快速成型技术及原理
快速成型技术的基本原理
快速成型的前提条件。目前,可供建模的 CAD 软件较多,功能也越来越强大, 主要有美国 PTC 公司的 ProEngineer,美国 EDS 公司的 IDEAS,美国 Aatodesk 公司的 MDT 等。这些软件均采用了参数化技术的最新概念,即基于特征、全 尺寸约束、全数据相关、支持尺寸驱动设计修改,给设计者带来了方便与灵 活。在完成三维 CAD 建模后,即可用 CAD 软件输出用于快速成型机加工的模 型格式文件。
理,使其在外观、强度和性能等方面达到设计要求。快速成型技术需要研究、
考察各种原型建造方法、转换技术和测量技术,寻求更好的原型材料并评价
原型对于制造业的影响。
综上所述,快速成型技术的一般步骤是:
①建立三维数据模型;
②寻求可加工、应用的材料(流体、粉末或块体等);
③使用不同工艺原理的高度集成化设备;
④原型或零件的堆砌制造;
格式为 Word 版,下载可任意编辑
快速成型技术的基本原理
⑤原型或零件的后处理。 在计算机上用 CAD 软件根据原型或零件的要求设计三维模型(建模),这是
快速成型技术与传统制造方法有着本质的区别,它采用逐渐增加材料的方 法(凝固、胶接、焊接、烧结、聚合或其他化学反应)来形成所需的原型或零 部件形状,故也称增材制造技术。由于快速成型技术在制造产品过程中不会 产生废弃物(切屑、冷却液等)造成环境污染,故它也是一种绿色制造技术。
快速成型技术是 CAD、CAM、数控技术、激光技术、化学、物理、精密机械、 材料科学与工程的技术集成,解决了传统设计与制造方法中的许多难题。
快速成型技术的基本工作原理是离散与堆积。在使用该技术时,首先设计 者借助三维 CAD,或用实体反求工程(reverseengineering)采集得到有关原 型或零件的几何形状、结构和材料的组合信息,从而获得目标原型的概念, 并以此建立数字化描述模型。之后,将这些信息输出到计算机控制的机电集
快速成型技术
其在处理速度上都可以很好的满足需求,而且时间跨度不大,有利于实现产品开发的高速闭环反馈。 其二:集成化,快速成型技术使得设计环节和制造环节达到了很好的统一,我们知道在快速 成型的操作过程中,计算机中
的CAD模型数据会通过软件转化的方式,自动生成数控指令,依据数据的转化实现对于部件的合理加工。由此看来设计和 制造之间的鸿沟不再存在,达到了高度的集约化。 其三:适用性,快速成型技术,适翻分层技术制造工艺,将复杂的三维切成二维来处理,极大的简化了加工流程,在不存 在三维刀具的干涉的前提下,高效的处理好复杂的中空结构。无论是从理论上来讲,还是从实践上来讲,其技术的适用性 可以应对任何的复杂构件制造。 其四:可调整性,快速成型技术,即真正意义上的数字化系统,是制造业中的利器,我们操作员仅仅需要合理设置一下相 关的参数和属性, 就可以有针对性的处理好各种产品的样品制造和小批量生产;而且在此过程中,保证了成型过程的柔韧 性。 其五:自动化,快速成型技术,实现了完全的自动化成型,只要操作人员输入相关的参数,在不需要多少干涉的情况下,实 现整个过程的自动运行。
从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及,为新的制造技 术的产生奠定了技术物质基础。
快速成型技术的工作原理
快速成型技术的工作原理快速成型技术(Rapid Prototyping Technology,RPT),也称为快速制造技术(Rapid Manufacturing Technology,RMT),是指采用计算机辅助设计(CAD)、数控加工(CNC)和分层制造技术(SLM)等手段,快速制作出具有复杂内部结构的三维实物模型或器件的一种先进制造技术。
快速成型技术主要包括三个方面的内容:现代制造方式、CAD技术和快速成型技术。
快速成型技术的工作原理是将设计图或CAD模型转为STL文件,再将STL文件通过计算机化控制系统控制加工设备的动作,并以逐层堆积、覆盖、切割、加压等方式将逐层依次进行制造,直至完成所需产品的加工制造。
其具体工作流程如下:1.设计阶段首先,使用计算机辅助设计(CAD)软件将所需产品的三维模型绘制出来。
CAD绘图是快速成型技术的关键环节,决定了产品的实际制造效果和制造成本,需要使用专业的CAD软件进行设计。
2.模型处理阶段CAD设计完成后,需要进行一系列的模型处理。
主要包括增补模型壳体、提高模型强度、修复模型错误等。
这一阶段的处理对制造成型的质量和效率有直接的影响。
3.数据修复阶段接下来进入数据修复阶段,对CAD绘制过程中的错误进行修复和清理,以确保STL文件的精度和准确性,避免在制造过程中出现数据错乱和失真等问题。
4.切片阶段STL文件经过数据处理后,需要切成非常小的层面,比如0.1mm,这个过程称为切片。
通过这个过程将模型切成多个水平层面形成多个切片。
每层镶嵌在一起就变成了整个模型。
5.加工阶段加工阶段就是将切片依次导入数控加工机中,喷射实现逐层累加和压实,也就是通常所说的“逐层堆叠”过程。
这个过程就是快速成型技术的核心技术。
6.后处理阶段最后的后处理阶段可以将产品进行研磨、喷漆、涂料处理等等。
完成整个产品制造的过程。
总之,快速成型技术极大地缩短了从概念到产品推向市场的时间。
快速成型技术的高效加工和制造过程为设计师提供更好的自由度,可以随意尝试和实验不同的设计方案,以最快的速度推向市场产品。
快速成型技术
b.设计的易达性
• 可以制造任意复杂形状的三维实体模型,快速成型技术不受零件几何 形状的限制,在计算机管理和控制下能够制造出常规加工技术无法实 现的复杂几何形状零件的建模,能充分体现设计细节,尺寸和形状精 度大为提高,零件不需要经一步加工。
c.快速性
• RP技术是一项快速直接地单件零件的技术。可以直接接受产品设计 (CAD)数据,快速制造出新产品的样件、模具或模型,大大缩短新 产品开发周期、降低成本、提高开发质量。
分层实体成型——LOM成ห้องสมุดไป่ตู้工艺
• LOM(Laminated Object Manufacturing)工艺或称为叠层实体 制造,其工艺原理是根据零件分层几 何信息切割箔材和纸等,将所获得的 层片粘接成三维实体。其工艺过程是: 首先铺上一层箔材,然后用CO,激 光在计算机控制下切出本层轮廓,非 零件部分全部切碎以便于去除。当本 层完成后,再铺上一层箔材,用滚子 碾压并加热,以固化黏结剂,使新铺 上的一层牢固地粘接在已成形体上, 再切割该层的轮廓,如此反复直到加 工完毕,最后去除切碎部分以得到完 整的零件。该工艺的特点是工作可靠, 模型支撑性好,成本低,效率高。缺 点是前、后处理费时费力,且不能制 造中空结构件。
选择性激光烧结成型——SLS成型工艺
SLS(Selective Laser Sintering)工艺,常 采用的材料有金属、陶瓷、ABS塑料等材 料的粉末作为成形材料。其工艺过程是: 先在工作台上铺上一层粉末,在计算机控 制下用激光束有选择地进行烧结(零件的 空心部分不烧结,仍为粉末材料),被烧 结部分便固化在一起构成零件的实心部分。 一层完成后再进行下一层,新一层与其上 一层被牢牢地烧结在一起。全部烧结完成 后,去除多余的粉末,便得到烧结成的零 件。该工艺的特点是材料适应面广,不仅 能制造塑料零件,还能制造陶瓷、金属、 蜡等材料的零件。造型精度高,原型强度 高,所以可用样件进行功能试验或装配模 拟。
快速成型技术原理及应用
快速成型技术原理及应用快速成型技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。
成型原理:基于离散-叠加原理而实现快速加工原型或零件特点:不需机加工设备或者模具即可快速制造形状极为复杂的工件简介:(Rapid Prototyping&Manufacturing, 缩写为RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术. 其特点是可以不需机加工设备或者模具即可快速制造形状极为复杂的工件, 从而在小批量产品生产或新产品试制时节省时间和初始投资.这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用. 而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性.快速成型技术(RP)的成型过程: 首先建立目标件的三维计算机辅助设计(CAD 3D)模型, 然后对该实体模型在计算机内进行模拟切片分层,沿同一方向(比如Z轴)将CAD 实体模型离散为一片片很薄的平行平面; 把这些薄平面的数据信息传输给快速成型系统中的工作执行部件,将控制成型系统所用的成型原材料有规律地一层层复现原来的薄平面, 并层层堆积形成实际的三维实体,最后经过处理成为实际零件.经过20多年的发展, 快速成型技术(RP)有较大发展, 应用非常广泛,尤其在汽车制造,航天航空,建筑,家电,卫生医疗及娱乐等领域有强大的应用.目前基于快速成型技术(RP)开发的工艺种类较多, 可以分别按所用材料划分, 成型方法划分等.1) 利用激光或其它光源的成型工艺的成型:---(SL)---(简称LOM)---(简称SLS)---形状层积技术(简称SDM);2) 利用原材料喷射工艺的成型:---(简称FDM)---三维印刷技术(简称3DP)其它类型工艺有:---树脂热固化成型 (LTP)---实体掩模成型 (SGC)---弹射颗粒成型 (BFM)---空间成型 (SF)---实体薄片成型 (SFP)应用:RPM技术的发展水平而言,在国内主要是应用于新产品(包括产品的更新换代)开发的设计验证和模拟样品的试制上,即完成从产品的概念设计(或改型设计),造型设计,结构设计,基本功能评估,模拟样件试制这段开发过程。
快速成型制造技术
Rapid Prototyping Manufacturing Technique
一、快速原型技术简介
快速成型(Rapid Prototyping) 是由三维 CAD模型直接驱动的快速制造任意复杂形状 三维实体的总称。 它集成了CAD技术、数控技术、激光技 术和材料技术等现代科技成果,是先进制造 技术的重要组成部分。
立体光固化成型法原理图
二、RP 工艺方法简介
1.光固化法
Stereo Lithography Apparatus——SLA
SLA工艺的优点是精度较高,一 般尺寸精度可控制在0.01mm;表面质 量好;原材料利用率接近100%;能制造 形状特别复杂、精细的零件;设备市场 占有率很高。缺点是需要设计支撑;可 以选择的材料种类有限;制件容易发生 翘曲变形;材料价格较昂贵。 该工艺适合比较复杂的中小型零 件的制作。
(1)成型材料种类多, (1)成型速度快; 成型件强度高; (2)成型设备便宜。 (2)精度高,表面质 量好,易于装 配; (3)无公害,可在办 公室环境下进 行。
缺点
(1)需要支撑结构; (2)成型过程发生物 理和化学变化 ,容易翘曲变 形; (3)原材料有污染; (4)需要固化处理, 且不便进行。
紫外光快速成型机的工作原理
三、SCPS350紫外光快速成型机及制作过程 (1)基本原理
光敏树脂快速成型中激光束按照 数控指令扫描,工作平台容器内液态 光敏树脂逐层固化并粘结在一起。从 最底层开始,逐层固化,生成三维原 形实体。工作台每次下降高度即为分 层厚度,分层越薄,加工出的零件的 精度越高。
激光头 热压辊 涂覆纸
工件
4.分层实体制造
Laminated Object Manufacturing——LOM
四种典型的快速成型技术的成型原理
四种典型的快速成型技术的成型原理一、激光烧结成型原理激光烧结成型(Selective Laser Sintering,简称SLS)是一种快速成型技术,其成型原理是利用激光束对粉末材料进行烧结,逐层堆积形成所需的三维实体。
激光烧结成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。
然后,将烧结材料粉末均匀地铺在工作台上,使其表面平整。
接下来,利用激光束控制系统,将激光束按照预定的路径和参数扫描在粉末层表面,使其局部熔融烧结。
激光束的能量使粉末颗粒之间发生熔融和烧结,形成一层固体物质。
再次铺上一层新的粉末材料,重复上述步骤,逐层堆积,直至形成整个三维实体。
最后,将成品从未熔融的粉末中清理出来,并进行后续处理,如热处理或表面处理。
激光烧结成型技术具有成型速度快、制作精度高、制造复杂度高等优点。
由于其成型过程中无需使用支撑材料,可以制造出具有复杂内部结构的零件,因此被广泛应用于航空航天、汽车、医疗器械等领域。
二、光固化成型原理光固化成型(Stereolithography,简称SLA)是一种常见的快速成型技术,其成型原理是利用紫外线激光束对光固化树脂进行逐层固化,最终形成所需的三维实体。
光固化成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。
然后,将液态光固化树脂均匀地铺在工作台上。
接下来,利用紫外线激光束扫描器,将激光束按照预定的路径和参数照射在树脂表面,使其局部固化。
激光束的能量使树脂中的光敏物质发生聚合反应,从而使树脂由液态变为固态。
再次涂覆一层新的液态光固化树脂,重复上述步骤,逐层固化,最终形成整个三维实体。
最后,将成品从未固化的树脂中清洗出来,并进行后续处理,如烘干或光刻。
光固化成型技术具有成型速度快、制造精度高、制造复杂度高等优点。
快速成型技术
快速成型技术1、快速成型简介快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
2、RP 技术的原理RP 技术是采用离散∕堆积成型的原理, 由CAD 模型直接驱动的通过叠加成型方出所需要零件的计算机三维曲面或实体模型, 根据工艺要求将其按一定厚度进行分层, 把三维电子模型变成二维平面信息(截面信息), 在微机控制下, 数控系统以平面加工的方式有序地连续加工出每个薄层并使它们自动粘接成型, 图1 为RP 技术的基本原理。
图1 RP 技术的基本原理。
RP 技术体系可分解为几个彼此联系的基本环节: 三维CAD 造型、反求工程、数据转换、原型制造、后处理等。
2.1立体光固化成型(SLA)该方法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速成型方法。
SLA 技术原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描, 被扫描区域的树脂薄层( 约十分之几毫米) 产生光聚合反应而固化, 形成零件的一个薄层。
工作台下移一个层厚的距离, 以便固化好的树脂表面再敷上一层新的液态树脂, 进行下一层的扫描加工, 如此反复, 直到整个原型制造完毕。
由于光聚合反应是基于光的作用而不是基于热的作用, 故在工作时只需功率较低的激光源。
此外,因为没有热扩散, 加上链式反应能够很好地控制, 能保证聚合反应不发生在激光点之外, 因而加工精度高, 表面质量好, 原材料的利用率接近100%, 能制造形状复杂、精细的零件, 效率高。
第4章 快速成型概述
精选2021版课件
8
4.1.2 快速成型的过程
快速成型基于离散/堆积的思想, 将一个物理实体复杂的三维加工,离散 成一系列二维层片,然后逐点、逐面进行 材料的堆积成型。 是一种降维制造或者 称增材制造技术。
精选2021版课件
9
4.1.2 快速成型的过程
精选2021版课件
10
CAD模型 Z向离散化(分层)
第4章 快速成型技术概述
4.1 快速成型的原理
4.2 快速成型制造工艺的分类
4.2 快速成型技术的应用
4.3 快速成型技术的研究现状及发展趋
势
精选2021版课件
1
4.1 快速成型的原理
4.1.1 快速成型制造的基本概念 4.1.2 快速成型的过程 4.1.3 快速成型技术的特点
精选2021版课件
2
5)技术的高度集成。 集成了CAD、CAM、CNC、
激光、材料等技术。与反求工程(RE)、网络技
术等结合,成为产品精选开2021发版课的件 有力工具。
14
4.2 快速成型制造工艺的分类
一、按制造工艺所使用的材料的状态、 性能特征分为:
▪ 液态聚合、固化:原材料是液态的,利用光能 或热能使特殊的液态聚合物固化从而形成所需 的形状
数字模型可视化,可以进行设计评价、干涉检验,
甚至某些功能测试,将设计缺陷消灭在初步设计阶
段,减少损失。
精选2021版课件
19
1. 概念模型的可视化、零件的观感评价 2. 结构设计验证与装配效验 3. 性能和功能测试
精选2021版课件
20
应用一: 概念模型的可视化、零件的观感评价
消费品
精选2021版课件
精选2021版课件
快速成型专业技术及原理
RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。
快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。
快速成型机的工艺立体光刻成型sla层合实体制造lom熔融沉积快速成型fdm激光选区烧结法SLS多相喷射固化mjs多孔喷射成型mjm直接壳法产品铸造dspc激光工程净成型lens选域黏着及热压成型SAHP层铣工艺lmp分层实体制造som自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。
快速成型技术的原理
快速成型技术的原理快速成型技术(Rapid Prototyping,RP)是一种利用计算机辅助设计和制造技术,通过逐层堆积材料来制造三维实体模型的先进制造技术。
它是一种以增量方式制造物体的技术,与传统的减量方式(如切削加工)相比,RP技术具有制造过程简单、制造周期短、制造精度高等优点,因此在工程设计、医学、航空航天等领域得到了广泛应用。
快速成型技术的原理主要包括建模、切片、堆积和后处理四个主要步骤。
首先,建模是快速成型技术的第一步。
它利用计算机辅助设计软件(CAD)对产品进行三维建模,将产品的设计图形转换为由许多小体积元素组成的三维模型。
建模的关键是准确地描述产品的几何形状和内部结构,以便后续的切片和堆积操作。
其次,切片是快速成型技术的第二步。
在切片过程中,建模软件将三维模型分解为许多薄层,每一层的厚度通常在几十微米到几毫米之间。
切片的精度和层厚度决定了最终制造出的实体模型的表面粗糙度和精度。
接下来是堆积,也就是快速成型技术的核心步骤。
在堆积过程中,通过逐层堆积材料,将切片后的二维轮廓堆积成三维实体模型。
常见的堆积方法包括激光烧结、熔融沉积、光固化等。
不同的堆积方法适用于不同的材料和精度要求,但它们的共同目标是逐层堆积,逐渐形成最终的产品。
最后是后处理,也是快速成型技术的最后一步。
在堆积完成后,通常需要对实体模型进行后处理,包括去除支撑结构、表面处理、热处理等。
后处理的目的是使实体模型达到设计要求的精度和表面质量。
总的来说,快速成型技术的原理是通过建模、切片、堆积和后处理四个主要步骤,利用计算机辅助设计和制造技术,逐层堆积材料来制造三维实体模型。
这种制造技术具有制造过程简单、制造周期短、制造精度高的优点,因此在工程设计、医学、航空航天等领域得到了广泛应用。
随着材料和技术的不断进步,快速成型技术将在未来发展出更多的应用和可能性。
FDM快速成型技术及其应用
感谢观看
4、医疗行业:在医疗领域,FDM技术被用于制造人体植入物、医疗器械等。 由于其制造的材料安全、无毒,且精度高,使得FDM成为医疗行业的重要选择。
5、教育行业:在教育领域,FDM技术常被用于教学示范和实验中,通过打印 出三维模型来帮助学生更好地理解复杂的概念和结构。此外,学生也可以使用 FDM技术来制作自己的设计项目,提高实践能力和创新思维。
六、未来展望
随着科技的快速发展和社会的不断进步,我们期待快速成型技术能够在以下 几个方面有所突破:首先,设备的效率和稳定性还有待提高,以提高生产效率和 质量;其次,材料的种类和性能需要进一步拓展和优化,以满足不同应用场景的 需求;最后,我们期待这种技术能够更好地融入环保理念,以实现可持续的制造 和发展。
(4)材料广泛:光敏树脂种类繁多,可以满足各种不同类型制品的需求。
2、不足
然而,光固化快速成型技术也存在以下不足之处:
(1)成本较高:光固化快速成型技术的设备、材料和维护成本较高,限制 了其广泛应用。
(2)技术难度较大:光固化快速成型技术的技术门槛较高,需要专业人员 进行操作和维护。
(3)环境影响:光固化过程会产生有害的紫外光和挥发性有机化合物,对 环境和操作者的健康有一定影响。
8、环保行业:在环保领域,FDM技术提供了一种可持续的制造方法。通过使 用可降解或可回收的材料进行打印,可以减少废弃物的产生和对环境的影响。此 外,FDM技术还可以用于制造环保设备零件等。
9、科研领域:在科学研究领域,FDM技术常被用于制造实验模型和测试样品。 例如在材料科学中,研究人员可以使用FDM来制造不同材料的复合结构以研究其 物理和化学性能。此外在生物学领域,FDM技术也被用于制造生物组织的复杂结 构以研究其生长和发育的机制。
快速成型技术的特点和工艺原理
快速成型技术的特点和工艺原理摘要:快速成形技术是集机械、电子、光学、材料等学科为一体的先进制造技术之一,本文综述了快速成形技术原理与特点,特别在快速成形系统、材料和快速制模方面的最新成就,并分析了快速成形与快速制模技术的发展趋势。
指出该项技术可构成一种应用范围十分广泛、新颖的加工体系,市场前景广阔。
关键词:快速成形技术;三维模型;立体光造型;迭层实体制造;快速制模。
一、前言90年代开始,随着冷战时代的结束,市场环境发生了巨大的变化。
一方面表现为消费者需求日趋主体化、个性化和多样化;另一方面则是产品制造商们都着眼于全球市场的激烈竞争。
面对市场,产品制造商们不但要很快地设计出符合人们消费需求的产品,而且必须很快地生产制造出来,抢占市场。
因此,面对一个迅速变化且无法预料的买方市场,以往传统的大批量生产模式对市场的响应就显得越来越迟缓与被动。
快速响应市场需求,已成为制造业发展的重要走向。
为此,这些年来工业化国家一直在不遗余力地开发先进制造技术,以提高制造工业发展水平,以便在激烈的全球竞争中占有一席之地。
与此同时,计算机、微电子、信息、自动化、新材料、和现代企业管理技术的发展日新月异,这些技术、产业的发展与进步,给产品创意、研究开发、设计、工艺设计、加工准备、制造工艺、装备、装配、质量保证、生产管理和企业经营都有带来了重大变革,产生了一批新的制造技术和制造模式,制造工程与科学取得了前所未有的成就。
快速成形技术就是在这种背景下逐步形成并得以发展。
快速成形技术的发展,使得产品设计、制造的周期大大缩短,提高了产品设计、制造的一次成品率,降低产品开发成本,从而给制造业带来了根本性的变化。
二、技术原理及特点快速成形技术(快速原型技术,RP技术)系统可分为两大类:基于激光或其它光源的成形技术,如:立体光造型(Stereo lithography:SL)、迭层实体制造(Laminated Object Manufacturing:LOM)、选择性激光烧结(Selected Laser Sintering:SLS)、形状沉积制造(Shape Deposition Manufacturing:SDM)等;基于喷射的成形技术,如:熔融沉积制造(Fused Deposition Modeling:FDM)、三维打印制造(Three Dimensional Printing:3DP)等。
快速原型制造技术快速成形原理及特点
成型过程示意图
快速原型制造技术快速成形原理及 特点
• 快速成型工艺的优势:
------使模型或模具的制造时间缩短数倍甚至数十倍,大大缩 短新产品研制周期;
------使复杂模型的直接制造成为可能,提高了制造复杂零件 的能力;
------可以及时发现产品设计的错误,做到早找错、早更改, 避免更改后续工序所造成的大量损失,显著提高新产品 投产的一次成功率;
快速成型的基本过程:
→→→首先设计出所需零件的计算机三维模型(数字模型、 CAD模型)
→→→按照一定的规律将该模型离散为一系列有序的单元, 通常在Z向将其按一定厚度进行离散(习惯称为分 层),把原来的三维CAD模型变成一系列的层片
→→→再根据每个层片的轮廓信息,输入加工参数,自动生 成数控代码
→→→最后由成形系统成形一系列层片并自动将它们联接起 来,得到一个三维物理实体。
快速原型制造技术快速成形原理及 特点
三、快速成型机及成形方法:
1、快速成形机 快速成形机是分层叠加成形(包括截面轮廓
制作和截面轮廓叠合)的基本设备。 成形机都是基于“增长”成形法原理,即用一
层层的小薄片轮廓逐步叠加成三维工件。其差别 主要在于薄片采用的原材料类型,由原材料构成 截面轮廓的方法,以及截面层之间的连接方式。
------使设计、交流和评估更加形象化,使新产品设计、样品 制造、市场定货、生产准备、等工作能并行进行,支持 同步(并行)工程的实施;
------节省了大量的开模费用,成倍降低新产品研发成本。
快速原型制造技术快速成形原理及 特点
• 自1986年出现至今,短短十几年,世界上已有大约二十多 种不同的成型方法和工艺,其中比较成熟的有SLA、SLS、 LOM和FDM等方法。其成形原理分别介绍如下:
简述fdm快速成型工艺的原理及优缺点
简述fdm快速成型工艺的原理及优缺点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!FDM快速成型工艺的原理及优缺点1. 原理介绍。
快速成型技术
2)三维模型的近似处理。 由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理, 以方便后续的数据处理工作。由于STL格式文件格式简单、实用,目前 已经成为快速成型领域的准标准接口文件。它是用一系列的小三角形平 面来逼近原来的模型,每个小三角形用3个顶点坐标和一个法向量来描 述,三角形的大小可以根据精度要求进行选择。STL文件有二进制码和 ASCll码两种输出形式,二进制码输出形式所占的空间比ASCII码输出 形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。 典型的CAD软件都带有转换和输出STL格式文件的功能。
2)快速性。通过对一个CAD模型的修改或重组就可获 得一个新零件的设计和加工信息。从几个小时到几十个 小时就可制造出零件,具有快速制造的突出特点。
3)高度柔性。无需任何专用夹具或工具即可完成复杂的 制造过程,快速制造工模具、原型或零件。
4)快速成型技术实现了机械工程学科多年来追求的两 大先进目标.即材料的提取(气、液固相)过程与制造 过程一体化和设计(CAD)与制造(CAM)一体化。
型头(激光头或喷头)按各截面轮廓信息做扫描运动,在工 作台上一层一层地堆积材料,然后将各层相粘结,最终得到 原型产品。
5)成型零件的后处理 从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在 高温炉中进行后烧结,进一步提高其强度。
3、特点
1)可以制造任意复杂的三维几何实体。由于采用离散/堆 积成型的原理.它将一个十分复杂的三维制造过程简化为二 维过程的叠加,可实现对任意复杂形状零件的加工。越是复 杂的零件越能显示出RP技术的优越性此外,RP技术特别适 合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造 的零件。
3)三维模型的切片处理。 根据被加工模型的特征选择合适的加工方向,在成型高度 方向上用一系列一定间隔的平面切割近似后的模型,以便 提取截面的轮廓信息。间隔一般取0.05mm~0.5mm,常 用0.1mm。间隔越小,成型精度越高,但成型时间也越长, 效率就越低,反之则精度低,但效率高。
快速成型技术在医学中的应用
快速成型技术在医学中的应用随着现代科技的不断发展,快速成型技术在各个领域中得到了广泛的应用,尤其是在医学领域中。
医学工程正在迅速成为一个重要的领域,而快速成型技术在其中扮演者重要的角色。
本文将就快速成型技术在医学中的应用进行详细探讨。
一、快速成型技术的基本原理快速成型技术是一种利用计算机辅助设计、制造和生物医学工程学来制造零件的技术。
其基本原理是依据任意三维几何体的CAD模型,利用计算机辅助制造技术将其分层处理,依次通过向前推进材料或熔融材料的方式,将物体一层层地制造出来,直到形成完整的物体模型,这个过程称为快速成型。
快速成型技术的优点是快速制造、高度精度、低成本、设计灵活多变、无需特殊工具、任何形状均可制造而不需要限制。
这些优点使得快速成型技术在医学领域中大有用武之地。
二、快速成型技术在医学中的应用1、医学模型的制造医学模型制造是快速成型技术在医学领域中的一个可以发挥重要作用的应用。
其主要包括骨头、心脏、肺部等的三维打印模型。
这些模型的制造可以帮助医生更加深入地了解病人的情况。
采用三维打印技术可以为外科医生提供直观的、可触摸的模型,以促进对病人的诊断和治疗。
此外,还可以提高难度手术的成功率并减少医疗事故的发生。
2、手术和创口辅助器材的制造利用快速成型技术制造手术和创口辅助器材也是医疗领域的重要应用。
手术辅助器材可以帮助医生更好地掌握手术的精确度和安全性,同时也可以减少手术风险。
而利用快速成型技术3D打印的创口辅助器材,可以减少手术的痛苦和恢复时间,增加病人的生活质量。
3、人工器官和植入物的制造利用快速成型技术制造人工器官和植入物也是医学领域中的重要应用。
这种技术包括制造人工眼角膜、人工植髓材料、人工关节等。
随着自体提取组织等技术的发展,快速成型技术制造出的人工器官和植入物已经成为当前医学领域中的重要方向之一。
三、快速成型技术在医学中的未来发展随着计算机、材料和制造技术的日益提高,快速成型技术在医学领域中的应用前景也非常广阔。
快速成型技术原理及应用
快速成型技术原理及应用快速成型技术(Rapid Prototyping,简称RP)是一种以计算机辅助设计(CAD)为基础的,通过逐层加工原材料快速构建三维实体模型的技术。
它将传统制造过程中需经历多个环节、耗费大量时间和资源的步骤整合为一个流程,大大提高了产品开发速度和效率。
以下是快速成型技术的原理及应用。
1.CAD设计:首先通过计算机辅助设计软件(CAD)将产品的三维模型进行设计。
设计师可以利用CAD软件进行模型的切片、修正和优化等操作。
2.STL文件生成:在CAD软件中完成模型设计后,将模型导出为STL文件格式。
STL文件包含被切成一层层离散点的模型数据,用于后续快速成型机器的操作。
3.快速成型机器操作:在快速成型机器中,通过计算机的指令将STL文件的数据输入到机器控制系统中。
然后,机器按照层叠的方式,在构筑台上逐层加工原材料,以构建出产品的三维实体模型。
4.完成模型:快速成型机器根据STL文件的数据逐层堆积原材料,最终完成整个三维模型。
随后,可以进行后续的表面处理、热处理、组装等工序。
1.产品设计与开发:快速成型技术可以加快产品设计与开发的速度。
在产品设计阶段,可以使用快速成型技术制作模型进行实物评估,提前发现并解决问题,减少设计修改次数和开发成本。
2.医疗器械制造:快速成型技术可以用于医疗器械的原型制作。
医疗器械的形状复杂,尺寸精确,而且需要定制化的设计。
通过快速成型技术,可以快速制作出符合患者需求的医疗器械原型,方便医生进行手术仿真和团队讨论。
3.航空航天领域:快速成型技术在航空航天领域中应用广泛。
例如,用于制作飞机模型、导弹弹头模型、航天器模型等。
通过快速成型技术,可以快速制作出逼真的模型供试验和研究使用。
4.教育和研究:快速成型技术在教育和研究领域中也有很大的应用。
例如,在工程教育中,可以使用快速成型技术制作物体的模型,帮助学生更好地理解和学习工程知识。
在科学研究中,可以利用快速成型技术制作实验装置的模型,方便研究人员观察和分析。
快速成型(RP)技术
快速成型(RP)技术快速成型(RP)技术简介RP技术是80年代后期发展起来的快速成型(Rapid Prototyping 简称RP)技术,被认为是近年来制造技术领域的一次重大突破,其对制造业的影响可与数控技术的出现相媲美。
RP系统综合了机械工程、CAD、数控技术,激光技术及材料科学技术,可以自动、直接、快速、精确地将设计思想物化为具有一定功能的原型或直接制造零件,从而可以对产品设计进行快速评价、修改及功能试验,有效地缩短了产品的研发周期。
而以RP系统为基础发展起来并已成熟的快速模具工装制造( Quick Tooling)技术,快速精铸技术(Quick Casting),快速金属粉末烧结技术(Quick Powder Sintering),则可实现零件的快速成品。
RP技术,迴异于传统的去除成型(如车、削、刨、磨),拼合成型(如焊接),或受迫成型(如铸、锻,粉末冶金)等加工方法,而是采用基于材料累积制造的思想,把三维立体看成是无数平行的、具有不同形状的层面的叠加,能快速制造出产晶原型。
快速原型制造技术(RP)将计算机辅助设计(CAD)、辅助制造(CAM)、计算机辅助控制(CHC)、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的产品三维设计模型,对其进行分层切片,得到各层截面的轮廓,激光选择性的切割一层层的纸(或固化一层层的液态树脂、烧结一层层的粉末材料或热喷头选择快速地熔覆一层层的塑料或选择性地向粉末材料喷射一层层粘结剂等),形成各截面轮廓并逐步叠加成三维产品。
目前,它已成为现代制造业的支柱技术,是实现并行工程、集成制造技术和技术开发的必不可少的手段之一。
与传统的切削加工方法相比,快速原型加工具有以下优点:(1)可迅速制造出自由曲面和更为复杂形态的零件,如零件中的凹槽、凸肩和空心部分等,大大降低了新产品的开发成本和开发周期。
(2)属非接触加工,不需要机床切削加工所必需的刀具和夹具,无刀具磨损和切削力影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。
快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。
快速成型机的工艺立体光刻成型sla层合实体制造lom熔融沉积快速成型fdm激光选区烧结法SLS多相喷射固化mjs多孔喷射成型mjm直接壳法产品铸造dspc激光工程净成型lens选域黏着及热压成型SAHP层铣工艺lmp分层实体制造som自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。
其成形原理分别介绍如下:(1)SLA(光固化成型法)快速成形系统的成形原理:成形材料:液态光敏树脂;制件性能:相当于工程塑料或蜡模;主要用途:高精度塑料件、铸造用蜡模、样件或模型。
(2)SLS(激光选区烧结法)快速成形系统的成形原理:成形材料:工程塑料粉末;制件性能:相当于工程塑料、蜡模、砂型;主要用途:塑料件、铸造用蜡模、样件或模型。
(3)LOM(叠层实体制造法)快速成形系统的成形原理:成形材料:涂敷有热敏胶的纤维纸;制件性能:相当于高级木材;主要用途:快速制造新产品样件、模型或铸造用木模。
(4)FDM(熔融沉积法)快速成形系统的成形原理:成形材料:固体丝状工程塑料;制件性能:相当于工程塑料或蜡模;主要用途:塑料件、铸造用蜡模、样件或模型。
黏合剂粘结法(3D-P三维打印)3D-P三维打印是利用喷头喷粘结剂选择性粘结粉末成型。
首先铺粉机构在加工平台上精确地铺上一薄层粉末材料,然后喷墨打印头根据这一层的截面形状在粉末上喷出一层特殊的胶水,喷到胶水的薄层粉末发生固化。
然后在这一层上再铺上一层一定厚度的粉末,打印头按下一截面的形状喷胶水。
如此层层叠加,从下到上,直到把一个零件的所有层打印完毕。
然后把未固化的粉末清理掉,得到一个三维实物原型。
免费开源的快速成型机项目△1.reprap△2.fabathome△3.CupCakeCNC上面3个是免费开源的快速成型机项目,开放包括源代码在内的所有资料,完全可以手工自己造出一台来。
reprapreprap是由英国巴恩大学的Adrian Bowyer 等人,设计制作的一种3D立体打印机.它与传统的平面打印机不同的是,它打印的都是立体的物件而不是平面的,它的打印原料使用的也不是普通的墨汁,而abs塑料,聚已酸内酯,等等.reprap最初的设计目的是为了一个很科幻的目的,不停的复制它自己,但现在它只能复制自己60%左右,还只是部分机械零件.这也是它的名字的由来---RepRap is sho rt forReplicating Rapid-prototyper快速复制原型.reprap也可以用来制造它自己零件以外的东西,列如门把手,挂衣钩,酒杯等.reprap现在是开源的设计,谁都可以去它的网站下载设计资料,包括电路与机械部分,还有软件的源代码.reprap现在能用的版本有3个.简单的是RepStrap "Seedling",稍微复杂点的是R epRap "Darwin",第三个版本叫做"孟德尔(Mendel)",已经发布了,现在可以下载相关的资料了。
.Darwin现在还在不停的更新设计.reprap的工作原理是(这里是以塑料为原料的Darwin来说明,还有激光版的),把原料加热,一层一层的抹出一个物体,可能需要后期手工修饰.Fabberfabber,是一个免费的开源的快速成型机的名字,任何人都可以去他们的网站fab athome.下载,制做快速成型机fabber的资料。
右边图就是fabber现在fabber有两个快速成型机的版本,The Model 1 is the original Fab@Ho me fabber,.与Model 1 2-Syringe System,这两个系统最明显的不同是一个是单挤出机头,一个是双挤出机头。
挤出机可以想象成一个打印机的打印头,不过这个打印头打出来的是立体的物体。
挤出机使用的原料也是多种多样,从巧克力到气凝胶,只要能在规定时间内自动凝固的东西都可以用。
忘了说,挤出机现在用的是注射器,由电脑通过控制步进电机的移动,来推动注射器,挤出各种原料。
fabber的外壳是由亚克力塑料(有机玻璃),经过激光雕刻机切割出来的,可以去广告公司订做,样本资料在fabathome有下载,其他零件参数也都有。
[1] CupCakeCNCCupCakeCNC是一种快速成型机的名字,见右图。
它是免费开源的,只要去它的网站makerbot[1]就可以下载CupCakeCNC的设计资料,仔细找。
CupCakeCNC与快速成型机reprap是同门,两者使用的控制软件与电路部分基本相同,甚至现在reprap的挤出机设计还参考了CupCakeCNC的轮式挤出机的设计。
CupCakeCNC的外壳是用胶合板经过激光雕刻机切割出来的。
CupCakeCNC的挤出机类似打印机的打印头,不过它打印出来的是3维立体的物体,它使用的原料是,树脂,塑料等。
CupCakeCNC现在在欧美已经广泛被大学生,艺术家,航模爱好者采用,因为CupCakeCNC本身比较容易制造,它打印出的物体精度尚可。
Z Corporation 是世界上速度最快的3D打印机的开发商、制造商和营销商。
具有2D桌面打印的速度,且具有便捷性,可用来制作真实世界的3D实体成型。
尽管价格昂贵,但是颇受欢迎。
领先的制造商、财富500 (Fortune 500)公司以及许多研究中心都依赖Z Corp.的打印机来制作成型,从而开发出一系列世界级的产品和技术。
Z Corp.系统不仅是目前的市场上速度最快的3D打印机,而且也是唯一能提供彩色3D打印功能的系统。
Z Corporation的三维打印机实惠于那些需要彩色打印件的用户。
而Dimension打印机则更适合那些需要打印物件更精确、更耐久的用户。
Dimension打印机基于ABS材料的零件,可以反复地进行形状试验、装配和功能试验。
如果顾客需要完全免动手的便利,还可选择利用可溶性支撑去除系统的Dimension SST。
它操作简单,插入自动装载的材料盒,然后按照控制面版的提示操作,3D打印就会通过Dimension或Dimension SST慢慢展示在你的眼前。
该产品用途广泛,如外形设计、装配、测试等;成型最大尺寸为203x203x305毫米;自动上料盒内含922立方厘米材料或支撑材料;设备尺寸大小是686x914x1041毫米;重量达136千克。
快速成型机品牌•Z Corp•CONTEXZ Corp ZPrinter 310 Plus ¥40万••Z Corp ZPrinter 650 ¥90万•Z Corp ZPrinter 510•¥90万••••Z Corp ZPrinter 450•¥60万Z Corp ZPrinter 350•¥50万CONTEX DESIGNmate Cx •¥50万RP技术的应用RP技术的实际应用主要集中在以下几个方面:(1)在新产品造型设计过程中的应用快速成形技术为工业产品的设计开发人员建立了一种崭新的产品开发模式。
(2)在机械制造领域的应用由于RP技术自身的特点,使得其在机械制造领域内,获得广泛的应用,多用于制造单件、小批量金属零件的制造。
有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。
(3)快速模具制造传统的模具生产时间长,成本高。
将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。
快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具。
(4)在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。
以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。
(5)在文化艺术领域的应用在文化艺术领域,快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。
(6)在航空航天技术领域的应用在航空航天领域中,空气动力学地面模拟实验(即风洞实验)是设计性能先进的天地往返系统(即航天飞机)所必不可少的重要环节。
该实验中所用的模型形状复杂、精度要求高、又具有流线型特性,采用RP技术,根据CAD模型,由RP设备自动完成实体模型,能够很好的保证模型质量。
(7)在家电行业的应用目前,快速成形系统在国内的家电行业上得到了很大程度的普及与应用,使许多家电企业走在了国内前列。
如:广东的美的、华宝、科龙;江苏的春兰、小天鹅;青岛的海尔等,都先后采用快速成形系统来开发新产品,收到了很好的效果。
快速成形技术的应用很广泛,可以相信,随着快速成形制造技术的不断成熟和完善,它将会在越来越多的领域得到推广和应用。
快速成型技术的发展方向从目前RP技术的研究和应用现状来看,快速成型技术的进一步研究和开发工作主要有以下几个方面:(1)开发性能好的快速成型材料,如成本低、易成形、变形小、强度高、耐久及无污染的成形材料。
(2)提高RP系统的加工速度和开拓并行制造的工艺方法。