较后即可发现表示图上的格点数的字母,图2中代入有关数据即可求得图形的面积.解答:解:如图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;∴公式中表示多边形内部整点个数的字母是a;图2中,a=15,b=7,故S=15+﹣1=17.5.故答案为:a,17.5.点评:本题考查了图形的变化类问题,解题的关键是能够仔细读题,找到图形内和图形外格点的数目,难度不大.三.解答题(共2小题)22.(2015•自贡)观察下表:序号 1 2 3 …图形x xyx x x x xy yx xy yx x xx x x xy y yx xy y yx xy y yx x x x …我们把某格中各字母的和所得多项式称为“特征多项式”.例如,第1格的“特征多项式”为4x+y.回答下列问题:(1)第3格的“特征多项式”为12x+9y,第4格的“特征多项式”为16x+16y,第n格的“特征多项式”为4nx+n2y;(2)若第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16,求x,y的值.考点:规律型:图形的变化类.分析:(1)仔细观察每格的特征多项式的特点,找到规律,利用规律求得答案即可;(2)根据题意列出二元一次方程组,求得x、y的值即可.解答:解:(1)观察图形发现:第1格的“特征多项式”为4x+y,第2格的“特征多项式”为8x+4y,第3格的“特征多项式”为12x+9y,第4格的“特征多项式”为16x+16y,。
2019年中考分析:北京中考数学试卷结构及分值比例

2019年中考分析:北京中考数学试卷结构及分值比例一。
考试范围与考试要求数学学科考试以教育部颁布的《全日制义务教育数学课程标准(实验稿)》的”课程目标”与”内容标准”的规定为考试范围,参考《义务教育数学课程标准(2011年版)》的理念和精神,适当兼顾北京市现行不同版本教材和教学实际情况。
数学学科注重考查初中数学的基础知识、基本技能和基本思想方法;考查数感、符号感、空间观念、统计观念、运算能力、推理能力、发现问题和分析解决问题的能力,以及应用意识等。
二。
试题的基本结构整个试卷五道大题,25个题目,考试时间120分钟,总分120分,其中选择题共8道,共32分,填空题共4道,共16分,解答题(包括计算题,证明题,应用题和综合题)共13道,共72分。
1.题型与题量选择题填空题解答题题数分值题数分值题数分值832416132.考查的内容及分布从试卷考查的内容来看,几乎涵盖了数学《课程标准》所列的主要知识点,并对初中数学的主要内容都作了重点考查。
内容数与代数图形和空间统计与概率分值6047133.每道题目所考查的知识点#p#分页标题#e# #p#分页标题#e#题型题号考查知识点选择题1科学记数法2有理数的概念(倒数)3概率4平行四边形5相似三角形6轴对称,中心对称7平均数8圆中的动点的函数图像填空题9因式分解(提公因式法,公式法)10抛物线的解析式11矩形,中位线12函数综合找规律(循环规律)解答题一13三角形全等证明14实数运算(0次幂,-1次幂,绝对值,特殊三角形)15解一元一次不等式组16代数式化简求值(整体代入)17列分式方程解应用题18一元二次方程(判别式,整数根)解答题二19梯形中的计算20圆中的证明与计算(三角形相似,三角函数,切线的性质)21统计图表(折线统计图,扇形统计图,统计表)22操作与探究(旋转,从正方形到等边三角形的变式,全等三角形)解答题三23代数综合(二次函数的性质,一次函数的图像对称,数形结合思想,二次函数解析式的确定)24几何综合(等边三角形,等腰指教==直角三角形,旋转全等,对称全等,倒角)25三。
2019年全国各地中考数学试题分类汇编(第二期) 专题35 尺规作图(含解析)

尺规作图一.选择题1.(2019•贵阳•3分)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2 B.3 C.D.【分析】利用基本作图得到CE⊥AB,再根据等腰三角形的性质得到AC=3,然后利用勾股定理计算CE的长.【解答】解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=2+1=3,在Rt△ACE中,CE==.故选:D.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).2. (2019•河北•3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.3. (2019•河南•3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF =FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD 的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠F AO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.二.填空题1.2.3.4.三.解答题1. (2019•江苏无锡•10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.【分析】(1)连结AE并延长交圆E于点C,作AC的中垂线交圆于点B,D,四边形ABCD 即为所求.(2)①连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,点F即为所求;②结合网格特点和三角形高的概念作图可得.【解答】解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB 于点F,F即为所求②如图3所示,AH即为所求.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握圆的有关性质和平行四边形的性质及三角形垂心的性质.2. (2019•江苏宿迁•10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【分析】(1)连接OF,可证得OF∥BC,结合平行线的性质和圆的特性可求得∠1=∠OFB =∠2,可得出结论;(2)由(1)可知切点是∠ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出⊙M.【解答】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,3. (2019•江西•6分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中作弦EF,使EF//BC;(2)在图2中以BC为边作一个45°的圆周角.F(1)EF就是所求作的弦;(2)角BCQ或角CBQ就是所求作的角。
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。
2015年北京中考数学各区分类汇编——难题解答题,后三题

BAC2015年各区一模汇编——后三道大题(东城)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y 轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.28. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD .(1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明; (3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.29.定义符号{}min a b ,的含义为:当a b ≥时, {}min a b b =,;当a b <时, {}min a b a =,.如:{}min 122-=-,,{}min 121-=-,.(1)求{}2min x -1,-2;(2)已知2min{2,3}3x x k -+-=-, 求实数k 的取值范围;(3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范围.(西城)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知二次函数y 1=x 2+bx+c 的图象C 1经过(-1,0),(0,-3)两点.(1)求C 1对应的函数表达式;(2)将C 1先向左平移1个单位,再向上平移4个单位,得到抛物线C 2,将C 2对应的函数表达式记为y 2=x 2+mx+n ,求C 2对应的函数表达式;(3)设y 3=2x+3,在(2)的条件下,如果在-2≤x ≤a 内存在某一个x 的值,使得y 2≤y 3成立,利用函数图象直接写出a 的取值范围.28.△ABC 中,AB=AC .取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图1,如果∠BAC=90°,那么AHB ∠= ︒,AFBE =; (2)如图2,如果60BAC ∠=︒,猜想AHB ∠的度数和AFBE的值,并证明你的结论;(3)如果BAC α∠=,那么AFBE =.(用含α的表达式表示)29.给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离. 在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为A(1,0),则点B(2,3)和射线OA 之间的距离为________,点C(-2,3)和射线OA 之间的距离为________;(2)如果直线y =x 和双曲线ky x=,那么k = ;(可在图1中进行研究) (3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60︒,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M .①请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE ,OF 组成的图形记为图形W ,抛物线y=x 2-2与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.(海淀)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;EDC BAEDCBA备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点,这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m'或b n '<,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.(朝阳)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).28.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).29.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ; ②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2(丰台)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (-1,a ),B (3,a ),且最低点的纵坐标为-4.(1)求抛物线的表达式及a 的值;(2)设抛物线顶点C 关于y 轴的对称点为点D ,点P 是抛物线对称轴上一动点,记抛物线在点A ,B 之间的部分为图象G (包含A ,B 两点).如果直线DP 与图象G 恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.28.在△ABC 中,CA =CB ,CD 为AB 边的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G. (1)如果∠ACB =90°,①如图1,当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形; ②如图2,当点P 不与点A 重合时,求CFPE的值; (2)如果∠CAB =a ,如图3,请直接写出CFPE的值.(用含a 的式子表示)图1图2图329. 设点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如正方形ABCD 满足A (1,0),B (2,0),C (2,1),D (1,1),那么点O (0,0)到正方形ABCD 的距离为1.(1)如果⊙P 是以(3,4)为圆心,1为半径的圆,那么点O (0,0)到⊙P(2)①求点(3,0)M 到直线21y x =+的距离;(3)如果点(0,)G b 到抛物线2y x =的距离为3,请直接写出b 的值.(通州)五、解答题(第27题、28题每题7分,第29题8分,共22分)27.二次函数2(0)y ax bx c a =++≠的图象与一次函数1y x b =+k 的图象交于)10(,A 、B 两点,(1,0)C 为二次函数图象的顶点.(1)求二次函数2(0)y ax bx c a =++≠的表达式;(2)在所给的平面直角坐标系中画出二次函数2(0)y ax bx c a =++≠的图象和一次函数1y x b =+k的图象;(3)把(1)中的二次函数2(0)y a x b xc a =++≠的图象平移后得到新的二次函数22(0,)y ax bx c m a m =+++≠为常数的图象,.定义新函数f :“当自变量x 任取一值时,x 对应的函数值分别为1y 或2y ,如果1y ≠2y ,函数f 的函数值等于1y 、2y 中的较小值;如果1y =2y ,函数f 的函数值等于1y (或2y ).” 当新函数f 的图象与x 轴有三个交点时,直接写出m 的取值范围.28.在菱形ABCD 中,∠ABC =60°,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且CF =AE ,连接BE 、EF .x图1 图2 图3(1)如图1,当E 是线段AC 的中点时,易证BE =EF .(2)如图2,当点E 不是线段AC 的中点,其它条件不变时,请你判断(1)中的结论: . (填“成立”或“不成立”)(3)如图3,当点E 是线段AC 延长线上的任意一点,其它条件不变时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.29.如图,在平面直角坐标系中,已知点A (2,3)、B (6,3),连结AB . 若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“邻近点”.(1)判断点D 719(,)55,是否线段AB 的“邻近点” (填“是”或“否”);(2)若点H (m ,n )在一次函数1-=x y 的图象上,且是线段AB 的“邻近点”,求m 的取值范围. (3)若一次函数y x b =+的图象上至少存在一个邻近点,直接写出b 的取值范围.(延庆)五、解答题(本题共22分,第27题7分、28题各7分,29题8分)27. 二次函数2y x mx n =-++的图象经过点A (﹣1,4),B (1,0),12y x b =-+经过点B ,且与二次函数2y x mx n =-++交于点D .过点D 作DC ⊥x 轴,垂足为点C .(1)求二次函数的表达式;(2)点N 是二次函数图象上一点(点N 在BD 上方),过N 作NP ⊥x 轴,垂足为点P ,交BD 于点M ,求MN 的最大值.28. 已知,点P 是△ABC 边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CP 作垂线,垂足分别为E ,F ,Q 为边AB 的中点. (1)如图1,当点P 与点Q 重合时,AE 与BF 的位置关系是 ,QE 与QF 的数量关系是 ; (2)如图2,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明;(3)如图3,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.29. 对于平面直角坐标系xOy 中的点P 和线段AB ,给出如下定义:在线段AB 外有一点P ,如果在线段AB 上存在两点C 、D ,使得∠CPD =90°,那么就把点P 叫做线段AB 的悬垂点. (1)已知点A (2,0),O (0,0)①若1(1,)2C ,D (1,1),E (1,2),在点C ,D ,E 中,线段AO 的悬垂点是______;②如果点P (m ,n )在直线1y x =-上,且是线段AO 的悬垂点,求m 的取值范围; (2)如下图是帽形M (半圆与一条直径组成,点M 是半圆的圆心),且圆M 的半径是1,若帽形内部的所有点是某一条线段的悬垂点,求此线段长的取值范围.(房山)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. 在平面直角坐标系中,抛物线32++=bx ax y 与x 轴的两个交点分别为A (-3,0), B (1,0),顶点为C .(1) 求抛物线的表达式和顶点坐标;(2) 过点C 作CH ⊥x 轴于点H ,若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.28.如图1,已知线段BC =2,点B 关于直线AC 的对称点是点D ,点E 为射线CA 上一点,且ED =BD ,连接DE ,BE .(1) 依题意补全图1,并证明:△BDE 为等边三角形;(2) 若∠ACB =45°,点C 关于直线BD 的对称点为点F ,连接FD 、FB .将△CDE 绕点D 顺时针旋转α度(0°<α<360°)得到△''C DE ,点E 的对应点为E ′,点C 的对应点为点C ′.①如图2,当α=30°时,连接'BC .证明:EF ='BC ;②如图3,点M 为DC 中点,点P 为线段''C E 上的任意一点,试探究:在此旋转过程中,线段PM 长度的取值范围?29.【探究】如图1,点()N m,n 是抛物线21114y x =-上的任意一点,l 是过点()02,-且与x 轴平行的直线,过点N 作直线NH ⊥l ,垂足为H .①计算: m=0时,NH= ; m =4时,NO = . ②猜想: m 取任意值时,NO NH (填“>”、“=”或“<”).【定义】我们定义:平面内到一个定点F 和一条直线l (点F 不在直线l 上)距离相等的点的集合叫做抛物线,其中点F 叫做抛物线的“焦点”,直线l 叫做抛物线的“准线”.如图1中的点O 即为抛物线1y 的“焦点”,直线l :2y =-即为抛物线1y 的“准线”.可以发现“焦点”F 在抛物线的对称轴上. 【应用】(1)如图2,“焦点”为F (-4,-1)、“准线”为l 的抛物线()221+44y x k =+与y 轴交于点N (0,2),图1图2 图3点M 为直线FN 与抛物线的另一交点.MQ ⊥l 于点Q ,直线l 交y 轴于点H .①直接写出抛物线y 2的“准线”l : ; ②计算求值:1MQ +1NH=;(2)如图3,在平面直角坐标系xOy 中,以原点O 为圆心,半径为1的⊙O 与x 轴分别交于A 、B 两点(A 在B 的左侧),直线y =33x +n 与⊙O 只有一个公共点F ,求以F 为“焦点”、x 轴为“准线”的抛物线23y ax bx c =++的表达式.(石景山)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线223(0)y mx mx m =--≠与x 轴交于(3,0)A ,B 两点. (1)求抛物线的表达式及点B 的坐标;(2)当23x -<<时的函数图象记为G ,求此时函数y 的取值范围;(3)在(2)的条件下,将图象G 在x 轴上方的部分沿x 轴翻折,图象G 的其余部分保持不变,得到一个新图象M .若经过点(4,2)C 的直线(0)y kx b k =+≠与图象M 在第三象限内有两个公共点,结合图象求b 的取值范围.28.在△ABC 中,90BAC ∠=︒.(1)如图1,直线l 是BC 的垂直平分线,请在图1中画出点A 关于直线l 的对称点'A ,连接'A C ,B A ','A C 与AB 交于点E ;图2图3图1Oyx(2)将图1中的直线B A '沿着EC 方向平移,与直线EC 交于点D ,与直线BC 交于点F ,过点F 作直线AB 的垂线,垂足为点H .①如图2,若点D 在线段EC 上,请猜想线段FH ,DF ,AC 之间的数量关系,并证明; ②若点D 在线段EC 的延长线上,直接写出线段FH ,DF ,AC 之间的数量关系.29.在平面直角坐标系xOy 中,点A 在直线l 上,以A 为圆心,OA 为半径的圆与y 轴的另一个交点为E .给出如下定义:若线段OE ,⊙A 和直线l 上分别存在点B ,点C 和点D ,使得四边形ABCD 是矩形(点,,,A B C D 顺时针排列),则称矩形ABCD 为直线l 的“理想矩形”. 例如,下图中的矩形ABCD 为直线l 的“理想矩形”.(1)若点(1,2)A -,四边形ABCD 为直线1x =-D 的坐标为 ;(2)若点(3,4)A ,求直线1y kx =+(0)k ≠的“理想矩形”的面积; (3)若点(1,3)A -,直线l 的“理想矩形”面积的最大值为 ,此时点D 的坐标为 .(门头沟)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知:关于x 的一元二次方程-x 2+(m +1)x +(m +2)=0(m >0).(1)求证:该方程有两个不相等的实数根; (2)当抛物线y =-x 2+(m +1)x +(m +2)经过点(3,0),求该抛物线的表达式;(3)在(2)的条件下,记抛物线y =-x 2+(m +1)x +(m +2)在第一象限之间的部分为图象G ,如果直线 y =k (x +1)+4与图象G 有公共点,请结合函数的图象,求直线y =k (x +1)+4与y 轴交点的纵坐标t 的取值范围.28.在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,DE ⊥BC 于E ,连接CD . (1)如图1,如果∠A =30°,那么DE 与CE 之间的数量关系是 .(2)如图2,在(1)的条件下,P 是线段CB 上一点,连接DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连接BF ,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论. (3)如图3,如果∠A =α(0°<α<90°),P 是射线CB 上一动点(不与B 、C 重合),连接DP ,将线段DP 绕点D 逆时针旋转2α,得到线段DF ,连接BF ,请直接写出DE 、BF 、BP 三者之间的数量关系(不需证明).DBFE DAB E DAB C C CP AE图1 图2 图 329.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.AABBMMOxyy=m准蝶形AMB(1)抛物线212y x的碟宽为 ,抛物线y =ax 2(a >0)的碟宽为 . (2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a = .(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.如果F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现在将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1. ① 求抛物线y 2的表达式;② 请判断F 1,F 2,…,F n 的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的表达式;如果不是,说明理由.(怀柔)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,二次函数y=(a-1)x 2+2x+1与x 轴有交点,a 为正整数. (1)求a 的值. (2)将二次函数y=(a-1)x 2+2x+1的图象向右平移m 个单位,向下平移m 2+1个单位,当 -2≤x ≤1时,二次函数有最小值-3求实数m 的值.27题图28.在等边△ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD ,其中CD 交直线AP 于点E.(1)依题意补全图1; (2)若∠PAB=30°,求∠ACE 的度数;(3)如图2,若60°<∠PAB <120°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明.29. 对某种几何图形给出如下定义: 符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹.例如,平面内到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.(1)如图1,在△ABC 中,AB=AC ,∠BAC=90°,A(0,2),B 是x 轴上一动点,当点B在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE ,且DE ⊥x 轴于点G. 则直线DE 的表达式是 .(2)当△ABC 是等边三角形时,在(1①当点B 运动到如图2的位置时,AC ∥x 轴,则C 点的坐标是 . ②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式.③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,则CE 的取值范围是 .AB CPABCP(平谷)五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.已知抛物线y =ax 2+x +c (a ≠0)经过A (1-,0),B (2,0)两点,与y 轴相交于点C ,点D 为该抛物线的顶点.(1)求该抛物线的解析式及点D 的坐标; (2)点E 是该抛物线上一动点,且位于第一象限,当点E 到直线BC的距离为2时,求点E 的坐标; (3)在(2)的条件下,在x 轴上有一点P ,且∠EAO +∠EPO =∠α,当tanα=2时,求点P 的坐标.28.(1)如图1,在四边形ABCD 中,AB=BC ,∠ABC =80°,∠A +∠C =180°,点M 是AD 边上一点,把射线BM 绕点B 顺时针旋转40°,与CD 边交于点N ,请你补全图形,求MN ,AM ,CN 的数量关系;(2)如图2,在菱形ABCD 中,点M 是AD 边上任意一点,把射线BM 绕点B 顺时针旋12ABC ∠,与CD 边交于点N ,连结MN ,请你补全图形并画出辅助线,直接写出AM ,CN ,MN 的数量关系是 ; (3)如图3,正方形ABCD 的边长是1,点M ,N 分别在AD ,CD 上,若△DMN 的周长为2,则△MBN 的面积最小值为 .29.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”. (1)反比例函数y =x2015是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值; (3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).图2 O yx 图3 图1。
2015中考数学分类汇编数与式经编

2015中考数学专题训练:数与式一、选择题1下列四个多项式中,能因式分解的是( )A 、a 2+1B 、a 2—6a+9C 、x 2+5yD 、x 2—5y2已知x 2—2x —3=0,则2x 2—4x 的值为( )A 、—6B 、6C 、—2或6,D 、—2或30 •= B += ÷=2 =24化简:1x --1x -( ) A 、0 B 、1 C 、x D 、1x x - 5下列运算正确的是( )A .523x x x =⋅B .336()x x =C .5510x x x +=D . 336x x x =-6分式||33x x -+的值为零,则x 的值为( ) A .3 B .3- C .3± D .任意实数7要使式子有意义,则m 的取值范围是( )A .m >﹣1B . m ≥﹣1C .m >﹣1且m ≠1D m ≥﹣1且m ≠1 8.下列计算正确的是( )A .752=+ B .422)(ab ab = C .a a a 632=+ D .43a a a =⋅ m 4n+22m+n n3211已知:a 2﹣3a+1=0,则a+﹣2的值为( )+1 B二、填空题13因式分解34a a -的结果是____.14已知x 、y 为实数,且y=﹣+4,则x ﹣y= . 15观察下列各式:13=12 13+23=32 13+23+33=62 13+23+33+43=102…猜想13+23+33+…+103= .16已知a+b=4,a -b=3,则a 2-b 2= 。
17若实数m ,n 满足|m-2|+(n-2014)²=0.则m -1+n 0= 。
18因式分解:m(x-y)+n(x-y)=_____________.19已知1x 2x =2212x x += 。
20观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n三.解答题 ()122160tan 33101+-+︒-⎪⎭⎫ ⎝⎛--02)++ 22 计算(﹣)÷.23化简,再求值:2352362a a a a a -⎛⎫÷+- ⎪--⎝⎭,其中2310a a +-=;24化简求值:221122(1)21a a a a a a --+÷--+,a 取-1、0、1、2中的一个数。
北京市2021-2023三年中考数学真题分类汇编-01选择题知识点分类(含答案)

北京市2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.科学记数法—表示较大的数(共3小题)1.(2023•北京)截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A.23.9×107B.2.39×108C.2.39×109D.0.239×109 2.(2022•北京)截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学记数法表示应为( )A.26.2883×1010B.2.62883×1011C.2.62883×1012D.0.262883×10123.(2021•北京)党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.2014﹣2018年,中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金1692亿元,将169200000000用科学记数法表示应为( )A.0.1692×1012B.1.692×1012C.1.692×1011D.16.92×1010二.实数与数轴(共2小题)4.(2022•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a<﹣2B.b<1C.a>b D.﹣a>b 5.(2021•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a>﹣2B.|a|>b C.a+b>0D.b﹣a<0三.估算无理数的大小(共1小题)6.(2021•北京)已知432=1849,442=1936,452=2025,462=2116.若n为整数且n<<n+1,则n的值为( )A.43B.44C.45D.46四.根的判别式(共2小题)7.(2023•北京)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则实数m的值为( )A.﹣9B.C.D.9 8.(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为( )A.﹣4B.C.D.4五.不等式的性质(共1小题)9.(2023•北京)已知a﹣1>0,则下列结论正确的是( )A.﹣1<﹣a<a<1B.﹣a<﹣1<1<a C.﹣a<﹣1<a<1D.﹣1<﹣a<1<a 六.函数的图象(共1小题)10.(2022•北京)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是( )A.①②B.①③C.②③D.①②③七.二次函数的应用(共1小题)11.(2021•北京)如图,用绳子围成周长为10m的矩形,记矩形的一边长为xm,它的邻边长为ym,矩形的面积为Sm2.当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是( )A.一次函数关系,二次函数关系B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系D.反比例函数关系,一次函数关系八.认识立体图形(共1小题)12.(2022•北京)下面几何体中,是圆锥的为( )A.B.C.D.九.几何体的展开图(共1小题)13.(2021•北京)如图是某几何体的展开图,该几何体是( )A.长方体B.圆柱C.圆锥D.三棱柱一十.余角和补角(共1小题)14.(2023•北京)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为( )A.36°B.44°C.54°D.63°一十一.对顶角、邻补角(共1小题)15.(2022•北京)如图,利用工具测量角,则∠1的大小为( )A.30°B.60°C.120°D.150°一十二.垂线(共1小题)16.(2021•北京)如图,点O在直线AB上,OC⊥OD.若∠AOC=120°,则∠BOD的大小为( )A.30°B.40°C.50°D.60°一十三.全等三角形的性质(共1小题)17.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是( )A.①②B.①③C.②③D.①②③一十四.多边形内角与外角(共2小题)18.(2023•北京)正十二边形的外角和为( )A.30°B.150°C.360°D.1800°19.(2021•北京)下列多边形中,内角和最大的是( )A.B.C.D.一十五.轴对称图形(共1小题)20.(2022•北京)图中的图形为轴对称图形,该图形的对称轴的条数为( )A.1B.2C.3D.5一十六.中心对称图形(共1小题)21.(2023•北京)下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.一十七.概率的意义(共1小题)22.(2023•北京)先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.B.C.D.一十八.列表法与树状图法(共2小题)23.(2022•北京)不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A.B.C.D.24.(2021•北京)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A.B.C.D.北京市2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共3小题)1.(2023•北京)截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A.23.9×107B.2.39×108C.2.39×109D.0.239×109【答案】B【解答】解:239000000=2.39×108,故选:B.2.(2022•北京)截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学记数法表示应为( )A.26.2883×1010B.2.62883×1011C.2.62883×1012D.0.262883×1012【答案】B【解答】解:262883000000=2.62883×1011.故选:B.3.(2021•北京)党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.2014﹣2018年,中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金1692亿元,将169200000000用科学记数法表示应为( )A.0.1692×1012B.1.692×1012C.1.692×1011D.16.92×1010【答案】C【解答】解:将169200000000用科学记数法表示应为1.692×1011.故选:C.二.实数与数轴(共2小题)4.(2022•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a<﹣2B.b<1C.a>b D.﹣a>b【答案】D【解答】解:根据图形可以得到:﹣2<a<0<1<b<2;所以:A、B、C都是错误的;故选:D.5.(2021•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a>﹣2B.|a|>b C.a+b>0D.b﹣a<0【答案】B【解答】解:A.由图可得数a表示的点在﹣2左侧,∴a<﹣2,A选项错误,不符合题意.B.∵a到0的距离大于b到0的距离,∴|a|>b,B选项正确,符合题意.C.∵|a|>b,a<0,∴﹣a>b,∴a+b<0,C选项错误,不符合题意.D.∵b>a,∴b﹣a>0,D选项错误,不符合题意.故选:B.三.估算无理数的大小(共1小题)6.(2021•北京)已知432=1849,442=1936,452=2025,462=2116.若n为整数且n<<n+1,则n的值为( )A.43B.44C.45D.46【答案】B【解答】解:∵1936<2021<2025,∴44<<45,∴n=44,故选:B.四.根的判别式(共2小题)7.(2023•北京)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则实数m的值为( )A.﹣9B.C.D.9【答案】C【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,∴Δ=b2﹣4ac=(﹣3)2﹣4m=0,解得m=.故选:C.8.(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为( )A.﹣4B.C.D.4【答案】C【解答】解:根据题意得Δ=12﹣4m=0,解得m=.故选:C.五.不等式的性质(共1小题)9.(2023•北京)已知a﹣1>0,则下列结论正确的是( )A.﹣1<﹣a<a<1B.﹣a<﹣1<1<a C.﹣a<﹣1<a<1D.﹣1<﹣a<1<a 【答案】B【解答】解:∵a﹣1>0,∴a>1,∴﹣a<﹣1,∴﹣a<﹣1<1<a,故选:B.六.函数的图象(共1小题)10.(2022•北京)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是( )A.①②B.①③C.②③D.①②③【答案】A【解答】解:汽车从A地匀速行驶到B地,根据汽车的剩余路程y随行驶时间x的增加而减小,故①符合题意;将水箱中的水匀速放出,直至放完,根据水箱中的剩余水量y随放水时间x的增大而减小,故②符合题意;用长度一定的绳子围成一个矩形,周长一定时,矩形面积是长x的二次函数,故③不符合题意;所以变量y与变量x之间的函数关系可以用如图所示的图象表示的是①②.故选:A.七.二次函数的应用(共1小题)11.(2021•北京)如图,用绳子围成周长为10m的矩形,记矩形的一边长为xm,它的邻边长为ym,矩形的面积为Sm2.当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是( )A.一次函数关系,二次函数关系B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系D.反比例函数关系,一次函数关系【答案】A【解答】解:由题意得,2(x+y)=10,∴x+y=5,∴y=5﹣x,即y与x是一次函数关系.∵S=xy=x(5﹣x)=﹣x2+5x,∴矩形面积满足的函数关系为S=﹣x2+5x,即满足二次函数关系,故选:A.八.认识立体图形(共1小题)12.(2022•北京)下面几何体中,是圆锥的为( )A.B.C.D.【答案】B【解答】解:A是圆柱;B是圆锥;C是三棱锥,也叫四面体;D是球体,简称球;故选:B.九.几何体的展开图(共1小题)13.(2021•北京)如图是某几何体的展开图,该几何体是( )A.长方体B.圆柱C.圆锥D.三棱柱【答案】B【解答】解:∵圆柱的展开图为两个圆和一个长方形,∴展开图可得此几何体为圆柱.故选:B.一十.余角和补角(共1小题)14.(2023•北京)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为( )A.36°B.44°C.54°D.63°【答案】C【解答】解:∵∠AOC=90°,∠AOD=126°,∴∠COD=∠AOD﹣∠AOC=36°,∵∠BOD=90°,∴∠BOC=∠BOD﹣∠COD=90°﹣36°=54°.故选:C.一十一.对顶角、邻补角(共1小题)15.(2022•北京)如图,利用工具测量角,则∠1的大小为( )A.30°B.60°C.120°D.150°【答案】A【解答】解:根据对顶角相等的性质,可得:∠1=30°,故选:A.一十二.垂线(共1小题)16.(2021•北京)如图,点O在直线AB上,OC⊥OD.若∠AOC=120°,则∠BOD的大小为( )A.30°B.40°C.50°D.60°【答案】A【解答】解:∵∠AOC+∠BOC=180°,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OC⊥OD,∴∠COD=90°,∴∠BOD=∠COD﹣∠BOC=90°﹣60°=30°,故选:A.一十三.全等三角形的性质(共1小题)17.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是( )A.①②B.①③C.②③D.①②③【答案】D【解答】解:①过点D作DF∥AC,交AE于点F;过点B作BG⊥FD,交FD于点G.∵DF∥AC,AC⊥AE,∴DF⊥AE.又∵BG⊥FD,∴BG∥AE,∴四边形ABGF为矩形.同理可得,四边形BCDG也为矩形.∴FD=FG+GD=a+b.∴在Rt△EFD中,斜边c>直角边a+b.故①正确.②∵△EAB≌△BCD,∴AE=BC=b,∴在Rt△EAB中,BE==.∵AB+AE>BE,∴a+b>.故②正确.③∵△EAB≌△BCD,∴∠AEB=∠CBD,又∵∠AEB+∠ABE=90°,∴∠CBD+∠ABE=90°,∴∠EBD=90°.∵BE=BD,∴∠BED=∠BDE=45°,∴BE==c•sin45°=c.∴c=.∵=2(a2+2ab+b2)=2(a2+b2)+4ab>2(a2+b2),∴>,∴>c.故③正确.故选:D.一十四.多边形内角与外角(共2小题)18.(2023•北京)正十二边形的外角和为( )A.30°B.150°C.360°D.1800°【答案】C【解答】解:因为多边形的外角和为360°,所以正十二边形的外角和为:360°.故选:C.19.(2021•北京)下列多边形中,内角和最大的是( )A.B.C.D.【答案】D【解答】解:A.三角形的内角和为180°;B.四边形的内角和为360°;C.五边形的内角和为:(5﹣2)×180°=540°;D.六边形的内角和为:(6﹣2)×180°=720°;故选:D.一十五.轴对称图形(共1小题)20.(2022•北京)图中的图形为轴对称图形,该图形的对称轴的条数为( )A.1B.2C.3D.5【答案】D【解答】解:如图所示,该图形有5条对称轴,故选:D.一十六.中心对称图形(共1小题)21.(2023•北京)下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】A【解答】解:A、原图既是中心对称图形,又是轴对称图形,故此选项符合题意;B、原图是中心对称图形,不是轴对称图形,故此选项不合题意;C、原图是轴对称图形,不是中心对称图形,故此选项不合题意;D、原图是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.一十七.概率的意义(共1小题)22.(2023•北京)先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.B.C.D.【答案】A【解答】解:先后两次抛掷同一枚质地均匀的硬币,总共有四种等可能结果,分别是:(正,正)、(正,反)、(反,正)、(反,反),则第一次正面向上、第二次反面向上的概率是,故选:A.一十八.列表法与树状图法(共2小题)23.(2022•北京)不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A.B.C.D.【答案】A【解答】解:列表如下:红绿红(红,红)(绿,红)绿(红,绿)(绿,绿)所有等可能的情况有4种,其中第一次摸到红球、第二次摸到绿球的有1种情况,所以第一次摸到红球、第二次摸到绿球的概率为,故选:A.24.(2021•北京)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A.B.C.D.【答案】C【解答】解:画树形图得:由树形图可知共4种等可能的结果,一枚硬币正面向上,一枚硬币反面向上的有2种结果,∴一枚硬币正面向上,一枚硬币反面向上的的概率为=,故选:C.。
(2)2008~2019北京中考数学分类汇编(方程不和不等式)教师版

2008~2019北京中考数学分类(方程不和不等式)一.选择题(共2小题)1.方程组的解为()A.B.C.D.2.若|x+2|+,则xy的值为()A.﹣8B.﹣6C.5D.6二.填空题(共5小题)3.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.4.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.5.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=,b=.6.不等式3x+2≥5的解集是.7.若关于x的方程x2﹣2x﹣m=0有两个相等的实数根,则m的值是.三.解答题(共27小题)8.解不等式组:9.关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.10.解不等式组:11.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.12.解不等式组:.13.关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.14.解不等式组:.15.关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.16.解不等式组,并写出它的所有非负整数解.17.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?18.解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.19.京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?20.解分式方程:.21.列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?22.解分式方程:.23.已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.24.列方程或方程组解应用题:2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?25.解不等式:4(x﹣1)>5x﹣6.26.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?27.解不等式组:.28.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.29.解不等式组:.30.某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.31.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.32.解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.33.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.34.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.2008~2019北京中考数学分类(方程不和不等式)参考答案与试题解析一.选择题(共2小题)1.方程组的解为()A.B.C.D.【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.2.若|x+2|+,则xy的值为()A.﹣8B.﹣6C.5D.6【解答】解:∵|x+2|≥0,≥0,而|x+2|+=0,∴x+2=0且y﹣3=0,∴x=﹣2,y=3,∴xy=(﹣2)×3=﹣6.故选:B.二.填空题(共5小题)3.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【解答】解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:.4.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【解答】解:根据题意得:,故答案为:.5.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=4,b=2.【解答】关于x的一元二次方程ax2+bx+=0有两个相等的实数根,∴△=b2﹣4×a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.6.不等式3x+2≥5的解集是x≥1.【解答】解:不等式3x+2≥5移项,得3x≥3,系数化1,得x≥1.故答案为:x≥1.7.若关于x的方程x2﹣2x﹣m=0有两个相等的实数根,则m的值是﹣1.【解答】解:∵关于x的方程x2﹣2x﹣m=0有两个相等的实数根,∴△=0,∴(﹣2)2﹣4×1×(﹣m)=0,解得m=﹣1.三.解答题(共27小题)8.解不等式组:【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为x<2.9.关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.10.解不等式组:【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.11.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.12.解不等式组:.【解答】解:,由①式得x<3;由②式得x<2,所以不等式组的解为x<2.13.关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.【解答】(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.14.解不等式组:.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.15.关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【解答】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>﹣.(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.16.解不等式组,并写出它的所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.17.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?【解答】解:设到2015年底,全市将有租赁点x个,根据题意可得:×1.2=,解得:x=1000,经检验得:x=1000是原方程的根,答:到2015年底,全市将有租赁点1000个.18.解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.【解答】解:去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6.系数化为1得,x≥﹣2.不等式的解集在数轴上表示如图:.19.京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?【解答】解:设这次试车时,由北京到天津的平均速度是每小时x千米,则由天津返回北京的平均速度是每小时(x+40)千米依题意得:(x+40)解得:x=200.答:这次试车时,由北京到天津的平均速度是每小时200千米.20.解分式方程:.【解答】解:去分母,得x(x+2)+6(x﹣2)=(x﹣2)(x+2).化简得:8x=8,解得x=1.经检验,x=1是原方程的解.∴原方程的解是x=1.21.列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?【解答】解:设轨道交通日均客运量为x万人次,地面公交日均客运量为y万人次.依题意得:解得:答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.22.解分式方程:.【解答】解:去分母,得3﹣2x=x﹣2,整理,得3x=5,解得x=.经检验,x=是原方程式的解.所以原方程式的解是x=.23.已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.【解答】解:由题意可知△=0,即(﹣4)2﹣4(m﹣1)=0,解得m=5.当m=5时,原方程化为x2﹣4x+4=0.解得x1=x2=2.所以原方程的根为x1=x2=2.24.列方程或方程组解应用题:2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?【解答】解:设生产运营用水x亿立方米,则居民家庭用水(5.8﹣x)亿立方米.依题意,得5.8﹣x=3x+0.6,解得:x=1.3,∴5.8﹣x=5.8﹣1.3=4.5(亿立方米).答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.25.解不等式:4(x﹣1)>5x﹣6.【解答】解:去括号得:4x﹣4>5x﹣6,移项得:4x﹣5x>4﹣6,合并同类项得:﹣x>﹣2,把x的系数化为1得:x<2,∴不等式的解集为:x<2.26.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?【解答】解:设小王用自驾车方式上班平均每小时行驶x千米,∵小王家距上班地点18千米,∴小王从家到上班地点所需时间t=小时;∵他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,∴他乘公交车从家到上班地点所需时间t=,∵乘公交车方式所用时间是自驾车方式所用时间的,∴=×,解得x=27经检验x=27是原方程的解,且符合题意.答:小王用自驾车方式上班平均每小时行驶27千米.27.解不等式组:.【解答】解:,∵解不等式①得:x>1,解不等式②得:x>5,∴不等式组的解集为:x>5.28.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.【解答】解:设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,由题意得:=,解得:x=22,经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.29.解不等式组:.【解答】解:,解不等式①得,x>﹣1,解不等式②得,x<,所以,不等式组的解集是﹣1<x<.30.某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.【解答】解:设每人每小时的绿化面积x平方米,由题意,得,解得:x=2.5.经检验,x=2.5是原方程的解,且符合题意.答:每人每小时的绿化面积2.5平方米.31.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.【解答】解:(1)根据题意得:△=4﹣4(2k﹣4)=20﹣8k>0,解得:k<;(2)由k为正整数,得到k=1或2,利用求根公式表示出方程的解为x=﹣1±,∵方程的解为整数,∴5﹣2k为完全平方数,则k的值为2.32.解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.【解答】解:去分母,得:3x﹣6≤4x﹣3,移项,得:3x﹣4x≤6﹣3,合并同类项,得:﹣x≤3,系数化成1得:x≥﹣3.则解集在数轴上表示出来为:.33.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.【解答】(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.34.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得=,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.。
2022~2013北京十年中考数学分类汇编——填空压轴题(学生版)

2022`2013北京十年中考数学分类汇编——填空压轴题1.(2022•北京)甲工厂将生产的Ⅰ号、Ⅱ号两种产品共打包成5个不同的包裹,编号分别为A ,B ,C ,D ,E ,每个包裹的重量及包裹中Ⅰ号、Ⅱ号产品的重量如下:包裹编号Ⅰ号产品重量/吨Ⅱ号产品重量/吨包裹的重量/吨A516B325C235D437E 358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案(写出要装运包裹的编号);(2)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,同时装运的Ⅱ号产品最多,写出满足条件的装运方案(写出要装运包裹的编号).2.(2021•北京)某企业有A ,B 两条加工相同原材料的生产线.在一天内,A生产线共加工a 吨原材料,加工时间为(4a +1)小时;在一天内,B 生产线共加工b 吨原材料,加工时间为(2b +3)小时.第一天,该企业将5吨原材料分配到A ,B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则的值为.3.(2020•北京)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序.4.(2019•北京)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.5.(2018•北京)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.6.(2017•北京)下面是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.7.(2016•北京)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.8.(2015•北京)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.9.(2014•北京)在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为.10.(2013•北京)如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n的横坐标为a n,若a1=2,则a2=,a2013=;若要将上述操作无限次地进行下去,则a1不可能取的值是.。
2019年北京市中考数学试卷及答案解析

2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1032.下列倡导节约的图案中,是轴对称图形的是()A .B .C .D .3.正十边形的外角和为()A.180°B.360°C.720°D.1440°4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.15.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC 长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD 长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.37.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t0≤t<1010≤t<2020≤t<3030≤t<40t≥40人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.(5分)解不等式组:19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为;(3)7天后,小云背诵的诗词最多为首.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103【答案】C2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【答案】C3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【分析】根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.【点评】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•(m+n)(m﹣n)=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.【点评】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t人数学生类型0≤t<1010≤t<2020≤t<3030≤t<40t≥40性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.【点评】本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是1.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为 1.9cm2.(结果保留一位小数)【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.【点评】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.11.在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.12.如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.【点评】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.【点评】考查反比例函数图象上的点坐标的特征,关于x轴对称的点的坐标的特征以及互为相反数的和为0的性质.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.【点评】本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.【点评】本题考查方差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是菱形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.【点评】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)解不等式组:【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为2<x<.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.【点评】此题主要考查了根的判别式,正确得出m的值是解题关键.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD=4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.【点评】本题考查了菱形的性质、平行线的判定与性质、解直角三角形等知识;熟练掌握菱形的性质是解题的关键.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【解答】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.【点评】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【分析】(1)利用圆的定义得到图象G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图象G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理、切线的判定.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6;(3)7天后,小云背诵的诗词最多为23首.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.【点评】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几位置1位置2位置3位置4位置5位置6位置7位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.360.96 1.13 2.00 2.83 AD/cm0.000.78 1.54 2.30 3.01 4.00 5.11 6.00确定PC的长度是自变量,PD的长度和AD 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,故答案为:PC、PD、AD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;。
2019年全国各地中考数学试题分类汇编(第一期) 专题36 规律探索(含解析)

规律探索一.选择题1. (2019•山东省济宁市 •3分)已知有理数a ≠1,我们把称为a 的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5B .7.5C .5.5D .﹣5.5【考点】数字的变化【分析】求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,且﹣2++=﹣,再求出这100个数中有多少个周期,从而得出答案. 【解答】解:∵a 1=﹣2, ∴a 2==,a 3==,a 4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣, ∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(﹣)﹣2=﹣=﹣7.5,故选:A .【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 2. (2019•广东深圳•3分)定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅khh k xdx 222,若⎰-=--m522mdx x ,则m =( )A. -2B. 52-C. 2D.52【答案】B 【解析】⎰-=-=-=----m51122511)5(mmm m m dx x ,则m =52-,故选B.3.(2019,山东枣庄,3分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:D.【点评】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.4. (2019•湖北十堰•3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50 B.60 C.62 D.71【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.5. (2019•湖北武汉•3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251.252.…、299.2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.二.填空题1. (2019•江苏连云港•3分)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1.2.3.4.5.6.7.8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为(2,4,2).【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论.【解答】解:根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2).【点评】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.2.(2019•浙江衢州•4分)如图,由两个长为2,宽为1的长方形组成“7”字图形。
北京市2019年中考数学试题(含答案)

2019年北京市高级中等学校招生考试数学试卷一、选择题(本题共16分,每小题2分) 第1-8题均有四个选项,符合题意的选项只有一个.1. 4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点 439 000米.将439 000用科学记数法表示应为 (A)0.439 1063(D) 439 1034.在数轴上,点 A ,B 在原点O 的两侧,分别表示数 a ,2,将点A 向右平移1个单位长度,得到点C .若CO = BO ,贝U a 的值为(C ) 4.39 1052. 3•正十边形的外角和为(A) 180°(B ) 360 ° (C ) 720° (D )(D ) 1440(B) 4.39 106(A)- 3(B)- 2(C )- 1 ( D ) 15.已知锐角/ AOB 如图, (1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作-, 交射线OB 于点D ,连接CD ; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交|1打耳于点M ,N ;(3) 连接 OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是(A )Z COM = Z COD (C ) MN // CD(B) 若 OM = MN ,则/ AOB=20 (D) MN=3CD2m n 16 •如果m n 1,那么代数式厂m mn mm 2 n 2的值为(A)F 列倡导节约的图案中,(C )(A)- 3(B)- 1(C) 1 (D) 31 17 •用三个不等式a b , ab 0, 中的两个不等式作为题设,余下的一个不等式作为结论组a b成一个命题,组成真命题的个数为(A)0 (B)1 (C) 2 (D)3&某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分..A数^x 学生类别时间0 < t v 1010 < t v 2020W t v 3030W t v 40t > 40性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是(A)①③(B)②④(C)①②③(D [①②③④二、填空题(本题共16分,每小题2分)9 •若分式乞」的值为0,则x的值为 __________ .x10•如图,已知△ ABC,通过测量、计算得厶ABC的面积约为_________ cm2.(结果保留一位小数)11 •在如图所示的几何体中,其三视图中有矩形的是__________ .(写出所有正确答案的序号)对称点B 在双曲线y 上,则k 1 k 2的值为x14•把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为 __________ .215.小天想要计算一组数据 92, 90, 94, 86, 99, 85的方差S 。
2019-2020年北京市中考数学各地区模拟试题分类(北京专版)(一)——二次函数(含解析)

2019-2020年北京市中考数学各地区模拟试题分类(北京专版)(一)——二次函数一.选择题1.(2020•海淀区一模)将抛物线y=2x2向下平移3个单位长度所得到的抛物线是()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x﹣3)2D.y=2(x+3)2 2.(2019•房山区二模)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是()A.小球的飞行高度不能达到15mB.小球的飞行高度可以达到25mC.小球从飞出到落地要用时4sD.小球飞出1s时的飞行高度为10m3.(2019•通州区三模)四位同学在研究二次函数y=ax2+bx+3(a≠0)时,甲同学发现函数图象的对称轴是直线x=1;乙同学发现3是一元二次方程ax2+bx+3=0(a≠0)的一个根;丙同学发现函数的最大值为4;丁同学发现当x=2时,y=5,已知这四位同学中只有一位同学发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁4.(2019•怀柔区二模)在平面直角坐标系xOy中,四条抛物线如图所示,其表达式中的二次项系数绝对值最小的是()A.y1B.y2C.y3D.y4 5.(2019•道外区二模)将抛物线y=x2沿着x轴向左平移1个单位,再沿y轴向下平移1个单位,则得到的抛物线解析式为()A.y=(x﹣1)2﹣1 B.y=(x﹣1)2+1 C.y=(x+1)2+1 D.y=(x+1)2﹣1 6.(2019•大兴区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(1,2),(5,3),则下列说法正确的是()①抛物线与y轴有交点②若抛物线经过点(2,2),则抛物线的开口向上③抛物线的对称轴不可能是x=3④若抛物线的对称轴是x=4,则抛物线与x轴有交点A.①②③④B.①②③C.①③④D.②④7.(2019•丰台区模拟)如图,排球运动员站在点O处练习发球,将球从O点正上方2m 的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与O点的水平距离为6m时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定二.填空题8.(2020•朝阳区校级模拟)如图,在平面直角坐标系xOy中,点A(﹣2,﹣2),B(0,3),C(3,3),D(4,﹣2),y是关于x的二次函数,抛物线y1经过点A、B、C,抛物线y2经过点B、C、D,抛物线y3经过点A、B、D,抛物线y4经过点A、C、D.下列判断:①四条抛物线的开口方向均向下;②当x<0时,至少有一条抛物线表达式中的y均随x的增大而减小;③抛物线y1的顶点在抛物线y2顶点的上方;④抛物线y4与y轴的交点在点B的上方.所有正确结论的序号为.9.(2020•朝阳区校级模拟)已知:如图,在平面直角坐标系xOy中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x轴于点C,以AC为对角线作正方形ABCD.则正方形的边长AB的最小值是.10.(2020•西城区校级模拟)已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:.11.(2020•海淀区校级一模)计算机可以帮助我们又快又准地画出函数的图象.用“几何画板”软件画出的函数y=x2(x﹣3)和y=x﹣3的图象如图所示.根据图象可知方程x2(x﹣3)=x﹣3的解的个数为;若m,n分别为方程x2(x﹣3)=1和x﹣3=1的解,则m,n的大小关系是.12.(2020•西城区校级模拟)如图,双曲线y=与抛物线y=ax2+bx+c交于点A(x1,y1),B(x2,y2),C(x3,y3),由图象可得不等式组0<+bx+c的解集为.13.(2019•朝阳区模拟)在平面直角坐标系中xOy中,横、纵坐标都是整数的点叫做整点,记函数y=﹣x2+a(a>0)的图象在x轴上方的部分与x轴围成的区域(不含边界)为W.当a=2时,区域W内的整点个数为,若区域W内恰有7个整点,则a 的取值范围是.14.(2019•大兴区一模)已知二次函数y=x2﹣2x+3,当自变量x满足﹣1≤x≤2时,函数y的最大值是.15.(2019•朝阳区模拟)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,则关于x的方程ax2+bx+c=0(a≠0)的解为.16.(2019•朝阳区模拟)请写出一个开口向下,并且与y轴交于点(0,2)的抛物线的解析式,y=.17.(2019•石景山区二模)如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端安有一个喷水池,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取A点为坐标原点时的抛物线的表达式为y=﹣,则选取点D为坐标原点时的抛物线表达式为,水管AB的长为m.三.解答题18.(2020•北京二模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax(a≠0)与x轴交于点A,B(A在B的左侧).(1)求点A,B的坐标及抛物线的对称轴;(2)已知点P(2,2),Q(2+2a,5a),若抛物线与线段PQ有公共点,请结合函数图象,求a的取值范围.19.(2020•东城区二模)在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(6,4).抛物线y=x2﹣5x+a﹣2的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标;(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围;(3)若满足不等式x2﹣5x+a﹣2≤0的x的最大值为3.直接写出实数a的值.20.(2020•海淀区二模)在平面直角坐标系xOy中,已知二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.(1)求点B的坐标及该函数的表达式;(2)若二次函数y=x2+2x+a的图象与F只有一个公共点,结合函数图象,求a的取值范围.21.(2020•门头沟区一模)在平面直角坐标系xOy中,一次函数y=﹣ax+3的图象与y 轴交于点A,与抛物线y=ax2﹣2ax﹣3a(a≠0)的对称轴交于点B,将点A向右平移5个单位得到点C,连接AB,AC得到的折线段记为图形G.(1)求出抛物线的对称轴和点C坐标;(2)①当a=﹣1时,直接写出抛物线y=ax2﹣2ax﹣3a与图形G的公共点个数.②如果抛物线y=ax2﹣2ax﹣3a与图形G有且只有一个公共点,求出a的取值范围.22.(2020•丰台区一模)已知二次函数y=ax2﹣2ax.(1)二次函数图象的对称轴是直线x=;(2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥3时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.23.(2020•大兴区一模)在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m﹣4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C(0,﹣3).(1)求m的值;(2)若一次函数y=kx+5(k≠0)的图象经过点A,求k的值;(3)将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+5(k≠0)向上平移n个单位,当平移后的直线与图象G有公共点时,请结合图象直接写出n的取值范围.24.(2020•朝阳区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+a+1与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点M(﹣2,﹣a﹣2),N(0,a).若抛物线与线段MN恰有一个公共点,结合函数图象,求a的取值范围.25.(2020•西城区校级模拟)定义:点Q到图形W上每一个点的距离的最小值称为点Q 到图形W的距离.例如,如图,正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.(1)如果点G(0,b)(b<0)到抛物线y=x2的距离为3,请直接写出b的值.(2)求点M(3,0)到直线y=x+3的距离.(3)如果点N在直线x=2上运动,并且到直线y=x+4的距离为4,求N的坐标.参考答案一.选择题1.解:依题意,得平移后抛物线顶点坐标为(0,﹣3),由平移不改变二次项系数,故得到的抛物线解析式为:y=2x2﹣3.故选:B.2.解:A、当h=15时,15=20t﹣5t2,解得:t1=1,t2=3,故小球的飞行高度能达到15m,故此选项错误;B、h=20t﹣5t2=﹣5(t﹣2)2+20,故t=2时,小球的飞行高度最大为:20m,故此选项错误;C、∵h=0时,0=20t﹣5t2,解得:t1=0,t2=4,∴小球从飞出到落地要用时4s,故此选项正确;D、当t=1时,h=15,故小球飞出1s时的飞行高度为15m,故此选项错误;故选:C.3.解:对称轴是直线x=1时,b=﹣2a①;3是一元二次方程ax2+bx+3=0(a≠0)的一个根时,3a+b+1=0 ②;函数的最大值为4时,b2=﹣4a③;当x=2时,y=5时,2a+b﹣1=0 ④;当甲不对时,由②和④联立a=﹣2,b=5,不满足③,故不成立;当乙不对时,由①和③联立a=﹣1,b=2,不满足④,故不成立;当丙不对时,由②和④联立a=﹣2,b=5,不满足①,故不成立;当丁不对时,由①和③联立a=﹣1,b=2,成立;故选:D.4.解:由图象可知:抛物线y1的顶点为(1,0),与y轴的交点为(0,4),根据待定系数法求得y1=2(x ﹣1)2;抛物线y2的顶点为(1,0),与y轴的一个交点为(0,2),根据待定系数法求得y2=(x﹣1)2;抛物线y3的顶点为(1,0),与y轴的交点为(0,1),根据待定系数法求得y3=(x ﹣1)2;抛物线y4的顶点为(1,0),与y轴的交点为(0,﹣b)且﹣b<﹣4,根据待定系数法求得y4=﹣(x﹣1)2;综上,二次项系数绝对值最小的是y3故选:C.5.解:抛物线y=x2沿着x轴向左平移1个单位,再沿y轴向下平移1个单位,那么所得新抛物线的表达式是y=(x+1)2﹣1.故选:D.6.解:①当x=0时,y=c,∴与y轴有交点;①正确;②抛物线经过(1,2),(2,2),(5,3),∴,∴a=,∴抛物线开口向上;∴②正确;③如果抛物线的对称轴x=3,(1,2)关于对称轴对称的点为(5,2),与经过点(5,3)矛盾,∴对称轴不能是x=3,∴③正确;④对称轴是x=4,∴﹣=4,∴b=﹣8a,将点(1,2),(5,3)代入得,,∴24a+4b=1,∴﹣8a=1,∴a=﹣,∴b=1,c=△=b2﹣4ac=64a2﹣4ac>0,∴抛物线与x轴有交点,∴④正确;故选:A.7.解:∵球与O点的水平距离为6m时,达到最高2.6m,∴抛物线为y=a(x﹣6)2+2.6过点,∵抛物线y=a(x﹣6)2+2.6过点(0,2),∴2=a(0﹣6)2+2.6,解得:a=﹣,故y与x的关系式为:y=﹣(x﹣6)2+2.6,当x=9时,y=﹣(x﹣6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,﹣(x﹣6)2+2.6=0,解得:x1=6+2>18,x2=6﹣2(舍去)故会出界.故选:C.二.填空题(共10小题)8.解:将点A、B、C的坐标代入抛物线表达式得:,解得:,故抛物线y1的表达式为:y1=﹣x2+x+3,顶点(,);同理可得:y2=﹣x2+x+3,顶点坐标为:(,);y3=﹣x2+x+3,顶点坐标为(1,);y4=﹣x2+2x+6,与y轴的交点为:(0,6);①由函数表达式知,四条抛物线的开口方向均向下,故正确,符合题意;②当x<0时,y3随x的增大而增大,故错误,不符合题意;③由顶点坐标知,抛物线y1的顶点在抛物线y2顶点的下方,错误,不符合题意;④抛物线y4与y轴的交点(0,6)在B的上方,正确,符合题意.故答案为:①④.9.解:∵四边形ABCD是正方形,∴AB=AC,∵y=x2﹣4x+6=(x﹣2)2+2,∴当x=2时,AC有最小值2,即正方形的边长AB的最小值是.故答案为:.10.解:∵抛物线y1=ax2的开口向上,∴a>0,又∵它的开口比抛物线y2=3x2+2的开口小,∴|a|>3,∴a>3,取a=4即符合题意,故答案为:4(答案不唯一).11.解:函数y=x2(x﹣3)的图象与函数y=x﹣3的图象有3个交点,则方程x2(x﹣3)=x﹣3的解有3个;方程x2(x﹣3)=1的解为函数图象与直线y=1的交点的横坐标,x﹣3=1的解为一次函数y=x﹣3与直线y=1的交点的横坐标,如图,由图象得m<n.故答案为3,m<n.12.解:由图可知,x2<x<x3时,0<<ax2+bx+c,所以,不等式组0<<ax2+bx+c的解集是x2<x<x3.故答案为:x2<x<x3.13.解:(1)当a=2时,函数y=﹣x2+2,函数与坐标轴的交点坐标分别为(0,2),(﹣,0),(,0),函数y=﹣x2+2的图象在x轴上方的部分与x轴围成的区域中,整数点有(﹣1,1),(1,1),(0,2)在边界上,不符合题意,点(0,1)在W区域内.所以此时在区域W内的整数点有1个.(2)由(1)发现,当(0,2)是顶点时,在W区域内只有1个整数点,边界上有3个整数点;当a=3时,在W区域内有4个整数点(﹣1,1),(1,1),(0,2),(0,1),边界上有3个整数点(0,3),(﹣1,2),(1,2);当a=4时,在W区域内有7个整数点(﹣1,1),(1,1),(0,2),(0,1),(0,3),(﹣1,2),(1,2);所以区域W内恰有7个整点,3<a≤4.故本题答案是1;3<a≤4.14.解:∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴该抛物线的对称轴为x=1,且a=1>0,∴当x=1时,函数有最小值2,当x=﹣1时,二次函数有最大值为:(﹣1﹣1)2+2=6,故答案为6.15.解:抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(1,0),所以抛物线与x轴的一个交点坐标为(﹣3,0),即x=1或﹣3时,函数值y=0,所以关于x的方程ax2+bx+c=0(a≠0)的解为x1=﹣3,x2=1.故答案为x1=﹣3,x2=1.16.解:函数解析式为y=﹣x2+2(答案不唯一).故答案为:﹣x2+2(答案不唯一).17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为:y=﹣(x﹣1)2+3,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:y=﹣(x+2)2+3(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3(﹣3≤x≤0);2.25.三.解答题(共8小题)18.解:(1)∵y=ax2﹣4ax=ax(x﹣4),∴y=0时,ax(x﹣4)=0,∴x=0或x=4,∴抛物线与x轴交于点A(0,0),B(4,0).∴抛物线y=ax2﹣4ax的对称轴为直线:.(2)y=ax2﹣4ax=a(x2﹣4x)=a(x﹣2)2﹣4a,∴抛物线的顶点坐标为(2,﹣4a).令y=5a,得ax2﹣4ax=5a,a(x﹣5)(x+1)=0,解得x=﹣1或x=5,∴当y=5a时,抛物线上两点M(﹣1,5a),N(5,5a).①当a>0时,抛物线开口向上,顶点位于x轴下方,且Q(2+2a,5a)位于点P的右侧,如图1,当点N位于点Q左侧时,抛物线与线段PQ有公共点,此时2+2a≥5,解得a.②当a<0时,抛物线开口向下,顶点位于x轴上方,点Q(2+2a,5a)位于点P的左侧,(ⅰ)如图2,当顶点位于点P下方时,抛物线与线段PQ有公共点,此时﹣4a≤2,解得a.(ⅱ)如图3,当顶点位于点P上方,点M位于点Q右侧时,抛物线与线段PQ有公共点,此时2+2a≤﹣1,解得a.综上,a的取值范围是a≥或﹣a<0或a.19.解:(1)由题意可得:4=36﹣5×6+a﹣2,∴a=0,∴抛物线的解析式为:y=x2﹣5x﹣2,∴顶点C坐标为(,﹣),(2)如图,当顶点C在线段AB下方时,由题意可得:,解得:0≤a<6;当顶点C在AB时,当x=时,y=4,∴,∴a=,综上所述:当0≤a<6或时,抛物线与线段AB恰有一个公共点;(3)由题意可得当x=3时,y=0,即9﹣15+a﹣2=0,∴a=8.20.解:(1)∵二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,∴令x=0,则y=3,∴B(0,3),把A(﹣3,0)代入y=mx2+2mx+3,求得m=﹣1,∴函数的表达式为y=﹣x2﹣2x+3;(2)画出函数y=﹣x2﹣2x+3的图象如图所示:把A(﹣3,0)代入y=x2+2x+a得0=9﹣6+a,解得a=﹣3,二次函数y=x2+2x+a的的顶点与图象F的顶点(﹣1,4)重合时,则4=1﹣2+a,解得a=5,由图象可知,二次函数y=x2+2x+a的图象与F只有一个公共点,a的取值范围为﹣3≤a<3或a=5.21.解:(1)∵抛物线y=ax2﹣2ax﹣3a(a≠0),∴对称轴x=﹣=1,∵一次函数y=﹣ax+3的图象与y轴交于点A,∴A(0,3),∵点A向右平移5个单位得到点C,∴C(5,3).(2)①如图1中,观察图象可知,抛物线与图象G的交点有3个,②∵抛物线的顶点(1,﹣4a),当a<0时,由①可知,a=﹣1时,抛物线经过A,B,∴当a<﹣1时,抛物线与图象G有且只有一个公共点,当抛物线的顶点在线段AC上时,如图2中,也满足条件,∴﹣4a=3,∴a=﹣,当a>0时,如图3中,抛物线经过点C时,25a﹣10a﹣3a=3,解得a=,抛物线经过点B时,﹣4a=﹣a+3,解得a=﹣(舍弃)不符合题意.观察图象可知a≥时,满足条件,综上所述,满足条件的a的取值范围:a<﹣1或a≥或a=﹣.22.解:(1)由题意可得:对称轴是直线x==1,故答案为:1;(2)当a>0时,∵对称轴为x=1,当x=1时,y有最小值为﹣a,当x=3时,y有最大值为3a,∴3a﹣(﹣a)=4.∴a=1,∴二次函数的表达式为:y=x2﹣2x;当a<0时,同理可得y有最大值为﹣a;y有最小值为3a,∴﹣a﹣3a=4,∴a=﹣1,∴二次函数的表达式为:y=﹣x2+2x;综上所述,二次函数的表达式为y=x2﹣2x或y=﹣x2+2x;(3)∵a<0,对称轴为x=1,∴x≤1时,y随x的增大而增大,x>1时,y随x的增大而减小,x=﹣1和x=3时的函数值相等,∵t≤x1≤t+1,x2≥3时,均满足y1≥y2,∴t≥﹣1,t+1≤3,∴﹣1≤t≤2.23.解:(1)∵抛物线y=x2﹣2mx+m﹣4与y轴交于点C(0,﹣3),∴m﹣4=﹣3,∴m=1.(2)∵抛物线的解析式为y=x2﹣2x﹣3,令y=0,得到x2﹣2x﹣3=0,解得x=﹣1或3,∵抛物线y=x2﹣2mx+m﹣4与x轴交于点A,B(点A在点B的左侧),∴A(﹣1,0),B(3,0),∵一次函数y=kx+5(k≠0)的图象经过点A,∴﹣k+5=0,∴k=5.(3)如图,设平移后的直线的解析式为y=5x+5+n,点C平移后的坐标为(﹣n,﹣3),点B平移后的坐标为(3﹣n,0),当点C落在直线y=5x+5+n上时,﹣3=﹣5n+5+n,解得n=2,当点B落在直线y=5x+5+n上时,0=5(3﹣n)+5+n解得n=5,观察图象可知,满足条件的n的取值范围为2≤n≤5.24.解:(1)∵抛物线y=ax2﹣3ax+a+1与y轴交于A,令x=0,得到y=a+1,∴A(0,a+1).(2)由抛物线y=ax2﹣3ax+a+1,可知x=﹣=,∴抛物线的对称轴x=.(3)对于任意实数a,都有a+1>a,可知点A在点N的上方,令抛物线上的点C(﹣2,y),∴y c=11a+1,①如图1中,当a>0时,y c>﹣a﹣2,∴点C在点M的上方,结合图象可知抛物线与线段MN没有公共点.②当a<0时,(a)如图2中,当抛物线经过点M时,y c=﹣a﹣2,∴a=﹣,结合图象可知抛物线与线段MN巧有一个公共点M.(b)当﹣<a<0时,观察图象可知抛物线与线段MN没有公共点.(c)如图3中,当a<﹣时,y c<﹣a﹣2,∴点C在点M的下方,结合图象可知抛物线与线段MN恰好有一个公共点,综上所述,满足条件的a的取值范围是a≤﹣.25.解:(1)①当G在原点下方时,b=﹣3,②当G在原点上方时,=3,整理得:x4+(1﹣2b)x2+b2﹣9=0,△=(1﹣2b)2﹣4(b2﹣9)=0,解得:b=(舍去),故答案为:﹣3;(2)如图1,作直线y=x+3与x轴交于点B(﹣3,0),过点M作MN⊥BN交于点N,则MN的长度为所求值,则△BMN为等腰直角三角形,故MN=BM=3,故点M(3,0)到直线y=x+3的距离为3;(3)①当点N在直线BH和x=2的交点下方时,如图2,作直线y=x+4交x轴于点B,过点N作NH⊥BH于点H,过点N作MN∥x轴交直线BH于点M,则HN=4,由(2)同理可知,△HMN为等腰直角三角形,MN =HN=4,故x M=2﹣4,y M=x M+4=6﹣4=y N,故点N的坐标为:(2,6﹣4);②当点N在直线BH和x=2的交点上方时,同理可得:点N的坐标为:(2,6+4);综上,点N的坐标为:(2,6﹣4)或(2,6+4).。
北京市2019年中考数学试题(含解析)和答案

2019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,Na 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D. 【解析】本题考察轴对称图形的概念,故选C 3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为()A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∵CO=BO,∴2|1|=+a ,解得1=a (舍)或3-=a ,故选A5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是() A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN∥CDD.MN=3CD【解析】连接ON ,由作图可知△COM≌△DON. A. 由△COM≌△DON.,可得∠COM=∠COD,故A 正确.B. 若OM=MN ,则△OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∴∠OCD=2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证△MOR≌△NOS,则OR=OS ,∴∠ORS=2COD180∠-︒,∴∠OCD=∠ORS.∴MN∥CD,故C 正确.D.由题意,易证MC=CD=DN ,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN<MC+CD+DN=3CD ,故选D6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为() A .-3B.-1C.1D.3【解析】:()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+=)(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m∴原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为() A.0 B.1 C.2 D.3【解析】本题共有3种命题: 命题①,如果0,>>ab b a ,那么ba 11<. ∵b a >,∴0>-b a ,∵0>ab ,∴0>-ab b a ,整理得ab 11>,∴该命题是真命题. 命题②,如果,11,ba b a <>那么0>ab . ∵,11b a <∴.0,011<-<-aba b b a ∵b a >,∴0<-a b ,∴0>ab . ∴该命题为真命题. 命题③,如果ba ab 11,0<>,那么b a >. ∵,11b a <∴.0,011<-<-aba b b a ∵0>ab ,∴0<-a b ,∴a b < ∴该命题为真命题. 故,选D8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男7 31 25 30 4 女8 29 26 32 8 学段初中25 36 44 11 高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为25.5h ,则平均数一定在24.5~25.5之间,故①正确②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误 故,选C二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为______.【解析】本题考查分式值为0,则分子01=-x ,且分母0≠x ,故答案为110.如图,已知△ABC,通过测量、计算得△ABC 的面积约为cm 2.(结果保留一位小数) 【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号) 【解析】本题考查对三视图的认识.①长方体的主视图,俯视图,左视图均为矩形;②圆柱的主视图,左视图均为矩形,俯视图为圆;③圆锥的主视图和左视图为三角形,俯视图为圆.故答案为①②第11题图③圆锥②圆柱①长方体第12题图PBA12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∴222PB BQ PQ =+,即△PBQ 为等腰直角三角形,∴∠BPQ=45°,∵∠PAB+∠PBA=∠BPQ=45°,故答案为4513.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 【解析】本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∴021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【解析】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______2s . (填“>”,“=”或“<”) 【解析】本题考查方差的性质。
2015中考数学真题分类汇编:规律型(数字的变化类)

2015中考数学真题分类汇编:规律型(数字的变化类)一.选择题(共5小题)1.(2015•张家界)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是()A. 46 B. 45 C. 44 D. 432.(2015•荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)3.(2015•包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()A.B.C.D.4.(2015•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A. 135 B. 170 C. 209 D. 2525.(2015•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A. 8 B. 9 C. 13 D. 15二.填空题(共19小题)6.(2015•巴中)a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是=;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则a2015=.7.(2015•酒泉)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.8.(2015•黔西南州)已知A32=3×2=6,A53=5×4×3=60,A52=5×4×3×2=120,A63=6×5×4×3=360,依此规律A74=.9.(2015•孝感)观察下列等式:12=1,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=.10.(2015•郴州)请观察下列等式的规律:=(1﹣),=(﹣),=(﹣),=(﹣),…则+++…+=.11.(2015•娄底)下列数据是按一定规律排列的,则第7行的第一个数为.12.(2015•绥化)填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=.13.(2015•济宁)若1×22﹣2×32=﹣1×2×7;(1×22﹣2×32)+(3×42﹣4×52)=﹣2×3×11;(1×22﹣2×32)+(3×42﹣4×52)+(5×62﹣6×72)=﹣3×4×15;则(1×22﹣2×32)+(3×42﹣4×52)+…+[(2n﹣1)(2n)2﹣2n(2n+1)2]=.14.(2015•黔东南州)将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是.15.(2015•常州)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2;12=5+7;6=3+3;14=3+11=7+7;8=3+5;16=3+13=5+11;10=3+7=5+518=5+13=7+11;…通过这组等式,你发现的规律是(请用文字语言表达).16.(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015=.17.(2015•东莞)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.18.(2015•恩施州)观察下列一组数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…其中每个数n都连续出现n次,那么这一组数的第119个数是.19.(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.20.(2015•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400=.21.(2015•安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.22.(2015•遵义)按一定规律排列的一列数依次为:,,,,…,按此规律,这列数中的第10个数与第16个数的积是.23.(2015•淮安)将连续正整数按如下规律排列:若正整数565位于第a行,第b列,则a+b=.24.(2015•常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为.三.解答题(共1小题)25.(2015•张家界)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为a n.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.则:(1)等比数列3,6,12,…的公比q为,第4项是.(2)如果一个数列a1,a2,a3,a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2,a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:a n=(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.2015中考数学真题分类汇编:规律型(数字的变化类)参考答案与试题解析一.选择题(共5小题)1.(2015•张家界)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是()A. 46 B. 45 C. 44 D. 43考点:规律型:数字的变化类.分析:观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2015的是从3开始的第1007个数,然后确定出1007所在的范围即可得解.解答:解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3有m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=2015,n=1007,∴奇数2015是从3开始的第1007个奇数,∵=966,=1015,∴第1007个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选B.点评:本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.2.(2015•荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.解答:解:2015是第=1008个数,设2015在第n组,则1+3+5+7+…+(2n﹣1)≥1008,即≥1008,解得:n≥,当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2015是(+1)=47个数.故A2015=(32,47).故选B.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.3.(2015•包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()A.B.C.D.考点:规律型:数字的变化类.分析:观察数据,发现第n个数为,再将n=6代入计算即可求解.解答:解:观察该组数发现:1,,,,…,第n个数为,当n=6时,==.故选C.点评:本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为.4.(2015•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A. 135 B. 170 C. 209 D. 252考点:规律型:数字的变化类.分析:首先根据图示,可得第n个表格的左上角的数等于n,左下角的数等于n+1;然后根据4﹣1=3,6﹣2=4,8﹣3=5,10﹣4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3、4、5、…,n+2,据此求出a的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x的值是多少即可.解答:解:∵a+(a+2)=20,∴a=9,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选:C.点评:此题主要考查了探寻数字规律问题,注意观察总结出规律,并能正确的应用规律.5.(2015•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A. 8 B. 9 C. 13 D. 15考点:规律型:数字的变化类.分析:根据每个数都等于它前面的两个数之和,可得x=1+2=3,y=x+5=3+5=8,据此解答即可.解答:解:∵每个数都等于它前面的两个数之和,∴x=1+2=3,∴y=x+5=3+5=8,即这组数中y表示的数为8.故选:A.点评:此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是求出x的值是多少.二.填空题(共19小题)6.(2015•巴中)a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是=;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则a2015=﹣.考点:规律型:数字的变化类;倒数.专题:规律型.分析:根据差倒数定义表示出各项,归纳总结即可得到结果.解答:解:a1=3,a2是a1的差倒数,即a2==﹣,a3是a2的差倒数,即a3==,a4是a3差倒数,即a4=3,…依此类推,∵2015÷3=671…2,∴a2015=﹣.故答案为:﹣.点评:此题考查了规律型:数字的变化类,以及新定义,找出题中的规律是解本题的关键.7.(2015•酒泉)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45,2016是第63个三角形数.考点:规律型:数字的变化类.分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.8.(2015•黔西南州)已知A32=3×2=6,A53=5×4×3=60,A52=5×4×3×2=120,A63=6×5×4×3=360,依此规律A74=840.考点:规律型:数字的变化类.分析:对于A a b(b<a)来讲,等于一个乘法算式,其中最大因数是a,依次少1,最小因数是b.依此计算即可.解答:解:根据规律可得:A74=7×6×5×4=840;故答案为:840.点评:本题考查了规律型﹣数字的变化,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到A a b(b<a)中的最大因数,最小因数.9.(2015•孝感)观察下列等式:12=1,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=1016064.考点:规律型:数字的变化类.分析:根据1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,可得1+3+5+…+(2n﹣1)=n2,据此求出1+3+5+…+2015的值是多少即可.解答:解:因为1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,所以1+3+5+…+2015=1+3+5+…+(2×1008﹣1)=10082=1016064故答案为:1016064.点评:此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:1+3+5+…+(2n﹣1)=n2.10.(2015•郴州)请观察下列等式的规律:=(1﹣),=(﹣),=(﹣),=(﹣),…则+++…+=.考点:规律型:数字的变化类.分析:观察算式可知=(﹣)(n为非0自然数),把算式拆分再抵消即可求解.解答:解:+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣+﹣+﹣+…+﹣)=(1﹣)=×=.故答案为:.点评:考查了规律型:数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为=(﹣)(n为非0自然数).11.(2015•娄底)下列数据是按一定规律排列的,则第7行的第一个数为22.考点:规律型:数字的变化类.分析:先找到数的排列规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行的第1个数,即可求出第7行的第1个数.解答:解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个数.所以第n行的第1个数n(n﹣1)+1.所以n=7时,第7行的第1个数为22.故答案为:22.点评:此题主要考查了数字的变化规律,找出数字排列的规律是解决问题的关键.12.(2015•绥化)填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=110.考点:规律型:数字的变化类.分析:观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积减去1的差,根据此规律列式进行计算即可得解.解答:解:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积减去1的差,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故答案为:110点评:本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.13.(2015•济宁)若1×22﹣2×32=﹣1×2×7;(1×22﹣2×32)+(3×42﹣4×52)=﹣2×3×11;(1×22﹣2×32)+(3×42﹣4×52)+(5×62﹣6×72)=﹣3×4×15;则(1×22﹣2×32)+(3×42﹣4×52)+…+[(2n﹣1)(2n)2﹣2n(2n+1)2]=﹣n(n+1)(4n+3).考点:规律型:数字的变化类.分析:仔细观察题目提供的三个算式,发现结果和式子序列号之间的关系,然后将这个规律表示出来即可.解答:解:∵1×22﹣2×32=﹣1×2×7=﹣1×2×(4×1+3);(1×22﹣2×32)+(3×42﹣4×52)=﹣2×3×11=﹣2×3×(4×2+3);(1×22﹣2×32)+(3×42﹣4×52)+(5×62﹣6×72)=﹣3×4×15═﹣3×4×(4×3+3);…(1×22﹣2×32)+(3×42﹣4×52)+…+[(2n﹣1)(2n)2﹣2n(2n+1)2]=﹣n(n+1)(4n+3),故答案为:﹣n(n+1)(4n+3).点评:本题考查了数字的变化类问题,仔细观察提供的算式,用含有n的代数式表示出来即可.14.(2015•黔东南州)将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是50.考点:规律型:数字的变化类.分析:先找到数的排列规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行从左向右的第5个数,即可求出第10行从左向右的第5个数.解答:解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个数.所以第n行从左向右的第5个数n(n﹣1)+5.所以n=10时,第10行从左向右的第5个数为50.故答案为:50.点评:此题主要考查了数字的变化规律,找出数字排列的规律是解决问题的关键.15.(2015•常州)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2;12=5+7;6=3+3;14=3+11=7+7;8=3+5;16=3+13=5+11;10=3+7=5+518=5+13=7+11;…通过这组等式,你发现的规律是所有大于2的偶数都可以写成两个素数之和(请用文字语言表达).考点:规律型:数字的变化类.分析:根据以上等式得出规律进行解答即可.解答:解:此规律用文字语言表达为:所有大于2的偶数都可以写成两个素数之和,故答案为:所有大于2的偶数都可以写成两个素数之和点评:此题考查规律问题,关键是根据几个等式寻找规律再用文字表达即可.16.(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015=2.考点:规律型:数字的变化类.分析:根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定a2015的值即可.解答:解:根据题意得,a2==2,a3==﹣1,a4==,…,依此类推,每三个数为一个循环组依次循环,∵2015÷3=671…2,∴a2015是第671个循环组的第2个数,与a2相同,即a2015=2.故答案为:2.点评:本题考查数字的变化规律,计算并观察出每三个数为一个循环组依次循环是解题的关键.17.(2015•东莞)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.考点:规律型:数字的变化类.分析:由分子1,2,3,4,5,…即可得出第10个数的分子为10;分母为3,5,7,9,11,…即可得出第10个数的分母为:1+2×10=21,得出结论.解答:解:∵分子为1,2,3,4,5,…,∴第10个数的分子为10,∵分母为3,5,7,9,11,…,∴第10个数的分母为:1+2×10=21,∴第10个数为:,故答案为:.点评:此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题是解答此题的关键.18.(2015•恩施州)观察下列一组数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…其中每个数n都连续出现n次,那么这一组数的第119个数是15.考点:规律型:数字的变化类.分析:根据每个数n都连续出现n次,可列出1+2+3+4+…+x=119+1,解方程即可得出答案.解答:解:因为每个数n都连续出现n次,可得:1+2+3+4+…+x=119+1,解得:x=15,所以第119个数是15.故答案为:15.点评:此题考查数字的规律,关键是根据题目首先应找出哪哪些部分发生了变化,是按照什么规律变化的.19.(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为4.考点:规律型:数字的变化类.分析:根据报数规律得出甲共报数13次,分别为1,5,9,13,17,21,25,29,33,37,41,45,49,即可得出报出的数为3的倍数的个数,即可得出答案.解答:解:∵甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…按此规律,后一位同学报出的数比前一位同学报出的数大1.当报到的数是50时,报数结束;∴50÷4=12余2,∴甲共报数13次,分别为1,5,9,13,17,21,25,29,33,37,41,45,49,∴报出的数为3的倍数,则报该数的同学需拍手一次.在此过程中,甲同学需报到:9,21,33,45这4个数时,应拍手4次.故答案为:4.点评:此题主要考查了数字规律,得出甲的报数次数以及分别报数的数据是解决问题的关键.20.(2015•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000.考点:规律型:数字的变化类.分析:首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.解答:解:∵;;;…∴;∴.故答案为:1.6×105或160000.点评:本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.21.(2015•安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是xy=z.考点:规律型:数字的变化类.分析:首项判断出这列数中,2的指数各项依次为1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.解答:解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,∴x、y、z满足的关系式是:xy=z.故答案为:xy=z.点评:此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征.22.(2015•遵义)按一定规律排列的一列数依次为:,,,,…,按此规律,这列数中的第10个数与第16个数的积是.考点:规律型:数字的变化类.分析:首先根据,=,可得当这列数的分子都化成4时,分母分别是5、8、11、14、…,分母构成以5为首项,以3为公差的等差数列,据此求出这列数中的第10个数与第16个数各是多少;然后求出它们的积是多少即可.解答:解:∵,=,∴这列数依次为:,,,,…,∴当这列数的分子都化成4时,分母分别是5、8、11、14、…,∵8﹣5=11﹣8=14﹣11=3,∴分母构成以5为首项,以3为公差的等差数列,∴这列数中的第10个数与第16个数的积是:==.故答案为:.点评:此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:当这列数的分子都化成4时,分母构成以5为首项,以3为公差的等差数列.23.(2015•淮安)将连续正整数按如下规律排列:若正整数565位于第a行,第b列,则a+b=147.考点:规律型:数字的变化类.分析:首先根据连续正整数的排列图,可得每行都有4个数,所以用565除以4,根据商和余数的情况判断出正整数565位于第几行;然后根据奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,判断出565在第几列,确定出b 的值,进而求出a+b的值是多少即可.解答:解:∵565÷4=141…1,∴正整数565位于第142行,即a=142;∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b=5,∴a+b=142+5=147.故答案为:147.点评:此题主要考查了探寻数列规律问题,注意观察总结出规律,并能正确的应用规律,解答此题的关键是判断出:(1)每行都有4个数.(2)奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小.24.(2015•常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为128、21、20、3.考点:规律型:数字的变化类;推理与论证.分析:首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m的值为多少即可.解答:解:根据分析,可得则所有符合条件的m的值为:128、21、20、3.故答案为:128、21、20、3.点评:(1)此题主要考查了探寻数列规律问题,考查了逆推法的应用,注意观察总结出规律,并能正确的应用规律.(2)此题还考查了推理和论证问题,要熟练掌握,解答此题的关键是要明确:①演绎推理是从一般规律出发,运用逻辑证明或数学运算,得出特殊事实应遵循的规律,即从一般到特殊.②归纳推理就是从许多个别的事物中概括出一般性概念、原则或结论,即从特殊到一般.三.解答题(共1小题)25.(2015•张家界)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为a n.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.则:(1)等比数列3,6,12,…的公比q为2,第4项是24.(2)如果一个数列a1,a2,a3,a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2,a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:a n=a1•q n﹣1(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.考点:规律型:数字的变化类.专题:阅读型.分析:(1)由第二项除以第一项求出公比q的值,确定出第4项即可;(2)根据题中的定义归纳总结得到通项公式即可;(3)由公比q与第二项的值求出第一项的值,进而确定出第4项的值.解答:解:(1)q==2,第4项是24;(2)归纳总结得:a n=a1•q n﹣1;(3)∵等比数列的公比q=2,第二项为10,∴a1==5,a4=a1•q3=5×23=40.故答案为:(1)2;24;(2)a1•q n﹣1点评:此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。
北京市2019年中考数学真题与模拟题分类汇编 专题09 函数之解答题(73道题)(原卷版)(1)

专题09 函数之解答题一.解答题(共73小题)1.(2019•北京)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB 于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.2.(2019•北京)在平面直角坐标系xOy中,抛物线y=ax2+bx与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.3.(2019•北京)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.4.(2019•朝阳区校级一模)如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A 或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当△PBM的面积为1时,PM的长度约为cm.5.(2019•怀柔区二模)研究发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的.讲课开始时,学生的注意力激增,中间有一段时间,学生的注意力保持平稳状态,随后开始分散.学生注意力指标数y随时间x变化的函数图象如图所示(y越大表示学生注意力越集中).当0≤x≤10时,图象是抛物线的一部分;当10≤x≤20和20≤x≤45时,图象是线段.根据图象回答问题:(1)课堂上,学生注意力保持平稳状态的时间段是.(2)结合函数图象回答,一道几何综合题如果需要讲25分钟,老师最好在上课后大约第分钟到第分钟讲这道题,能使学生处于注意力比较集中的听课状态.6.(2019•朝阳区校级一模)如图,在平面直角坐标系xOy中,过点A(2,0)的直线l:y=mx﹣3与y轴交于点B.(1)求直线l的表达式;(2)若点C是直线l与双曲线的一个公共点,AB=3AC,求n的值.7.(2019•西城区二模)某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y(单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,如表是y与t的几组对应值,其部分图象如图所示.(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数的图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为微克.8.(2019•海淀区二模)有这样一个问题:探究函数y的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数y的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:(1)函数y的自变量x的取值范围是;(2)如图,在平面直角坐标系xOy中,完成以下作图步骤:①画出函数y和y的图象;②在x轴上取一点P,过点P作x轴的垂线l,分别交函数y和y的图象于点M,N,记线段MN的中点为G;③在x轴正半轴上多次改变点P的位置,用②的方法得到相应的点G,把这些点用平滑的曲线连接起来,得到函数y在y轴右侧的图象.继续在x轴负半轴上多次改变点P的位置,重复上述操作得到该函数在y轴左侧的图象.(3)结合函数y的图象,发现:①该函数图象在第二象限内存在最低点,该点的横坐标约为(保留小数点后一位);②该函数还具有的性质为:(一条即可).9.(2019•丰台区二模)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A、B,使得点P在射线BC上,且∠APB∠ACB(0°<∠ACB<180°),则称P为⊙C的依附点.(1)当⊙O的半径为1时,①已知点D(﹣1,0),E(0,﹣2),F(2.5,0),在点D、E、F中,⊙O的依附点是;②点T在直线y=﹣x上,若T为⊙O的依附点,求点T的横坐标t的取值范围;(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+2与x轴、y轴分别交于点M、N,若线段MN上的所有点都是⊙C的依附点,直接写出圆心C的横坐标m的取值范围.10.(2019•昌平区二模)如图,在平面直角坐标系xOy中,函数(x>0)的图象与直线y=2x﹣2交于点为A(2,m).(1)求k,m的值;(2)点B为函数(x>0)的图象上的一点,直线AB与y轴交于点C,当AC=2AB时,求点C的坐标.11.(2019•通州区三模)如图,在平面直角坐标系xOy中,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,函数y(x<0)的图象经过点A.(1)求k的值;(2)若过点A的直线l平行于直线OB,且交函数y(x<0)的图象于点D.①求直线l的表达式;②定义:横、纵坐标都是整数的点叫做整点.记函数y(x<0)的图象在点A,D之间的部分与线段AD围成的区域(含边界)为W.结合函数图象,直接写出区域W内(含边界)的整点个数.12.(2019•房山区二模)在平面直角坐标系xOy中,已知点A(0,2),B(2,2),抛物线F:y=x2﹣2mx+m2﹣2.(1)求抛物线F的顶点坐标(用含m的式子表示);(2)当抛物线F与线段AB有公共点时,直接写出m的取值范围.13.(2019•通州区三模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4(a≠0)与y轴交于点A.(1)求点A的坐标和抛物线的对称轴;(2)过点B(0,3)作y轴的垂线l,若抛物线y=ax2﹣4ax+4(a≠0)与直线l有两个交点,设其中靠近y轴的交点的横坐标为m,且|m|<1,结合函数的图象,求a的取值范围.14.(2019•房山区二模)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在点A,使得∠APC=30°,则称P为⊙C的半角关联点.当⊙O的半径为1时,(1)在点D(,),E(2,0),F(0,)中,⊙O的半角关联点是;(2)直线l:交x轴于点M,交y轴于点N,若直线l上的点P(m,n)是⊙O的半角关联点,求m的取值范围.15.(2019•昌平区二模)在平面直角坐标系xOy中,直线y=x+1与抛物线y=ax2+bx+3a交于点A和点B,点A在x轴上.(1)点A的坐标为.(2)①用等式表示a与b之间的数量关系,并求抛物线的对称轴;②当AB时,结合函数图象,求a的取值范围.16.(2019•房山区二模)在平面直角坐标系xOy中,函数>的图象G与直线l:y=﹣x+7交于A (1,a),B两点.(1)求k的值;(2)记图象G在点A,B之间的部分与线段AB围成的区域(不含边界)为W.点P在区域W内,若点P的横纵坐标都为整数,直接写出点P的坐标.17.(2019•西城区二模)在平面直角坐标系xOy中.已知抛物线y=ax2+bx+a﹣2的对称轴是直线x=1.(1)用含a的式子表示b,并求抛物线的顶点坐标;(2)已知点A(0,﹣4),B(2,﹣3),若抛物线与线段AB没有公共点,结合函数图象,求a的取值范围;(3)若抛物线与x轴的一个交点为C(3,0),且当m≤x≤n时,y的取值范围是m≤y≤6,结合函数图象,直接写出满足条件的m,n的值.18.(2019•朝阳区二模)在平面直角坐标系xOy中,抛物线y=ax2﹣2a2x(a≠0)的对称轴与x轴交于点P.(1)求点P的坐标(用含a的代数式表示);(2)记函数(﹣1≤x≤3)的图象为图形M,若抛物线与图形M恰有一个公共点,结合函数的图象,求a的取值范围.19.(2019•怀柔区二模)阅读材料:1903年,英国物理学家卢瑟福通过实验证实,放射性物质放出射线后,这种物质的质量将减少,物质所剩的质量与时间成某种函数关系.镭的质量由m0缩减到m0需1620年,由m0缩减到m0需1620年,由m0缩减到m0需1620年,即镭的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣1620年,一般把1620年称为镭的半衰期.实际上,所有放射性物质都有自己的半衰期.铀的半衰期为4.5×109年,蜕变后的铀最后成为铅.科学家们测出一块岩石中现在含铀和铅的质量,便可以利用半衰期算出从原来含铀量到现在含铀量经过了多少时间,从而推算出这块岩石的年龄.根据以上材料回答问题:(1)设开始时岩石中含有铀的质量为m0千克,经过n个半衰期后,剩余的铀的质量为m1千克,下表是m1随n的变化情况,请补充完整:(2)写出矿石中剩余的铀的质量m1与半衰期n之间的函数关系;(3)设铀衰变后完全变成铅,如图是岩石中铅的质量m2与半衰期n的函数关系图象,请在同一坐标系中,利用描点法画出岩石中含铀的质量m1与半衰期n的函数关系图象:(4)结合函数图象,估计经过个半衰期(精确到0.1),岩石中铀铅质量相等.20.(2019•顺义区二模)在平面直角坐标系xOy中,抛物线y=mx2+2mx﹣3(m>0)与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,该抛物线的顶点D的纵坐标是﹣4.(1)求点A、B的坐标;(2)设直线与直线AC关于该抛物线的对称轴对称,求直线的表达式;(3)平行于x轴的直线b与抛物线交于点M(x1,y1)、N(x2,y2),与直线交于点P(x3,y3).若x1<x3<x2,结合函数图象,求x1+x2+x3的取值范围.21.(2019•朝阳区二模)M(﹣1,),N(1,)是平面直角坐标系xOy中的两点,若平面内直线MN 上方的点P满足:45°≤∠MPN≤90°,则称点P为线段MN的可视点.(1)在点,,,,,,A4(2,2)中,线段MN的可视点为;(2)若点B是直线y=x上线段MN的可视点,求点B的横坐标t的取值范围;(3)直线y=x+b(b≠0)与x轴交于点C,与y轴交于点D,若线段CD上存在线段MN的可视点,直接写出b的取值范围.22.(2019•丰台区二模)在平面直角坐标系xOy中,抛物线C1:y=ax2﹣2ax﹣3a(a≠0)和点A(0,﹣3),将点A向右平移2个单位,再向上平移5个单位,得到点B.(1)求点B的坐标;(2)求抛物线C1的对称轴;(3)把抛物线C1沿x轴翻折,得到一条新抛物线C2,抛物线C2与抛物线C1组成的图象记为G,若图象G与线段AB恰有一个交点时,结合图象,求a的取值范围.23.(2019•东城区二模)在平面直角坐标系xOy中,直线y=kx+2与双曲线y的一个交点是A(m,3).(1)求m和k的值;(2)设点P是双曲线y上一点,直线AP与x轴交于点B.若AB=3PB,结合图象,直接写出点P 的坐标.24.(2019•朝阳区二模)在平面直角坐标系xOy中,反比例函数y的图象经过点P(3,4).(1)求k的值;(2)求OP的长;(3)直线y=mx(m≠0)与反比例函数的图象有两个交点A,B,若AB>10,直接写出m的取值范围.25.(2019•东城区二模)在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D.若m>0,CD =8,求m的值;(3)已知A(2k,0),B(0,k),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时,直接写出k的取值范围.26.(2019•西城区二模)已知关于x的一元二次方程x2﹣(k+5)x+3k+6=0.(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于﹣2且小于0,k为整数,求k的值.27.(2019•顺义区二模)如图,在平面直角坐标系xOy中,直线y=kx+k与双曲线y(x>0)交于点A (1,a).(1)求a,k的值;(2)已知直线l过点D(2,0)且平行于直线y=kx+k,点P(m,n)(m>3)是直线l上一动点,过点P分别作x轴、y轴的平行线,交双曲线y(x>0)于点M、N,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为W.横、纵坐标都是整数的点叫做整点.①当m=4时,直接写出区域W内的整点个数;②若区域W内的整点个数不超过8个,结合图象,求m的取值范围.28.(2019•门头沟区二模)在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a≠0)顶点为P,且该抛物线与x轴交于A,B两点(点A在点B的左侧).我们规定:抛物线与x轴围成的封闭区域称为“G区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线y=ax2﹣2ax﹣3a顶点P的坐标(用含a的代数式表示);(2)如果抛物线y=ax2﹣2ax﹣3a经过(1,3).①求a的值;②在①的条件下,直接写出“G区域”内整点的个数.(3)如果抛物线y=ax2﹣2ax﹣3a在“G区域”内有4个整点,直接写出a的取值范围.29.(2019•丰台区二模)在平面直角坐标系xOy中,直线l:y=kx+b(k≠0)与反比例函数y的图象的一个交点为M(1,m).(1)求m的值;(2)直线l与x轴交于点A,与y轴交于点B,连接OM,设△AOB的面积为S1,△MOB的面积为S2,若S1≥3S2,求k的取值范围.30.(2019•海淀区二模)如图,在平面直角坐标系xOy中,直线y=x+b与x轴、y轴分别交于点A,B,与双曲线y的交点为M,N.(1)当点M的横坐标为1时,求b的值;(2)若MN≤3AB,结合函数图象,直接写出b的取值范围.31.(2019•海淀区二模)在平面直角坐标系xOy中,抛物线C:y=ax2﹣2ax+3与直线l:y=kx+b交于A,B两点,且点A在y轴上,点B在x轴的正半轴上.(1)求点A的坐标;(2)若a=﹣1,求直线l的解析式;(3)若﹣3<k<﹣1,求a的取值范围.32.(2019•怀柔区二模)如图,在平面直角坐标系xOy中,直线y=﹣x+1与函数y的图象交于A(﹣2,a),B两点.(1)求a,k的值;(2)已知点P(0,m),过点P作平行于x轴的直线l,交函数y的图象于点C(x1,y1),交直线y=﹣x+1的图象于点D(x2,y2),若|x1|>|x2|,结合函数图象,直接写出m的取值范围.33.(2019•西城区二模)在平面直角坐标系xOy中,直线l:y=ax+b与双曲线y交于点A(1,m)和B (﹣2,﹣1).点A关于x轴的对称点为点C.(1)①求k的值和点C的坐标;②求直线l的表达式;(2)过点B作y轴的垂线与直线AC交于点D,经过点C的直线与直线BD交于点E.若30°≤∠CED ≤45°,直接写出点E的横坐标t的取值范围.34.(2019•怀柔区二模)在平面直角坐标系xOy中,直线y=x与抛物线y=ax2﹣(3+a)x+3(a≠0)交于A,B两点,并且OA<OB.(1)当a=1时,求抛物线与x轴的交点坐标;(2)当2时,求a的取值范围.35.(2019•平谷区二模)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)(1)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;(2)已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.36.(2019•朝阳区一模)如图,在平面直角坐标系xOy中,点A在x轴上,点B在第一象限内,∠OAB=90°,OA=AB,△OAB的面积为2,反比例函数y的图象经过点B.(1)求k的值;(2)已知点P坐标为(a,0),过点P作直线OB的垂线l,点O,A关于直线l的对称点分别为O′,A′,若线段O′A′与反比例函数y的图象有公共点,直接写出a的取值范围.37.(2019•平谷区二模)如图,一次函数y=kx+b(k≠0)和反比例函数y(x>0)经过点A(4,m).(1)求点A的坐标;(2)用等式表示k,b之间的关系(用含k的代数式表示b);(3)连接OA,一次函数y=kx+b(k≠0)与x轴交于点B,当△OAB是等腰三角形时,直接写出点B 的坐标.38.(2019•石景山区二模)在平面直角坐标系xOy中,已知抛物线y=x2﹣2mx+m2﹣1(1)求抛物线的对称轴(用含m的式子去表示);(2)若点(m﹣2,y1),(m,y2),(m+3,y3)都在抛物线y=x2﹣2mx+m2﹣1上,则y1、y2、y3的大小关系为;(3)直线y=﹣x+b与x轴交于点A(3,0),与y轴交于点B,过点B作垂直于y轴的直线l与抛物线y=x2﹣2mx+m2﹣1有两个交点,在抛物线对称轴右侧的点记为P,当△OAP为钝角三角形时,求m的取值范围.39.(2019•石景山区二模)在平面直角坐标系xOy中,A(﹣3,2),B(0,1),将线段AB沿x轴的正方向平移n(n>0)个单位,得到线段A′,B′恰好都落在反比例函数y(m≠0)的图象上.(1)用含n的代数式表示点A′,B′的坐标;(2)求n的值和反比例函数y(m≠0)的表达式;(3)点C为反比例函数y(m≠0)图象上的一个动点,直线CA′与x轴交于点D,若CD=2A′D,请直接写出点C的坐标.40.(2019•怀柔区一模)在平面直角坐标系xOy中,直线y=kx+b(k<0),经过点(6,0),且与坐标轴围成的三角形的面积是9,与函数y(x>0)的图象G交于A,B两点.(1)求直线的表达式;(2)横、纵坐标都是整数的点叫作整点.记图象G在点A、B之间的部分与线段AB围成的区域(不含边界)为W.①当m=2时,直接写出区域W内的整点的坐标;②若区域W内恰有3个整数点,结合函数图象,求m的取值范围.41.(2019•朝阳区一模)在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.42.(2019•大兴区一模)如图,在平面直角坐标系xOy中,直线y=x与函数y(x<0)的图象交于点A (,m).(1)求m,k的值;(2)点P(x P,y P)为直线y=x上任意一点,将直线y=x沿y轴向上平移两个单位得到直线l,过点P 作x轴的垂线交直线l于点C,交函数y(x<0)的图象于点D.①当x P=﹣1时,判断PC与PD的数量关系,并说明理由;②若PC+PD≤4时,结合函数图象,直接写出x P的取值范围.43.(2019•大兴区一模)在平面直角坐标系中xOy中,抛物线y=ax2﹣4ax+1(1)求抛物线的对称轴;(2)若抛物线过点A(﹣1,6),求二次函数的表达式;(3)将点A(﹣1,6)沿x轴向右平移7个单位得到点B,若抛物线与线段AB始终有两个公共点,结合函数的图象,求a的取值范围.44.(2019•丰台区一模)如图,在平面直角坐标系xOy中,直线l:y=x+1与y轴交于点A,与函数y(x >0)的图象交于点B(2,a).(1)求a,k的值;(2)点M是函数y(x>0)图象上的一点,过点M作平行于y轴的直线,交直线l于点P,过点A作平行于x轴的直线交MP于点N,已知点M的横坐标为m.①当m时,求MP的长;②若MP≥PN,结合函数的图象,直接写出m的取值范围.45.(2019•丰台区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c过原点和点A(﹣2,0).(1)求抛物线的对称轴;(2)横、纵坐标都是整数的点叫做整点.已知点,.记抛物线与直线AB围成的封闭区域(不含边界)为W.①当a=1时,求出区域W内的整点个数;②若区域W内恰有3个整点,结合函数图象,直接写出a的取值范围.46.(2019•怀柔区一模)在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+a2+2的顶点C,过点B(0,t)作与y轴垂直的直线l,分别交抛物线于E,F两点,设点E(x1,y1),点F(x2,y2)(x1<x2).(1)求抛物线顶点C的坐标;(2)当点C到直线l的距离为2时,求线段EF的长;(3)若存在实数m,使得x1≥m﹣1且x2≤m+5成立,直接写出t的取值范围.47.(2019•海淀区一模)对于平面直角坐标系xOy中的直线l和图形M,给出如下定义:P1、P2、……、P n﹣1、P n是图形M上n(n≥3)个不同的点,记这些点到直线l的距离分别为d1、d2、……、d n﹣1、d n,若这n个点满足d1+d2+……+d n﹣1=d n,则称这n个点为图形M关于直线l的一个基准点列,其中d n为该基准点列的基准距离.(1)当直线l是x轴,图形M上有三点A(﹣1,1)、B(1,﹣1)、C(0,2)时,判断A、B、C是否为图形M关于直线l的一个基准点列?如果是,求出它的基准距离;如果不是,请说明理由;(2)已知直线l是函数y x+3的图象,图形M是圆心在y轴上,半径为1的⊙T,P1、P2、……、P n﹣1、P n是⊙T关于直线l的一个基准点列.①若T为原点,求该基准点列的基准距离d n的最大值;②若n的最大值等于6,直接写出圆心T的纵坐标t的取值范围.48.(2019•西城区一模)在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A(﹣2,0),与y轴交于点B.双曲线y与直线l交于P,Q两点,其中点P的纵坐标大于点Q的纵坐标(1)求点B的坐标;(2)当点P的横坐标为2时,求k的值;(3)连接PO,记△POB的面积为S.若<<,结合函数图象,直接写出k的取值范围.49.(2019•海淀区一模)在平面直角坐标系xOy中,直线y=2x+b经过点A(1,m)、B(﹣1,﹣1).(1)求b和m的值;(2)将点B向右平移到y轴上,得到点C,设点B关于原点的对称点为D,记线段BC与AD组成的图形为G.①直接写出点C、D的坐标;②若双曲线y与图形G恰有一个公共点,结合函数图象,求k的取值范围.50.(2019•东城区一模)在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD和线段EF都没有公共点,请直接写出m的取值范围.51.(2019•海淀区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)经过点A(0,﹣3)和B (3,0).(1)求c的值及a、b满足的关系式;(2)若抛物线在A、B两点间从左到右上升,求a的取值范围;(3)结合函数图象判断,抛物线能否同时经过点M(﹣1+m,n)、N(4﹣m,n)?若能,写出一个符合要求的抛物线的表达式和n的值,若不能,请说明理由.52.(2019•顺义区一模)在平面直角坐标系xOy中,直线y=2x﹣6与双曲线(k≠0)的一个交点为A (m,2),与x轴交于点B,与y轴交于点C.(1)求点B的坐标及k的值;(2)若点P在x轴上,且△APC的面积为16,求点P的坐标.53.(2019•石景山区一模)如图,在平面直角坐标系xOy中,函数<的图象经过点A(﹣1,6),直线y=mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值;(2)过第二象限的点P(n,﹣2n)作平行于x轴的直线,交直线y=mx﹣2于点C,交函数<的图象于点D.①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由;②若PD≥2PC,结合函数的图象,直接写出n的取值范围.54.(2019•顺义区一模)有这样一个问题:探究函数y x的图象与性质.小亮根据学习函数的经验,对函数y x的图象与性质进行了探究.下面是小亮的探究过程,请补充完整:(1)函数y x中自变量x的取值范围是;(2)下表是y与x的几组对应值.求m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:①该函数的图象是中心对称图形,对称中心的坐标是;②该函数的图象与过点(2,0)且平行于y轴的直线越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.55.(2019•顺义区一模)在平面直角坐标系xOy中,抛物线y=mx2+(m﹣3)x﹣3(m>0)与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,AB=4,点D为抛物线的顶点.(1)求点A和顶点D的坐标;(2)将点D向左平移4个单位长度,得到点E,求直线BE的表达式;(3)若抛物线y=ax2﹣6与线段DE恰有一个公共点,结合函数图象,求a的取值范围.56.(2019•西城区一模)在平面直角坐标系xOy中,已知抛物线y=x2﹣mx+n.(1)当m=2时,①求抛物线的对称轴,并用含n的式子表示顶点的纵坐标;②若点A(﹣2,y1),B(x2,y2)都在抛物线上,且y2>y1,则x2的取值范围是;(2)已知点P(﹣1,2),将点P向右平移4个单位长度,得到点Q.当n=3时,若抛物线与线段PQ 恰有一个公共点,结合函数图象,求m的取值范围.57.(2019•东城区一模)在平面直角坐标系xOy中,直线y=kx(k≠0)与双曲线y(x>0)交于点A(2,n).(1)求n及k的值;(2)点B是y轴正半轴上的一点,且△OAB是等腰三角形,请直接写出所有符合条件的点B的坐标.58.(2019•石景山区一模)在平面直角坐标系xOy中,直线y=kx+1(k≠0)经过点A(2,3),与y轴交于点B,与抛物线y=ax2+bx+a的对称轴交于点C(m,2).(1)求m的值;(2)求抛物线的顶点坐标;(3)N(x1,y1)是线段AB上一动点,过点N作垂直于y轴的直线与抛物线交于点P(x2,y2),Q(x3,y3)(点P在点Q的左侧).若x2<x1<x3恒成立,结合函数的图象,求a的取值范围.59.(2019•北京一模)如图,在平面直角坐标系xOy中,直线l:y=kx﹣1(k≠0)与函数y(x>0)的图象交于点A(3,2).(1)求k,m的值;(2)将直线l沿y轴向上平移t个单位后,与y轴交于点C,与函数y(x>0)的图象交于点D.①当t=2时,求线段CD的长;②若CD≤2,结合函数图象,直接写出t的取值范围.60.(2019•北京一模)在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a≠0)的顶点为D,与x轴交于A,B两点(A在B的左侧).(1)当a=1时,求点A,B,D的坐标;(2)横,纵坐标都是整数的点叫做整点.若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有7个整点,结合函数图象,求a的取值范围.61.(2019•平谷区一模)平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣3与y轴交于点A,过A作AB ∥x轴与直线x=4交于B点.(1)抛物线的对称轴为x=(用含m的代数式表示);(2)当抛物线经过点A,B时,求此时抛物线的表达式;(3)记抛物线在线段AB下方的部分图象为G(包含A,B两点),点P(m,0)是x轴上一动点,过P 作PD⊥x轴于P,交图象G于点D,交AB于点C,若CD≤1,求m的取值范围.62.(2019•通州区一模)已知二次函数y=x2﹣ax+b在x=0和x=4时的函数值相等.(1)求二次函数y=x2﹣ax+b的对称轴;(2)过P(0,1)作x轴的平行线与二次函数y=x2﹣ax+b的图象交于不同的两点M、N.①当MN=2时,求b的值;②当PM+PN=4时,请结合函数图象,直接写出b的取值范围.63.(2019•延庆区一模)在平面直角坐标系xOy中,函数y(x>0)的图象经过边长为2的正方形OABC 的顶点B,如图,直线y=mx+m+1与y(x>0)的图象交于点D(点D在直线BC的上方),与x轴交于点E.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点,记y(x>0)的图象在点B、D之间的部分与线段AB、AE、DE围成的区域(不含边界)为W.①当m时,直接写出区域W内的整点个数;②若区域W内恰有3个整点,结合函数图象,求m的取值范围.64.(2019•平谷区一模)如图,在平面直角坐标系xOy中,函数y(x>0)的图象经过点A,作AC⊥x 轴于点C.(1)求k的值;(2)直线AB:y=ax+b(a>0)图象经过点A交x轴于点B.横、纵坐标都是整数的点叫做整点.线段AB,AC,BC围成的区域(不含边界)为W.①直线AB经过(0,1)时,直接写出区域W内的整点个数;②若区域W内恰有1个整点,结合函数图象,求a的取值范围.65.(2019•房山区一模)已知一次函数y=2x的图象与反比例函数(k≠0)在第一象限内的图象交于点A(1,m).(1)求反比例函数的表达式;(2)点B在反比例函数的图象上,且点B的横坐标为2.若在x轴上存在一点M,使MA+MB的值最小,求点M的坐标.。
2019全国中考数学真题分类汇编之37:尺规作图(含答案)

2019年全国中考数学真题分类汇编:尺规作图一、选择题1. (2019年北京市)已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交弧PQ 于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN ∥CDD.MN=3CD【考点】尺规作图【解答】连接ON ,由作图可知△COM ≌△DON.A. 由△COM ≌△DON.,可得∠COM=∠COD ,故A 正确.B. 若OM=MN ,则△OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∴∠OCD=2COD180∠-︒.设OC与OD 与MN 分别交于R ,S ,易证△MOR ≌△NOS ,则OR=OS ,∴∠ORS=2COD180∠-︒,∴∠OCD=∠ORS.∴MN ∥CD ,故C 正确.D.由题意,易证MC=CD=DN ,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN <MC+CD+DN=3CD ,故选D2. (2019年河南省)如图,在四边形ABCD 中,AD ∥BC ,∠D =90°,AD =4,BC =3.分 别以点A ,C 为圆心,大于AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( ) A .2B .4C .3D .【考点】尺规作图、线段垂直平分线的判定与性质、勾股定理、全等三角形的判定与性质【解答】解:如图,连接FC ,则AF =FC . ∵AD ∥BC , ∴∠F AO =∠BCO . 在△FOA 与△BOC 中,N MD OBCPA,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.3.(2019年湖北省襄阳市)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是()A.正方形B.矩形C.梯形D.菱形【考点】尺规作图、菱形的判定【解答】解:由作图可知:AC=AD=BC=BD,∴四边形ACBD是菱形,故选:D.4.(2019年湖北省宜昌市)通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.【考点】尺规作图【解答】解:作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选:A.5.(2019年内蒙古包头市)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1 B.C.2 D.【考点】尺规作图-角的平分线【解答】解:由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,所以△ACG的面积=×4×1=2.故选:C.6.(2019年新疆)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()A.BP是∠ABC的平分线B.AD=BDC.S△CBD:S△ABD=1:3D.CD=BD【考点】尺规作图-角的平分线【解答】解:由作法得BD平分∠ABC,所以A选项的结论正确;∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=30°=∠A,∴AD=BD,所以B选项的结论正确;∵∠CBD=∠ABC=30°,∴BD=2CD,所以D选项的结论正确;∴AD=2CD,∴S△ABD=2S△CBD,所以C选项的结论错误.故选:C.二、填空题1.(2019年辽宁省本溪市)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD 内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.【考点】尺规作图【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.三、解答题1.(2019年山东省菏泽市)如图,四边形ABCD是矩形.(1)用尺规作线段AC的垂直平分线,交AB于点E,交CD于点F(不写作法,保留作图痕迹);(2)若BC=4,∠BAC=30°,求BE的长.【考点】尺规作图、垂直平分线【解答】解:(1)如图所示:(2)∵四边形ABCD是矩形,EF是线段AC的垂直平分线,∴AE=EC,∠CAB=∠ACE=30°,∴∠ECB=60°,∴∠ECB=30°,∵BC=4,∴BE=.2.(2019年山东省济宁市)如图,点M和点N在∠AOB内部.(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.【考点】作角平分线、作线段垂直平分线【解答】解:(1)如图,点P到点M和点N的距离相等,且到∠AOB两边的距离也相等;(2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等.3.(2019年山东省青岛市)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【考点】尺规作图【解答】解:如图,△ABC为所作.4.(2019年山东省枣庄市)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【考点】尺规作图-线段的垂直平分线、菱形的性质【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.5.(2019年四川省达州市)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.【考点】尺规作图-角的平分线、相似三角形【解答】解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE =CE , ∵DE ∥AC , ∴△BDE ∽△BAC , ∴=,即=,∴DE =.6. (2019年广西贵港市)尺规作图(只保留作图痕迹,不要求写出作法): 如图,已知△ABC ,请根据“SAS ”基本事实作出△DEF ,使△DEF ≌△ABC .【考点】尺规作图、全等三角形的判定 【解答】解:如图,△DEF 即为所求.7. (2019年江苏省泰州市)如图, △ABC 中,∠C =900, AC=4, BC=8, (1)用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交BC 于点D,求BD 的长.【考点】尺规作图-线段的垂直平分线、勾股定理 【解答】解:(1)略;(2)由作图可知 AD =BD ,设BD= , ∵∠C =900, AC=4, BC=8, 则CD =(8−), ∴由勾股定理可得:AC 2+CD 2=AD 2; ∴42+2=(8−)2;解得:=5.∴BD=5.8.(2019年陕西省)如图,在△ABC中,AB=AC,AD是BC边上的高,请用尺规作图法,求作△ABC的外接圆.(保留作图痕迹,不写作法)【考点】尺规作图-线段的垂直平分线【解答】9.(2019年甘肃省)如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹)【考点】尺规作图-角平分线【解答】解:如图,点M即为所求,10.(2019年甘肃省武威市)已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.【考点】尺规作图-角平分线、等腰三角形的性质、三角形的外接圆与外心【解答】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π•52=25π.故答案为25π.11.(2019年内蒙古赤峰市)已知:AC是▱ABCD的对角线.(1)用直尺和圆规作出线段AC的垂直平分线,与AD相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB=3,BC=5,求△DCE的周长.【考点】尺规作图-垂直平分线、平行四边形的性质【解答】解:(1)如图,CE为所作;(2)∵四边形ABCD为平行四边形,∴AD=BC=5,CD=AB=3,∵点E在线段AC的垂直平分线上,∴EA=EC,∴△DCE的周长=CE+DE+CD=EA+DE+CD=AD+CD=5+3=8.。
2024北京中考数学二轮复习 专题一 选择、填空压轴题 (含答案)

2024北京中考数学二轮复习专题一选择、填空压轴题类型一分析统计图(表)1.根据国家统计局2019—2023年中国普通本专科、中等职业教育及普通高中招生人数的相关数据,绘制统计图如下:2019—2023年普遍本专科、中等职业教育及普遍高中招生人数第1题图下面有四个推断:①2019—2023年,普通本专科招生人数逐年增多;②2023年普通高中招生人数比2019年增加约4%;③2019—2023年,中等职业教育招生人数逐年减少;④2019年普通高中招生人数约是中等职业教育招生人数的1.4倍.所有合理推断的序号是()A.①④ B.②③ C.①②④D.①②③④2.为了解某校学生每周课外阅读时间的情况,随机抽取该校a 名学生进行调查,获得的数据整理后绘制成统计表如下:每周课外阅读时间x (小时)0≤x <22≤x <44≤x <66≤x <8x ≥8合计频数817b 15a 频率0.080.17c 0.151表中4≤x <6组的频数b 满足25≤b ≤35.下面有四个推断:①表中a的值为100;②表中c的值可以为0.31;③这a名学生每周课外阅读时间的中位数一定不在6~8之间;④这a名学生每周课外阅读时间的平均数不会超过6.所有合理推断的序号是()A.①②B.③④C.①②③D.②③④3.密云水库是首都北京重要水源地,水源地生态保护对保障首都水源安全及北京市生态和城市可持续发展具有不可替代的作用.以下是1986—2023年密云水库水体面积和年降水量变化图.1986—2023年密云水库水体面积和年降水量变化图第3题图(以上数据来源于《全国生态气象公报(2023年)》,部分年份缺数据)对于现有数据有以下结论:①2004年的密云水库水体面积最小,仅约为20km2;②2015—2023年,密云水库的水体面积呈持续增加趋势.表明水资源储备增多;③在1986—2023年中,2023年的密云水库水体面积最大,约为170km2;④在1986—2023年中,密云水库年降水量最大的年份,水体面积也最大.其中结论正确的是()A.②③B.②④C.①②③D.③④4.某公司计划招募一批技术人员,他们对25名面试合格人员又进行了理论知识和实践操作测试,其中25名入围者的面试成绩排名,理论知识成绩排名与实践操作成绩的排名情况如图所示第4题图下面有3个推断:①甲的理论知识成绩排名比面试成绩排名靠前;②甲的实践操作成绩排名与理论知识成绩排名相同;③乙的理论知识成绩排名比甲的理论知识成绩排名靠前.其中合理的是()A.①B.①②C.①③D.①②③5.多年来,北京市以强有力的措施和力度治理大气污染,空气质量持续改善,主要污染物的年平均浓度值全面下降.下图是1998年至2019年二氧化硫(SO2)和二氧化氮(NO2)的年平均浓度值变化趋势图.第5题图下列说法错误的是()A.1998年至2019年,SO2的年平均浓度值的平均数小于NO2的年平均浓度值的平均数B.1998年至2019年,SO2的年平均浓度值的中位数小于NO2的年平均浓度值的中位数C.1998年至2019年,SO2的年平均浓度值的方差小于NO2的年平均浓度值的方差D.1998年至2019年,SO2的年平均浓度值比NO2的年平均浓度值下降得更快6.“实际平均续航里程”是指电动汽车的行驶总里程与充电次数的比值,是反映电动汽车性能的重要指标.某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,按年龄不超过40岁和年龄在40岁以上将客户分为A,B两组,从A,B组各抽取10位客户的电动汽车的实际平均续航里程数据整理成图.其中“⊙”表示A组的客户,“*”表示B组的客户.第6题图下列推断不正确的是()A.A组客户的电动汽车的“实际平均续航里程”的最大值低于B组B.A组客户的电动汽车的“实际平均续航里程”的方差低于B组C.A组客户的电动汽车的“实际平均续航里程”的平均值低于B组D.这20位客户的电动汽车的“实际平均续航里程”的中位数落在B组7.某种预防病虫害的农药即将于三月15日之前喷洒,需要连续三天完成,又知当最低温度不低于0摄氏度,且昼夜温差不大于10摄氏度时药物效果最佳,为此农广站工作人员查看了三月1—15日的天气预报,请你结合气温图给出一条合理建议,药剂喷洒可以安排在________日开始进行.1—15日天气情况第7题图类型二分析与判断函数图象1.如图,一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同.用t 表示小球滚动的时间,v 表示小球的速度.下列图象中,能表示小球在斜坡上时v 与t 的函数关系的图象大致是()第1题图2.某农科所响应“乡村振兴”号召,为某村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗先在农科所的温室中生长,平均高度长到大约20cm 时,移至该村的大棚内继续生长.研究表明,60天内,这种瓜苗的平均高度y (cm)与生长时间x (天)的函数关系的图象如图所示.当这种瓜苗长到大约80cm 时,开始开花结果,此时瓜苗在该村大棚内生长的天数是()第2题图A.10天B.18天C.33天D.48天3.有一圆形苗圃如图①所示,中间有两条交叉过道AB ,CD ,它们为苗圃⊙O 的直径,且AB ⊥C D.入口K位于AD ︵中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为t ,与入口K 的距离为S ,表示S 与t 的函数关系的图象大致如图②所示,则该园丁行进的路线可能是()第3题图A.A →O →DB.C →A →O →BC.D →O →CD.O →D →B →C4.(2023通州区一模)为满足人民对美好生活的向往,造福子孙后代,环保部门要求相关企业加强污水治理能力,污水排放未达标的企业要限期整改.甲、乙两个企业的污水排放量W 与时间t 的关系如图所示,我们用W t表示t时刻某企业的污水排放量,用-Wt1-Wt2t1-t2的大小评价在t1至t2这段时间内某企业污水治理能力的强弱.已知甲、乙两企业在整改期间排放的污水排放量与时间的关系如下图所示.第4题图给出下列四个结论:①在t1≤t≤t2这段时间内,甲企业的污水治理能力比乙企业强;②在t1时刻,乙企业的污水排放量高;③在t3时刻,甲、乙两企业的污水排放量都已达标;④在0≤t≤t1,t1≤t≤t2,t2≤t≤t3这三段时间中,甲企业在t2≤t≤t3的污水治理能力最强.其中所有正确结论的序号是()A.①②③B.①③④C.②④D.①③5.(2023房山区一模)在平面直角坐标系xOy中,若函数图象上任意两点P(x1,y1),Q(x2,y2)均满足(x1-x2)(y1-y2)>0.下列四个函数图象中,所有正确的函数图象的序号是()第5题图A.①②B.③④C.①③D.②④类型三代数类问题1.(2023西城区期末)现有函数y +4(x <a ),2-2x (x ≥a ),如果对于任意的实数n ,都存在实数m ,使得当x =m 时,y =n ,那么实数a 的取值范围是()A.-5≤a ≤4 B.-1≤a ≤4 C.-4≤a ≤1D.-4≤a ≤52.在平面直角坐标系xOy 中,对于自变量为x 的函数y 1和y 2,若当-1≤x ≤1时,都满足|y 1-y 2|≤1成立,则称函数y 1和y 2互为“关联的”.下列函数中,不与y =x 2互为“关联的”函数是()A.y =x 2-1B.y =2x 2C.y =(x -1)2D.y =-x 2+13.(2023人大附中模拟)在数轴上有三个互不重合的点A ,B ,C ,它们代表的实数分别为a ,b ,c ,下列结论中:①若abc >0,则A ,B ,C 三点中,至少有一个点在原点右侧;②若a +b +c =0,则A ,B ,C 三点中,至少有一个点在原点右侧;③若a +c =2b ,则点B 为线段AC 的中点;④O 为坐标原点且A ,B ,C 均不与O 重合,若OB -OC =AB -AC ,则bc >0.所有正确结论的序号是()A.①② B.③④ C.①②③D.①②③④4.(2023西城区二模)从1,2,3,4,5中选择四个数字组成四位数abcd ,其中a ,b ,c ,d 分别代表千位、百位、十位、个位数字.若要求这个四位数同时满足以下条件:①abcd 是偶数;②a >b >c ;③a +c =b +d ,请写出一个符合要求的数________.5.(2023燕山区期末)在实数范围内定义一种运算“*”,其运算法则为a *b =a 2-a b.根据这个法则,下列结论中错误的是________.(把所有错误结论的序号都填在横线上)①2*3=2-6;②若a +b =0,则a *b =b *a ;③(x +2)*(x +1)=0是一元二次方程;④方程(x +2)*1=3的根是x 1=-3-52,x 2=-3+52.6.(2023丰台区一模)京剧作为一门中国文化的传承艺术,常常受到外国友人的青睐.如图,在平面直角坐标系xOy 中,某脸谱轮廓可以近似地看成是一个半圆与抛物线的一部分组合成的封闭图形,记作图形G .点A ,B ,C ,D 分别是图形G 与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,且AB =4,半圆圆心M 的坐标为(1,0).关于图形G 给出下列四个结论,其中正确的是________(填序号).①图形G 关于直线x =1对称;②线段CD 的长为3+3;③图形G 围成区域内(不含边界)恰有12个整点(即横、纵坐标均为整数的点);④当-4≤a ≤2时,直线y =a 与图形G 有两个公共点.第6题图7.(2023石景山区二模)在平面直角坐标系xOy 中,A (0,1),B (1,1),有以下4种说法:①一次函数y =x 的图象与线段AB 无公共点;②当b <0时,一次函数y =x +b 的图象与线段AB 无公共点;③当k >1时,反比例函数y =k x的图象与线段AB 无公共点;④当b >1时,二次函数y =x 2-bx +1的图象与线段AB 无公共点.上述说法中正确的是________.8.(2023一七一中学模拟)小聪用描点法画出了函数y =x (x ≥0)的图象F ,如图所示.结合旋转的知识,他尝试着将图象F 绕原点逆时针旋转90°得到图象F 1,再将图象F 1绕原点逆时针旋转90°得到图象F 2,如此继续下去,得到图象F n .在尝试的过程中,他发现点P (4,2)在图象________上(写出一个正确的即可);若点P (a ,b )在图象F 2021上,则a =________(用含b 的代数式表示).第8题图9.如图,A (0,1),B (1,5),曲线BC 是双曲线y =k x(k ≠0)的一部分,曲线AB 与BC 组成图形G ,由点C 开始不断重复图形G 形成一线“波浪线”,若点P (2023,m ),Q (x ,n )在该“波浪线”上,则m 的值为________.n 的最大值为________.第9题图类型四几何类问题1.(2023海淀区一模)如图,在平面直角坐标系xOy中,AB,CD,EF,GH是正方形OPQR 边上的线段,点M在其中某条线段上,若射线OM与x轴正半轴的夹角为α,且sinα>cosα,则点M所在的线段可以是()第1题图A.AB和CDB.AB和EFC.CD和GHD.EF和GH2.程老师制作了如图①所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题.操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动.图②是操作学具时,所对应某个位置的图形的示意图.第2题图有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ;②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ;③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ;④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ.其中所有正确结论的序号是()A.②③B.③④C.②③④D.①②③④3.(2021东城区二模)数学课上,李老师提出如下问题:已知:如图,AB是⊙O的直径,射线AC交⊙O于C.求作:弧BC的中点D.同学们分享了如下四种方案:第3题图①如图①,连接BC,作BC的垂直平分线,交⊙O于点D;②如图②,过点O作AC的平行线,交⊙O于点D;③如图③,作∠BAC的平分线,交⊙O于点D;④如图④,在射线AC上截取AE,使AE=AB,连接BE,交⊙O于点D.上述四种方案中,正确的方案的序号是________.4.(20231大兴区一模)如图,在▱ABCD中,AD>AB,E,F分别为边AD,BC上的点(E,F 不与端点重合).对于任意▱ABCD,下面四个结论中:①存在无数个四边形ABFE,使得四边形ABFE是平行四边形;②至少存在一个四边形ABFE,使得四边形ABFE是菱形;③至少存在一个四边形ABFE,使得四边形ABFE是矩形;④存在无数个四边形ABFE,使得四边形ABFE的面积是▱ABCD面积的一半.所有正确结论的序号是________.第4题图5.(2021西城区期末)如图,在平面直角坐标系xOy中,P(4,3),⊙O经过点P.点A,点B 在y轴上,PA=PB,延长PA,PB分别交⊙O于点C,点D,设直线CD与x轴正方向所夹的锐角为α.(1)⊙O的半径为________;(2)tanα=________第5题图参考答案类型一分析统计图(表)1.C【解析】由题图知2019—2023年,普通本专科招生人数逐年增多,故①正确;2023年普通高中招生人数比2019年增加约876-839×100%≈4%,故②正确;从2019—2018839年,中等职业教育招生人数逐年减少,从2019—2023年,中等职业教育招生人数在增加,故③错误;2019年普通高中招生人数约是中等职业教育招生人数的839÷600≈1.4倍,故④正确.2.A【解析】①8÷0.08=100,故表中a的值为100,是合理推断;②25÷100=0.25,35÷100=0.35,1-0.08-0.17-0.35-0.15=0.25,1-0.08-0.17-0.25-0.15=0.35,故表中c的值为0.25≤c≤0.35,表中c的值可以为0.31,是合理推断;③∵表中4≤x<6组的频数b满足25≤b≤35,∴8+17+25=50,8+17+35=60,∴这100名学生每周课外阅读时间的中位数可能在4~6之间,也可能在6~8之间,故此推断不是合理推断;④这a名学生每周课外阅读时间的平均数可以超过6,故此推断不是合理推断.3.A【解析】由题图知①2004年的水体面积超过60km2,不符合题意;②2015—2023年,密云水库的水体面积呈持续增加趋势,表明水资源储备增多,符合题意;③在1986—2023年中,2023年的密云水库水体面积最大,约为170km2,符合题意;④水体面积最大的年份是2023年,但年降水量不是最大,不符合题意.4.D【解析】由题图知,甲的面试成绩排名为11,理论知识成绩排名为8,实践操作成绩排名为8;乙的面试成绩排名为7,实践操作成绩排名为15,理论知识成绩排名为5,故①②③都合理,故选D.5.C【解析】由题图可得,A.2000年至2019年,SO2的年平均浓度值都在NO2的年平均浓度值以下,由此可得SO2的年平均浓度值的平均数小于NO2的年平均浓度值的平均数,此选项正确,不合题意;B.2000年至2019年,SO2的年平均浓度值都在NO2的年平均浓度值以下,由此可得SO2的年平均浓度值的中位数小于NO2的年平均浓度值的中位数,此选项正确,不合题意;C.根据图中两折线中点的离散程度可得SO2的年平均浓度值的方差大于NO2的年平均浓度值的方差,此选项错误,符合题意;D.1998年至2019年,根据图中两折线的起止点可得SO2的年平均浓度值比NO2的年平均浓度值下降得更快,此选项正确,不合题意.6.C 【解析】由图象可得,A 组客户的电动汽车的“实际平均续航里程”的最大值在350左右,B 组客户的电动汽车的“实际平均续航里程”的最大值在450左右,故A 选项不符合题意;A 组客户的电动汽车的“实际平均续航里程”的数据波动比B 组客户的电动汽车的“实际平均续航里程”的数据波动小,即A 组客户的电动汽车的“实际平均续航里程”的方差比B 组客户的电动汽车的“实际平均续航里程”的方差小,故B 选项不符合题意;A 组客户的电动汽车的“实际平均续航里程”的平均值不一定低于B 组,故C 选项符合题意;这20位客户的电动汽车的“实际平均续航里程”按从大到小排序,第10位,第11位均在B 组,故D 选项不符合题意.7.3或12(任写一个即可)【解析】由题图可知,3日、4日、5日最低温度分别是1摄氏度、2摄氏度、0摄氏度,且昼夜温差分别是8-1=7摄氏度,4-2=2摄氏度,9-0=9摄氏度,最低温度不低于0摄氏度,且昼夜温差不大于10摄氏度,可以药剂喷洒,12日、13日、14日最低温度分别是6摄氏度、7摄氏度、8摄氏度,且昼夜温差分别是12-6=6摄氏度,16-7=9摄氏度,14-8=6摄氏度,最低温度不低于0摄氏度,且昼夜温差不大于10摄氏度,可以药剂喷洒.类型二分析与判断函数图象1.D 【解析】∵一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同,∴v t为定值,∴v 与t 是正比例函数的关系.∴选项D 符合题意.2.B 【解析】当15<x ≤60时,设y =kx +b (k ≠0),k +b =20,k +b =170,=103,=-30,∴y =103x -30.当y =80时,103x -30=80,解得x =33,33-15=18(天),∴开始开花结果,此时瓜苗在该村大棚内生长的天数是18天.3.B 【解析】若按A →O →D 路线,图象应呈现对称性,故A 错误;若按C →A →O →B ,则从C →A 距离逐渐减少,A →O →B 距离先减少,再增大,符合题图中函数图象的大致走势,故B 正确;C 、D 中,起始点处S 值小于终点处S 值,由题图可知在起点和终点时,S 值最大且相等,故C 、D 错误.4.D 【解析】①在t 1≤t ≤t 2这段时间内,甲企业的图象比乙企业的图象倾斜角度大,故①正确;②在t 1时刻,甲企业的污水排放量高,故②错误;③在t 3时刻,甲、乙两企业的污水排放量在达标量以下,故③正确;④在0≤t ≤t 1,t 1≤t ≤t 2,t 2≤t ≤t 3这三段时间中,甲企业在t 1≤t ≤t 2的图象倾斜角度最大,即治理污水能力最强,故④错误.5.D 【解析】由题意中(x 1-x 2)(y 1-y 2)>0可知,x 1-x 2>0,y 1-y 2>0或x 1-x 2<0,y 1-y 2<0,即当x 1>x 2时,y 1>y 2或当x 1<x 2时,y 1<y 2.故函数中y 随着x 的增大而增大,故②④正确.类型三代数类问题1.A 【解析】如解图,由图象可知,当-5≤a ≤4时,对于任意的实数n ,都存在实数m ,使得当x =m 时,函数y =n .第1题解图2.C 【解析】A .∵|y 1-y 2|=|x 2-(x 2-1)|=1≤1,故A 选项与y =x 2互为“关联的”函数;B .∵|y 1-y 2|=|x 2-2x 2|=x 2,又∵-1≤x ≤1,∴x 2≤1,故B 选项与y =x 2互为“关联的”函数;C .∵|y 1-y 2|=|x 2-(x -1)2|=|2x -1|,又∵-1≤x ≤1,∴|2x -1|≤3,故C 选项不与y =x 2互为“关联的”函数;D .∵|y 1-y 2|=|x 2-(-x 2+1)|=|2x 2-1|,又∵-1≤x ≤1,∴|2x 2-1|≤1,故D 选项与y =x 2互为“关联的”函数.3.D 【解析】若全在原点的左侧,则a <0,b <0,c <0,与abc >0矛盾,∴三点中至少有一个在原点的右侧,故①正确;若全在原点的左侧,则a <0,b <0,c <0,∴a +b +c <0.又∵a ,b ,c 不全为0,与a +b +c =0矛盾,∴至少有一个点在原点右侧,故②正确;∵a +c =2b ,∴b =a +c 2,∴B 为AC 的中点,故③正确;由绝对值的意义:OB =|b |,OC =|c |,AB =|b -a |,AC =|c -a |,|b |-|c |=|b -a |-|c -a |,∴A 在最左或最右时,上面等式的右边=b -c 或c -b ,∴|b |-|c |=b -c ,∴b >0,c >0,∴bc >0,|b |-|c |=c -b ,∴b <0,c <0,∴bc >0,故④正确.4.4312(答案不唯一)【解析】∵abcd 是偶数,∴d =2或4.∵a >b >c ,a +c =b +d ,∴a =4,b =3,c =1,d =2,或a =5,b =4,c =1,d =2,或a =5,b =3,c =2,d =4,或a =5,b =2,c =1,d =4,∴abcd =4312或5412或5324或5214.5.③④【解析】根据题中的定义得:2*3=(2)2-2×3=2-6,①正确,不符合题意;若a +b =0,则有a =-b ,a *b =a 2-ab =b 2+b 2=2b 2,b *a =b 2-ab =b 2+b 2=2b 2,即a *b =b *a ,②正确,不符合题意;已知等式变形得:(x +2)2-(x +2)(x +1)=0,即x 2+4x +4-x 2-3x -2=0,合并得:x +2=0,是一元一次方程,③错误,符合题意;④方程变形得:(x +2)2-(x +2)=3,整理得:x 2+4x +4-x -2-3=0,即x 2+3x -1=0,∵a =1,b =3,c =-1,∴x =-b ±b 2-4ac 2a =-3±132,解得x 1=-3+132,x 2=-3-132,④错误,符合题意.6.①②【解析】由半圆M 可知A (-1,0),B (3,0),M (1,0),且点A ,B 在抛物线上,∴图形G 关于直线x =1对称,故①正确;如解图,连接CM ,第6题解图在Rt △MOC 中,∵OM =1,CM =2,∴OC =22-12= 3.又∵D (0,-3),∴OD =3,∴CD =OC +OD =3+3,故②正确;根据题图得,图形G 围成区域内(不含边界)恰有13个整点(即横、纵坐标均为整数的点),故③错误;由题意得A (-1,0),B (3,0),当a =-4时,直线y =-4与图形G 有一个公共点,当a =2时,直线y =2与图形G 有一个公共点,故④错误.综上所述,正确的有①②.7.②③【解析】一次函数y =x 图象经过点B (1,1),即一次函数y =x 的图象与线段AB 有公共点,故①错误;一次函数y =x 图象刚好经过点B (1,1),向下平移直线y =x ,此时b <0,直线y =x +b 与线段AB 无公共点,故②正确;反比例函数y =1x的图象刚好经过点B (1,1),当k >1时,反比例函数y =k x的图象沿着y =x 向远离原点的方向平移,与线段AB 无公共点,故③正确;二次函数y =x 2-bx +1的图象一定经过A (0,1),即二次函数的图象与线段AB 有公共点,故④错误.8.F 4,-b 【解析】根据旋转的规律得,F 1的解析式为y =x 2,其图象位于第二象限;F 2的解析式为y =--x ,其图象位于第三象限;F 3的解析式为y =-x 2,其图象位于第四象限;F 4的解析式为y =x ,其图象位于第一象限;…则2021÷4=505……1,即F 2021的图象位于第二象限,该图象的函数解析式是y =x 2.∵P (4,2)位于第一象限,∴点P 所在的图象是F 4.∵点P (a ,b )在图象F 2021上,∴b =a 2,∴a =-b .9.1,5【解析】∵B (1,5)在y =k x 的图象上,∴k =1×5=5.当x =5时,y =55=1.∴C (5,1).又∵2023÷5=404,∴m =1.∵Q (x ,n )在该“波浪线”上,∴n 的最大值是5.类型四几何类问题1.D 【解析】如解图,连接OQ ,则∠POQ =45°,sin 45°=cos 45°=22,当点M 在AB 和CD 上时,α<45°,则sin α<cos α,当点M 在EF 和GH 上时,α>45°,sin α>cos α.第1题解图2.C 【解析】①当∠PAQ =30°,PQ =6时,以P 为圆心,6为半径画弧,与射线AM 有两个交点,则△PAQ 的形状不能唯一确定,故①错误;②当∠PAQ =30°,PQ =9时,以P 为圆心,9为半径画弧,与射线AM 有两个交点,但左边位置的Q 不符合题意,∴Q 点位置唯一确定,则可得到形状唯一确定的△PAQ ,故②正确;③当∠PAQ =90°,PQ =10时,以P 为圆心,10为半径画弧,与射线AM 有两个交点,但此时两个三角形全等,Q 点位置唯一确定,则可得到形状唯一确定的△PAQ ,故③正确;④当∠PAQ =150°,PQ =12时,以P 为圆心,12为半径画弧,与射线AM 有两个交点,左边的Q 不符合题意,∴Q 点位置唯一确定,则可得到形状唯一确定的△PAQ ,故④正确,故选C .3.①②③④【解析】①如题图①,由作图可知,BC 的垂直平分线经过圆心O ,∵OD⊥BC ,∴点D 是BC ︵的中点;②如解图①,连接BC ,∵AB 是⊙O 的直径,∴∠ACB =90°.∵OD ∥AC ,∴OD ⊥BC ,∴点D 是BC ︵的中点;③如题图③,∵∠BAD =∠CAD ,∴点D 是BC ︵的中点;④如解图②,连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90°.∵AE =AB ,∴∠BAD =∠CAD ,∴点D 是BC ︵的中点.图①图②第3题解图4.①②④【解析】只要满足AB ∥EF ,则四边形ABFE 是平行四边形,这样的EF 有无数条,故①正确;∵AD >AB ,∴在AD 上截取AE =AB ,再满足AB ∥EF ,就能使得四边形ABFE 是菱形,故②正确;∵∠B 不是直角,∴矩形ABFE 不存在,故③错误;只要当EF 经过▱ABCD 对角线交点时,四边形ABFE 的面积是▱ABCD 面积的一半,这样的EF 有无数条,故④正确.5.(1)5;(2)43【解析】(1)如解图,连接OP ,∵P (4,3),∴OP =32+42=5;(2)如解图,设CD 交x 轴于点J ,过点P 作PT ⊥AB 交⊙O 于点T ,交AB 于点E ,连接CT ,DT ,OT ,∵P (4,3),∴PE =4,OE =3.在Rt △OPE 中,tan ∠POE =PE OE =43,∵OE ⊥PT ,OP =OT ,∴∠POE =∠TOE ,∴∠PDT =12∠POT =∠POE ,∵PA =PB ,PE ⊥AB ,∴∠APT =∠DPT ,∴TC ︵=DT ︵,∴∠TDC =∠TCD ,∵PT ∥x 轴,∴∠CJO =∠CKP ,∵∠CKP =∠TCK+∠CTK ,∠CTP =∠CDP ,∠PDT =∠TDC +∠CDP ,∴∠TDP =∠CJO ,∴∠CJO =∠POE ,∴tan α=tan ∠CJO =tan ∠POE =43.第5题解图。
2019年全国各地中考数学试题分类汇编(第一期) 专题5 二元一次方程(组)及其应用(含解析)

二元一次方程(组)及其应用一.选择题1. (2019•山东省德州市•4分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为( )A.B.C.D.【考点】二元一次方程组【分析】本题的等量关系是:绳长①木长=4.5;木长①绳长=1,据此可列方程组求解.【解答】解:设绳长x尺,长木为y尺,依题意得,故选:B.【点评】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.2(2019•湖南长沙•3分)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.B.C.D.【分析】根据题意可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故选:A .【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.3.(2019•浙江嘉兴•3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A . B . C .D .【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为:.故选:D .【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.4. ( 2019甘肃省兰州市) (4分)≪九章算术≫是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤;雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x 斤,一只燕的重量为y 斤,则可列方程为 ( ) A. B.⎩⎨⎧-=-=+x y y x y x 65165⎩⎨⎧+=+=+x y y x y x 65156 C.D.⎩⎨⎧+=+=+x y y x y x 54165⎩⎨⎧-=-=+x y y x y x 54156【答案】C .【考点】利用方程求解实际问题. 【考察能力】抽象概括能力. 【难度】中等【解析】根据题目条件找出等量关系并列出方程:(1)五只雀和六只燕共重一斤,列出方程:5x +6y =1(2) 互换其中一只,恰好一样重,即四只雀和一只燕的重量等于五只燕一只雀的重量,列出方程:4x +y =5y +x , 故选C. 5.(2019•浙江宁波•4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元 B .30元 C .25元 D .19元 【分析】设每支玫瑰x 元,每支百合y 元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10①8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y①4,∴y=x+7,∴5x+3y+10①8x=5x+3(x+7)+10①8x=31.故选:A.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6. (2019•湖南邵阳•3分)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是( )A.B.C.D.【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.7(2019•湖北天门•3分)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有( )A.3种B.4种C.5种D.9种【分析】可列二元一次方程解决这个问题.【解答】解:设2m的钢管b根,根据题意得:a+2b=9,∵A.b均为整数,∴,,,.故选:B.【点评】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.8. (2019•湖北孝感•3分)已知二元一次方程组,则的值是( )A.﹣5 B.5 C.﹣6 D.6【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+y=1,解得,∴=.故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(2019•浙江衢州•4分)已知实数m,n满足,则代数式m2-n2的值为________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 用频率估计概率
14 10 13
4. 频数分布直方图、加权平均数、中位数
10
5. 概率公式
3
6. 条形统计图与众数、中位数
8
7
7. 样本估计总体
15
2015-2019北京中考真题选择填空题汇编
必考考点:连续 5 年均考查的考点
1. 多边形内角和、外角和 方法:掌握多边形内角与外角和公式
(2019 年第 3 题)正十边形的外角和为
12. 实际问题的函数图象
9
13.找规律:数字的变化类
15
14.用图形解释整式乘法或因式分解
12
15.动点问题的函数图象
10
16.因式分解
11
17.根的判别式
14
2015-2019北京中考真题选择填空题汇编
几何部分
1.对称图形 2.多边形内角和、外角和 3. 实数与数轴 4. 三角形的面积 5. 三视图 6.立体图形和展开图 7. 网格中的角度计算与比较 8. 菱形的面积(直角三角形面积) 9. 特殊平行四边形的判定和性质 10. 坐标系中点的坐标的变换 11. 圆的有关概念和性质 12.相似三角形的判定与性质 13. 根据图象获取信息 14.点到直线的距离 15. 角的度量 16. 图形变换 17. 尺规作图 填依据 18.平行线性质 19.直角三角形斜边中线性质
A.
B.
C.
D.
2015-2019北京中考真题选择填空题汇编
(2016 年第 3 题).实数 a,b 在数轴上的对应点的位置如图所示,则正确的结论是
A.
B.
C.
D.
(2015 年第 2 题).实数 a,b,c,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大
的是
A.a
B.b
C.c
D.d
常考考点:5 年中有 3~4 年进行考查的考点
000 立方平米。将 1 40 000 用科学记数法表示应为
A.14×104
B.1.4×105 C.1.4×106 D.0.14×106
2. 分式的化简求值 方法:利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算; 选用适当的方法解决与分式有关的问题
(2019 年第 6 题).如果
(D)2.5×106m2
(2016 年第 2 题)神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约 28000 公里,将 28000
用科学记数法表示应为
A. 2.8×103
B. 28×103
C. 2.8×104
D. 0.28×105
(2015 年第 1 题).截止到 2015 年 6 月 1 日,北京市已建成 34 个地下调蓄设施,蓄水能力达到 1 40
1. 科学记数法 必考方法:用科学记数法把一个较大的数表示为 a×10n 的形式,会确定 a 和 n 的值
(2019 年第 1 题)4 月 24 日是中国航天日,1970 年的这一天,我国自行设计、制造的第一颗人造 地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近 点 439 000 米.将 439 000 用科学记数法表示应为
单位长度,得到点 C.若 CO=BO,则 a 的值为
(A)
(B)
(C)
(D)
(2018 年第 2 题)实数 a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是
(A)|a| >4 (2017 年第 4 题).实数
(B)c-b>0
(C)ac>0
(D)a+c>0
在数轴上的对应点的位置如图所示,则正确的结论是
2015-2019北京中考真题选择填空题汇编
2015-2019 年北京中考数学真题对比分析-选择填空题汇编
代数部分
2019 2018 2017 2016 2015
1. 无理数的概念
11
2.科学记数法
14
21
3. 分式的化简求值(整体代入、因式分解、分 6 6 7 6
式运算:加、减、乘)
4. 不等式的性质
7 11
5. 分式的值(值为 0)
9
6.分式有意义的Βιβλιοθήκη 件2 117. 反比例函数的表达式(轴对称的性质)
13、7
反比例函数的图象和性质
8. 二元一次方程组和它的的解
3 12
13
9. 二次函数的性质(实际背景)
7
10. 二次根式的成立条件
10
11. 收费问题中方案的确定、以及方案最优化
15
9
问题、统筹规划
(A)
(B)
(C)
(D)
(2018 年第 5 题).若正多边形的一个外角是 60°,则该正多边形的内角和为
(A)360°
(B)540°
(C)720°
(D)900°
(2017 年第 6 题).若正多边形的一个内角是 150°,则该正多边形的边数是
A. 6
B. 12 C. 16
D.18
(2016 年第 4 题).内角和为 540° 的多边形是
2019 2018 2017 2016 2015
2
574
3 5 6 4 12
42432
10
11
5
13
12 9
14
16
8
98
5 12 14
13 13 14
16
8
1
1
15
17 16 16 16
5
6
概率统计部分
2019 2018 2017 2016 2015
1. 统计图表与数据分析
8
8
2. 方差的意义
15
,那么代数式
C. 1
D.3
,那么代数式
(A)
(B)
(C)
(D)
(2018 年第 4 题) 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜 FAST 的反射面总
面积相当于 35 个标准足球场的总面积.已知每个标准足球场的面积为 7 140m2,则 FAST 的反射面总
面积约为
(A)7.14×103m2
(B)7.14×104m2
(C)2.5×105m2
,那么代数式
的值为
(A)
(B)
(C)1
(2018 年第 6 题).如果 a-b=2 3 ,那么代数式(a2+b2 -b)· a 的值为
2a
a-b
(A) 3
(B)2 3
(C)3 3
(D)3 (D)4 3
2015-2019北京中考真题选择填空题汇编
(2017 年第 7 题).如果
A. -3
B. -1
(2016 年第 6 题).如果
A.
B.
C.
D.
(2015 年第 12 题).右图是由射线 AB, BC, CD, DE, EA 组成的平面图形,
则 ∠1+∠2+∠3+∠4+∠5=
.
2. 实数与数轴 方法: 借助数轴理解相反数和绝对值的意义;能求实数的相反数、倒 数绝对值;结合数轴能比较实数的大小
(2019 年第 4 题)在数轴上,点 A,B 在原点 O 的两侧,分别表示数 a,2,将点 A 向右平移 1 个