高一数学集合练习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合的练习题及答案
1、集合的概念
集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。 确定的――集合元素的确定性――元素与集合的“从属”关系。 不同的――集合元素的互异性。 2、有限集、无限集、空集的意义
有限集和无限集是针对非空集合来说的。我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N 、N*、N +、Z 、Q 、R 要记牢。 3、集合的表示方法
(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:
①元素不太多的有限集,如{0,1,8}
②元素较多但呈现一定的规律的有限集,如{1,2,3,…,100} ③呈现一定规律的无限集,如 {1,2,3,…,n ,…} ●注意a 与{a}的区别
●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y =x 2}, {y|y =x 2}, {(x ,y )|y =x 2}是三个不同的集合。 4、集合之间的关系
●注意区分“从属”关系与“包含”关系 “从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn 图描述集合之间的关系是基本要求。
●注意辨清Φ与{Φ}两种关系。 5、集合的运算
集合运算的过程,是一个创造新的集合的过程。在这里,我们学习了三种创造新集合的方式:交集、并集和补集。
一方面,我们应该严格把握它们的运算规则。同时,我们还要掌握它们的运算性质:
A B A B A A A A
A A A
B B A =⇔⊆Φ
=Φ=Φ==
B B A B A A
A A A
A A A
B B A =⇔⊆=Φ=Φ== U A
C B B C A B A A
A C C A C A U
A C A U U U U U U =⇔Φ
=⇔⊆=Φ
== )(
还要尝试利用Venn 图解决相关问题。
二、典型例题
例1. 已知集合}33,)1(,2{2
2
++++=a a a a A ,若A ∈1,求a 。
解:∴∈A 1 根据集合元素的确定性,得:
133,11,122
2=++=+=+a a a a 或)或(
若a +2=1, 得:1-=a , 但此时21332
+==++a a a ,不符合集合元素的互异性。
若1)1(2=+a ,得:2-,0或=a 。但2-=a 时,2
2)1(133+==++a a a ,不符合集合元素的互异性。
若,1332
=++a a 得:。或-2,1-=a
1)1(-2a 1;2a ,-1a 2=+==+=a 时,时但,都不符合集合元素的互异性。
综上可得,a = 0。
【小结】集合元素的确定性和互异性是解决问题的理论依据。确定性是入手点,互异性是检验结论的工具。
例2. 已知集合M ={}
012|2
=++∈x ax
R x 中只含有一个元素,求a 的值。
解:集合M 中只含有一个元素,也就意味着方程0122
=++x ax 只有一个解。
(1)012,0=+=x a 方程化为时,只有一个解
21-
=x (2)
只有一个解若方程时012,02
=++≠x ax a 1,044==-=∆a a 即需要.
综上所述,可知a 的值为a =0或a =1
【小结】熟悉集合语言,会把集合语言翻译成恰当的数学语言是重要的学习要求,另外多体会知识转化的方法。
例3. 已知集合
},01|{},06|{2
=+==-+=ax x B x x x A 且B A ,求a 的值。 解:由已知,得:A ={-3,2}, 若B A ,则B =Φ,或{-3},或{2}。
若B =Φ,即方程ax +1=0无解,得a =0。
若B ={-3}, 即方程ax +1=0的解是x = -3, 得a = 31
。
若 B ={2}, 即方程ax +1=0的解是x = 2, 得a = 21-
。
综上所述,可知a 的值为a =0或a =31
,或a = 21-
。
【小结】本题多体会这种题型的处理思路和步骤。
例4. 已知方程02
=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,
5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b , c 的值。
解:由B C C B C ⊆⇒= , 那么集合C 中必定含有1,4,7,10中的2个。 又因为Φ=C A ,则A 中的1,3,5,7,9都不在C 中,从而只能是C ={4,10} 因此,b =-(x 1+x 2 )=-14,c =x 1 x 2 =40
【小结】对C B C C A =Φ= ,的含义的理解是本题的关键。
例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A , (1)若Φ=B A , 求m 的范围; (2)若A B A = , 求m 的范围。
解:(1)若Φ=B A ,则B =Φ,或m +1>5,或2m -1<-2 当B =Φ时,m +1>2m -1,得:m<2