抽样技术及样本计算方法

合集下载

抽样技术课件 (抽样技术与方法)

抽样技术课件 (抽样技术与方法)

第三章 分层抽样(Stratified Sampling)
一. 基本问题
什么是分层随机抽样 ? N N1 N2 NL
n n1 n2 nl
作用:可以对各层的参数进行估计,有助于提高估计精度。
应用条件:各层差异较大, 有进行分层的辅助信息。
分层原则 • 层内方差尽可能小 • 层间方差尽可能大
n 1200
第一种 第二种 第三种 第四种
有几种分配方案
n1 100, n2 1100 n1 240, n2 960 n1 400, n2 800
简单随机抽样
四种抽样方案各自方差:
分层抽样: V ( yst ) Wi2Si2 ni
简单抽样: V ( y) S 2 n
省略 (1 f )
总体方差: S (Y Y )2
N 1
样本方差: s ( y y)2
n 1
抽样方差(估计量方差) V ( y) (1 f ) S 2 n
抽样方差估计 v( y) (1 f ) s2 n
七、精度与费用
100%
精 95% .………….. 度
…….
60%
20%
40%
费用
第二章 简单随机抽样
S2 Var( y) (1 f )
n
f n (Sampling fraction 抽样比)
N
(1-f):finite population corrections——fpc
有限总体校正系数
Total
Yˆ Ny Var(Yˆ) Var(Ny) N 2Var( y)
proportion
1 Yi 0
L
七. 事后分层 什么是事后分层
抽取 n ,调查后得到 ni 和 yi, 又已知 Wi

常用的抽样方法

常用的抽样方法
精品课件
精品课件
二、估计比例用的3种改进模型
1、模型I 把问题 B改为一个完全无关、答案 为“是”的概率是已知值的问题
将沃纳模型中与敏感性问题相对的具有特
征A的问题改为一个与敏感性问题不相关的
其它问题。
A
B
精品课件
例14-2: 欲调查某地已婚育龄妇女有无婚前
性行为的比例。
问题A:婚前有过性行为? 回答: ①是 ②否 问题B:你生日(月+日)除以3余数是0吗? 回答: ①是 ②否
(2)问卷中设A、B两个问题。 (3)备有一个口袋,里面装有黑白两种颜色的 球(也可用围棋的黑子和白子),两种球的比例不是 1:1,例如可以是60%和40%。
精品课件
(4)调查对象在填写答案前,先随机抽取一个球 (球的颜色对调查员保密),据球的颜色决定回 答两个问题中的哪一个。
(5)由于调查员不知道某一对象抽取的球是什么颜 色的,所以无法知道某一对象回答的是问题A还 是问题B,也无法知道调查对象的“秘密”。
随机化回答是指在调查中使用特定的随机化装置, 使得被调查者以预定的概率来回答敏感性问题。这一技术的 宗旨就是最大限度地为被调查者保守秘密,从而取得被调查 者的信任。
RRT技术的基本原理在于当被调查者确信调查者及 其他人无法从被调查者的回答中获知他们的真实行为时,能 更加真实地对敏感问题进行回答。并且RRT技术保护调查对 象的个人隐私,能充分得到调查对象的配合,最终可显著降 低无应答率和误答率,得到高质量的调查结果。
常用的抽样方法
精品课件
一、单纯随机抽样(simple random sampling)
1、抽样方法
根据研究目的选定总体,首先对总体中所有 的观察单位编号,遵循随机原则,采用不放回抽取 方法,从总体中随机抽取一定数量观察单位组成样 本。

抽样技术及样本计算方法

抽样技术及样本计算方法
例如:某地有5000户,今欲抽取1/5家庭作健康调 查,则每5户抽1户,或逢“5”抽,抽到的户即作为 调查单位。
随机抽样—分层随机抽样
分层抽样的特点是先将总体按照某种特征 或指标分成几个排斥的又是穷尽的子总体, 或层,然后在每个层内按照随机的方法抽 取元素。其原则是子总体内元素间差异可 能小,而不同子总体间差异大。
例:你调查了100个人,询问他们是否应该早办奥运会,其中 66%的人说“是”。如果你的调查精确度为3%,这也就 是说,如果你对不同的样本展开同样的调查,最后结果 中选“是”的比例会在63%-69%之间。



抽样误差与样本量关系曲线

样本量
抽样误差随着样本量的增加而减少,但当样本 量增加到一定程度之后,样本量的增加对抽样 误差几乎没有影响了。
ห้องสมุดไป่ตู้点:
完成一项普查需要的时间长,可能影响最终得到数据的可 比性;
可能导致高的非抽样误差;
什么是误差
在CSI中,由于各方面因素的作用,调查 结果总会存在误差。通常,调查误差分为 两种主要类型:
抽样误差 非抽样误差
误差=抽样误差+非抽样误差
总的来说,普查不存在抽样误差,但可能 存在较大的非抽样误差;而抽样调查会产 生抽样误差和非抽样误差。
① 由调研人员引起的 ② 由访问员引起的 ③ 由被访者引起的
非抽样误差与样本量的关系
非 抽 样 误 差
样本量
误 差
样本量
抽样方法
随机抽样
1. 简单随机抽样 2. 等距抽样(系统抽样) 3. 分层随机抽样 4. 整群抽样 5. 多级抽样
非随机抽样
1、方便取样;2、判断取样;3、配额取样
误 差

大学毕业论文的研究样本与抽样技术选择

大学毕业论文的研究样本与抽样技术选择

大学毕业论文的研究样本与抽样技术选择在进行大学毕业论文研究时,样本的选择和抽样技术的使用是至关重要的步骤。

正确选择合适的研究样本和抽样技术可以确保研究结果的可靠性和有效性。

本文将介绍大学毕业论文研究样本的选择方法以及各种抽样技术的特点和适用场景。

一、研究样本的选择方法研究样本的选择是大学毕业论文研究的第一步,它关系到研究结果的代表性和普遍性。

以下是一些常用的研究样本选择方法:1. 全面抽样:全面抽样是指研究者选择全部符合研究条件的个体作为样本。

这种方法适用于样本总量较小且容易获取的研究对象,可以确保样本的代表性和普遍性。

2. 随机抽样:随机抽样是一种无偏差的样本选择方法,它可以消除主观因素对样本选择的影响。

常用的随机抽样方法包括简单随机抽样、分层随机抽样和整群抽样等。

3. 方便抽样:方便抽样是指研究者根据自身方便选择研究对象作为样本。

尽管方便抽样具有操作简便、节约时间的特点,但其样本的代表性和可信度较低,容易引入偏见。

4. 分层抽样:分层抽样是指研究者将研究对象按某种特征或属性进行分层,然后在每个层次内进行抽样。

这种方法可以保证不同层次的研究对象在样本中的比例与总体中的比例相同,增强结果的准确性。

二、抽样技术的选择与特点抽样技术的选择依赖于研究问题、研究目的以及研究对象的特点。

以下是一些常见的抽样技术及其特点:1. 简单随机抽样:简单随机抽样是最常用的抽样技术之一,它通过将样本对象以随机的方式选取,确保每个个体被选中的可能性相等。

简单随机抽样适用于总体分布均匀、样本总量较小的情况。

2. 系统抽样:系统抽样是指按一定的间隔或周期从总体中选择样本。

它比较方便并能够保证样本的代表性,但如果总体存在周期性或规律性分布,可能会引入偏差。

3. 整群抽样:整群抽样是指将总体划分为若干互相独立的群体,然后在群体中选择样本。

这种方法适用于总体群体结构明确、群体间差异较大的研究对象,能够在保证效果的前提下减少样本量。

抽样检验理论和方法

抽样检验理论和方法

产品批质量的抽样验收判断过程
• 对提交检验的产品批实施抽样验收,通常必须先合理 地制定一个抽样方案。
在最简单的计数检验抽样方案中,通常要确定抽取的样本量n和产 品接收准则(包括接收数A、拒收数R和判断规则)。
抽取一个容量为n的样本
统计样本中不合格品数(或不合格数)d
d≤A
批合格
d≥R
批不合格
接收概率
•极限质量水平:对于连续批系列,认为不满意的过程平均的最高质量水平;
•生产方风险α:对于给定的抽样方案, 当批质量水平(如不合格品率)为某一 指定的可接收值(如可接受质量水平) 时的拒收概率。即好的质量批被拒收时 生产方所承担的风险;
•使用方风险β:对于给定的抽样方案, 当批质量水平(如不合格品率)为某一 指定的不满意值(如极限质量水平LQL) 时的接收概率,即坏的质量批被接收时 使用方所承担的风险;
•使用方风险质量p1:对于给定的抽样方 案,与规定的使用方风险相对应的质 量水平
•生产方风险质量p0:对于给定的抽样 方案,与规定的生产方风险相对应 的质量水平;
•生产方风险点A:OC曲线上对应于 规定生产方风险质量和生产方风险的 点;
•使用方风险点B:OC曲线上对应于 规定使用方风险质量和使用方风险的 点;
• 不合格品的分类
不合格分类: 1. A类不合格:单位产品的极重要的质量特性不符合规定,或单位产 品的质量特性极严重不符合规定; 2. B类不合格:单位产品的重要的质量特性不符合规定,或单位产品 的质量特性严重不符合规定; 3. C类不合格:单位产品的一般质量特性不符合规定,或单位产品的 质量特性轻微不符合规定。
9. 抽样计划:一组严格度不同的抽样方案和转换规则的 组合。
产品批质量的表示方法

第四章 抽样技术

第四章 抽样技术

• (五)多阶段抽样
– 含义:multistage sampling-----即先抽大的调 查单元,在大单元中抽小单元,再在小单元 中抽更小的单元。如:我国的城市职工家计 调查,采用三阶段抽样,先城市-基层单位调查户。
第四章 抽样技术
– 应用:在复杂、大规模的市场调查中。
• (六)抽样技术的选用原则
• (四)常用术语
– 1.总体(population)与样本(sample) – 2.总体指标和样本指标
• 总体指标-------反映总体数量特征的指标,有总 体平均数µ,总体比例P, 总体方差 σ 2
第四章 抽样技术
– 样本指标------又称样本估计量或统计量,用 以估计和推断相应总体指标的综合指标,有 样本平均数 x ,样本比例p ,样本方差S2。
第四章 抽样技术
• 成数------分总体成数与样本成数 • 含义------总体中具有某种特征的单位占全部单 位的比例,称总体成数(总体比例) • 如:产品的合格率,市场占有率等。 • 样本成数的抽样分布
– 当从总体中抽出一个容量为n的样本时,样本中具有 某种特征的单位数x服从二项分布,即有x~B(n, π),且 有E(x)=n π V(x)=n π(1- π). – 因而样本比例p=x/n也服从二项分布,且有: – E(p)=E(x/n)= π – V(p)=V(x/n)=1/n π(1- π)
第四章 抽样技术
第四章 抽样技术
第四章 抽样技术
本章要点
• 1.抽样调查的含义、特点与程序; • 2.随机抽样技术的类型及其各自的特点、 方法; • 3.非随机抽样技术的类型及其各自的特 点、方法; • 4.抽样误差的含义及其计算方法 。
第四章 抽样技术

第5章 市场调查的抽样技术

第5章 市场调查的抽样技术
其大小受四个因素影响:总体标准差、抽取样本量、抽样方式、抽样方法 非抽样误差:由于其他多种原因引起的估计值与总体参数之间的差异。 其误差来源:抽样框误差、无回答误差、计量误差
二、抽样调查的特点
抽样调查数据之所以能用来代表和推算总体,主要是因 为抽样调查本身具有其他非全面调查所不具备的特点, 主要是: (1)调查样本是按随机的原则抽取的,在总体中每一个 单位被抽取的机会是均等的,因此,能够保证被抽中的 单位在总体中的均匀分布,不致出现倾向性误差,代表 性强。 (2)是以抽取的全部样本单位作为一个“代表团”,用 整个“代表团”来代表总体,而不是用随意挑选的个别 单位代表总体。
二、系统抽样技术
系统抽样又称机械抽样或等距抽样,是指先将总 体各个单位按某一标志值的大小排列,再分成若 干个组,每个组的样本数基本相等,依照时间或 空间上相等的间隔来抽取调查单位。
抽样间隔(样本距离) =总体单位数/样本单位 数
系统抽样的步骤: 第一步:将总体中每一个个体按顺序排列并加以编号 第二步:计算抽样距离 第三步:抽取第一个样本 第四步:抽取所有的样本 系统抽样优缺点 优点:
即应包括全部总体单位。 例如:名单抽样框、区域抽样框、时间表抽样框 抽样单元:构成抽样框的基本元素。 抽样单元可以分级:初级单元、二级单元、三级单元等。 例如:抽取学校、抽取班级、抽取学生 (五)抽样误差和非抽样误差
抽样误差:指在遵守随机原则条件下,样本指标与总体指标之间的差异,是抽样 调查中不可避免的误差。
域之内
(3)群内差异大,而群间差异小
五、几种概率抽样方案的选择和比较
抽样技术
优点
缺点
简单随机抽样
易理解;结果可投影,可推广 到总体
抽样框难于构制;费用高; 精度低;不一定能保证代表

10.5 总体样本和抽样方法(1)

10.5 总体样本和抽样方法(1)
问:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?
图表法
第 一 次 抛 掷 后 向 上 的 点 数
骰子为什 么要编号?
6 (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) 5 (5.1) (5.2) (5.3) (5.4) (5.5) (5.6) 4 (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) 3 (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) 2 (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) 1 (1.1) (1.2) (1.3) (1.4) (1.5) (1.6)
4.样本容量: 样本中包含的个体数量叫做样本容量.
学生练习
甲袋中有1个白球,2个红球,3个黑球.乙袋中有2个白球,3个红球,1个黑球, 从两袋中各取1球,求两球颜色相同的概率.
数学应用
例3:同时抛两颗骰子,观察向上的点数,问: (1)共有多少个不同的可能结果? (2)点数之和是6的可能结果有多少种? (3)点数之和是6的概率是多少?
甲有3种不同的出拳方法,每一种出发是等可能的,乙同样 有3种不同的出拳方法.一次出拳游戏有9种不同的结果,所以基 本事件的总数是9.
设“平局”为事件A;“甲赢”为事件B;“乙赢”为事件C, 则事件A,B,C分别含3个基本事件,则P(A)=P(B)=P(C)=1
3
练习: (1)一枚硬币连掷3次,只有一次出现正面的概率为_________.
(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质 期的饮料的概率为_________.
(3)课本第103页练习1,2.
(4)从1,2,3,…,9这9个数字中任取2个数字, ①2个数字都是奇数的概率为_________; ②2个数字之和为偶数的概率为_________.

流行病学中的抽样方法与样本大小计算

流行病学中的抽样方法与样本大小计算

流行病学中的抽样方法与样本大小计算流行病学研究中的抽样方法和样本大小计算是确保研究结果具有代表性和统计效力的重要步骤。

下面将详细介绍抽样方法和样本大小计算在流行病学研究中的应用。

抽样方法:1.简单随机抽样:从总体中按照相同的概率随机选取样本。

2.系统抽样:以固定的间隔从总体中抽取样本。

3.分层抽样:将总体划分为若干层次,然后从每个层次中进行独立的随机抽样。

4.整群抽样:将总体划分为若干个群体,然后随机抽取若干个群体,再对每个群体中进行全员抽样。

样本大小计算:样本大小计算是确定需要研究的样本数量,以确保研究能够检测到所关注的效应或因素与研究结果之间的关联。

常见的样本大小计算方法包括:1.基于统计功效:根据研究所设定的显著性水平、效应大小和统计功效,通过统计学公式计算所需样本大小。

2.基于置信区间宽度:根据研究目标的置信区间宽度和预期的方差,计算所需样本大小。

3.基于调查问卷设计:根据问卷设计的复杂性和所期望的反应率,计算所需的样本大小。

4.基于生物统计学模型:对于动态流行病学研究,可以使用传染病动力学模型来估计所需的样本大小。

样本大小计算需要考虑以下因素:1.显著性水平:研究所设定的显著性水平(通常为0.05),决定研究结果被认为是有统计学意义的概率。

2.效应大小:研究目标所关注的效应大小,即预计的变量之间的差异。

3.统计功效:研究能够检测到所关注效应的能力,通常设置为0.8或0.94.误差率:样本中的误差量,决定了研究结果的可靠性和精确性。

5.总体大小:计算样本需要考虑研究总体的大小。

总之,抽样方法和样本大小计算在流行病学研究中起着至关重要的作用,可以确保研究结果的代表性和统计学有效性。

研究者需要综合考虑研究所关注的变量、研究目标和设计的复杂性等因素来选择合适的抽样方法和计算所需的样本大小。

调研中的抽样技术与样本量计算

调研中的抽样技术与样本量计算

调研中的抽样技术与样本量计算调研是为了获取关于某个特定问题的信息和数据,以支持决策制定和问题解决。

在进行调研时,为了保证数据的准确性和可靠性,抽样技术和样本量计算是非常重要的步骤。

本文将重点介绍调研中常用的抽样技术和样本量计算方法,以帮助您更好地进行调研工作。

抽样技术是在总体中选择一部分样本进行调查和观察,从而推断总体的特征或参数。

合适的抽样技术能够确保样本能够代表总体,并且能够保持调研效率。

调研中常用的抽样技术包括简单随机抽样、系统抽样、分层抽样和整群抽样等。

简单随机抽样是一种基本的抽样技术,它要求从总体中随机选择样本,确保每个样本具有相同的机会被选取。

系统抽样是在总体中以固定的间隔选择样本,例如从总体中每隔k个元素选择一个样本。

分层抽样是将总体分为若干层次,然后从每一层中抽取样本,确保每一层次都被充分代表。

整群抽样则是将总体分为若干相似的群组,然后选择部分群组进行调研。

选择合适的抽样技术需要考虑调研的目标、总体的特征、调研时间和成本等因素。

在实际操作中,研究者需要权衡这些因素,并选择最适合的抽样技术。

样本量计算是根据总体的特征和调研目标,确定所需的样本量大小。

样本量计算的目标是保证调研结果具有一定的准确性和可靠性。

样本量太小可能导致结果不可靠,而样本量太大则可能造成资源浪费。

样本量计算需要考虑的因素包括总体大小、置信水平、抽样误差和预期调查率等。

总体大小是指被调研对象的数目,一般情况下,总体越大,所需的样本量也越大。

置信水平是指研究者对调研结果的可信程度,常用的置信水平为95%。

抽样误差是指样本结果与总体结果之间的偏差,一般情况下,抽样误差越小,所需的样本量也越大。

预期调查率是指被调研对象参与调研的概率,一般情况下,预期调查率越低,所需的样本量也越大。

样本量计算可以通过公式计算,也可以使用统计软件进行模拟和计算。

常用的公式包括无限总体样本量计算公式和有限总体样本量计算公式。

无限总体样本量计算公式适用于当总体大小相对于样本量很大时的情况,而有限总体样本量计算公式适用于当总体大小相对于样本量较小时的情况。

抽样调查方法与技术:整群抽样

抽样调查方法与技术:整群抽样

需要估计: Y(按小单元平均的总体均值)、 Y(总体总值)
二、估计量及其性质
由于 及YY仅相差一个常数NM,故仅需讨论
的估Y 计量及其性质即可,Y的估计量及其性质 很容易由 的结Y果得到。
(一)总体均值( 按Y小单元计算的总体均 值)
1、
E(y) Y
y是Y的无偏估计
即Y = y= y nM
1 nM
(按小单元计算的总体群间方差)(定义)
(13)
Si2
1 M 1
M
(Yi j
j 1
Yi )2
:第i个群的总体
群内方差。 (当然按小单元计)
一、简单随机抽样(等概率抽样)下记号
(13) Sw2
1 N
N
Si2
i 1
1 N (M 1)
ห้องสมุดไป่ตู้
N i 1
M
(Yi j Yi )2 :总体
j 1
群内方差(已经是个平均数了)。(定义)
则: (1)N:总体的群数为N i=1,2,3,…,N (2)M:每个群内含有M个调查单位(小单元)
j=1,2,3,…,M (3)NM:全部总体单位(小单元)总数 (4)n:从N群中随机抽n群
第二节 群大小相等的整群抽样
一、简单随机抽样(等概率抽样)下记号
(5)f=n/N
群抽样比
=nM/NM 调查单位抽样比
自己去证明以下三者之间的关系:
S(2 总方差)、S(b2 总体群间方差)、S(w2 总体群内方差)
对于n群样本的记号
①yij : 样本中第i群第j个单位的标志值 (i 1, 2,...,n; j 1, 2,..., M )
M
②yi yij j 1

抽样技术

抽样技术

6) MIL—STD—105E的转换程序如下:
A.正常到加严。当使用正常检验时,如果在相继2批、3 批、4批或5批中,有2批在最初检验中被拒收,就应 开始执行加严检验。 B. 加严到正常。当使用加严检验时,如果相继5批经最 初检验允收,就应开始执行正常检验。 C. 正常到减量。当使用正常检验时,若下述条件全部 满足,就应开始执行减量检验: a) 前面10批在正常检验中于最初检验被允收。 b) 从前10批抽取的样品中,包含的不良品总数(或缺点 总数)等于或小于MIL—STD—105E表Ⅷ中所给出的 界限数。 c) 生产处于稳定状态。 d) 考虑认为要减量检验。
4. 什么情况下实施全数检验?什么情况下实施抽 检? 1) 选用全数检验的情况: A.品所导致的品质损失超过了对不良品检验的 费用。 B. 检验是非破坏性的。 2) 选用抽样检验的情况: A. 希望节省检验费用,且不良品导致的品质损 失经过品质成本的权衡分析后是可以容忍的。 B. 检验是破坏性的,从而不能进行全数检验。 C. 被检验的对象是流程型材料,是连续体性质。 对制程控制的检验,全数检验一般是不必要的。
二、抽样
1.定义:从母体抽取样本的活动。 2.抽样的重要性: 1)能以较少的人力财力,达到统计观测的 目的。因调查对象较少,可以使调查费 用、人员减少。 2)能迅速获得调查的结果。因调查对象较 少,资料有效,可以顾及时效。 能于普查不可能实行场合,取得资料。
3.抽查与普查 抽查既然如此重要,是否可以完全取代普 查?事实不然,原因为: 1) 普查取其广,抽查取其精,二者各有其 功用,不宜偏废。 2) 抽查的设计有时须对母体的情况有所了 解,即须有过去的或间接的普查资料作 参考。 3) 样本统计量与母体母数间必有误差,故 由样本推论母体必有误差。

流行病学调查与卫生统计学基础抽样方法与样本大小计算

流行病学调查与卫生统计学基础抽样方法与样本大小计算

流行病学调查与卫生统计学基础抽样方法与样本大小计算在流行病学调查和卫生统计学中,抽样方法和样本大小计算是非常重要的基础环节。

正确选择适当的抽样方法和合理的样本大小,对于获得准确可靠的结果至关重要。

本文将探讨流行病学调查与卫生统计学中常用的抽样方法以及样本大小计算的原则和方法。

1. 抽样方法抽样是从总体中选择部分个体进行研究的一种方法。

以下是一些常用的抽样方法:1.1 简单随机抽样简单随机抽样是最基本的抽样方法之一,通过从总体中随机地选择个体,确保每个个体被选中的概率相等。

这种抽样方法不仅简单易行,而且具有较低的抽样偏倚。

1.2 系统抽样系统抽样是按照事先规定的间隔选取样本。

例如,从总体中随机选择一个起始点,然后以一定间隔选择后续的个体作为样本。

这种抽样方法适用于总体有规律排列的情况。

1.3 分层抽样分层抽样是将总体按照某些特征进行划分,然后从每个子群体中采取抽样。

通过分层抽样,可以更好地代表总体的各个子群体,提高研究结果的代表性和可靠性。

1.4 整群抽样整群抽样是将总体划分为若干个群体,然后随机选择部分群体作为样本。

这种抽样方法常用于群体较大且难以分散的情况,可以减少调查的工作量。

2. 样本大小计算在进行流行病学调查和卫生统计学研究时,样本大小的确定是一个关键问题。

样本大小的大小直接影响到研究结果的可靠性和推广性。

以下是一些样本大小计算的原则和方法:2.1 效应量效应量是指所研究的变量之间的差异程度或关联程度的度量。

样本大小的计算需要基于所关注的效应量。

通常情况下,效应量越大,样本大小需要的个体就越少。

2.2 显著性水平与统计功效显著性水平和统计功效是样本大小计算中需要考虑的两个重要概念。

显著性水平是犯错误的概率,通常设定为0.05。

统计功效是研究能够检测到真实效应的概率,通常设定为0.8或0.9。

2.3 抽样分布与计算公式样本大小计算需要根据抽样分布和计算公式进行。

根据所研究的变量类型和参数类型,选择合适的抽样分布和计算公式进行样本大小计算。

-抽样调查中样本容量的计算

-抽样调查中样本容量的计算

-----------------------------------Docin Choose -----------------------------------豆 丁 推 荐↓精 品 文 档The Best Literature----------------------------------The Best Literature2009年第9期科技经济市场一种合理、可行的抽样方案,不仅需要针对调查对象选择适宜的抽样方法,还应根据调查研究的精度及预算情况来决定样本容量。

我们知道,在系统误差确定的条件下,抽样的准确性取决于抽样误差,抽样误差又与样本容量有直接关系。

若样本容量过大,会使得实施难度增大,增加经费的开支;而若样本容量过小,可能会影响样本的代表性,使抽样误差增大,影响了调查研究推论的精确性。

因此在实际工作中,如何确定样本容量是很重要的。

下面就对两种抽样情况进行分析,讨论如何确定样本容量。

1简单随机抽样时样本容量的计算1.1重复抽样假设(x 1,x 2,…,x n )是来自于总体的一个简单随机抽样,而总体的期望为μ,方差为σ2。

根据中心极限定理,即从正态总体中,随机抽取样本容量为n 的样本,则样本均数x 服从正态分布。

若当n 足够大时,即使是从偏态总体中抽样,样本均数x 也近似服从期望为μ,方差为的正态分布,即,转化成标准正态分布,则有。

根据统计学中区间估计知识可知:。

(1-α为置信水平)(1)从另一个角度来看。

在一定的置信概率条件下,抽样允许的最大误差称为抽样极限误差,或称允许误差,一般用△表示,而平均数的抽样极限误差就可以用△x 来表示。

由于总量指标是一个确定的值,抽样指标是围绕总体指标波动的随机变量。

那么,抽样指标与总体指标离差的绝对值就是抽样误差的可能范围。

抽样均值的极限误差△x 可表示为△x =|x-μ|。

根据△x 的定义可知:(2)比较(1)式和(2)式,可以得到:,即:(3)1.2不重复抽样当采用不重复抽样时,x 的方差为,即。

审计学_ 审计抽样技术_ 实质性程序中的审计抽样技术_

审计学_ 审计抽样技术_ 实质性程序中的审计抽样技术_

第三节实质性程序中的审计抽样技术变量抽样•在实施实质性测试时,审计人员需要对被审计单位财务报表中的数额、余额是否存在错误以及错误的大小进行定量测试和分析评价。

审计抽样仅适用于实质性测试中的细节测试,而不适用于分析程序。

•变量抽样是一种通过对样本审查并根据抽样结果来推断总体价值,估计交易的发生额或账户的余额,从而确定是否存在重大金额误差的抽样方法。

因此,审计人员在进行实质性测试时通常采用变量抽样的抽样方法。

变量抽样的分类变量抽样概率比例规模抽样(PPS抽样)比率估计抽样差额估计抽样单位平均数抽样传统变量抽样一、单位平均数抽样•单位平均数抽样是一种传统的变量抽样方法,主要是通过计算样本平均值,并将平均值与总体项目数相乘,从而得出审定的总体价值。

•这种变量抽样方法的适用范围十分广泛,无论被审计单位提供的数据是否完整可靠,甚至在被审计单位缺乏基本经济业务或事项的账面记录的情况下,均可使用该方法。

变量抽样在细节测试中的应用样本设计阶段1.选取样本阶段本2.3.评价样本结果阶段与控制测试一样,在实质性测试中,审计抽样也可分为样本设计、选取样本和评价样本结果三个阶段:1确定测试目标 为有关财务报表金额的一项或多项认定提供合理保证为有关财务报表金额的一项或多项认定提供合理保证确定测试目标 1考虑总体的适当性和完整性,确保抽样总体适合于特定的审计目标定义总体2为有关财务报表金额的一项或多项认定提供合理保证确定测试目标 1考虑总体的适当性和完整性,确保抽样总体适合于特定的审计目标定义总体2根据审计目标和所实施的审计程序,同时结合实施计划的审计程序和替代程序的难易程度定义抽样单元定义抽样单元3。

服务业限额以下单位抽样调查技术方案

服务业限额以下单位抽样调查技术方案

服务业限额以下单位抽样调查技术方案一、抽样方法及样本量的确定服务业限额以下单位抽样调查采用小样本抽样方法。

具体方法为:服务业限额以下单位按单位性质分企业和非企业两部分分别抽样,以全市为总体按行业大类进行小样本抽样,各县(市)、区每个行业大类分别抽1家企业和1家非企业作为限下单位样本。

样本由市里统一抽取后下发。

二、数据的推算以第二次经普资料为基础,测算每个县(市)、区限额以下单位各主要指标作为基数,推算总量时各县(市)、区限下各行业大类采用全市统一的增长速度再乘上相应的基数。

下面以营业收入为例说明各大类总量抽样推算公式:①2009年度大类抽样推算公式:2009年大类营业收入=第二次经济普查该大类限额以下单位营业收入×2009年样本单位营业收入的平均发展速度×2009年该大类限额以下单位变化系数其中单位变化系数=2009年名录库中该大类限额以下的单位数/2008年名录库中该大类限额以下的单位数②月度调查期的推算公式本期大类营业收入(收入合计)=上年同期该大类限额以下单位营业收入×本期该大类样本单位营业收入的平均发展速度)×本期该大类限额以下单位的变化系数。

其中单位变化系数=本期名录库中该大类限额以下的单位数/上年同期名录库中该大类限额以下的单位数如果不能掌握本期单位数的变化情况,可用上年的变化系数代替。

如果没有上年同期该大类限额以下单位的营业收入,则要通过该大类限额以上单位本期调查的上年同期营业收入与上年营业收入的比重为系数来推算。

公式为:上年同期该大类限额以下单位营业收入=(该大类限额以上单位本期调查的上年同期营业收入/该大类限额以上的上年营业收入)×上年全年该大类限额以下单位营业收入。

三、其他限额以下单位抽取后,各地要根据企业是否关停、是否正常经营等情况,进行实地核对,对于已经关停、经营不正常的单位用相邻单位进行调整替换,最后确定限额以下样本单位。

抽样方法与样本容量的确定

抽样方法与样本容量的确定
第七章 抽样方法 Chapter 7 Sampling Methods
抽样是通过抽取总体中的部分单元, 收集这些单元的信息,用来对作为整体 的总体进行统计推断的一种手段。本章 讨论了抽样的基本问题。 Sampling is a means of selecting a subset of units from a population for the purpose of collecting information for those units, usually to draw inference about the population as a whole.
非概率抽样的优点是: The advantages of non-probability sampling are that:

快速简便; 费用相对较低; 不需要抽样框; 对探索性研究和调查的设计开发很有用。 It is quick and convenient It is relatively inexpensive It requires no sampling frame It can be useful for exploratory studies and survey development
抽样的两种主要类型是概率抽样与 非概率抽样。 There are two types of sampling: nonprobability sampling and probability sampling
非 概 率 抽 样 non-probability 的用途是有限的,因为抽选单元的 倾向性不允许对调查总体进行推断。 然而非概率抽样快速简便,对探索 性研究很有用,特别是在市场调查 中应用非常广泛。
1.随意抽样Haphazard sampling

品检流程中的抽样技巧与样本数量计算

品检流程中的抽样技巧与样本数量计算

品检流程中的抽样技巧与样本数量计算品检流程是企业生产过程中至关重要的环节之一,通过抽样检验来保证产品质量的稳定性。

在品检流程中,选择合适的抽样技巧和计算样本数量是确保抽样结果准确可靠的关键。

本文将介绍品检流程中的抽样技巧与样本数量计算的方法。

一、抽样技巧1. 随机抽样:随机抽样是最常用的抽样技巧之一,它能够确保样品具有代表性。

在进行随机抽样时,每个个体有相同的概率被选中,这样可以减少因为主观因素而引入的偏差。

2. 分层抽样:分层抽样是将总体划分为若干个层次,然后从每个层次中随机抽取样本。

这种抽样技巧可以更好地反映总体的特点,提高抽样的效率和准确性。

3. 系统抽样:系统抽样是按照固定的间隔从总体中选取样本。

例如,每隔三个产品选取一个样本,这样可以确保每个产品都有机会被选中。

4. 方便抽样:方便抽样是基于方便和经济的考虑选择样本,这种抽样方法不够科学和可靠,容易引入偏差,因此在品检流程中应尽量避免使用方便抽样。

二、样本数量计算样本数量的计算是确定抽样结果的可信度和可靠性的重要步骤。

以下是两种常用的样本数量计算方法:1. 根据总体容量计算:样本数量的计算可以根据总体容量和抽样误差来确定。

抽样误差是指样本与总体的差异,通常使用置信水平和抽样误差的标准差来计算样本数量。

置信水平表示抽样结果的可靠程度,通常取95%或99%;抽样误差的标准差取决于品质控制指标和产品特性,例如,如果品质控制指标是产品尺寸的偏差,那么抽样误差的标准差可以根据产品尺寸的标准差来计算。

2. 根据产品特性计算:样本数量的计算也可以根据产品特性来确定。

例如,如果需要检验产品的外观缺陷,可以通过设定缺陷的最大允许数和最小检出数来计算样本数量。

最大允许数是指产品中允许的缺陷数量,最小检出数是指检验过程中至少需要发现的缺陷数量。

这种方法可以在满足质量要求的前提下最小化样本数量。

在进行样本数量计算时,还应考虑成本和时间的限制。

较大的样本数量可以提高检验结果的准确性,但会增加检验成本和时间。

抽样方案的技术说明和细节说明

抽样方案的技术说明和细节说明

抽样方案的技术说明和细节说明抽样方案的技术说明和细节说明一、引言在市场调研、数据分析、科学实验等领域中,抽样是一种常用的数据收集方法。

抽样方案的设计与实施直接关系到研究结果的可靠性和有效性。

本文将从技术和细节两个方面,详细介绍抽样方案的设计和实施过程,并提供一些实用的建议和方法。

二、抽样目标的明确在设计抽样方案之前,首先需要明确抽样的目标。

抽样的目标可以是总体参数的估计、总体之间的比较、总体间的关联性等。

明确抽样目标有助于确定合适的抽样方法和样本规模。

三、抽样方法的选择抽样方法是指按照一定的规则从总体中选取样本的方式。

常见的抽样方法有随机抽样、分层抽样、整群抽样等。

在选择抽样方法时,需要考虑总体特点、抽样目标和实际可行性等因素。

例如,对于分层抽样,需要根据总体的分层特征将总体划分为若干层,然后从每一层中独立抽取样本。

四、样本规模的确定确定合适的样本规模是抽样方案设计的关键环节。

样本规模的大小直接影响到估计结果的精确度和置信水平。

常用的确定样本规模的方法有点估计法、区间估计法、模拟法等。

根据具体情况,可以选择合适的方法来确定样本规模。

五、抽样过程的实施在实施抽样过程中,需要严格按照抽样方案的要求进行操作,以确保样本的代表性和可信度。

抽样过程中的关键环节包括样本选择、样本筛选、数据收集等。

例如,在随机抽样过程中,可以使用随机数表或计算机随机数生成器来进行样本选择。

六、样本调整与分析在抽取到样本后,有时需要进行样本调整,以消除因抽样误差带来的偏差。

常见的样本调整方法有加权因子法、倾斜校正法等。

样本调整后,可以进行数据分析和结果解读。

根据抽样目标和具体需求,可以选择适当的统计方法和模型来进行分析。

七、总结与建议设计和实施抽样方案是确保研究结果可靠性和有效性的关键步骤。

在进行抽样方案设计时,需要明确抽样目标,选择合适的抽样方法,确定样本规模。

在抽样过程中,要严格按照方案要求进行操作,保证样本的代表性和可信度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机抽样—分层随机抽样
• 分层抽样的特点是先将总体按照某种特征 或指标分成几个排斥的又是穷尽的子总体, 或层,然后在每个层内按照随机的方法抽 取元素。其原则是子总体内元素间差异可 能小,而不同子总体间差异大。 • 这种抽样方法使得样本的代表性加强 。
随机抽样—整群抽样
• 整群抽样首先将总体划成许多相互排斥的 子总体或群,然后以群为初级抽样单元, 按某种概率抽样技术,如简单随机抽样, 从中抽取若干个群,对抽中的群内的所有 单元都进行调查。
1. 2. 3. 4. 5. 简单随机抽样 等距抽样(系统抽样) 分层随机抽样 整群抽样 多级抽样

非随机抽样
1、方便取样;2、判断取样;3、配额取样
两种抽样方法的比较
• 随机抽样:运用统计学方法可以对总体给 出很准确的估计。 • 非随机抽样:不能代表总体的情况,也无 法运用统计学方法为调查结果提供准确度。
试算
n=n1/(1+n1/N) n1=1000
客户总数N 样本量n
1
?
200
?
500
?
1000
?
10000
?
50000 100000 1000000
? ? ?
客户总数N 样本量n
1 1
200 167
500 333
1000 500
10000 909
50000 980
100000 990
1000000 999
例:如果我们的奥运会调查样本要求90%的置信水平下, 精确度为3%,这也就是说,如果你做100次调查,将 有90次结果的精确度小于等于3%.
3.
方差,即变异程度 在一个给定的置信水平和特定的样本大小下,你所期 望的精确度仍然会有很大的变化,这取决于被调查者所 持有的不同观点。 在顾客满意度指数的调查中,方差表示被调查者对调 查问题给出答案的分散程度。方差越大,表示答案越不 一致;方差越小,表示答案越趋于一致。所以,当总体 方差越大时,为了保证获得数据的准确性,样本量也应 该越大;反之,总体方差越小,样本量也可以相应减小。
95%置信度与样本量对照表
误差d
0.07 0.06 0.05 0.04 0.03 0.02 0.015 0.01
置信水平
0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95
Z统计量 1.65 1.65 1.96 1.96 1.96 1.96 1.96 1.96
样本大小n
139 190 385 601 1068 2401 4268 9604
抽样技术及样本计算方法
什么是抽样
• 从所有客户中抽选出一部分作为样本(即 被调查对象),对样本进行调查。 • 根据对样本调查的结果推断总体(即所有 客户) 此种对样本的抽选过程即为抽样。
什么是普查
• 与抽样调查对应的是普查(对总体的所有客户展开调查)。 • 优点:
– 一般来说,在理想状态下,普查不受抽样误差影响且能够得到最为全 面的信息。
多少才算是客户总数很大? 多少才算是客户总数较小?
• 在总体比较小时,总体对样本规模会产生较大影 响,就要考虑总体对样本规模的影响。这时可以 用如下公式进行转换:

n=n1/(1+n1/N)
n表示在总体较小时需要计算95%的置信水平,3%的抽样误差下,n1=1068:
抽样的可靠性
• 抽样的可靠性是用可重复性来评判的。 • 即随机选取的一组样本再做完全一样的调 查,你会得到同样的结果吗? • 抽样是否可靠主要由样本量大小决定的。 而样本量的大小除了与调查的目的相关, 主要由以下五个方面决定。
影响样本量大小的六个因素
1. 2. 3. 4. 5. 6. 抽样误差 置信水平 方差 客户总数 抽样方法 资金
例:如果你调查一个问题而几乎所有的人都持有相同的观点,比如(谋杀违法吗?)那么无论 做多少次调查,你实际上都期望能够得到一个确切的结果。所以方差(观点的类别)越小,任 何大小的样本在任何置信水平下的可靠性就越高。
4. 客户总数
a) 当客户总数很大时,样本量与客户总数几乎 没有关系。 b) 当客户总数较小时,样本量随客户总数的增 加而增加。
• 缺点:
– 完成一项普查需要的时间长,可能影响最终得到数据的可比性; – 可能导致高的非抽样误差; – 涉及费用高。 相对而言,通过严密的设计和实施控制,抽样调查也可用相对低廉的费 用获得比较准确的相近似的数据。
什么是误差
• 在CSI中,由于各方面因素的作用,调查结 果总会存在误差。通常,调查误差分为两 种主要类型:
• 例如:从100个乡中抽出10个乡中的全体居民全部调查。
随机抽样—多级抽样
• 也叫多阶段抽样。它是在第一阶段从所有 群中抽取若干群,在每个抽中的群中,再 抽取若干单元进行调查。
• 例:按地理,经济,人口分层从全国抽几个省,按大、中、
小城市分层,从抽到的省中抽几个市,从抽出的市中,抽 出有代表性的区,从抽出的区中,抽出若干有代表性的户, 调查其居民。
单纯随机抽样法了。
随机抽样—等距抽样
• 按照某种顺序给总体中所有单元编号,然 后随机地抽取一个编号作为样本的第一个 单元,样本的其它单元则按照某种确定的 规则抽取(如等距原则),这种抽样方法 称为系统抽样。其中最常用最简单的系统 抽样叫等距抽样。
• 例如:某地有5000户,今欲抽取1/5家庭作健康调查,则 每5户抽1户,或逢“5”抽,抽到的户即作为调查单位。
抽 样 误 差
抽样误差与样本量关系曲线
样本量
抽样误差随着样本量的增加而减少,但当样本 量增加到一定程度之后,样本量的增加对抽样 误差几乎没有影响了。
误 差
样本量
2. 置信水平 你可以在不同的置信水平上计算样本的精 确度。非常重要的研究,比如药物的研究 一般都会选择99%的置信水平。在一般 调查的研究中,置信水平通常取为90%95%.
– 抽样误差 – 非抽样误差
• 误差=抽样误差+非抽样误差
• 总的来说,普查不存在抽样误差,但可能 存在较大的非抽样误差;而抽样调查会产 生抽样误差和非抽样误差。 • 因此,选择合适的科学的抽样方法和样本 显得非常重要。
抽样误差
• 指通过调查部分客户,而非全部客户,来 估计总体特征所产生的误差,形成原因在 于所选择的特定样本不能完美地代表总体。 这是由于抽样的偶然性造成的、是不可避 免的误差。
抽样误差与样本量的关系
抽 样 误 差
样本量
非抽样误差
• 指在所有调查活动过程中所产生的除去抽 样误差以外的所有误差,主要是由于人为 的差错造成的。 • ① 由调研人员引起的 • ② 由访问员引起的 • ③ 由被访者引起的
非抽样误差与样本量的关系
非 抽 样 误 差
样本量
误 差
样本量
抽样方法
• 随机抽样
样 本 量
客户总数
5. 抽样方法 在其他条件相同时,重复抽样比不重复抽 样要求样本容量大些。 如果将客户划分的区域越多,则总样本人 数越多才能真实代表每个区域的客户情况。
样本量的计算
样本量的计算公式
• 当客户总数很大时,简单样本量的计算公式:
n
Z 2S 2 2 d
– n代表所需要的样本量; – Z表示置信水平下的Z统计量,如95%置信水平的 Z统计量为1.96; – S代表总体的标准差; – d代表置信区间的1/2,在实际应用中就是容许误 差,或者抽样调查误差。
随机抽样—简单随机抽样
• 总体中的每一个元素都有一个相等的被抽中概率。 简单随机抽样可以通过抽签法、随机数字表法和 EXCEL随机函数来实现。先确定或搜集一个抽样 框,将抽样框中的每个元素都编上号。然后把所 有抽签抽中的号码的元素或随机数字对应的号码 的元素做为样本进行调查。
• 例如:应用随机数表进行抽样。若想从500名中抽100名,则从数字 表上取出500个数字依次记在卡上,再按随机数目大小排列成序,以 其中连续100名为样本。 • 此法只能用于数目不大的情况,如想从几万人中抽样调查,就很难用
1. 抽样误差 由于样本不同而导致的偏差被称为抽样 误差,抽样本身会导致抽样误差。为了保 证抽样调查的准确性,我们希望抽样误差 越小越好。一般调查研究时,抽样一般误 差控制在3%-7%之间。
例:你调查了100个人,询问他们是否应该早办奥运会,其中66% 的人说“是”。如果你的调查精确度为3%,这也就是说,如果 你对不同的样本展开同样的调查,最后结果中选“是”的比例 会在63%-69%之间。
相关文档
最新文档