爱因斯坦光电效应方程三
光电效应的三个公式
光电效应的三个公式
光电效应共有三个公式,分别是:光子能量:E=hv;爱因斯坦光电效应方程:Ek=hv-Wo;截止电压:Ek=eUc。
光子能量:E表示光子能量h表示普朗克常量,v为入射光频率。
这个方程是爱因斯坦,提出工是不允许的,而是一份一份的每一份管子能量可以用这个公式来表示。
每一份光子能量跟它的频率成正比。
爱因斯坦光电效应方程:h表示普兰克常量,v表示入射光的频率,W0表示逸出功,这个方程求的是Ek表示动能最大的光电子所具有的能量。
用入射光子能量减去逸出功等于光电子出来的正能量。
截止电压:根据爱因斯坦的光电效应实验,光电子出来会进入电路中,当外电路电压调到一定值的时候电子就进不了电路中。
那么此时电子走到负极所做的功。
刚好就等于电子出来的动能。
Ek表示光电子出来的动能。
e表示电子的电荷量,Uc表示截止的电压。
光电效应:
是指光束照射物体时会使其发射出电子的物理效应。
发射出来的电子称为“光电子”。
1887年,德国物理学者海因里希·赫兹发现,紫外线照射到金属电极上,可以帮助产生电火花1905年,阿尔伯特·爱因斯坦发表论文《关于光产生和转变的一个启发性观点》,给出了光电效应实验数据的理论解释。
爱因斯坦主张,光的能量并非均匀分布,而是负载于离散的光量子(光子),而这光子的能量和其所组成的光的频率有关。
这个突破性的理论不但能够解释光电效应,也推动了量子力学的诞生。
由于“他对理论物理学的成就,特别是光电效应定律的发现”,爱因斯坦获颁1921年诺贝尔物理学奖。
光电效应
最大的 一
E
初动能 速率最大的是 vc
则I=0,式中UC为遏止电压
思了大12考遏入m:止射e电光对v压的刚c2 后强才=,度的如,实eU果电验再路,c 增中加 光电效应伏安特性曲线
实会验有表光明电:流对吗于?一减定弱颜光色的
饱 和
(强频度率,)的遏光止,电压无会论减光小的吗? 电
I
黄光( 强)
强弱如何,遏止电压是一
康普顿的成功也不是一帆风顺的,在他早期的 几篇论文中,一直认为散射光频率的改变是由于 “混进来了某种荧光辐射”;在计算中起先只 考虑能量守恒,后来才认识到还要用动量守恒。
康普顿于1927年获诺贝尔物理奖。
康 普 顿 效 应
康普顿,1927年获诺贝尔物理学1297 奖
(1892-1962)美国物理学家
3.康普顿散射的实验装置与规律:
X 射线管
晶体
光阑
散射波长
0
j
探
测
器
石墨体 (散射物质)
X 射线谱仪
康普顿正在测晶体 对X 射线的散射
按经典电磁理论: 如果入射X光是某 种波长的电磁波, 散射光的波长是
不会改变的!
.... ........................................... ............................
光电子定向移动形成的电流叫光电流
2.光电效应的实验规律
(1思)考存:在为饱什和么电要流加正
分上只光电即思向电析会有流 达照考电路解发极达 到不:压中答生少到饱变保?有:光的某和,持不电光电电一值增光加流束效子值。大照正吗照应能后UA在现 到条不向?K,阴象 达再件电G极, 阳增不压表K但 极大变中,,
光电效应知识点归纳
光电效应知识点归纳张阿兵高考(全国卷)命题分析1.考查方式:高考对本部分内容考查形式比较固定,一般比较单一的考查某个知识点,且知识点相对比较单一,题型为选择题和填空题.2.命题趋势:由于本部分内容涉及点较多,且已经改为必考内容,今后的命题将向着多个考点融合的方向发展,且以选择题的形式考查.光电效应是指在光的作用下,从物体表面释放电子的现象。
这种现象是1887年赫兹研究电磁波时发现的,1905年爱因斯坦提出“光量子”假设,并用光电方程成功的解释了这一实验结果。
约十年后密立根用实验证实了爱因斯坦的光电子理论,并测定了普朗克常数。
爱因斯坦与密立根都因光电效应方面的杰出贡献分别获得1921年和1923年的诺贝尔物理学奖。
而今光电效应已经广泛地应用于各科技领域。
如利用光电效应制成的光电管、光电池、光电倍增管等光电转换器件,把光学量转换成电学量来测量,已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的元件。
光电效应1.定义:金属在光的照射下发射电子的现象称为光电效应,发射出来的电子称为光电子.2.光电管:光电管是由密封在玻璃壳内的阴极和阳极组成.阴极表面涂有碱金属,容易在光的照射下发射电子. 3.光电流:阴极发出的光电子被阳极收集,在回路中会形成电流,称为光电流. 4.极限频率对于每一种金属,只有当入射光的频率大于某一频率ν0时,才会产生光电流,ν0称为极限频率(也叫截止频率). 5.光电效应规律(1)每种金属都有一个极限频率,入射光的频率必须大于等于这个极限频率才能产生光电效应. (2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大. (3)光电效应的发生几乎是瞬时的,一般不超过10-9s.(4)当入射光的频率大于极限频率时,饱和光电流的大小与入射光的强度成正比. 光子说对光电效应的解释(1)由于光的能量是一份一份的,那么金属中的电子也只能一份一份地吸收光子的能量,而且这个传递能量的过程只能是一个光子对一个电子的行为.如果光的频率低于极限频率,则光子提供给电子的能量不足以克服原子的束缚,就不能发生光电效应.(2)当光的频率高于极限频率时,能量传递给电子以后,电子摆脱束缚要消耗一部分能量,剩余的能量以光电子的动能形式存在,这样光电子的最大初动能E k =12mv 2max =hν-W 0,其中W 0为金属的逸出功,可见光的频率越高,电子的最大初动能越大.而遏止电压U 0对应着光电子的最大初动能,即eU 0=12mv 2max .所以当W 0一定时,U 0只与入射光的频率ν有关,与光照强弱无关.(3)电子一次性吸收光子的全部能量,不需要积累能量的时间,所以光电效应的发生几乎是瞬时的.(4)发生光电效应时,单位时间内逸出的光电子数与光强度成正比,光强度越大意味着单位时间内打在金属上的光子数越多,那么逸出的光电子数目也就越多,光电流也就越大. 两条对应关系(1)光照强度大→光子数目多→发射光电子多→光电流大; (2)光子频率高→光子能量大→光电子的最大初动能大. 6.光电效应的产生条件入射光的频率大于等于金属的极限频率. 7. 三个关系式(1)爱因斯坦光电效应方程:hν=12mv2+W.(2)最大初动能与遏止电压的关系:E k=eU0.(3)逸出功与极限频率的关系W=hν0.(逸出功的大小由金属本身决定,与入射光无关.)理解:光电效应方程揭示的是:光子照射金属时,金属表面的电子吸收光子能量(一个光子对一个电子)后,为了脱离原子核及周围电子的阻力,必须克服中金属中正电荷引力做功即W0。
人教版高三物理选修3《爱因斯坦的光电效应方程》说课稿
人教版高三物理选修3《爱因斯坦的光电效应方程》说课稿一、引言本课是人教版高三物理选修3的一节课,主题为《爱因斯坦的光电效应方程》。
本节课的目标是让学生了解光电效应的基本原理和爱因斯坦的光电效应方程,培养学生的实际思维能力和实验观察能力。
通过本课的学习,学生将进一步认识到光电效应的重要性以及爱因斯坦的杰出贡献。
二、知识梳理2.1 光电效应的概念和实验现象首先,我们将引导学生回顾光电效应的概念和实验现象。
光电效应是指当光照射到金属或半导体表面时,会产生电子的解离和运动的现象。
我们会通过实验演示的方式向学生展示光电效应的实验现象,例如使用光电效应仪器来照射金属表面,观察电流的变化等。
2.2 光电效应的基本原理接下来,我们将介绍光电效应的基本原理。
我们会解释光子的概念和光子能量与频率的关系,以及光电效应中电子解离和运动的原理。
通过对光电效应的基本原理进行讲解,学生将能够理解为什么光子的能量越大,电子解离和运动的能力就越强。
2.3 爱因斯坦的光电效应方程最重要的部分是讲解爱因斯坦的光电效应方程。
爱因斯坦通过对光电效应的研究,提出了光电效应方程,即E=hf-φ,其中E为光子的能量,h为普朗克常数,f为光的频率,φ为金属的逸出功。
我们会详细解释方程中各个参数的含义,并通过具体的例子进行说明。
通过学习爱因斯坦的光电效应方程,学生将能够理解光电效应的能量守恒原理和光子的能量与频率之间的关系。
三、教学方法和策略3.1 激发学生的兴趣为了激发学生的兴趣,我们将采用生动的例子和实验演示来引入光电效应的概念和实验现象。
同时,我们还将提供与学生实际生活相关的例子,让学生更容易理解光电效应的原理和方程。
3.2 提供问题引导思考在讲解光电效应的基本原理和爱因斯坦的光电效应方程时,我们将提供问题来引导学生思考。
例如,为什么金属表面需要有一定的逸出功才能产生光电效应?为什么光子的能量与频率相关?通过这样的问题引导,学生将能够主动思考,加深对知识点的理解和记忆。
2023新教材高考物理二轮专题复习专题:光电效应能级跃迁原子核
专题十五光电效应能级跃迁原子核高频考点·能力突破考点一光电效应规律的应用1.光电效应两条对应关系(1)光子频率高→光子能量大→光电子的最大初动能大;(2)光照强度大(同种频率的光)→光子数目多→发射光电子多→光电流大.2.定量分析时应抓住三个关系式例1 [2022·河北卷]如图是密立根于1916年发表的钠金属光电效应的遏止电压U c与入射光频率ν的实验曲线,该实验直接证明了爱因斯坦光电效应方程,并且第一次利用光电效应实验测定了普朗克常量h.由图像可知( )A.钠的逸出功为hνcB.钠的截止频率为8.5×1014HzC.图中直线的斜率为普朗克常量hD.遏止电压U c与入射光频率ν成正比[解题心得]预测1 [2022·全国冲刺卷]胶片电影利用光电管把“声音的照片”还原成声音,原理如图所示,在电影放映机中用频率为ν、强度不变的一极窄光束照射声音轨道,由于影片上各处的声音轨道宽窄不同,在影片移动的过程中,通过声音轨道后的光强随之变化,射向光电管后,在电路中产生变化的电流,经放大电路放大后,通过喇叭就可以把声音放出来.则( )A.只减小光的频率,一定可以还原出声音B.只增大光的强度,一定可以还原出声音C.a端为电源正极D.a端为电源负极预测 2 [2022·湖南押题卷]某同学欲探测某种环境下是否有频率高于7.73×1014 Hz 的电磁波辐射,利用光电效应现象自制了一个探测器,如图所示.当环境中含有高于此频率的电磁波时灵敏电流表有示数.下表给出了几种金属的极限频率.则( )A.发生光电效应的金属板应该选用金属钙B.如果发生光电效应的金属板选择金属钠,则电流表有示数时,环境中一定含有频率高于7.73×1014 Hz的电磁波C.要想提高仪器的灵敏度,电流表选灵敏一些的,两板间距选适当大一些的D.如果在两板间加上“左正右负”的电压,效果会更好预测3 [2022·湖南押题卷](多选)用如图所示的装置研究光电效应现象,光电管阴极K与滑动变阻器的中心抽头c相连,光电管阳极与滑动变阻器的滑片P相连,初始时滑片P 与抽头c正对,电压表的示数为0(电压表0刻线在表盘中央).在移动滑片P的过程中,光电流I随电压表示数U变化的图像如图所示,已知入射光的光子能量为1.6 eV.下列说法正确的是( )A.当滑片P与c正对时,电路中有光电流B.当U=-0.6 V时,滑片P位于a、c之间C.阴极材料的逸出功为1.0 eVD.当U=0.8 V时,到达阳极的光电子的最大动能为2.4 eV考点二玻尔理论和能级跃迁1.玻尔理论的三条假设2.解决氢原子能级跃迁问题的三点技巧(1)原子跃迁时,所吸收或辐射的光子能量只能等于两能级的能量差.(2)原子电离时,所吸收的能量可以大于或等于某一能级能量的绝对值,剩余能量为自由电子的动能.(3)一个氢原子跃迁发出的可能光谱线条数最多为(n-1),而一群氢原子跃迁发出的可能光谱线条数可用N=C n2=n(n−1)求解.2例2 [2022·浙江6月]如图为氢原子的能级图.大量氢原子处于n=3的激发态,在向低能级跃迁时放出光子,用这些光子照射逸出功为2.29 eV的金属钠.下列说法正确的是( )A.逸出光电子的最大初动能为10.80 eVB.n=3跃迁到n=1放出的光子动量最大C.有3种频率的光子能使金属钠产生光电效应D.用0.85 eV的光子照射,氢原子跃迁到n=4激发态[解题心得]例4 [2022·东北三省四市联考]氦离子(He+)和氢原子一样.原子核外只有一个电子,因此它们有着相似的能级图,如图所示为氢原子和氦离子的能级图.一群处于量子数n=4的激发态的氦离子,能够自发地跃迁到较低的能量状态,并向外辐射光子.已知金属钨的逸出功为4.54 eV.则向外辐射多种频率的光子中( )A.最多有3种频率的光子B.能使金属钨发生光电效应的有3种频率的光子C.能够使处于基态的氢原子电离的有3种频率的光子D.能够使处于基态的氢原子跃迁的有4种频率的光子例5 [2022·山东押题卷]为了更形象地描述氢原子能级和氢原子轨道的关系,作出如图所示的能级轨道图,处于n=4能级的氢原子向n=2能级跃迁时辐射出可见光a,处于n =3能级的氢原子向n=2能级跃迁时辐射出可见光b,则以下说法正确的是( )A.a光照射逸出功为2.14 eV的金属时,光电子的最大初动能为0.41 eVB.a光的波长比b光的波长长C.辐射出b光时,电子的动能和电势能都会变大D.一个处于n=4能级的氢原子自发跃迁可释放6种频率的光考点三衰变、核反应与核能的计算1.核衰变问题(1)核衰变规律:m=(12)tt1/2m0,N=(12)tt1/2N0.(2)α衰变和β衰变次数的确定方法①方法一:由于β衰变不改变质量数,故可以先由质量数改变确定α衰变的次数,再根据电荷数守恒确定β衰变的次数.②方法二:设α衰变次数为x ,β衰变次数为y ,根据质量数和电荷数守恒列方程组求解.2.核能的计算方法(1)根据爱因斯坦质能方程,用核反应亏损的质量乘真空中光速c 的平方,即ΔE =Δmc 2(J).(2)根据1 u(原子质量单位)相当于931.5 MeV 的能量,用核反应的质量亏损的原子质量单位数乘931.5 MeV ,即ΔE =Δm ×931.5 (MeV).3.常见的核反应 (1)衰变 (2)重核裂变 (3)轻核聚变 (4)人工转变例3 [2022·全国甲卷]两种放射性元素的半衰期分别为t 0和2t 0,在t =0时刻这两种元素的原子核总数为N ,在t =2t 0时刻,尚未衰变的原子核总数为N3,则在t =4t 0时刻,尚未衰变的原子核总数为( )A .N12B .N9C .N8D .N6[解题心得]预测6 [2022·历城二中测评]2021年12月30日,中国“人造太阳”——全超导托卡马克核聚变实验装置(EAST)再次创造新的世界纪录,实现1 056秒的长脉冲高参数等离子体运行.大科学工程“人造太阳”通过核反应释放的能量用来发电,其主要的核反应过程可表示为( )A.t 12+12H―→23He +01tB . 714t +24He―→ 817t +11tC . 92235t +01n―→ 56141tt +3692tt +301tD . 92235U―→ 90234Th +24tt预测7 [2022·辽宁卷]2022年1月,中国锦屏深地实验室发表了首个核天体物理研究实验成果.表明我国核天体物理研究已经跻身国际先进行列.实验中所用核反应方程为Mg 2312―→A t 2613,已知X 、Mg 1223、Al 1326的质量分别为m 1、m 2、m 3,真空中的光速为c ,该反应中释放的能量为E .下列说法正确的是( )A .X 为氘核H 12B .X 为氚核H 13C .E =(m 1+m 2+m 3)c 2D .E =(m 1+m 2-m 3)c 2预测8 (多选)2021年9月,在甘肃省武威市全球首台钍基熔盐核反应堆进行试运行放电,也标志着我国成为世界上第一个对第四代核电技术进行商业化试验运营的国家.反应堆工作原理如图所示,钍232(Th 23290)吸收一个中子后会变成钍233,钍233 不稳定,会变成易裂变核素铀233(U 23392).下列说法正确的是( )A .钍233变成铀233的核反应方程式是:t 90232t―→tt 91233+t −10,tt 91233―→U 92233+t −10B .中间产生的新核镤233(tt 91233)从高能级向低能级跃迁时,会伴随γ辐射C .新核铀233(U 92233)的结合能小于钍233(t 90232t )D .核反应堆是通过核裂变把核能直接转化为电能发电预测9 [2022·辽宁押题卷]碳14是宇宙射线撞击空气中的氮14原子所产生,具有放射性,碳14原子发生β衰变转变为氮14.生物存活期间需要呼吸,其体内的碳14含量大致不变;生物停止呼吸后,体内的碳14开始减少.可以根据死亡生物体内残余碳14含量来推断它的死亡时间.碳14各个半衰期所剩原子比例如图所示,某古木样品中14C 的比例正好是现代植物所制样品的三分之一.下列说法正确的是( )A .碳14的衰变方程式为C 614―→N 714+t −10B .该古木的年代距今大于11 460年C .14C 和14N 中含有的中子个数相等D .如果古木处于高温、高压下测量结果可能有较大误差素养培优·情境命题 与近代物理相关的生活、科技问题与近代物理相关的科技问题相对较多,与我们生活接近的有:放射治疗、辐照保鲜、烟雾报警器等,与生产科技有关的有:射线测厚装置、示踪原子、光伏发电、核电站等.要解决科技发展问题必须要了解科技问题背后的原理.放射治疗、辐照保鲜、射线测厚装置、示踪原子等是利用了放射性同位素的射线,烟雾报警器、光伏发电利用了光电效应,核电站利用了核裂变.情境1 [2022·浙江6卷](多选)秦山核电站生产C 614的核反应方程为N 714+t 01―→C 614+X ,其产物C 614的衰变方程为C 614―→t 714+t −10.下列说法正确的是( )A .X 是H 11B .C 614可以用作示踪原子 C .t −10来自原子核外D .经过一个半衰期,10个C 614将剩下5个[解题心得]情境2 (多选)2021年4月13日日本政府宣布将向太平洋倾倒逾125万吨福岛核电站内储存的核废水,消息一出举世哗然.福岛核电站的裂变材料是铀235,核废水含有大量的氚以及钡141、氪92、锶90、钴60、碘129、钉106等放射性核素.由于含氚的水和普通的水具有相同的化学性质,物理性质也相近,因而现有的废水处理技术很难去除,铀235的半衰期大约为12.5年.针对这一事件,下列同学的观点正确的是( )A .为了保护海洋环境,日本政府应在12.5年后再排放经过处理的核废水B .比较铀235、钡141、氪92、锶90的原子核,铀235的平均核子质量最大C .比较铀235、钡141、氪92、锶90的原子核,铀235的比结合能最大D .核反应方程:t 92235+t 01―→tt 56141+tt 3692+3X 中的X 是中子n 01[解题心得]情境3 (多选)红外测温具有响应时间快、非接触、安全准确的优点,在新冠疫情防控中发挥了重要作用.红外测温仪捕捉被测物体电磁辐射中的红外线部分,将其转变成电信号.图甲为红外线光谱的三个区域,图乙为氢原子能级示意图.已知普朗克常量h =6.63×10-34J·s,光在真空中的速度c =3.0×108m/s ,下列说法正确的是( )A .红外线光子能量的最大值约为1.64 eVB .氢原子从n =3能级向n =2能级跃迁时释放出的光子能被红外测温仪捕捉C.大量氢原子从n=4能级向低能级跃迁时,红外测温仪可捕捉到2种频率的红外线D.大量处于n=2激发态的氢原子吸收能量为2.86 eV的光子后,辐射出的光子可能被红外测温仪捕捉[解题心得]情境4 [2022·山东青岛二模](多选)如图为某同学设计的一个光电烟雾探测器,光源S发出一束波长为0.8 μm的红外线,当有烟雾进入探测器时,来自S的红外线会被烟雾散射进入光电管C,当红外线射到光电管中的金属表面时发生光电效应,当光电流大于8×10-9A时,便会触发报警系统.已知元电荷e=1.6×10-19C,光在真空中的传播速度为3×108 m/s.下列说法正确的是( )A.光电流的大小与光照强度无关B.若光源发出的是可见光,则该装置将会失去报警功能C.该金属的极限频率小于3.75×1014 HzD.若射向光电管C的光子中有10%会产生光电子,当报警器报警时,每秒射向该金属表面的光子数最少为5×1011个[解题心得]专题十五 光电效应 能级跃迁 原子核高频考点·能力突破考点一例1 解析:根据遏止电压与最大初动能的关系有eU c =E kmax ,根据爱因斯坦光电效应方程有E kmax =hν-W 0,结合图像可知,当U c 为0时,解得W 0=hνc ,A 正确;钠的截止频率为νc ,根据图像可知,截止频率约为5.5×1014Hz ,B 错误;结合遏止电压与光电效应方程可解得U c =h e ν-W 0e ,对比遏止电压U c 与入射光频率ν的实验曲线可知,图中直线的斜率表示h e ,C 错误;根据遏止电压与入射光的频率关系式可知,遏止电压U c 与入射光频率ν成线性关系,不是成正比,D 错误.答案:A预测1 解析:只增大光的频率,肯定有光电子从光电管的阴极到达阳极,从而使电路导通,一定可以还原出声音,反之则不一定发生光电效应现象使电路导通,故A 、B 错误;光照射部分为阴极材料,光电子到达另一侧,在电场力作用下到达电源正极,故a 端为电源正极,故C 正确,D 错误.答案:C预测2 解析:根据题表数据可知金属钙的极限频率为7.73×1014Hz ,只有当环境中有高于7.73×1014 Hz 的电磁波辐射时,才能使光电子从钙板中逸出,从而使灵敏电流表有示数,所以发生光电效应的金属板应该选用金属钙,故A 正确;根据题表数据可知金属钠的极限频率为5.53×1014 Hz ,如果发生光电效应的金属板选择金属钠,则电流表有示数时,环境中一定含有频率高于5.53×1014 Hz 的电磁波,不一定含有频率高于7.73×1014 Hz 的电磁波,故B 错误;要想提高仪器的灵敏度,电流表选灵敏一些的,且为了能够使光电子能够更易到达阳极,两板间距应选适当小一些的,故C 错误;如果在两板间加上“左负右正”的电压,光电子受到向右的电场力,更易到达阳极,效果会更好,故D 错误.答案:A预测3 解析:当滑片P 与c 正对时,光电管两端无电压,由题中右图可以看出光电流不为零,故A 正确;由图可知,当U =-0.6 V 时,光电流为0即为遏止电压,即光电管两端接反向电压,则阴极电势应更高,滑片P位于b、c之间,故B错误;由光电效应方程有E k=hν-W0,由图可知,当U=0.6 V时,光电流为0即为遏止电压,则有-0.6 eV=0-E k 联立解得W0=1.0 eV,故C正确;光电子逸出时的最大初动能为E k0=hν-W0=0.6 eV,当U=0.8 V时由动能定理得eU=E k-E k0,得E k=eU+E k0=(0.8+0.6)eV=1.4 eV,故D错误.答案:AC考点二例2 解析:氢原子从n=3能级跃迁到n=1能级时释放的光子能量最大,频率也最大,能量为E1=(-1.51 eV)-(-13.6 eV)=12.09 eV,照射逸出功为2.29 eV的金属钠,光电子的最大初动能为E km=E1-W=9.8 eV,频率大的光子波长小,根据p=h可知频率大的光子λ动量大,A错误,B正确;氢原子从n=3能级跃迁到n=2能级时释放的光子能量为E2=(-1.51 eV)-(-3.4 eV)=1.89 eV<W,该光子不能使金属钠发生光电效应,可知有2种频率的光子能使金属钠产生光电效应,C错误;-1.51 eV+0.85 eV=-0.66 eV,可知氢原子不能吸收该光子从n=3能级跃迁到n=4能级,D错误.答案:B预测4 解析:一群氦离子从n=4能级向低能级跃迁时可以辐射出6种频率的光子,A 选项错误;其中只有从n=4能级向n=3能级跃迁时所辐射出的光子能量小于4.54 eV,不能使金属钨发生光电效应,故共有5种频率的光子能使金属钨发生光电效应,故B选项错误;因为要使处于基态的氢原子发生电离,所需要的光子能量只要达到13.6 eV就可以,根据辐射光子能量等于氦离子能级跃迁前后两能级的能量差可得,有3种频率的光子能使处于基态的氢原子电离,故C选项正确;氦离子只有从n=4能级向n=2能级跃迁时辐射出的光子能量,等于氢原子n=1能级与n=2能级之间的能量差,可使处于基态的氢原子跃迁,故D 选项错误.答案:C预测5 解析:a光的光子能量E a=E4-E2=2.55 eV,b光的光子能量E b=E3-E2=1.89 ,可知λb>λa,B错误;a光照射逸出功W0=2.14 eV的金属时,由于E a>W0 eV,根据E=h cλ能发生光电效应,光电子的最大初动能E k=E a-W0=0.41 eV,A正确;辐射出b光时,电子做圆周运动的半径减小,动能增加,电场力做正功,电势能减小,C错误;一个处于n=4能级的氢原子自发跃迁时,释放出不同频率光的种类最多的情况为n=4→n=3→n=2→n=1,即最多能释放3种频率的光,D错误.考点三例3 解析:设两种放射性元素的原子核原来总数分别为N 1和N 2,则N =N 1+N 2,因为N 余=(12)t T ·N 原,所以t =2t 0时刻,N 3=N 1(12)2+N 2(12)1,联立解得N 1=23N ,N 2=13N ,故t =4t 0时刻,N 1(12)4+N 2(12)2=N 8,C 项正确. 答案:C预测 6 解析:根据题意,实验装置为核聚变装置,核反应方程H 12+H 12―→23 He+01n ,属于核聚变,故A 正确;核反应方程t 714+H 24e―→ 817O +H 11,属于原子核的人工转变,故B 错误;核反应方程t 92235+t 01―→ 56141tt +3692 tt +301n ,属于裂变,故C 错误;核反应方程U 92235―→tt 90234+He 24,属于衰变,故D 错误.答案:A预测7 解析:根据核反应遵循的质量数守恒和电荷数守恒可知,X 的质量数为3,电荷数为1,为氚核H 13,A 错误,B 正确;因该反应为人工转变,反应前两种粒子都有动能(总动能设为E k1),反应后的生成物也有动能E k2,根据质能方程可知,由于质量亏损反应放出的能量为ΔE =Δmc 2=(m 1+m 2-m 3)c 2,则反应释放的能量为E =E k1+ΔE -E k2=E k1-E k2+(m 1+m 2-m 3)c 2,C 、D 错误.答案:B预测8 解析:根据核反应的电荷数和质量数守恒可知,钍233变成铀233的核反应方程式是tt 90232―→t 91233t +−10t ,tt 91233―→ 92233t +t −10,选项A 正确;中间产生的新核镤233( 91233Pa)从高能级向低能级跃迁时,放出能量,会伴随γ辐射,选项B 正确;整个过程中释放能量,则生成的新核铀233( 92233U)更加稳定,则新核铀233( 92233U)的结合能大于钍233(Th 90232),选项C 错误;在核电站的核反应堆内部,核燃料具有的核能通过核裂变反应转化为内能,然后通过发电机转化为电能,故D 错误.答案:AB预测9 解析:根据质量数守恒和电荷数守恒,又因为碳14发生β衰变,所以衰变方程为t 614―→t 714+t -10,故A 正确;根据图像可知,剩余三分之一,时间应该大于5 730年小于11 460年,故B 错误;由元素序数知碳14中子数为8,氮14中子数为7,故C 错误;半衰期与温度、压强无关,故D 错误.素养培优·情境命题情境1 解析:根据核反应方程遵循质量数守恒和电荷数守恒,可知X 为质子 H 11,A 正确;由于t 614具有放射性,且C 是构成生物体的主要元素之一,所以t 614可以用作示踪原子,B 正确;β衰变放出的电子t -10来自原子核,C 错误;由于半衰期是大量原子核衰变的统计规律,对少量原子核不适用,所以经过一个半衰期,10个t 614不一定剩下5个,D 错误.答案:AB情境2 解析:为了保护海洋环境,日本政府在12.5年后还是不能排放经过处理的核废水,因为经过一个半衰期只是有半数发生衰变,还有半数的没有衰变,所以废水还是具有放射性的,所以不能排放,则A 错误;比较铀235、钡141、氪92、锶90的原子核,铀235的平均核子质量最大,所以B 正确;比较铀235、钡141、氪92、锶90的原子核,铀235的比结合能最小,因为比结合能越大原子越稳定,所以C 错误;根据核反应过程中,遵循电荷数,质量数守恒定律,所以核反应方程t 92235+t 01―→ 56141tt + Kr 3692+3X 中的X 是中子n 01,则D 正确.答案:BD情境3 解析:红外线最短波长和最长波长分别为λmin =0.76 μm,λmax =1 000 μm,根据光子能量E =hν=h c λ,代入数据可得光子最大和最小能量分别为E max =1.64 eV ,E min =1.24×10-3eV ,A 正确;氢原子从n =3能级向n =2能级跃迁时释放出的光子能量E =-1.51-(-3.4)=1.89 eV>E max ,因此不会被红外测温仪捕捉到,B 错误;大量氢原子从n =4能级向低能级跃迁时,放出的能量为E 43=-0.85-(-1.51)=0.66 eV ,E 32=-1.51-(3.4)=1.89 eV ,只有从n =4向n =3轨道跃迁时放出的光子能量在红外区,因此红外测温仪可捕捉到1种频率的红外线,C 错误;大量处于n =2激发态的氢原子吸收能量为2.86 eV 的光子后跃迁到n =5的能级,再从该能级向回跃迁时,放出的能量有E 54=-0.54-(-0.85)=0.31 eV ,E 43=-0.85-(-1.51)=0.66 eV ,因此,辐射出的光子可能被红外测温仪捕捉,D 正确.答案:AD情境4 解析:在达到饱和电流之前,光照强度越大,光电流越大,光电流的大小与光照强度有关,故A 错误;根据报警器的工作原理,可见光的光子能量大于红外线的光子能量,所以若光源发出的是可见光,则该装置不会失去报警功能,故B 错误;根据波长与频率的关系式有c =λν,代入数据,可得ν=3.75×1014 Hz ,根据光电效应原理,可知该金属的极限频率小于3.75×1014 Hz ,故C 正确;当光电流等于8×10-9 A 时,每秒产生的光电子的数目为N =8×10−91.60×10−19个=5×1010个,若射向光电管C 的光子中有10%会产生光电子,故每秒射向金属表面的光子数最少为5×101010%个=5×1011个,故D 正确. 答案:CD。
光电效应
光强无关
光的波动理论在解释光电 效应时遇到了巨大的困难。后 来,爱因斯坦在普朗克量子化 理论的启发下,提出了光子学 说。
普朗克
爱因斯坦
E h
光子说
爱因斯坦在1905年提出,在空间中传播
的光也不是连续的,而是一份一份的,每一 份叫做一个光量子,简称光子. 光子的能量和频率成正比:
E h
光子说
光子说的这两点实际上是针对波动理 论的两大要害提出的.爱因斯坦当时在 实验事实还不是很充分的时候,提出了 光子说,是对科学的重大贡献.这也说 明理论与新的实验事实不符时,要根据 事实建立新的理论,因为实践是检验真 理的唯一标准.
3.光电效应的四条规律中,波动说仅能解 释的一条规律是[ ] A.入射光的频率必须大于或等于被照金 属的极限频率才能产生光电效应 B.发生光电效应时,光电流的强度与人 射光的强度成正比 C.光电子的最大初动能随入射光频率的 增大而增大 D.光电效应发生的时间极短,一般不超 过10-9s
4.一束绿光照射某金属发生了光电效应,对 此,以下说法中正确的是[ ] A.若增加绿光的照射强度,则单位时间 内逸出的光电子数目不变 B.若增加绿光的照射强度,则逸出的光 电子最大初动能增加 C.若改用紫光照射,则逸出光电子的最 大初动能增加 D.若改用紫光照射,则单位时间内逸出 的光电子数目一定增加
多次实验结论是: 当入射光的频率大于极限频率时,
光电流强度与入射光的强度成正比。
光电效应的规律: ①各种金属都存在极限频率ν0,只有ν≥ν0 才能发生光电效应; ②光电子的最大初动能与入射光的强度无关, 只随入光的频率增大而增大; ③瞬时性(光电子的产生不超过10-9s); ④当入射光的频率大于极限频率时,光电流的 强度与入光的强度成正比。
光电效应3
物体表面的电子吸收了这个能量后,一部分消耗在克服物体固有的逸出功A上,另一部分则转化为电子的动能,让其能够离开物体表面,成为光电子。
于是我们得到爱因斯坦的光电效应方程:
由此可知,光电子的初动能与入射光频率成线性关系,而与光强度无关。(光强度只对单位时间内逸出物体表面的光电子的个数产生影响)
光电效应的光电阈值:
红限:当入射光频率 低于某一值 时,无论用多强的光照都不会发生光电效应。由光电效应方程易得这个频率 ,称为红限。
测量普朗克常量的方法:
用光波频率为 的单色光照射阴极板,测量其遏制电位差 。
于是有:
所以:
这表明了截止电压 和光波频率 成正比。
实验中获得单色光的方法:
使用水银灯发出稳定白光作为光源,再使用不同颜色的滤光片罩在光电管的入光口以得到相应颜色的单色光,还可以使用不同透光度的遮光片罩在水银灯的出光口以得到不同强度的光。
由于暗电流的值通常很小,且对U通常也满足线性关系。故本实验中可以忽略其造成的影响。
而阳极反向光电流虽然在实验中较显著,但它服从一定规律。据此,确定遏止电位差值,可采用以下两种方法:
(1) 交点法:光电管阳极用逸出功较大的材料制作,制作过程中尽量防止阴极材料蒸发,实验前对光电管阳极通电,减少其上溅射的阴极材料,实验中避免入射光直接照射到阳极上,这样可使它的反向电流大大减少,其伏安特性曲线与上面左图(理想曲线)十分接近,因此曲线与U轴交点的电位差值近似等于遏止电位差Ua,此即交点法。
光电效应装置:
S为真空光电管。内有电极板,A、K极板分别为阳极和阴极。G为检流计(或灵敏电流表)。无光照时,光电管内部断路,G中没有电流通过。U为电压表,测量光电管端电压。由于光电管相当于阻值很大的“电阻”,与其相比之下检流计的内阻基本忽略。故检流计采用“内接法”。
爱因斯坦光电效应方程
例题:由密立根实验(Uc和v的关系)计算普朗克常量
六、Ek 图像和U c 图像
EK Uc
ν
0 -W0
ν
0
ν0
方程: Ek h W0W0 h Uc 方程: e e
c 横轴截距:
W0 纵轴截距:
斜率:h
c 横轴截距:
W0 纵轴截距: e h
斜率:
e
1 2 (2) me v eU c 2
2
入射光的频率为截止频率 c (3)当 Ek 0时,
(4)电子一次性吸收光子的全部能量,不需 要积累能量的时间。
W0 即 0 h c W0 所以 c h
(5)对于同种颜色(频率 相同)的光,光 较强时,包含的光子数较多,照射金属时产生 的光电子较多,因而饱和电流大。 (6)对于不同颜色(频率 不同)的光,频 率 越大,光子的能量h 越大,光电子获得 的最大初动能 Uc Ek 越大,遏止电压 U c 越大。
第二课
三、逸出功(W0) 电子脱离某种金属所做的功的最小值, 叫做这种金属的逸出功
四、爱因斯坦的光电效应方程
1.光子 光本身就是由一个个不可分割的能量子 组成的,频率为 的光的能量子为h ,h为 普朗克常量。这些能量子后来称为光子。
2.光电效应方程
Ek h W0
五、对公式 Ek h W0的理解: (1) Ek为最大初动能, Ek 1 me v 2
4.2光电效应方程及其意义
1、产生光电效应的条件:
任何一种金属,都存在极限频率υ0,只有当入射光频率
υ>υ0时,才能发生光电效应。
2、光电子的最大初动能:
光电子的最大初动能Ekm与入射光强度无关,只随入射
光频率的增大而增大。
3、光电效应的发生时间:几乎是瞬时发生的。
4、光电流强度的决定因素:
式中的h = 6.63×10-34j·s
(普朗克常量)。
这个学说后来叫光子假说。
光电效应方程
按光子假说,光电效应中发出的光电子,是由入射光子
与金属中电子碰撞后打出来的。
由于离子的束缚,电子只有吸收一定的能量,才能从物
体内部逃脱,成为光电子。即:必须对内部电子做功,
电子才能脱离离子的束缚而逸出表面,使电子脱离某种
最小的是
A
A.红光
B.橙光
C.黄光
D.绿光
【练3】(单)某单色光照射某金属时不能发生光电效应,
则下述措施中可能使该金属产生光电效应的是
C
A.延长光照时间
B.增强光的强度
C.换用波长较短的光照射
D.换用频率较低的光照射
【练4】(多)光电效应的四条规律中,经典的电磁理论不
能解释的有
ABC
A.入射光的频率必须大于被照射的金属的极限频率才
理论值完全一致,又一次证明了“光量子”理论的正
确。
由于爱因斯坦提出的光子假说成功地说明了光电效应
的实验规律,荣获1921年诺贝尔物理学奖。
光电效应理论的验证
爱因斯坦由于对光电效应
的理论解释和对理论物理
学的贡献获得1921年诺贝
尔物理学奖。
。
密立根由于研究基本电荷和
光电效应的三个公式
光电效应的三个公式光电效应是指当光照射到一些物质表面时,该物质会发射出电子的现象。
光电效应是量子力学的基本现象之一,可以通过以下三个公式进行描述和研究。
1. 光电效应方程(Einstein Equation):光电效应方程是由爱因斯坦在1905年基于光子论假设推导出来的,可以用来计算光电效应中的电子动能。
该方程如下所示:E=hν-Φ2.减少光电效应门槛的方法:减少光电效应的门槛是指通过一定的方法,使得材料对光子的吸收能力增强,提高光电效应的发生概率。
为了描述该方法,我们引入以下公式:Φ=hν-W其中,Φ为材料的逸出功,h为普朗克常数,ν为光子的频率,W为光子的功函数。
该公式表明,逸出功可以通过光子的功函数进行补偿。
如果材料的功函数较大,那么对应的逸出功也较大,对光电效应的概率较低。
因此,减少逸出功的方法之一就是通过调整光子的功函数。
3.光电流方程:光电流是指在光照射下,从材料中流出的电流。
光电流方程用来描述光电效应中电子流出的电流强度,可表示如下:I = qnA其中,I为光电流,q为元电荷的电量(1.6×10^-19C),n为单位体积内光电子的数目,A为光照射的区域面积。
该方程表明,光电流的强度取决于单位体积内光电子的数目和光照射的区域面积。
该公式可以用来研究光电效应中的光电流特性和实验测量。
综上所述,光电效应可以通过上述三个公式进行描述。
光电效应方程用来计算光电效应中的电子动能,减少光电效应门槛的方法可以通过改变材料的功函数来调整逸出功,光电流方程用来描述光电效应中电子流出的电流强度。
这些公式为我们研究和应用光电效应提供了重要的理论基础。
17.2波粒二象性
四.爱因斯坦的光电效应方程
1.为了解释光电效应,爱因斯坦在能量子假说的 基础上提出光子理论,频率为 的光是由大量能量子 为 =h 的光子组成. 2.爱因斯坦光电效应方程 在光电效应中金属中的电子吸收一个光子获得的 能量是h ,一部分用来克服金属的逸出功W0,剩下的 表现为逸出后光电子的最大初动能 Ek ,由能量守恒可 得出:
17.2.1
学习目标
光电效应
光子
一、光电效应现象和产生光电效应的条件。 二、光电效应的实验规律:
1.存在饱和电流;
2.存在着遏止电压;
3.光电效应具有瞬时性。
三、光电效应解释中的疑难。 四、爱因斯坦的光电效应方程:
h Ek W0
一、光电效应现象
在光(包括不 可见光)的照射下, 金属中电子从表面 逸出的现象叫做光 电效应。
0 c (1 cos j )
c = 0.0241Å=2.4110-3nm(实验值)
称为电子的Compton波长 只有当入射波长0与c可比拟时,康普顿效应才显 著,因此要用X射线才能观察到康普顿散射,用可 见光观察不到康普顿散射。
经典电磁理论在解释康普顿效应时 遇到的困难
当 A 、K 间加反向电压, 光电子要克服电场力作功,
A
阳极
阴极
K
当电压达到某一值 Uc 时,
光电流恰为0。 Uc称遏止电压。
G
V
遏止电压Uc(光电子的最大 初动能) 和光的强度无关,只 与光的频率有关.
二.光电效应的实验规律 3.光电效应具有瞬时性 入射光的频率大于极限(截止)频率 时,无论光强怎么微弱,几乎在照到 金属时立即产生光电效应.
一.康普顿散射的实验装置与规律:
0
光电效应光子爱因斯坦方程
德布罗意假设:实物粒子具有波粒二象性。
粒子性
E mc2 h
P
mv
h
/
波动性
第十五章 量子物理
8
物理学
15-6 德布罗意波 实物粒子的二象性
第五版
德布罗意公式
h h
p mv
这种波称为德布罗意波或物质波
注意
(1)若 vc 则 mm0
若 v c则 m
m0
1
v2 c2
第十五章 量子物理
9
物理学
15-6 德布罗意波 实物粒子的二象性
第十五章 量子物理
5
物理学
15-6 德布罗意波 实物粒子的二象性
第五版
德布罗意(1892 — 1987)
法国物理学家,原来学习历史. 1924年在他的博士论文《关于 量子理论的研究》中提出把粒 子性和波动 性统一起来. 为量子力学
的建立提供
了物理基础.
第十五章 量子物理
6
物理学
15-6 德布罗意波 实物粒子的二象性
dsin kh 1
2emU
sin kh 1
d 2emU
sin 0.77 k7
当 k 1时, ar0 c .7s 7 5 i n 7 与1 实验结
果相近.
第十五章 量子物理
16
物理学
15-6 德布罗意波 实物粒子的二象性
第五版
三 应用举例
1932年鲁斯卡成功研制了电子显微镜 ;
1981年宾尼希和罗雷尔制成了扫描隧穿 显微镜.
第五版
光的波粒二象性
粒子性
(具有能量) E
h
(具有动量)P
波动性
(具有频率)
(具有波长)
近代物理——光电效应、波粒二象性讲义
光电效应、波粒二象性高考对光电效应、波粒二象性考查的重点有:光电效应规律的理解、爱因斯坦光电效应方程的理解和应用、光电效应相关图像的理解等,既可以对本部分内容单独考查,也可以与能级跃迁等知识相结合进行综合考查,主要以选择题的形式出现,考查学生的理解和综合应用能力。
光电效应规律的理解及其应用(2022重庆模拟)如图所示,在研究光电效应的实验中,保持P的位置不变,用单色光a照射阴极K,电流计G的指针不发生偏转;改用另一频率的单色光b照射K,电流计的指针发生偏转,那么()A.增加a的强度一定能使电流计的指针发生偏转B.用b照射时通过电流计的电流由d到cC.只增加b的强度一定能使通过电流计的电流增大D.a的波长一定小于b的波长关键信息:用单色光a照射阴极K,电流计G的指针不发生偏转→a光的频率小于阴极K的截止频率→增加a的强度无法使电流计的指针发生偏转改用另一频率的单色光b照射K,电流计的指针发生偏转→b光的频率大于阴极K的截止频率→增加b的强度,可以使光电流增大解题思路:本题主要明确光电效应现象产生的条件是入射光的频率大于或等于金属的截止频率,来进行相关的判断。
明确在光的颜色(频率)不变的情况下,入射光越强,饱和电流越大。
A .用单色光a 照射阴极K ,电流计G 的指针不发生偏转,说明a 光的频率小于阴极K 的截止频率,增加a 的强度也无法使电流计的指针发生偏转,A 错误;B .电子运动方向从d 到c ,电流方向从c 到d ,B 错误;C .只增加b 的强度可以使光电流增大,使通过电流计的电流增大,C 正确;D .b 光能使阴极K 发生光电效应,b 光的频率大于阴极K 的截止频率也就大于a 光的频率,由λ=cν可知b 的波长一定小于a 的波长,D 错误。
故选C 。
(2022安徽月考)从1907年起,美国物理学家密立根用如图所示的实验装置测量光电效应中几个重要的物理量。
在这个实验中,若先后用频率为ν1、ν2的单色光照射阴极K 均可产生光电流。
光电效应实验的实验报告(3篇)
第1篇一、实验目的1. 了解光电效应的基本规律。
2. 验证爱因斯坦光电效应方程。
3. 掌握用光电效应法测定普朗克常量的方法。
4. 学会用作图法处理实验数据。
二、实验原理光电效应是指当光照射在金属表面时,金属表面会发射出电子的现象。
这一现象揭示了光的粒子性,即光子具有能量和动量。
爱因斯坦在1905年提出了光量子假说,认为光是由光子组成的,每个光子的能量与其频率成正比。
光电效应方程为:\(E = h\nu - W_0\),其中 \(E\) 为光电子的最大动能,\(h\) 为普朗克常量,\(\nu\) 为入射光的频率,\(W_0\) 为金属的逸出功。
三、实验仪器与材料1. 光电效应实验仪2. 汞灯3. 干涉滤光片4. 光阑5. 高压灯6. 微电流计7. 电压表8. 滑线变阻器9. 专用连接线10. 坐标纸四、实验步骤1. 将实验仪及灯电源接通,预热20分钟。
2. 调整光电管与灯的距离为约40cm,并保持不变。
3. 用专用连接线将光电管暗箱电压输入端与实验仪电压输出端连接起来。
4. 将电流量程选择开关置于所选档位(-2V-30V),进行测试前调零。
5. 调节好后,用专用电缆将电流输入连接起来,系统进入测试状态。
6. 将伏安特性测试/遏止电压测试状态键切换到伏安特性测试档位。
7. 调节电压调节的范围为-2~30V,步长自定。
8. 记录所测UAK及I的数据,在坐标纸上绘制UAK-I曲线。
9. 重复以上步骤,改变入射光的频率,记录不同频率下的UAK-I曲线。
10. 根据UAK-I曲线,计算不同频率下的饱和电流和截止电压。
11. 利用爱因斯坦光电效应方程,计算普朗克常量。
五、实验数据整理与归纳1. 不同频率下的UAK-I曲线(附图)2. 不同频率下的饱和电流和截止电压3. 计算得到的普朗克常量六、实验结果与分析1. 根据实验数据,绘制不同频率下的UAK-I曲线,可以看出随着入射光频率的增加,饱和电流逐渐增大,但增速逐渐减小。
光电效应知识点归纳
光电效应知识点归纳张阿兵高考(全国卷)命题分析1.考查方式:高考对本部分内容考查形式比较固定,一般比较单一的考查某个知识点,且知识点相对比较单一,题型为选择题和填空题.2.命题趋势:由于本部分内容涉及点较多,且已经改为必考内容,今后的命题将向着多个考点融合的方向发展,且以选择题的形式考查.光电效应是指在光的作用下,从物体表面释放电子的现象。
这种现象是1887年赫兹研究电磁波时发现的,1905年爱因斯坦提出“光量子”假设,并用光电方程成功的解释了这一实验结果。
约十年后密立根用实验证实了爱因斯坦的光电子理论,并测定了普朗克常数。
爱因斯坦与密立根都因光电效应方面的杰出贡献分别获得1921年和1923年的诺贝尔物理学奖。
而今光电效应已经广泛地应用于各科技领域。
如利用光电效应制成的光电管、光电池、光电倍增管等光电转换器件,把光学量转换成电学量来测量,已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的元件。
光电效应1.定义:金属在光的照射下发射电子的现象称为光电效应,发射出来的电子称为光电子.2.光电管:光电管是由密封在玻璃壳内的阴极和阳极组成.阴极表面涂有碱金属,容易在光的照射下发射电子. 3.光电流:阴极发出的光电子被阳极收集,在回路中会形成电流,称为光电流. 4.极限频率对于每一种金属,只有当入射光的频率大于某一频率ν0时,才会产生光电流,ν0称为极限频率(也叫截止频率). 5.光电效应规律(1)每种金属都有一个极限频率,入射光的频率必须大于等于这个极限频率才能产生光电效应. (2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大. (3)光电效应的发生几乎是瞬时的,一般不超过10-9s.(4)当入射光的频率大于极限频率时,饱和光电流的大小与入射光的强度成正比. 光子说对光电效应的解释(1)由于光的能量是一份一份的,那么金属中的电子也只能一份一份地吸收光子的能量,而且这个传递能量的过程只能是一个光子对一个电子的行为.如果光的频率低于极限频率,则光子提供给电子的能量不足以克服原子的束缚,就不能发生光电效应.(2)当光的频率高于极限频率时,能量传递给电子以后,电子摆脱束缚要消耗一部分能量,剩余的能量以光电子的动能形式存在,这样光电子的最大初动能E k =12mv 2max =hν-W 0,其中W 0为金属的逸出功,可见光的频率越高,电子的最大初动能越大.而遏止电压U 0对应着光电子的最大初动能,即eU 0=12mv 2max .所以当W 0一定时,U 0只与入射光的频率ν有关,与光照强弱无关.(3)电子一次性吸收光子的全部能量,不需要积累能量的时间,所以光电效应的发生几乎是瞬时的.(4)发生光电效应时,单位时间内逸出的光电子数与光强度成正比,光强度越大意味着单位时间内打在金属上的光子数越多,那么逸出的光电子数目也就越多,光电流也就越大. 两条对应关系(1)光照强度大→光子数目多→发射光电子多→光电流大; (2)光子频率高→光子能量大→光电子的最大初动能大. 6.光电效应的产生条件入射光的频率大于等于金属的极限频率. 7. 三个关系式(1)爱因斯坦光电效应方程:hν=12mv2+W.(2)最大初动能与遏止电压的关系:E k=eU0.(3)逸出功与极限频率的关系W=hν0.(逸出功的大小由金属本身决定,与入射光无关.)理解:光电效应方程揭示的是:光子照射金属时,金属表面的电子吸收光子能量(一个光子对一个电子)后,为了脱离原子核及周围电子的阻力,必须克服中金属中正电荷引力做功即W0。
原子物理方程式
原子物理中涉及多种不同的物理过程和现象,每种过程或现象可能有特定的方程式来描述。
以下是一些常见的原子物理方程式及其解释:1. 波长和频率的关系:c = λν其中,c是光速(约为3×10^8米/秒),λ是波长,ν是频率。
这个公式描述了电磁辐射的波长和频率之间的关系。
2. 德布罗意波动方程:λ = h / p这是描述物质波(即粒子具有波动性)的方程,其中λ是波长,h是普朗克常数,p是粒子的动量。
这个方程表明,任何具有动量的粒子都可以表现出波动性,其波长与动量成反比。
3. 巴尔末公式:1/λ = R (1/2² - 1/n²)这是描述氢原子光谱在可见光区的一条经验公式,其中λ是谱线的波长,n是大于2的整数(对应于氢原子的不同能级),R是里德伯常量(约为1.10×10^7米^-1)。
这个公式可以用来计算氢原子光谱中不同谱线的波长。
4. 玻尔能级公式:E_n = -hcR/n²这是玻尔提出的描述氢原子能级的公式,其中E_n是第n个能级的能量,h是普朗克常数,c是光速,R是里德伯常量。
这个公式表明,氢原子的能级是分立的,且能级的能量与n²成反比。
当氢原子从较高能级跃迁到较低能级时,会发射出光子,其能量等于两个能级之间的能量差。
5. 爱因斯坦光电效应方程:E_k = hν - W_0这是描述光电效应的方程,其中E_k是光电子的动能,h是普朗克常数,ν是入射光的频率,W_0是金属的逸出功(即最小截止频率对应的能量)。
这个方程表明,光电子的动能与入射光的频率有关,而与光的强度无关。
当入射光的频率大于金属的截止频率时,才能发生光电效应。
6. 衰变定律:N = N_0 e^(-λt) 或A = A_0 e^(-λt)这是描述放射性衰变的方程,其中N(或A)是t时刻的放射性原子核数(或活度),N_0(或A_0)是初始时刻的放射性原子核数(或活度),λ是衰变常数(与半衰期T_1/2有关,λ = ln(2) / T_1/2),t是时间。
光电效应规律理解与分析
光电效应规律理解与分析【核心考点提示】1.光电效应现象在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做光电子.2.实验规律(1)每种金属都有一个极限频率.(2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大.(3)光照射到金属表面时,光电子的发射几乎是瞬时的.(4)光电流的强度与入射光的强度成正比.3.爱因斯坦光电效应方程(1)光子:光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子组成的,这些能量子称为光子,频率为ν的光的能量子为hν.(2)爱因斯坦光电效应方程①表达式:hν=E k+W0或E k=hν-W0.②物理意义:金属中电子吸收一个光子获得的能量是hν,这些能量一部分用于克服金属的逸出功,剩下的表现为逸出后电子的初动能E k.【微专题训练】(2018·山东省潍坊市高三上学期期末试题)关于光电效应,下列说法正确的是(B) A.只要入射光的强度足够强,就可以使金属发生光电效应B.光子的能量大于金属的逸出功就可以使金属发生光电效应C.照射时间越长光电子的最大初动能越大D.光电子的最大初动能与入射光子的频率成正比[解析]根据光电效应规律,只要入射光的频率足够大,就可以使金属发生光电效应,选项A错误;光子的能量大于金属的逸出功就可以使金属发生光电效应,选项B正确;光电子的最大初动能与照射时间无关,选项C错误;光电子的最大初动能随入射光子的频率增大而增大,并不是成正比,选项D错误;故选B。
(2018·湖南长沙高三上学期期末)利用如图所示的电路研究光电效应现象,其中电极K由金属钾制成,其逸出功为2.25eV。
用某一频率的光照射时,逸出光电子的最大初动能为1.50eV,电流表的示数为I.已知普朗克常数约为6.6×10-34J·s,下列说法正确的是(AD)A .金属钾发生光电效应的极限频率约为5.5×1014HzB .若入射光频率加倍,光电子的最大初动能变为3.00eVC .若入射光频率加倍,电流表的示数变为2ID .若入射光频率加倍,遏止电压的大小将变为5.25V[解析] 根据hνC =W 0得:金属钾发生光电效应的极限频率νC =2.25×1.6×10-196.6×10-34=5.5×1014Hz ,故A 正确;由光电效应方程E k =hν﹣W 0可知,入射光频率加倍,光电子的最大初动能大于原来的两倍,即大于3.00eV ,故B 错误;入射光频率加倍后,光电流增大,但不是2倍的关系,故C 错误;频率加倍前,入射光的能量hν=E k +W 0=3.75eV ,频率加倍后,入射光能量为2hν=7.5eV ,最大初动能为E k ′=2hν-W 0=5.25eV ,根据Ue =E k ′可知,遏止电压的大小为U =5.25V ,故D 正确。
2024版高考物理光电效应七大题型总结
2024版高考物理光电效应七大题型总结【考点归纳】考点一:光电效应的规律考点二:爱因斯坦的光电效应方程 考点三:光电效应的函数图像问题考点四:不同的色光照射是否能发生光电效应 考点五:饱和光电流 考点六:额止电压考点七:光电效应的最大初速度【知识归纳】知识点一、光电效应的实验规律1.光电效应:照射到金属表面的光,能使金属中的电子从表面逸出的现象. 2.光电子:光电效应中发射出来的电子. 3光电效应的实验规律(1)存在截止频率:当入射光的频率低于截止频率时不(填“能”或“不”)发生光电效应. (2)存在饱和电流:在光的频率不变的情况下,入射光越强,饱和电流越大. (3)存在遏止电压:使光电流减小到0的反向电压U c ,且满足12m e v c 2=eU c .(4)光电效应具有瞬时性:光电效应几乎是瞬时发生的. 知识点二、爱因斯坦的光电效应理论1.光子:光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν,其中h 为普朗克常量.这些能量子后来称为光子.2.逸出功:使电子脱离某种金属,外界对它做功的最小值,用W 0表示.不同种类的金属,其逸出功的大小不相同(填“相同”或“不相同”). 3.爱因斯坦光电效应方程(1)表达式:hν=E k +W 0或E k =hν-W 0.(2)物理意义:金属中电子吸收一个光子获得的能量是hν,在这些能量中,一部分大小为W 0的能量被电子用来脱离金属,剩下的是逸出后电子的初动能E k .(3)U c 与ν、W 0的关系:①表达式:U c =h e ν-W 0e .①图像:U c -ν图像是一条斜率为he的直线.技巧归纳一:光电效应现象和光电效应方程的应用(1)能否发生光电效应,不取决于光的强度而取决于光的频率. (2)光电效应中的“光”不是特指可见光,也包括不可见光. (3)逸出功的大小由金属本身决定,与入射光无关. (4)光电子不是光子,而是电子.2.两条对应关系(1)光强大→光子数目多→发射光电子多→光电流大; (2)光子频率高→光子能量大→光电子的最大初动能大. 3.三个关系式(1)爱因斯坦光电效应方程:E k =hν-W 0. (2)最大初动能与遏止电压的关系:E k =eU c . (3)逸出功与极限频率的关系W 0=hνc .技巧归纳二: 光电效应图象四类图象图象名称图线形状由图线直接(间接)得到的物理量最大初动能E k 与入射光频率ν的关系图线①极限频率:图线与ν轴交点的横坐标νc①逸出功:图线与E k 轴交点的纵坐标的值的绝对值W 0=|-E |=E ①普朗克常量:图线的斜率k =h 颜色相同、强度不同的光,光电流与电压的关系①遏止电压U c :图线与横轴的交点 ①饱和光电流I m :光电流的最大值 ①最大初动能:E k =eU c 颜色不同时,光电流与电压的关系①遏止电压U c1、U c2 ①饱和光电流①最大初动能E k1=eU c1,E k2=eU c2 遏止电压U c 与入射光频率ν的关系图线①极限频率νc :图线与横轴的交点 ①遏止电压U c :随入射光频率的增大而增大①普朗克常量h :等于图线的斜率与电子电荷量的乘积,即h =ke .(注:此时两极之间接反向电压)【考点题型归纳】题型一:光电效应的规律1.如图所示,在演示光电效应的实验中,将一带电锌板与灵敏验电器相连,验电器指针张开。
爱因斯坦的光电效应
爱因斯坦主要科学成就
1.早期工作 爱因斯坦早期的工作主要在热力学和统计物理方面,在1900—1904年间,他每年都发表一篇论文发表在德 国《物理学杂志》。这些早期的工作为他在1905年辐射理论和分子动理论方面的重大突破奠定了基础。 2.1905年的奇迹 1905年,爱因斯坦在科学史上创造了一个无先例的奇迹。这一年他写了6篇论文,在3月到9月这半年中, 利用在专利局每天8小时工作以外的时间,在三个领域作出了四个有划时代意义的贡献。分别是: (1)光量子论,提出光量子假说。 (2)分子动理论,1905年4月、5月、12月他发表了三篇有关布朗运动的论文,为解决半个多世纪来科学界 和哲学界争论不休的原子是否存在的问题做出了突出贡献。 (3)创立狭义相对论 爱因斯坦写了一篇开创物理学纪元的长论文《论动体的电动力学》,完整地提出狭义 相对性理论。这是他10年酝酿和探索的结果,它在很大程度上解决了19世纪末出现地古典物理学的危机, 推动了整个物理学理论的革命。。 (4)质能相当性 1905年9月,爱因斯坦写了一篇短文《物体的惯性同它所含的能量有关吗?》,作为相对论的一个推论, 揭示了质量(m)和能量(E)的相当性:E=mc2,并由此解释了放射性元素(如镭)所以能释放出大量能量的 原因。质能相当性是原子核物理学和粒子物理学的理论基础,也为40年实现的核能的释放和利用开辟了道 路。 3.量子论的进一步开拓 爱因斯坦的光量子论的提出,遭到几乎所有老一辈物理学家反对。尽管如此,他依然孤军奋战,坚持不懈 地发展量子理论。他把量子概念扩展到物质内部振动、光化学现象及统计物理学的研究中,在许多领域中 做出了开拓性成就。 4.广义相对论的探索 狭义相对论建立后爱因斯坦并不感到满足,力图把相对性原理的适用范围推广到 非惯性系。他从伽利略发 现的引力场中一切物体都具有同一加速度(即惯性质量同引力质量相等)这一古老实验事实找到了突破口, 于1907年提出了等效原理,此后经过曲折的探索终于1915年完成了被公认为人类思想史中最伟大的成就之 一的广义相对论。 在1915年到1917年的3年中是爱因斯坦科学成就的第二个高峰时期,类似于1905年,他也在三个不同领域 中分别取得了历史性成就。除了1915年最后建成了被公认为人类思想史中最伟大的成就之一的广义相对论 以外,1916年在辐射量子论方面又作出了重大突破,1917年双开创了现代科学的宇宙学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光束射到金属表面使 电子从金属中脱出的现 象称为光电效应。
频 率 相 同
饱和光电流
光强较强 饱和光电流 光强较弱
一、光电效应的实验规律
3、实验规律
1) 在入射光频率不变时,饱和光电流强度 is 与入射光强 I 成正比; i 说明被光照射的电极上, i 单位时间内释出的光电子数与入射光的强 s2 度成正比。
I 2
遏止(截止)电势差 Uo
光电子的最大初动能:
i
s1 光强 I >I
I 1
2 1
Ek max
1 2 mvm 2
eU o
-Uo
0
U
一、光电效应的实验规律
3、实验规律
遏止电势差与入射光的频率成线性关系,与光强无关; 2) 光电子的最大初动能随入射光的频率线性增加,与光强无关;
Uo ν 1 2 Ek max mvm eU o 2
Uo( ) Cs
Na Ca
Ek max U o ν
0
一、光电效应的实验规律
3、实验规律
3) 只有当入射光频率 大于一定的频率 0 时, 才会产生光电效应;
0 称为截止频率或红限频率 Cut off Frequency
4) 光电效应是瞬时发生的, 驰豫时间不超过10-9s
二、经典物理学所遇到的困难
3)若能发生光电效应必要求 1 2 0 hν W 0 mvm 2
红限频率
ν
W ν0 h
ν0
W h
4)一个光子是整体而被电子吸收,不需要时间积累, 因此光电效应的弛豫时间很短。
四、光的波粒二象性
1、光子的能量、质量与动量
爱因斯坦把光束视为粒子流,那么“光”就不仅具有能量,而 且还应该有质量、动量!关于这些问题,爱因斯坦在1905年的第三 篇论文即狭义相对论中全盘推出了。
实验规律
i
is 2 is 1 光强 I2> I1 I2 I1
1) 饱和光电流强度 is 与
入射光强 I 成正比 -UO 0 光子理论的解释:
U
光的强度决定于单位时间内通过单位垂直面积的光子数N, I Nh ν
当入射光的频率一定时,入射光越强则光子数N 就越多,单位时间 产生的光电子数就越多,饱合光电流就越大。
光的波动性和粒子性是通过普朗克常数联系在一起的。 1)在有些情况(干涉、衍射、偏振等)下,光显示出波动性; 光在传播过程中显著地表现出它的波动性。
2)在另一些情况下(热辐射、光电效应等) ,显示出粒子性; 在与物质相互作用时,更多的表现为粒子性。 光具有“波粒二象性” 爱因斯坦获1921年诺贝尔物理奖。
一、光电效应的实验规律
1、光电效应
光的照射下,金属及其化合物中的 电子逸出金属表面的现象。 这些逸出的电子被称为: 光电子 光电子运动形成的电流被称为: 光电流
金属
K A
2、实验装置
在一个真空管内,装有阴极 K 和 阳极 A,当单色光通过石英窗口射到 K 上时,金属板便释放光电子。如果 在 K 、A 两端加上电势差 U,则光电 子飞向阳极,回路中形成光电流。 G V
三、爱因斯坦光电效应方程
3、光子理论对光电效应的解释
实验规律
UO() Cs
Na
Ca
2) 光电子的最大初动能随入射光的 频率线性增加,而与入射光的强 度无关。
0
光子理论的解释:
由
1 1 2 2 mvm eU o 和 hν mvm W 2 2
h W UO ν e e
与实验比较有
按照光的经典电磁理论: 1、逸出光电子的初动能应随光强增大而增大,与频率无关;
2、电子在电磁波作用下作受迫振动,直到获得足够能量逸出, 不应存在截止频率;
3、电子积累能量需要一段时间,光电效应不可能瞬时发生。
三、爱因斯坦光电效应方程
1、爱因斯坦光量子假说(1905)
1)一束光是一束以光速 C 运动的粒子流,这些粒子称为光量子(光子)
2)对于频率为 的单色光,每个光子的能量:
hν
2、爱因斯坦光电效应方程
当频率为 光照射金属时,一个电子整体只吸收一个光子 根据能量守恒:
1 2 hν mvm W 2
W 为该金属材料的逸出功: 电子用于克服金属表面势垒的束缚而做的功。
三、爱因斯坦光电效应方程
3、光子理论对光电效应的解释
K
h e
U o 与频率成线性关系,而与光的强度无关
三、爱因斯坦光电效应方程
3、光子理论对光电效应的解释
3) 只有当入射光频率 大于一定频率 0时, 才会产生光电效应。
0 称为截止频率或红限频率
4) 光电效应是瞬时发生的。 驰豫时间不超过10-9s
1 2 W hν mvm 2
光子理论的解释:
第十五单元 量子物理
Quantum Physics
第二讲 光电效应
Photoelectric Effect
光的波粒二象性
Wave-particle Dualism
爱因斯坦: Einstein 现代时空的创始人 二十世纪的哥白尼 爱因斯坦 20世纪最伟大的物理学家之一,1879年3月14日出生于德 国乌尔姆。1905年,爱因斯坦在科学史上创造了史无前例的奇迹。这一年 的3月到9月半年中,发表了 6 篇论文,在物理学 3 个领域作出了具有划时 代意义的贡献 — 创建了光量子理论、狭义相对论和分子运动论。 爱因斯坦在1915年到1917年的3年中,还在 3 个不同领域做出了历史 性的杰出贡献 — 建成了广义相对论、辐射量子理论和现代科学的宇宙论。 爱因斯坦获得 1921 年的诺贝尔物理学奖
例15-3: 用波长 589.3 nm 的光照射在金属铯上,可产生光电效应。 已知铯的逸出功 W 1.9eV , 求:1)此光光子的能量、质量和动量; 2)光电子的最大初速度; 3)铯的遏止电压。 解: 1)
6.631034 3 108 19 h h 3 . 4 10 (J) 9 589.3 10
光子静止质量: 光子的能量:
m0 0
光子的动量:
hν
mc2
hν hν p mc 2c
hν m 2 c
c
c
p
h
h p en
四、光的波粒二象性
2、光的“波粒二象性” 源自 hνp h波长、频率是描写波动性的物理量, 而质量、动量、能量是描写粒子性的物理量。 所以爱因斯坦对“光”同时赋予了波动性和粒子性。