二面角法向量求法
专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)

专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。
二面角法向量求法

二面角的表示方法
二面角是由两个半平面所组成 的图形,其大小由两个半平面
的夹角决定。
二面角可以用角度制或弧度制 来表示,与平面角和空间角类
似。
二面角的大小与两个半平面的 方向有关,与半平面的大小无 关。
在求解二面角的大小时,通常 需要先找到两个半平面的法向 量,然后计算两个法向量之间 的夹角即可得到二面角的大小 。
二面角法向量求法
汇报人:XX 2024-01-23
• 引言 • 二面角的表示方法 • 法向量的求解方法 • 二面角法向量的性质 • 二面角法向量的应用 • 总结与展望
01
引言
二面角的定义
二面角是由两个半平面所组成的 图形,其大小由这两个半平面的
夹角决定。
二面角的大小范围在0°到180°之 间,当两个半平面重合时,二面 角为0°;当两个半平面形成一条
面积射影定理
根据面积射影定理,二面角的余弦值等于两个半 平面在棱上的投影面积之比。因此,可以通过求 出两个半平面在棱上的投影面积,然后利用面积 射影定理求出二面角的大小。
三垂线定理及其逆定理法
利用三垂线定理或其逆定理,可以构造出与二面 角的棱垂直的线段,进而通过解三角形求出二面 角的大小。
空间向量夹角公式
03
法向量的求解方法
平面法向量的求解方法
直接法
如果平面上的一个向量 已知,则该向量即为平 面的法向量。
待定系数法
设平面的法向量为 n=(x,y,z),根据平面的 方程可以列出关于x,y,z 的方程组,通过求解方 程组得到法向量。
向量积法
如果平面上有两个不共 线的向量a和b,则平面 的法向量n可以通过计 算向量a和b的向量积得 到,即n=a×b。
法向量法求二面角课件-2025届高三数学一轮复习

平面,、 ⊂ 平面,则, .
∴ 以为原点,为x轴,以过点与平行的直线为轴,为轴 . 建立
空间直角坐标系.
1、建立坐标系
所以 0,0,0 , 0,0,1 , 1,1,0 , 1,0,0 ,
| ∙ |
1
1
3、利用数量积
所以: = | , | =
=
=
2∙ 2 2
所以二面角 − −
的大小为
3
4、判断角大小
变式训练,构建模型
2、如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,
A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形,O1O⊥底
n1,
n2
n1,
n2
l
cos
n1,
n2
n1,
n2
l
cos n1, n2 cos
cos n , n
1
2
总结:解题时我们只需观察图形是二面角是锐角还是钝角,
再根据所求法向量夹角的余弦值下结论即可!
法向量法求二面角的步骤:
1、建立坐标系,两两互垂直
面ABCD. 求二面角B-A1C-D的余弦值.
解
因为四棱柱的所有棱长都相等,所以四边形ABCD为菱形,AC⊥BD,又
O1O⊥底面ABCD,所以OB,OC,OO1两两垂直.
如图,以O为原点,OB,OC,OO1所在直线分别为x,y,z轴,建立空间直角
坐标系.
设棱长为2,因为∠CBA=60°,
所以 OB= 3,OC=1,
利用法向量求二面角

2
课前热身
在正方体ABCD A1B1C1D1中,求锐二面角A1 DB A的余弦值。
解:作DB的中点O, 连结AO 1 , AO 在正方体中A1D AB, AD AB AO BD, AO BD 1
AOA 为二面角A1 DB A的平面角 1 A1 不妨设AA 2,则AO 2,
7
课后练习
在三棱锥P-ABC中,AB=AC,D为BC的中点,PO ⊥面ABC,垂足O落在线段AD上,已知BC=8, PO=4,AO=3,OD=2. 在线段AP上是否存在点M,使得二面角A-MC-B为直二 面角?若存在,求出AM的长;若不存在,请说明理 由。
P
A O Bห้องสมุดไป่ตู้D
C
课堂总 结
思想方法
1.利用空间向量求空间角,避免了寻找平面角和垂线段等诸多麻烦,使空间点、线、 面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、 利用数量积的夹角公式计算. 2.合理建立空间直角坐标系 (1)使用空间向量解决立体几何问题的关键环节之一就是建立空间直角坐标系, 建系 方法的不同可能导致解题的简繁程度不同. (2)一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就 以这三条直线为坐标轴建立空间直角坐标系;如果不存在这样的三条直线,则应尽 可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即坐标系建 立时以其中的垂直相交直线为基本出发点. (3)建系的基本思想是寻找其中的线线垂直关系, 在没有现成的垂直关系时要通过其 他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系.
课题:利用法向量求二面角
——小越中学 章惠芳
1
复习回顾
数学二面角的求法总结

数学二面角的求法总结数学二面角是指在三维空间中,两个平面的夹角。
它是一个重要的几何概念,在计算机图形学、物理学、化学等领域都有广泛的应用。
本文将总结数学二面角的求法,帮助读者更好地理解和应用这一概念。
一、定义数学二面角是指在三维空间中,两个平面的夹角。
具体来说,设平面P1和平面P2相交于一条直线L,将P1和P2分别沿着L旋转,直到它们重合为止。
此时,P1和P2的夹角就是它们的二面角。
二、求法1. 余弦定理法设P1和P2的法向量分别为n1和n2,它们的夹角为θ,则有:cosθ =(n1·n2) / (|n1|·|n2|)其中,·表示向量的点积,|n1|和|n2|分别表示n1和n2的模长。
由于n1和n2都是单位向量,所以|n1|=|n2|=1。
因此,上式可以简化为:cosθ = n1·n2这个式子就是余弦定理。
它告诉我们,两个向量的点积等于它们的模长乘以夹角的余弦值。
因此,我们可以通过求出n1和n2的点积来计算二面角的余弦值,然后再用反余弦函数求出夹角。
2. 向量叉积法设P1和P2的法向量分别为n1和n2,它们的夹角为θ,则有:sinθ = |n1×n2| / (|n1|·|n2|)其中,×表示向量的叉积。
由于n1和n2都是单位向量,所以|n1|=|n2|=1。
因此,上式可以简化为:sinθ = |n1×n2|这个式子就是向量叉积的模长公式。
它告诉我们,两个向量的叉积的模长等于它们的模长乘以夹角的正弦值。
因此,我们可以通过求出n1和n2的叉积的模长来计算二面角的正弦值,然后再用反正弦函数求出夹角。
3. 三角形面积法设P1和P2的法向量分别为n1和n2,它们的夹角为θ,则有:sinθ = 2·S / (|P1|·|P2|)其中,S表示P1和P2的交线段所在的平面的面积,|P1|和|P2|分别表示P1和P2的面积。
法向量求二面角公式

法向量求二面角公式在几何学中,二面角是一种重要的概念,它由两条相交的平面构成。
此外,当两条相交的直线所在的平面具有相同的法向量时,它们构成的夹角叫做二面角。
而要求出两个法向量构成的二面角,可以采用“法向量求二面角公式”。
“法向量求二面角公式”可以用下面的公式表示:α = arccos (N1 . N2 / (|N1| |N2|))其中,N1、N2分别是两个法向量,“.”表示内积,“|N1| |N2|”表示两个法向量的向量积,α表示由N1、N2两个法向量构成的夹角。
要用“法向量求二面角公式”求出N1、N2两个法向量的夹角,第一步是求出N1、N2的值。
N1、N2的值可以用下面的公式求得: N1 = (x1, y1, z1)N2 = (x2, y2, z2)其中,(x1, y1, z1)和(x2, y2, z2)分别表示两个法向量在三个坐标方向上的值,x1、y1、z1是N1在三个坐标方向上的值,x2、y2、z2是N2在三个坐标方向上的值。
第二步,根据求得的N1、N2值,就可以用“法向量求二面角公式”求出N1、N2所构成的夹角,具体公式如上所述。
以上就是“法向量求二面角公式”的介绍,它可以帮助我们快速确定两个法向量构成的夹角。
这种公式的优点在于它可以简单快速地求得椭圆夹角、圆柱夹角、椎体夹角等复杂夹角,为几何学研究带来了方便。
当然,如果希望用“法向量求二面角公式”求出精确的夹角,需要准确求出N1、N2的值,还需要采用精度更高的计算机程序。
另外,在计算N1、N2的值时,也要注意两个法向量的向量积及其长度是否相等,不然就会得到错误的结果。
本文介绍了“法向量求二面角公式”,它可以用于求出相交的两个法向量构成的夹角,使几何学研究变得更加容易简单。
然而,为了保证计算出来的结果准确无误,求值时需要考虑到N1和N2之间的向量积及长度等因素。
向量法求二面角的大小

向量投影的计算方法:先求出两个向量的点积和模长然后根据定义计算投影长度。
向量投影的应用:在几何、物理和工程等领域中向量投影是重要的概念用于描述方向、速度和力等物理量在某个 方向上的分量。
向量投影的定义:向量的投影是该向量在给定平面上的正交投影长度。
向量法在二面角计算中的步 骤
向量法的基本原理
ห้องสมุดไป่ตู้
向量法在二面角计算中的优 势
向量法在二面角计算中的注 意事项
向量法求二面角大 小的步骤
确定原点:选择一个方便的点作为 原点通常选择二面角的顶点
确定坐标:根据需要在x轴和y轴上 选择单位长度并确定其他点的坐标
添加标题
添加标题
添加标题
添加标题
确定轴:选择两个垂直的向量作为 x轴和y轴通常选择二面角的两个法 向量
向量投影的性质:投影长度总是非负的且与原向量平行。
向量投影的计算方法:先求出原向量与给定平面的法向量的点积再除以法向量的模的平 方。
向量投影的应用:在求解二面角的大小、向量的模等问题中可以通过计算向量投影来简 化计算。
向量法求二面角大 小的原理
单击此处添加标题
向量法定义:利用向量的数量积、向量积和向量的混合积计算二面角的大小。
向量的模定义:向 量的大小或长度记 作||计算公式为|| = √(x^2 + y^2)。
向量的数量积定义: 两个向量的点乘记 作 ·b 计 算 公 式 为 ·b = ||·|b|·cosθ其中 θ为两向量之间的 夹角。
向量的数量积性 质 : ·b = b ·即 点 乘 满足交换律;分配 律 : ( + b ) ·c = ·c + b ·c 。
法向量法求二面角

显然平面SBA的一个法向量为
n1 = (1, 0) 0,,
设平面SCD的一个法向量为
S D
z 1 C
1 SA = , 2
B 1 y
A x
n 2 = ( x,y,z ),
则 n 2 ⊥ 平面SCD
图5
1 AD = . 2
n 2 • SD = 0 ∴ ⇒ n2 • SC = 0
x−z =0 取 z = 2, 则 n2 = (2 , − 1, 2) 2 x + 2 y − z = 0
∴ A1Q = (2, 2, −2), QD = (−2, 20)
面AA1D的法向量 n1 = (1,0,0) 设面A1DQ的法向量为
z
A1
D1 B1 DC1n2 = (a1 , a2 , a3 ),
2
y
Q
C B
4 2
O(A) ( )
x
则
n2 ⋅ A1Q = 2a1 + 2a2 − 2a3 = 0, n2 ⋅ QD = −2a1 + 2a2 = 0,
令y=1,取平面的一个法向量为
n = (1,1,1)
注:因为平面的法向量有无数个,方向可上,可下, 模可大可小,我们只要求出平面的某个法向量即可.
例题4. 例题 在长方体ABCD—A1B1C1D1中, AB=2,BC=4,AA1=2,点Q是BC的中点, 求此时二面角A—A1D—Q的大小. 解 : 如图2,建立空间直角坐标系. 依题意:A1(0,0,2),Q(2,2,0), D(0,4,0),
解:延长BA,CD 交于E,则面SCD∩面SBA=SE.
AD 1 ∵ AD / / BC 且 = BC 2
5 2
3.2利用空间向量求二面角

SD. 得n (2, 1,1)
0, 0)是平面SAB的法向量,
cos AD, n AD n 6 | AD || n | 3
4.求两法向量夹角
所求二面角的余弦值为: 6 3
5.定值
巩固练习1: 正方体ABCD—A1B1C1D1的棱长为2,点Q 是BC的中点,求二面角A—DQ—A1的余弦 值.
3.2利用空间向量求二面角
温故知新
已学习:二面角及二面角的平面角的概念
会:建立空间直角坐标系 进行向量坐标运算 求平面的法向量
已掌握:用向量求解线线角、线面角的方法
温故知新 1.二面角的定义
从一条直线出发的两个半平面所组成的图形叫做二面角。
2.二面角的范围: [0, ]
O
探究方法
问题1:
求直线和平面所成的角可转化成直线的方向向量与 平面的法向量的夹角,那么二面角的大小与两个半 平面的法向量有着怎样的关系呢?
高考链接
(2019.18)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4, AB=2,∠BAD=60°,E,M,N 分别是BC,BB1,A1D 的中点.
(1)证明:MN∥平面C1DE; (2)求二面角A-MA1-N的正弦值.
z
【点睛】
本题考查线面平行关系的证明、空
间向量法求解二面角的问题.求解二
面角的关键是能够利用垂直关系建
立空间直角坐标系,从而通过求解
O
法向量夹角的弦值来得到二面角
的正弦值,属于常规题型.
x
y
n
a
n1 n2
l
探究方法
问题2:二面角的大小与两个平面法向量夹角的关系?
n1,n2
n1,n2
必修2二面角与法向量

必修二——二面角与法向量一.二面角1.二面角的定义:从一条直线l 出发的两个半平面α、β所组成的图形,叫二面角。
记作l αβ--α、β叫二面角的面。
l 叫二面角的棱。
2.二面角的平面角定义:在l αβ--的棱l 上取一点O ,过O 在α、β内分别作垂线O A 、O B 。
A OB ∠就是二面角l αβ--的平面角。
3.性质:A O B ∠=l αβ--二.法向量1.定义:向量n 所在直线垂直于平面α,则有n α⊥ ,n 叫做平面α的法向量。
2.法向量的取法:①尽可能通过已知条件建立空间直角坐标系; ②找平面中已知的点或相交的直线建立向量;③设一向量(,,)n n n n x y z 与上一步向量分别乘积=0,求出,,n n n x y z 的关系;④根据,,n n n x y z 的关系取一组数。
三.求二面角(六种方法)1.定义法;2.三垂线法;3.垂面法;αβ、αγ、βγ的交线分别为a 、b 、c 。
αγ⊥,βγ⊥,则a αβ--=,bc <>4.面积比法;cos S l S αβ--=射影5.法向量法;6.垂线法;练习题1.已知正方体1111ABC D A B C D -的棱长为1,求:①1A D C 的法向量②计算11B BCC 的二面角2.如图,三菱锥V A B C -中,2VA VB AC BC ====,23AB =, 1V C =,①求二面角V AB C --。
②求三菱锥V A B C -的体积。
3.如图,在三菱锥V A B C -中,90VAB VAC ABC ∠=∠=∠=︒判断V B A 与V B C 的关系,并说明理由。
用法向量求二面角

探究新知
• 结论 •
法向量的夹角与二面角的大小是相等或
互补。
尝试:已知两平面的法向量分别为m=(0,1,0),
n=(0,1,1),则两平面所成的二面角为( C )
A.45°
B.135°
C.45°或135°
D.90°
解析
cos m , n
|
m m
n || n
|
1 1
2
2, 2
即〈m,n〉=45°,其补角为135°.
启示:
求二面角的平面角可转化为求两法向量的夹角。
如图,ABCD是直角梯形,ABC BAD 90,
又SA 面ABCD,
SA
AB
BC
1,
AD
1 2
,
求面
SCD
与面SAB 所成的二面角的余弦值。
解:建立如图所示的空间直角坐标系 A xyz,
则 A(0,0,0), 设n (x, y,
又SA 面ABCD, SA AB BC 1, AD 1 ,
2
求面SCD与面 SAB 所成的二面角的余弦值。
S
你能找到所求 二面角的棱吗?
B
C
A
D
探究新知
问题:
二面角的平面角与两个半平面的法向量的夹角有没
有关系?
n1 n2
l
探究新知
n1, n2
探究新知
n1, n2
D(1 ,0,0), C (1,1,0), S(0,0,1), 2
z)是面SCD的法向量, 则
S
z
n DC,
n
法向量求二面角公式

法向量求二面角公式
法向量求二面角公式,是一种用于计算两个法向量之间(或三维空间中三点之间)夹角的公式。
夹角是指连接两个法向量的线段与其与第三条线段(三维空间中坐标点)之间的夹角,因此这个公式能够用来计算三维空间中任意三点之间的夹角。
一般来说,法向量求二面角公式可以用下面的算式表示:∠A = acos(AB/ |A| |B| ),其中A和B分别是要计算的两个法向量,结果为两个法向量之间的夹角,以弧度表示。
要想使用这个公式,首先需要计算出两个法向量A 、B向量积AB,也可以把它看作两个向量的夹角余弦值,然后需要计算出两个法向量的绝对值|A|、 |B|。
最后,把这三个值带入上面的公式,就能
够得到两个法向量之间的夹角了。
由于法向量求二面角公式能够有效地计算三维空间中任意三点
之间的夹角,因此它在很多领域都有着广泛的应用。
例如,在机械设计领域,法向量求二面角公式能够有效地计算机械模型中设计出来的各个零件之间的夹角,从而更好地保证机械设计的准确性。
此外,法向量求二面角公式还能用于物理和力学方面的研究,比如用来解决力学中的静定点和碰撞问题,计算受力情况下的局部夹角,研究物体的力学变形和应力情况等。
此外,在计算几何和拓扑学领域,法向量求二面角公式也常被用来计算三角形内角和外角,以及多边形的内部夹角,有助于形状分析与空间建模。
总之,法向量求二面角公式是一个非常有用、多方面应用的数学
公式,主要用于计算两个法向量之间或三维空间中三点之间的夹角,并且在机械设计、物理力学以及计算几何和拓扑学等领域中都有着广泛的应用。
它的优点在于计算简单,准确性高,可以有效解决三维空间中的相关问题。
二面角和法向量夹角的关系

二面角和法向量夹角的关系
在三维空间中,二面角是由两个平面所围成的角度,它可以用两个法向量来表示。
法向量是垂直于平面的矢量,其大小等于平面的面积,方向指向平面的外部。
设两个平面分别为P1和P2,它们的法向量分别为n1和n2,则二面角的cos值可以用它们的内积来表示:cos(θ) = (n1·n2) / (|n1||n2|)
其中,|n1|和|n2|分别为n1和n2的模长,·为向量的点积。
因此,二面角的大小可以通过计算两个法向量的夹角来求得,即θ = cos^-1((n1·n2) / (|n1||n2|))。
换句话说,二面角和法向量夹角是一致的,它们之间的关系是cos(θ) = (n1·n2) / (|n1||n2|)。
在计算中,可以直接利用法向量的大小和方向来求得二面角的大小,这样可以简化计算,并且避免了对平面参数的繁琐计算。
利用法向量求二面角5则

利用法向量求二面角5则以下是网友分享的关于利用法向量求二面角的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
关于利用法向量求二面角的问题(一)关于利用法向量求二面角的问题我们知道法向量是解决立体几何问题的有力工具,但是在利用法向量在求二面角的时候,求出的两个法向量的夹角是与所求二面角相等还是互补,却没有认真思考过,这个还得从两个向量的外积说起.两个向量外积的定义:两个向量a与b的外积(也称向量积)是一个向量,即为a b,它的长度(模)为| |=||||,它的方向与和都垂直,并且按,, 的顺序构成右手标架(如下图所示)若是 ,则所得向量长度与 相等,但是方向却刚好相反,所以向量外积不满足交换律.我们可以根据这个定义来确定平面法向量的方向.设平面内有三个点A(x1y1,z1),B(x2,y2,z2),C(x3,y3,z3),则(x2 x1,y2 y1,z2 z1), (x3 x1,y3 y1,z3 z1),所以y2 y1y3 y1z2 z1z3 z1z2 z1z3 z1x2 x1x3 x1x2 x1x3 x1y2 y1y3 y1(,,),很明显,向量 可以为平面 的法向量.此时 的方向应该是垂直平面 并且向上.我们利用这个结论来求二面的大小. 说明:行列式abcdad b c,上面有关内容请参考高等代数的相关内容.如图所示,设平面 与平面 所成的二面角为 ,法向量分别为,,显然与所成的角为 ,且 ,即此时与所成的角 就是平面 与平面 所成的二面角为 ,从这里我们可以看出,只要平面 与平面 的法向量,方向一个朝向二面角的里面,一个朝向二面角的外面,求出的法向量的夹角即为所求二面角.那怎样做到这一点呢?那就要用到我们前面所讲到的右手标架.如图,我们来求平面与平面 所成的二面角 ,设 (x1,y1,z1),AC (x2,y2,z2),x1y1z1x1y1z1,且设z若x1y1x2y2,yz1x1z2x2,xy1z1y2z2x2y2z2x2y2z2则平面 的一个法向量 (x,y,z),根据右手标架应该是竖直向上,即朝向这个二面角的外面,此时我们求平面 的法向量方向应该是朝向二面角的里面.设 (x3,y3,z3), (x4,y4,z4),要使平面 的法向量方向朝向二面角的里面,根据右手标架,我们计算应该是 ,若x4y4z4x4y4z4x3y3z3x3y3z3,并且设cx4y4x3y3b ,x4y4x3y3,ay4z4y3z3,则平面 的一个法向量 (a,b,c)根据右手标架,此时n的方向就是朝向二面角的外面.那么m与n的夹角即为所求二面角.cosxa y b z cx y z a b c22222当然,这里需要注意的是,我们这里建立的空间直角坐标系一定要是右手直角坐标系.利用向量求二面角大小的又一方法(二)利用向量求二面角大小的又一方法福建南安国光中学黄耿跃文[1]给出一种判定“二面角的平面角与其面的法向量夹角的关系”,读完这篇文章后,获益匪浅.笔者通过研究给出另一种利用向量求二面角大小的可行性方法,此法可以避免产生二面角的平面角与其面的法向量夹角的关系误判,而且思路更直观、清晰.定理1如下左图已知二面角αLβ的平面角为θ,A∈α且AL,B∈β且BL,AM⊥L于MJJJ,BNGJJJ⊥L于N,则cosθ=|JJJJGMANBMA||JJJJNBG|.由二面角的平面角的定义易证定理1.定理2如上右图,空间任意一条直线L,A,B是直线L上的两个点,M是空间任意一点,MN⊥L于N,则JJJJNMG=JJJJAMGJJJJAGJJJG|JJJJMABJJJGABG|2AB.证明∵向量JJJGAN为JJJJAMG在JJJABG影向量,设GJJJ方向上的投e=JJJJJABGJJJGJJJJG|ABG|为AB方向的单位向量,JJJJ∴JJJGAN=AMJJJABGGAMGJJJABGJJJ|JJJJABG|e=ABG,|JJJJJABG2∴JJJJNMG=JJJJAMGJJJGJJJJ|GJJJGAN=JJJJAMGAMABJJJG|JJJJJAB.ABG|2例1(2004湖南理19)如图,在底面是菱形的四棱锥PABCD 中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E在PD上,且PE:ED=2:1.(I)证明:PA⊥平面ABCD;(II)求以AC为棱,EAC与DAC为面的二面角θ的大小;(III)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论.解(I)略;(II)以A为坐标原点,直线AD、AP分别为y轴、z轴,过点A垂直平面PAD的直线为x轴,建立空间直角坐标系如右图.则A(0,0,0),c(32a,12a,0),JDJG=(0,a,0),E(0,2JJJ3a,13a),于是AEG=(0,23a,13a),JJJGAC=(31JJJG2a,2a,0),AD=(0,a,0).作EM⊥AC于M,DN⊥AC于N,则由定理1JJJJ得MEG:与JJJGND所成的角的大小为EAC与DAC为面的二面角θ的大小.由定理2可得JJJJMEG=JJJAEGJJJJAMG=JJJAEGJJJAEGJJJG|JJJACGACJJJG|2AC121a2=(0,a,a)3333a2(12a,2a,0)=(36a,12a,13a).JJJGND=JJJGADJJJGAN=JJJGJJJADADGJJJG |JJJACGACJJJG|2AC12=(0,a,0)2aa2(32a,12a,0)=(34a,34a,0),JJJJG∴cosθ=MEJJJNDG|JJJMEJG||JJJGND|293a2+3a2=248342=2.6a34a∴以AC为棱,EAC与DAC为面的二面角θ的大小为30°.例2(2004浙江)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(I)求证AM⊥平面BDF;(II)求二面角ADFB的大小.解(I)略.(II)如图建立空间直角坐标Cxyz,∵A(2,2,0),B(0,2,0),D(2,0,0),F(2,∴JJJG2,1).DF=JJJDBGJJJDA=G(0,2,1),(0,2,0),JJJG=(2,2,0),DF=(0,2,1).作AM⊥DF于M,BN⊥DF的延长线于N,JJJG则由定理1得:MA与JJJNBG所成的解θ的大小为二面角ADFB的大小.由定理2可得:JJJGMA=JJJDAGJJJJDMG=JJJDAGJJJDAGJJJG DFJJJG|JJJGDF|2DF=(0,2,0)23(0,2,1)=(0,2,2),JJJNBG=JJJGDBJJJJDNGJJJG 3JJJG3=JJJDBGDBDFJJJG|JJJGDF|2DF=(2,2,0)2(0,2,1)/3=(2,JJJG2JJJ/3,2/3),cosθ=MANBG|JJJGMA||JJJNBG|6=91(6/3)(24/3)=2.∴二面角ADFB的大小为60°.例3(2005福建)如图,直二面角30DABE中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.(I)求证:AE⊥平面BCE;(II)求二面角BACE的大小;(III)求点D到平面ACE的距离.解(I)略;(Ⅱ)如图所示,以线段AB的中点原点O,OE所在的直线为x 轴,AB所在的直线为y轴,过O作平行于AD的直线为z轴,建立空间直角坐标系Oxyz,则A(0,1,0),E(1,0,0),C(0,1,2)B(0,1,0)JJJG=JJJ(0,2,2),JJJAEG,AC=(1,1,0),ABG=(0,2,0).作BM⊥AC于M,EN⊥AC理1得,JJJ于NEGN,则由定与JJJGMB所成的角θ的大小为二面角BACE的大小由定理JJJ2得NEG=JJJAEGJJJG=JJJAEGJJJANAEGJJJG|JJJACGACJJJ|2ACG=(1,1,0)2(0,2,2)=11JJJG2),MB=JJJ8(0,2,ABGJJJJGJJJAGMJJJG=JJJABGAB|JJJACJJJGACG|2AC=(0,2,0)4(0,2,2)=(0,1,1)JJJGJJJG8,cosθ=NEMB13|JJJNEG||JJJGMB|=3=3,22∴二面角BACE的大小为arccos33.参考文献[1]郑剑晖,郑毓青.二面角的平面角与其面的法向量夹角的关系判定.2005.1.利用空间向量求二面角的判定方法(三)利用空间向量求二面角的判定方法法一:若点A、B分别为二面角α−l−β的两个半平面α与β上的任两点,且A∉l,B∉l,n1、n2分别为平面α、β的法向量,则(1)当(ABn1)(ABn2)>0 时,二面角α−l−β的大小与两个法向量夹角相等;(2)当(ABn1)(ABn2)互补;l法二:若点P为二面角α−l−β的棱l上的任一点,Q 为两个二面角α−l−β内的任一点, n1、n2分别为平面α、β的法向量,则(1)当(PQn1)(PQn2)相等;(1)当(PQn1)(PQn2)>0 时,二面角α−l−β的大小与两个法向量夹角互补;l利用法向量求二面角的正负(四)利用法向量求二面角的平面角授课教师:陈诚班级:高二(14)班时间:2010-01-14 【教学目标】1、让学生初步理解二面角的平面角与半平面法向量的关系,并能解决与之有关的简单问题。
高考数学专题:向量求二面角(含答案)

高考数学专题:向量求二面角向量法求二面角大小的两种方法(1)分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.1、如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=π3,M为BC上一点,且BM=12,MP⊥AP.(1)求PO的长;(2)求二面角A-PM-C的正弦值.2、如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F 分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.3、如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB=2A1B1=2DD1=2a.(1)求异面直线AB1与DD1所成角的余弦值;(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1;(3)在(2)的条件下,求二面角F-CC1-B的余弦值.4、如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.5、如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=23HF,求直线BH和平面CEF所成角的正弦值6、如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=π2,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.7、如图所示,在多面体A1B1D1-DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C;(2)求二面角E-A1D-B1的余弦值.8、如图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=π2,D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角A-PD-C的余弦值.答案:1、解:(1)如图,连接AC,BD,因为ABCD为菱形,则AC∩BD=O,且AC⊥BD.以O为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知, BM→=14BC →=⎝ ⎛⎭⎪⎫-34,-14,0, 从而OM→=OB →+BM →=⎝ ⎛⎭⎪⎫-34,34,0, 即M ⎝ ⎛⎭⎪⎫-34,34,0.设P (0,0,a ),a >0,则AP→=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a . 因为MP ⊥AP ,故MP →·AP→=0,即-34+a 2=0,所以a =32或a =-32(舍去), 即PO =32.(2)由(1)知,AP →=⎝ ⎛⎭⎪⎫-3,0,32,MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝ ⎛⎭⎪⎫3,0,32. 设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2),由n 1·AP →=0,n 1·MP →=0, 得⎩⎪⎨⎪⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2. 由n 2·MP →=0,n 2·CP →=0, 得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155, sin 〈n 1,n 2〉=1-⎝⎛⎭⎪⎫-1552=105, 故所求二面角A -PM -C 的正弦值为105.2、(1)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而E ⎝ ⎛⎭⎪⎫0,12,32,F ⎝ ⎛⎭⎪⎫32,12,0,所以EF →=⎝ ⎛⎭⎪⎫32,0,-32,BC →=(0,2,0),因此EF →·BC→=0. 从而EF →⊥BC →,所以EF ⊥BC .(2)平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量为n 2=(x ,y ,z ). 又BF →=⎝ ⎛⎭⎪⎫32,12,0,BE →=⎝ ⎛⎭⎪⎫0,12,32,由⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0得其中一个n 2=(1,-3,1).设二面角E -BF -C 大小为θ,且由题意知θ为锐角, 则cos θ=|cos 〈n 1,n 2〉| =⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15. 因此sin θ=25=255,即所求二面角的正弦值为255.3、.解:以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2a ,0,0),B (2a ,2a ,0),C (0,2a ,0),D 1(0,0,a ),F (a ,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)因为AB 1→=(-a ,a ,a ),DD 1→=(0,0,a ), 所以|cos 〈AB 1→,DD 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪AB 1→·DD 1→|AB 1→||DD 1→|=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:因为BB 1→=(-a ,-a ,a ),BC →=(-2a ,0,0),FB 1→=(0,a ,a ), 所以⎩⎪⎨⎪⎧FB 1→·BB 1→=0,FB 1→·BC →=0,所以FB 1⊥BB 1,FB 1⊥BC . 因为BB 1∩BC =B , 所以FB 1⊥平面BCC 1B 1.(3)由(2)知,FB 1→为平面BCC 1B 1的一个法向量. 设n =(x 1,y 1,z 1)为平面FCC 1的法向量, 因为CC 1→=(0,-a ,a ),FC →=(-a ,2a ,0), 所以⎩⎪⎨⎪⎧n ·CC 1→=0,n ·FC →=0,即⎩⎨⎧-ay 1+az 1=0,-ax 1+2ay 1=0.令y 1=1,则n =(2,1,1),所以||cos 〈FB 1→,n 〉=⎪⎪⎪⎪⎪⎪⎪⎪FB 1→·n |FB 1→||n |=33,因为二面角F -CC 1-B 为锐角, 所以二面角F -CC 1-B 的余弦值为33.4、解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC . (2)如图,过D 作DG ⊥EF ,垂足为G , 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz . 由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°, 则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知,AB ∥EF , 所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC→=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0. 所以可取n =(3,0,-3). 设m 是平面ABCD 的法向量, 则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4), 则cos 〈n ,m 〉=n·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.5、解:依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明:依题意,AD→=(2,0,0),AF →=(1,-1,2). 设n 1=(x ,y ,z )为平面ADF 的法向量,则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0,即⎩⎨⎧2x =0,x -y +2z =0.不妨设z =1,可得n 1=(0,2,1).又EG →=(0,1,-2),所以EG →·n 1=0, 又因为直线EG ⊄平面ADF , 所以EG ∥平面ADF .(2)易证,OA→=(-1,1,0)为平面OEF 的一个法向量. 依题意,EF→=(1,1,0),CF →=(-1,1,2).设n 2=(x ,y ,z )为平面CEF 的法向量,则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎨⎧x +y =0,-x +y +2z =0.不妨设x =1,可得n 2=(1,-1,1).因此cos 〈OA →,n 2〉=OA →·n 2|OA →||n 2|=-63,于是sin 〈OA →,n 2〉=33.所以,二面角O -EF -C 的正弦值为33.(3)由AH =23HF ,得AH =25AF .因为AF→=(1,-1,2),所以AH →=25AF →=⎝ ⎛⎭⎪⎫25,-25,45,进而有H ⎝ ⎛⎭⎪⎫-35,35,45,从而BH →=⎝ ⎛⎭⎪⎫25,85,45,因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以,直线BH 和平面CEF 所成角的正弦值为721.6、解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2). (1)因为AD ⊥平面PAB ,所以AD→是平面PAB 的一个法向量,AD →=(0,2,0).因为PC→=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0, 即⎩⎨⎧x +y -2z =0,2y -2z =0. 令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP→=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB→=(0,-1,0),则CQ →=CB →+BQ →= (-λ,-1,2λ),又DP→=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2.设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时, |cos 〈CQ→,DP →〉|的最大值为31010. 因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5, 所以BQ =25BP =255.7、解:(1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D .又A 1D ⊂平面A 1DE ,B 1C ⊄平面A 1DE ,于是B 1C ∥平面A 1DE . 又B 1C ⊂平面B 1CD 1,平面A 1DE ∩平面B 1CD 1=EF ,所以EF ∥B 1C .(2)因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD ,以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的法向量为n 1=(r 1,s 1,t 1),而该面上向量A 1E →=(0.5,0.5,0),A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足方程组⎩⎨⎧0.5r 1+0.5s 1=0,s 1-t 1=0,因为(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量为n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1),所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63. 8、解:(1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,得PC ⊥DE .由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE .又PC ∩CD =C ,所以DE ⊥平面PCD .(2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1.又EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.如图,以C 为坐标原点,分别以CA→,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED →=(1,-1,0),DP →=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0. 设平面PAD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0, 故可取n 1=(2,1,1).由(1)可知,DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED→, 即n 2=(1,-1,0).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36, 故二面角A -PD -C 的余弦值为36.。
二面角求法及经典题型归纳

二面角求法归纳18题,通常是立体几何(12-14分),本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力。
以下是求二面角的五种方法总结,及题形归纳。
定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG FGFG∴二面角S AM B --的大小为)36arccos(-例2. (2010全国I 理,19题,12分)如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 . (Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD=133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又.故ADE ∆为等腰三角形.取ED 中点F,连接AF,则226,3AF DE AF AD DF ⊥=-=. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角. 连接AG,A G=2,2263FG DG DF =-=, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°.例3(2010浙江省理,20题,15分)如图, 在矩形ABCD 中,点,E F 分别 在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将 AEF 翻折成'A EF ,使平面'A EF BEF ⊥平面.(Ⅰ)求二面角'A FD C --的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM 的长.练习(2008山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,P A⊥平面ABCD,60ABC∠=︒,E,F分别是BC, PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面P AD所成最大角的正切值为62,求二面角E—AF—C的余弦值.分析:第1题容易发现,可通过证AE⊥AD后推出AE⊥平面APD,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE与SC,进而计算二面角的余弦值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
三、例 题
例题1.已知两平面的法向量分别为m=(0,1,0),
n=(0,1,1),则两平面所成的二面角为( C ) A.45° C.45°或135°
| m || n |
B.135° D.90°
1 2 2
解析 cos m , n m n 1 2 , 即〈m,n〉=45°,其补角为135°. ∴两平面所成二面角为45°或135°.
直线的方向向量与平面的法向量求法
(1)直线的方向向量:在直线上任取一非零 向 依据是 量作为它的方向向量. 线面垂 PP ( x2 x1, y2 y1, z2 z1 ) 直判定 1 2 定理 (2)平面的法向量可利用方程组求出:设a,b是 平面α 内两不共线向量,n为平面α 的法向量, 则求法向量的方程组为
立体几何专题复习
——向量法求二面角
在立方体ABCD-A’B’C’D’中, 求二面角D’—BC—A的大小
二、二面角的有关概念和相关知识复习
二面角:从一条直线出发的 两个半平面 所
组成的图形叫做二面角.
二面角的平面角:以二面角的棱上任一点
为端点,在两个半平面内分别作 垂直于棱 的两
条射线,这两条射线所成的角叫做二面角的平
面角. 二面角的取值范围是
【0,π 】
二面角的大小向量法求解
(1)如图①,AB、CD是二面角α —l—β 的两个面
内与棱l垂直的直线,则二面角的大小θ =
AB, CD
.
(2)② 如图②③,n1,n2分别是二面角α —l—β 的 两 个半平面α ,β 的法向量,则二面角的大小θ 满足 cos θ = cos〈n1,n2〉或-cos〈n1,n2〉 .
例题2
解:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐
标系D—xyz,则 A( 2 ,0,0), B( 2 ,2,0),C(0,0,2), S(0,0,2)
四、课堂练习
余弦值
解答如下:
五、课堂小结 1、二面角和二面角平面角的概念。 2、向量法解决问题时要注意建立好空 间直角坐标系,求出相关点的坐标。 3、方程组法求出平面法向量。 4、根据图形选择法向量所成角的余弦 值的正性。
вye вyЁ