浙教版数学八年级上册 特殊三角形综合复习题

合集下载

浙教版八年级上册数学第二章特殊三角形全部知识点考点及练习

浙教版八年级上册数学第二章特殊三角形全部知识点考点及练习

浙教版数学八年级上册第二章《特殊三角形》复习一、知识结构本章主要学习了等腰三角形的性质与判定、直角三角形的性质与判定以及勾股定理、HL 定理等知识,这些知识点之间的结构如下图所示:等腰Rt两直角三角形全等的判定直角三角形的性质和判定等边三角形的性质和判定等腰三角形的性质和判定直角三角形等边三角形等腰三角形特殊三角形二、重点回顾1.等腰三角形的性质:等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对_____);等腰三角形三线合一,这三线是指________________、________________、________________,也就是说一条线段充当三种身份;等腰三角形是________图形,它的对称轴有_________条。

2.等腰三角形的判定:有____边相等的三角形是等腰三角形;有_____相等的三角形是等腰三角形(即在同一个三角形中,等角对_____)。

注意:有两腰相等的三角形是等腰三角形,这句话对吗? 3.等边三角形的性质:等边三角形各条边______,各内角_______,且都等于_____;等边三角形是______图形,它有____条对称轴。

4.等边三角形的判定:有____边相等的三角形是等边三角形;有三个角都是______的三角形是等边三角形;有两个角都是______的三角形是等边三角形;有一个角是______的______ 三角形是等边三角形。

5.直角三角形的性质:直角三角形两锐角_______;直角三角形斜边上的中线等于_______;直角三角形两直角边的平方和等于________(即勾股定理)。

30°角所对的直角边等于斜边的________ 6.直角三角形的判定:有一个角是______的三角形是直角三角形;有两个角_______的三角形是直角三角形;两边的平方和等于_______的三角形是直角三角形。

一条边上的中线等于该边长度的一半,那么该三角形是直角三角形,但不能直接拿来判断某三角形是直角三角形,但有助于解题。

(完整版)浙教版八年级上册+特殊三角形综合复习

(完整版)浙教版八年级上册+特殊三角形综合复习

初二几何第2单元疑难问题集锦一•选择题(共10小题)1. 如图:在△ ABC中,CE平分/ ACB CF平分/ ACD,且EF// BC交AC于M ,若CM=5,贝U CE+CF2等于()A. 75B. 100C. 120D. 1252. 等腰Rt A ABC中,/ BAC=90, D是AC的中点,ECL BD于E,交BA的延长线于F,若BF=12则厶FBC的面积为()A. 40B. 46C. 48D. 503. 如图,将两个大小、形状完全相同的△ ABC和厶A B拼在一起,其中点A 与点A重合,点C落在边AB上,连接B'.若/ ACB=/ AC B' =90AC=BC=3则B'的长为()4. 如图,在Rt A ABC 中,/ ACB=90, CD L AB,垂足为D, AF 平分/ CAB 交CD于点E,交CB于点F.若AC=3, AB=5,贝U CE的长为(5•如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形, 如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为 m ,6.要判定两个直角三角形全等,下列说法正确的有() ① 有两条直角边对应相等;② 有两个锐角对应相等;③ 有斜边和一条直角边对应相等;④ 有一条直角边和一个锐角相等;⑤ 有斜边和一个锐角对应相等;⑥ 有两条边相等.A . 6个B. 5个C. 4个D. 3个7. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已 知大正方形面积为49,小正方形面积为4,若用x 、y 表示直角三角形的两直角 边(x >y ),下列四个说法:① x 2+y 2=49,②x -y=2,③ 2xy+4=49,④x+y=9.其 中说法正确的是( )A .①②B .①②③ C.①②④ D .①②③④D. 那么(m+n )2的值为(25 D .无答案8. 如图,锐角△ ABC中,D、E分别是AB AC边上的点,△ ADG^A ADC, △AEB^A AEB,且G D/ EB7/ BC, BE、CD交于点F.若/ BAC=35,则/ BFC的大小是()A. 105°B. 110°C. 100°D. 120°9. 如图甲是我国古代著名的赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6 BC=5将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的数学风车”则这个风车的外围周长是()A. 52B. 42C. 76D. 7210. 如图,△ ABC面积为1,第一次操作:分别延长AB,BC, CA至点A i,B i, C i,使A1B=AB C1B=CB C1A=CA 顺次连接A1,B1,C,得到△A1B1C1 .第二次操作:分别延长A1B1,B1C1,C1A1 至点A Z,B2,C2,使A2B1=A1B1,B2C1=B I C1,QA1=C1A1,顺次连接A2, B2, C2,得到△ A2B2C2, ••按此规律,要使得到的三角形的面积超过2014,最少经过()次操作.AA. 7B. 6C. 5D. 4二•填空题(共9小题)11. 在正三角形△ ABC所在平面内有一点P,使得△ PAB △ PBC △ PAC都是等腰三角形,则这样的P点有________ 个.12. 如图,在锐角厶ABC中,/ BAC=45, AB=2,Z BAC的平分线交BC于点D, M、N分别是AD和AB上的动点,贝U BM+MN的最小值是_______ .13. 在Rt A ABC中,/ C=90°, BC=8cm AC=4cm 在射线BC上一动点D,从点B出发,以一•厘米每秒的速度匀速运动,若点D运动t秒时,以A、D、B为顶点的三角形恰为等腰三角形,则所用时间t为_________ 秒.(结果可含根号). 14. 如图,已知/ AON=40,0A=6,点P是射线ON上一动点,当△ AOP为直角三角形时,/ A= ______ ,Q P N15. _________ 如图,已知点P是射线ON上一动点(即P可在射线ON上运动),/ AON=30,当/ A= 时,△ AOP为直角三角形.16. 如图,在△ ABC中,AB=BC=8 AO=BQ点M是射线CO上的一个动点,/ AOC=60,则当△ ABM为直角三角形时,AM的长为________ .17. 如图,在 Rt A ABC 中,/ C=90°, AC=10, BC=5 线段 PQ=AB P, Q 两点分别在AC 和过点A 且垂直于AC 的射线AO 上运动,当AP= ________ 时,△ ABC 和 △ PQA 全等.18. 如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称 它为赵爽弦图”此图案的示意图如图2,其中四边形ABCD 和四边形EFGH 都是 正方形,△ ABF △ BCG △ CDH △ DAE 是四个全等的直角三角形.若 EF=2CB三•解答题(共11小题)20.如图,在△ ABC中,M为BC的中点,DM丄BC, DM与/BAC的角平分线交于点D,DE丄AB, DF丄AC, E、F为垂足,求证:BE=CF21.已知:如图,△ ABC中,/ ABC=45, CD丄AB 于D,BE平分/ ABC,且BE 丄AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G. (1)求证:BF=AC22 .如图,D为AB上一点,△ ACE^A BCD, AD2+DB2=D^,试判断厶ABC的形23. 把两个含有45°角的大小不同的直角三角板如图放置,点D在BC上,连接BE, AD, AD的延长线交BE于点F.说明:AF丄BE324. 图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB EF的端点均在小正方形的顶点上.(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长;(2)如图2,以线段EF为一边作出等腰厶EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4.團1 圏225. 如图,正方形网格中的每个小正方形边长都是1 ,每个小格的顶点叫做格点, 以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.26. 如图,△ ABC 中,/ B=90°, AB=3, BC=4 若CD=12, AD=13.求阴影部分的面积.27. 如图,在△ ACB 中,/ ACB=90 , CD 丄AB 于 D .(1) 求证:/ ACD=Z B ;(2) 若AF 平分/ CAB 分别交CD BC 于E 、F ,求证:/ CEF 2 CFE28. 如图所示,在△ ACB 中,/ ACB=90, /仁/ B .(1) 求证:CD 丄AB ;(2) 如果 AC=8 BC=6 AB=10,求 CD 的长.29. 如图,在厶ABC 中,/ B=90°, M 是AC 上任意一点(M 与A 不重合)MD 丄 BC,且交/ BAC 的平分线于点 D ,求证:MD=MA . A n5\ C4 9 30. 已知,在△ ABC 中,AC=BC / ACB=90,点D 是AB 的中点,点E 是AB 边 上一点. (1) 直线BF 丄CE 于点F ,交CD 于点G (如图①),求证:AE=CG(2) 直线AH 丄CE 于点H ,交CD 的延长线于点M (如图②),找出图中与BEz?相等的线段,并证明.初二几何第2单元疑难问题集锦参考答案与试题解析一•选择题(共10小题)1.如图:在△ ABC中,CE平分/ ACB CF平分/ ACD,且EF// BC交AC于M ,若CM=5,贝U CE+CF2等于()A. 75B. 100C. 120D. 125【解答】解::CE平分/ ACB, CF平分/ ACD,•••/ ACE寺/ ACB / ACF寺/ ACD,即/ ECF= (/ ACB^Z ACD) =90°,•••△ EFC为直角三角形,又T EF// BC, CE平分/ ACB CF平分/ ACD,•••/ ECB2 MEC=Z ECM , / DCF=/ CFM=Z MCF,••• CM=EM=MF=5 EF=10由勾股定理可知CE+CF^EFMOO.故选B.2.等腰Rt A ABC中,/ BAC=90 , D是AC的中点,ECL BD于E,交BA的延长线于F ,若BF=12则厶FBC的面积为()A. 40B. 46C. 48D. 50【解答】解::CEL BD ,:丄 BEF=90,vZ BAC=90,:丄 CAF=90,•••Z FAC Z BAD=90 , Z ABD+Z F=90°, Z ACF+Z F=90°,•••Z ABD=Z ACF ,•••在厶ABD 和A ACF 中ZBAD=ZCAFAB=AC, ZABD=ZACF • △ ABD ^A ACF ,• AD=AFv AB=AC D 为 AC 中点,• AB=AC=2AD=2AFv BF=ABAF=12• 3AF=12• AF=4• AB=AC=2AF=8• △ FBC 的面积是丄 X BF X AC 二 X 12X 8=48 ,2 2故选C .3•如图,将两个大小、形状完全相同的△ ABC 和厶A B 拼在一起,其中点 A与点A 重合,点C'落在边AB 上,连接B C 若Z ACB=/ AC B' =90AC=BC=3则B'的长为( )A . 3 - B. 6 C. 3 * D. 1汀[【解答】解:I/ ACBKAC B' =90AC=BC=3•i AB= [「j | =3 '_,/ CAB=45,•••△ ABC 和△ A B'大I 、、形状完全相同,•••/ C' AB /=AB=45, AB =AB=3,•••/ CAB =9Q°:B C =:J-甘 J =3 ::,故选:A .4.如图,在 Rt A ABC 中,/ ACB=90,CD 丄AB,垂足为 D , AF 平分/CAB 交v/ ACB=90,CD 丄 AB,•••/ CDA=90,•••/ CAF+/ CFA=90, / FA&/ AED=90 ,v AF 平分/ CAB•••/ CAF=/ FAD,•••/ CFA=/ AED=/ CEF ••• CE=CFv AF 平分/ CAB / ACF=/ AGF=90 ,••• FC=FGv/ B=/ B , / FGB=/ ACB=90 ,•••△ BF3A BAC, :-FGAB = AC '【解答】解:过点F 作FG 丄AB 于点G , 则CE 的长为(••• AC=3 AB=5, / ACB=90,••• BC=45•如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为较短的直角边为n ,那么(m+n )2的值为( )A . 23 B. 24 C. 25 D .无答案【解答】解:(m+n )2=m 2+n 2+2m 门=大正方形的面积+四个直角三角形的面积和(13- 1) =25.故选C .6.要判定两个直角三角形全等,下列说法正确的有()① 有两条直角边对应相等;② 有两个锐角对应相等;=13+即CE 的长为32③有斜边和一条直角边对应相等;④ 有一条直角边和一个锐角相等;⑤ 有斜边和一个锐角对应相等;⑥ 有两条边相等.A . 6个B. 5个C. 4个D. 3个【解答】解:①有两条直角边对应相等,可以利用 SAS 证明全等,正确;② 有两个锐角对应相等,不能利用 AAA 证明全等,错误;③ 有斜边和一条直角边对应相等,可以利用 HL 证明全等,正确;④ 有一条直角边和一个锐角相等,不一定可以利用 AAS 证明全等,错误;⑤ 有斜边和一个锐角对应相等,可以利用 AAS 证明全等,正确;⑥ 有两条边相等,不一定可以利用 HL 或SAS 证明全等,错误;故选D .7. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已 知大正方形面积为49,小正方形面积为4,若用x 、y 表示直角三角形的两直角 边(x >y ),下列四个说法:① x 2+y 2=49,②x -y=2,③ 2xy+4=49,④x+y=9.其 中说法正确的是( )A .①②B .①②③ C.①②④ D .①②③④①-②得2xy=45 ③,2xy+4=49,① + ③得 x 2+2xy+y 2=94, .•.( x+y ) 2=94,.①②③正确,④错误.故选B8. 如图,锐角△ ABC 中,D 、E 分别是 AB AC 边上的点,△ ADG^A ADC , △【解答】 解: 由题意AEB^A AEB,且G D/ EB7/ BC, BE、CD交于点F.若/ BAC=35,则/ BFC的大小是()A. 105°B. 110°C. 100°D. 120°【解答】解:设/ C =,Z B'=,•••△ADC^A ADC, △AEB^A AEB,•••/ ACD=/ C' =, Z ABE=Z B' =,/ BAE=Z B' AE=35•••/ C' DB Z BACACD=35+a, Z CEB =35°.•••C' / EB'// BC,•••Z ABC=/ C DB Z BACACD=35+a, Z ACB=/ CEB =3倂B,•••Z BAG Z ABO Z ACB=180, 即卩105° + a+B =180:则a+B =75:•Z BFC Z BDG Z DBE,•Z BFC=35+a+B =35+75°=110°.9. 如图甲是我国古代著名的赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6 BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的数学风车”则这个风车的外围周长是()【解答】解:依题意得,设 数学风车”中的四个直角三角形的斜边长为X ,则貳=122+52=169,解得x=13.故数学风车”的周长是:(13+6)X 4=76.故选:C.10. 如图,△ ABC 面积为1,第一次操作:分别延长 AB , BC, CA 至点A i , B i , C 1 ,使 A 1B=AB GB=CB GA=CA 顺次连接 A , B 1 , C ,得到△ A 1B 1C 1 .第二次 操作:分别延长 A 1B 1 , B 1C 1 , C 1A 1 至点 A 2 , B 2 , C 2 ,使 A 2B 1=AB 1, B 2C 1=B I C 1 , C 2A 1=C 1A 1 , 顺次连接A 2 , B 2 , C 2 ,积比为1: 2,得到△ A 2B2C 2, ••按此规律,要使得到的三角形的面积超 过2014,最少经过( )次操作.C. 5 D . 4 【解答】解: △ ABC 与厶A i BBi 底相等(AB=AB ),高为 1: 2 (BB i =2BC ),故面 A . 7B. 6 4S A1B1B F2.同理可得,S\CIBI(=2,S\AAIC=2,S\ A1B1C=S\ C1B1(+S\ AA1C+S^ A1B1B+S\ ABC=2+2+2+1=7;同理可证厶A2B2C2的面积=7XA A1B1C1的面积=49,第三次操作后的面积为7X 49=343,第四次操作后的面积为7X 343=2401.故按此规律,要使得到的三角形的面积超过2014,最少经过4次操作.故选D.二•填空题(共9小题)11 •在正三角形△ ABC所在平面内有一点P,使得△ PAB △ PBC △ PAC都是等腰三角形,则这样的P点有10 个.【解答】解:(1)点P在三角形内部时,点P是边AB、BC CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个,故答案为:10.12.如图,在锐角厶ABC中,/ BAC=45, AB=2,Z BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,贝U BM+MN的最小值是—丄_ .【解答】解:如图,作BH 丄AC,垂足为H ,交AD 于M 点,过M 点作M N1AB, 垂足为N',则BM+M N 为所求的最小值.••• AD 是/ BAC 的平分线,••• M H=M N••• BH 是点B 到直线AC 的最短距离(垂线段最短),••• AB=2 / BAC=45,••• BH=AB?si n45 =乂返,!, 2••• BM+MN 的最小值是 BM +M N =B+M H=BH=[.故答案为:一二13.在 Rt A ABC 中,/ C=90°, BC=8cm AC=4cm 在射线 BC 上一动点 D ,从点 B 出发,以.匚厘米每秒的速度匀速运动,若点 D 运动t 秒时,以A 、D 、B 为顶 点的三角形恰为等腰三角形,则所用时间t 为_「.!.一:,—秒.(结果可含 根号).【解答】解:①如图1,当AD=BD 时,在Rt A ACD 中,根据勾股定理得到: AD 2=AC ?+CD 2, 即卩 BD ^= (8 - BD ) 2+42,解得,BD=5 (cm ),则t=〒=.,(秒);② 如图2,当AB=BD 时.在Rt A ABC 中,根据勾股定理得到:AB=J ; ;'=4「!•,则 A N V B(秒③如图3,当AD=AB时,BD=2BC=16则t于■弋蜃(秒);综上所述,t的值可以是:! . —- \ ;14•如图,已知/ AON=40, 0A=6,点P是射线ON上一动点,当△ AOP为直角三角形时,/ A= 50 或90【解答】解:当AP I ON时,/ APO=90,则/ A=50°,当PAIOA时,/ A=90°,即当△ AOP为直角三角形时,/ A=50或90°故答案为:50或90.15. 如图,已知点P是射线ON上一动点(即P可在射线ON上运动),/ AON=30 , 第19页(共32页)当/ A 60或90°时,△ AOP为直角三角形.【解答】解:若/ APO是直角,则/ A=90°-Z AON=90 - 30°60°,若/ APO是锐角,•••/ AON=30是锐角,•••Z A=90°,综上所述,Z A=60°或90°故答案为:60°或90°16. 如图,在△ ABC中,AB=BC=8 AO=BQ点M是射线CO上的一个动点,Z AOC=60,则当△ ABM为直角三角形时,AM的长为 J或4—或4 .【解答】解:如图1,当Z AMB=90时,•OM=OB=4,又TZ AOC=/ BOM=6°,•△ BOM是等边三角形,••• BM=B0=4,••• Rt A ABM 中,AM= j — =4 . 如图2,当/ AMB=90时,v O是AB的中点,AB=8, ••• OM=OA=4,又v/ AOC=60,•△ AOM是等边三角形,•AM=AO=4;如图3,当/ ABM=90时,v/ BOM=/ AOC=60,•/ BMO=3° ,•MO=2BO=2X 4=8,--Rt A BOM 中,BM二q j. =4 :;,Rt A ABM 中,AM= , . 'ir =4 7,综上所述,当△ ABM为直角三角形时,AM的长为4 -;或4 -或4.故答案为:4■或4■或4.17. 如图,在Rt A ABC中,/ C=90°, AC=10, BC=5 线段PQ=AB P, Q 两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 5 或10 时,△ ABC 和厶PQA全等.【解答】解:当AP=5或10时,△ ABC和厶PQA全等,理由是:I / C=90, AO丄AC,•/ C=/ QAP=90,①当AP=5=BC时,在Rt A ACB和Rt A QAP 中fAB=PQ|BC=AP•Rt A ACB^ Rt A QAP ( HL),②当AP=10=AC时,在Rt A ACB和Rt A PAQ中fAB=PQ 仏二AP•Rt A ACB^ Rt A PAQ( HL),故答案为:5或10.18. 如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为赵爽弦图”此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是第22页(共32页)正方形,△ ABF △ BCG △ CDH △ DAE是四个全等的直角三角形.若EF=2••• BF=BG- BF=6,•••直角△ ABF中,禾I」用勾股定理得:AB=十,厂=10・故答案是:10.19. 如图:在△ ABC中,AB=AC BC=BD AD=DE=EB 贝U/ A= 45【解答】解::DE=EB•••设/ BDE=/ ABD=x•••/ AED=/ A=2x,•••/ BDC=/ C=/ ABC=3x 在厶ABC中,3x+3x+2x=180°, 解得x=22.5 °•••/ A=2x=22.5°X 2=45°.故答案为:45°.三.解答题(共11小题)20. 如图,在△ ABC中,M为BC的中点,DM丄BC, DM与/BAC的角平分线交于点D , DE 丄AB , DF 丄AC, E 、F 为垂足,求证:BE=CF•••点D 在BC 的垂直平分线上,••• DB=DCv D 在/BAC 的平分线上,DE± AB, DF 丄AC, ••• DE=DFvZ DFC=z DEB=90,在 Rt A DCF 和 Rt A DBE 中,卩出DCI DMF ,••• Rt A DCF ^Rt A DBE (HL ),21. 已知:如图,△ ABC 中,Z ABC=45, CD 丄AB 于 D , BE 平分Z ABC ,且 BE丄AC 于E ,与CD 相交于点F , H 是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF=AC【解答】解:连接DB.••• CF=BE (全等三角形的对应边相等)【解答】(1)证明:T CD 丄AB ,/ ABC=45,•••△ BCD 是等腰直角三角形.••• BD=CDv/ DBF=90-/ BFD, / DCA=90 -/ EFC 且/ BFD=Z EFC•••/ DBF=/ DCA在 Rt A DFB 和 Rt A DAC 中,ZBDF=ZCDA■-■ I -,BD=DC••• Rt A DFB ^ Rt ^ DAC (AAS ,••• BF=AC(2) 证明:v BE 平分/ ABC,•••/ ABE=/ CBE在 Rt A BEA 和 Rt A BEC 中,ZAEB=ZCEBr … ,ZABE=ZCBE••• Rt A BEA^ Rt A BEC(ASA ).••• CE=AE 二AC,2 ,又 v BF=AC••• CE 丄 BF.2 22 .如图,D 为AB 上一点,△ ACE^A BCD AD 2+DB 2=D^,试判断厶ABC 的形[ [状,并说明理由.【解答】解:△ ABC是等腰直角三角形,理由是::△ ACE^A BCD,••• AC=BC / EAC2 B, AE=BD••• A D2+DB2=DE:,••• AD2+AE2=DE?,•••/ EAD=90 ,•••/ EAOZ DAC=90 ,•••/ DAG/ B=90° °•••/ ACB=180 - 90°=90°°••• AC=BC•••△ ABC是等腰直角三角形.23•把两个含有45°角的大小不同的直角三角板如图放置,点D在BC上,连接BE, AD , AD的延长线交BE于点F.说明:AF丄BE【解答】证明:AF丄BE,理由如下:由题意可知/ DEC/ EDC=4O5 , / CBA=/ CAB=45 ,••• EC=DC BC=AC 又/ DCE/ DCA=90 ,•••△ ECD^PA BCA都是等腰直角三角形,••• EC=DC BC=AC / ECD/ ACB=90.在厶BEC^n^ ADC中EC=DC / ECB W DCA, BC=AC•••△ BEC^A ADC (SAS.•••/ EBC=z DACvZ DAC+Z CDA=90,/ FDB=Z CDA•••/ EBG Z FDB=90.•••Z BFD=90,即AF丄BE.24. 图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB EF的端点均在小正方形的顶点上.(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长;(2)如图2,以线段EF为一边作出等腰厶EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4.【解答】解:(1)以AB为对角线的正方形AEBF如图所示,正方形的周长为4.丨| .囹1(2)等腰△ EFG如图所示,&EFG^ X ■ tx「=4.11严■ ■ * ■ u r!,•■ - —|1■ . -4L_. JF■…/i N;;111_ 125. 如图,正方形网格中的每个小正方形边长都是1 ,每个小格的顶点叫做格点, 以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.【解答】解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:.】、2二、.II (如图2);26. 如图,△ ABC 中,/ B=90°, AB=3, BC=4 若CD=12, AD=13.求阴影部分的面积.【解答】解::△ ABC中,/ B=90 ° AB=3,••• AC=一= :L '=5-v CD=12 AD=13. AC=5,••• AC2+CD2=AD2,•••△ ACD是直角三角形,S阴影=S\ACD—S A ABC^X 5X 12 - —X 3X 4=30- 6=24. :- :-27. 如图,在△ ACB中,/ ACB=90 , CD丄AB于D.(1)求证:/ ACD=Z B;(2)若AF平分/ CAB分别交CD BC于E、F,求证:/ CEF2 CFE【解答】证明:(1)vZ ACB=90 , CD丄AB于D,•••/ ACD F Z BCD=90,/ B+Z BCD=90,•••/ ACD=/ B;(2)在Rt A AFC中,Z CFA=90—Z CAF, 同理在Rt A AED中,Z AED=90-Z DAE 又v AF平分Z CAB•••Z CAF=/ DAE,•••Z AED=/ CFE又vZ CEF Z AED,• Z CEF Z CFE28. 如图所示,在△ ACB 中,/ ACB=90, /仁/ B .(1) 求证:CD 丄AB ;(2) 如果 AC=8 BC=6 AB=10,求 CD 的长.【解答】(1)证明:I / ACB=90,•••/ 1+/ BCD=90,v/ 仁/ B,•••/ B+/ BCD=90,•••/ BDC=90,••• CD 丄 AB ;29. 如图,在△ ABC 中,/ B=90°, M 是AC 上任意一点(M 与A 不重合)MD 丄BC,且交/ BAC 的平分线于点 D ,求证:MD=MA .【解答】 证明:v MD 丄BC,且/ B=90°,.AB// MD ,./ BAD=/ D又v AD 为/ BAC 的平分线./ BAD=/ MAD ,•••/ D=Z MAD,••• MA=MD...CD—I IAB 10 =4.8.(2)解:v S\AB ?CD丄 AC ?BC30.已知,在△ ABC 中,AC=BC / ACB=90,点D 是AB 的中点,点E 是AB 边 上一点.(1) 直线BF 丄CE 于点F ,交CD 于点G (如图①),求证:AE=CG(2) 直线AH 丄CE 于点H ,交CD 的延长线于点M (如图②),找出图中与BE 相 等的线段,并证明.•••/ ACB=90,•••/ A=Z ABC=45,Z ACE=90-Z BCF••• BF 丄 CE,•••/ CFB=90,•••/ CBG=90-Z BCF•••/ ACE W CBQ在厶ACE ft^ CBG 中,ZA=ZBCG=45&AC=BC,ZACE=ZE0G •••△ ACE^A CBG( ASA ),••• AE=CG(2)解:CM=BE 理由:•••CD 丄AB ,AH 丄CE•••/ CDE W CHM=9,,•••/ DCE ■/CEB=90,Z DCE^Z CMA=90,•••/ CEB W CMA ,在厶 BCE^n ^ ACM 中,[r ZB=ZACI!-45frZCEB=ZCMA ,t AC=BC•••△ BCE^A ACM (AAS),••• CM=BE。

第二章特殊三角形综合测试(浙教版初中数学八年级上册)

第二章特殊三角形综合测试(浙教版初中数学八年级上册)

第1页 共6页第二章 特殊三角形综合测试一、选择题1.如果等腰三角形一个底角是30o,那么顶角是( )(A )60o. (B )150o. (C )120o. (D )75o.2、已知等腰三角形的周长为40cm,以一腰为边作等边三角形,其周长为45cm,则等腰三角形的底边长是( )A 、5cm B 、10cm C 、15cm D 、20cm3.下列说法中,正确的是( )(A )一个钝角三角形一定不是等腰三角形.(B )一个等腰三角形一定是锐角三角形. (C )一个直角三角形一定不是等腰三角形.(D )一个等边三角形一定不是钝角三角形. 4、若△ABC 的三边a、b、c满足那么△ABC 的形状是( ) A 、等腰三角形 B 、直角三角形 C 、等边三角形 D 、锐角三角形 5、等腰△ABC 中,AC =AB ,两腰中线交于一点O ,则AO 与BC 的关系是( ) A 、相等 B 、互相垂直 C 、AO 垂直平分BC D 、AO 、BC 互相垂直 6.在等腰三角形中,AB 的长是BC 的2倍,周长为40,则AB 的长为( ) (A )20. (B )16. (C )16或20. (D )以上都不对. 7.等腰三角形一腰上的高与另一腰的夹角为30o,则顶角的度数为( ) (A )60o. (B )120o. (C )60o或150o. (D )60o或120o. 8.等腰三角形一腰上的高与底边夹角为45o,则这个三角形是( )(A )锐角三角形. (B )钝角三角形. (C )等边三角形. (D )等腰直角三角形. 9.两根木棒的长度分别是5cm 和7cm ,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒的长为偶数,那么第三根木棒长的取值情况有( ) (A )3种. (B )4种. (C )5种. (D )6种. 10.已知△ABC 中,AB =AC ,且∠B =,则的取值范围是( )(A )≤45o. (B )0o<<90o.(C )=90o. (D )90o<<180o.11.等腰三角形一腰上的高与底边的夹角等于( )(A )顶角.(B )顶角的一半 .(C ) 顶角的2倍. (D )底角的一半. 12、如图∠BCA=90,CD ⊥AB ,则图中与∠A 互余的角有( )个 A .1个 B 、2个 C 、3个 D 、4个()()()0a b b c c a ---=ααααααDCBA第2页 共6页FE DC BAABC二、填空13.(1)等腰三角形 、 、 互相重合. (2)△ABC 中,∠A=∠B=2∠C ,那么∠C= 。

浙教版2020八年级数学上册第二章特殊三角形单元综合能力测试题1(附答案详解)

浙教版2020八年级数学上册第二章特殊三角形单元综合能力测试题1(附答案详解)

浙教版2020八年级数学上册第二章特殊三角形单元综合能力测试题1(附答案详解)1.如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.24πB.22πC.1 D.22.已知一元二次方程x2﹣6x+9=1的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.10 B.10或8 C.9 D.83.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°4.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是()A.5,12,13 B.8,15,17 C.3,4,7 D.6,8,10 5.下边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.②⑤B.②④C.③⑤D.①⑤6.下列几组数中,为勾股数的是()A.13,14,15B.3,4,6C.5,12,13D.0.9,1.2,1.57.O是等边△ABC内的一点,OB=1,OA=2,∠AOB=150°,则OC的长为()A3B5C7D.38.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )A.0个B.1个C.2个D.3个9.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A 在x轴上运动时,点C随之在y轴上运动.在运动过程中,点B到原点的最大距离是( ).A.6B.26C.22+2D.2510.如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是()A.2B.3C.5D.211.在镜中看到的一串数字是“80008”,则这串数字是______________12.在∠A(0°<∠A<90°)的内部画线段,并使线段的两端点分别落在角的两边AB、AC 上,如图所示,从点A1开始,依次向右画线段,使线段与线段在两端点处互相垂直,A1A2为第1条线段.设AA1=A1A2=A2A3=1,则∠A =_____;若记线段A2n-1A2n的长度为a n(n为正整数),如A1A2=a1,A3A4=a2,则此时a2=_______,a n=________(用含n的式子表示).13.轴对称图形对应点连线被________,对应角对应线段都________.14.等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的腰边长为_____cm..15.在△ABC中,AB=2,AC=3,cos∠ACB=22,则∠ABC的大小为________度.16.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为____________ .17.如图,在凸四边形ABCD 中,AB=BC=BD ,∠ABC=80°,则∠ADC 等于_______18.已知点P (x ,x+y )与点Q (5,x ﹣7)关于x 轴对称,则点P 的坐标为_____. 19.如图①,在边长为4cm 的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ //BD ,PQ 与边AD(或边CD)交于点Q ,PQ 的长度()y cm 与点P 的运动时间x(秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长度是______cm .20.如图,长方体ABCD —A 1B l C l D 1中,AD =3,AA l =4,AB =5,则从A 点沿表面到C l 的最短距离为______.21.如图,ABC 中,AB AC =,D ,E ,F 分别为AB ,BC ,CA 上的点,且BD CE =,DEF B ∠=∠.(1)求证:BDE ≌CEF ;(2)若40A ∠=,求EDF ∠的度数.22.台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风暴,有极强的破坏力,据气象观察,距沿海某城市A正南220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心正以15千米/时的速度沿北偏东30°方向向C移动,且台风中心风力不变,若城市受到的风力达到或超过四级,则称受台风影响.(1)该城市是否会受到这次台风的影响?为什么?(2)若受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?23.在如图所示的5×5网格中,小方格的边长为1.(1)图中格点正方形ABCD的面积为________;(2)若连接AC,则以AC为边的正方形的面积为________;(3)在所给网格中画一个格点正方形,使其各边都不在格线上且面积最大,你所画的正方形面积为_____.24.在平面直角坐标系中,,点在第二象限的角平分线上,、的垂直平分线交于点.(1)求证:;(2)设交轴于点,若,求点的坐标;(3)作交轴于点,若,求点的坐标.25.如图,D 是△ABC 的BC 边上的一点,∠B =40°,∠ADC=80°.(1)求证:AD=BD ;(2)若∠BAC=70°,判断△ABC 的形状,并说明理由.26.如图1,已知A (a ,0),B (0,b )分别为两坐标轴上的点,且a 、b 满足2)60a b b -+-=(,OC ∶OA =1∶3.(1)求A 、B 、C 三点的坐标;(2)若D (1,0),过点D 的直线分别交AB 、BC 于E 、F 两点,设E 、F 两点的横坐标分别为E F x x 、.当BD 平分△BEF 的面积时,求E F x x +的值;(3)如图2,若M (2,4),点P 是x 轴上A 点右侧一动点,AH ⊥PM 于点H ,在HM 上取点G ,使HG =HA ,连接CG ,当点P 在点A 右侧运动时,∠CGM 的度数是否改变?若不变,请求其值;若改变,请说明理由.27.如图,隧道的截面由半圆和长方形构成,长方形的长BC 为8m ,宽AB 为1m ,该隧道内设双向行驶的车道(共有2条车道),若现有一辆货运卡车高4m ,宽2.3m .则这辆货运卡车能否通过该隧道?说明理由.28.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A、B 是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是多少米?参考答案1.C【解析】【分析】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,利用等腰直角三角形的性质得,∠A=∠B=45°,OC ⊥AB ,OC=OA=OB=1,∠OCB=45°,再证明Rt △AOP ≌△COQ 得到AP=CQ ,接着利用△APE 和△BFQ 都为等腰直角三角形得到PE=2AP=2CQ ,QF=2BQ ,所以PE+QF=2BC=1,然后证明MH 为梯形PEFQ 的中位线得到MH=12,即可判定点M 到AB 的距离为12,从而得到点M 的运动路线为△ABC 的中位线,最后利用三角形中位线性质得到点M 所经过的路线长.【详解】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=2,∠A=∠B=45°, ∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC=OA=OB=1,∴∠OCB=45°, ∵∠POQ=90°,∠COA=90°, ∴∠AOP=∠COQ ,在Rt △AOP 和△COQ 中A OCQ AO COAOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △AOP ≌△COQ ,∴AP=CQ ,易得△APE 和△BFQ 都为等腰直角三角形,∴,BQ ,∴PE+QF=2(CQ+BQ)=2BC=22=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=12(PE+QF)=12,即点M到AB的距离为12,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=12AB=1,故选C.【点睛】本题考查了等腰直角三角形的判定与性质、梯形的中位线、点运动的轨迹,通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹是解题的关键. 2.A【解析】【分析】先求得方程的两根,再把方程两根分别为底可求得三角形的三边长,即可求得答案.【详解】解方程x2−6x+9=1可得x=2或x=4,当△ABC的底为2时,则三角形的三边长为2、4、4,满足三角形三边关系,其周长为10,当△ABC的底为4时,则三角形的三边长为4、2、2,不满足三角形三边关系,舍去,∴△ABC的周长为10.故答案选:A.【点睛】本题考查了三角形的三边关系与等腰三角形的性质以及解一元二次方程,解题的关键是熟练的掌握三角形的三边关系与等腰三角形的性质以及根据因式分解法解一元二次方程.3.C【解析】【分析】已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【详解】当50°是等腰三角形的顶角时,则底角为(180°﹣50°)×=65°;当50°是底角时也可以.故选C.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.C【解析】【分析】根据勾股定理逆定理逐个分析即可.如果a2+b2=c2,那么以a,b,c为边的三角形是直角三角形. 【详解】因为52+122=132;82+152=172;32+42≠72;62+82=102所以,以5,12,13;8,15,17;6,8,10为长度的三条线段能组成直角三角形,以3,4,7为长度的三条线段不能组成直角三角形.故选C【点睛】本题考核知识点:勾股定理逆定理. 解题关键点:熟记勾股定理逆定理.5.A【解析】试题分析:右边的图案中由两种基本图形拼接而成,分别是②⑤,左上方和右下方的基本图形是②,左下方和右上方的基本图形是⑤考点:图形拼接点评:本题考查图形拼接,考查学生的观察图形的能力6.C【解析】【分析】可以构成一个直角三角形三边的一组正整数,称之为勾股数,根据这个概念进行判断即可. 【详解】A:13,14,15不是整数,故其不为勾股数;B:222346+≠,故其不为勾股数;C:22251213+=,故其为勾股数;D:0.9,1.2,1.5不是整数,故其不为勾股数.故选:C.【点睛】考查勾股数的定义,熟练掌握定义是解题的关键.7.B【解析】如图,将△AOB绕B点顺时针旋转60°到△BO′C的位置,由旋转的性质,得BO=BO′,∴△BO′O为等边三角形,由旋转的性质可知∠BO′C=∠AOB=150°,∴∠CO′O=150°-60°=90°,又∵OO′=OB=1,CO′=AO=2,∴在Rt△COO′中,由勾股定理,得OC=2222+=+=.O O O C''125故选B.8.B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确;③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,所以逆命题成立的只有一个,故选B.【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.9.C【解析】【分析】点A,C分别在x轴、y轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点O在到AC的中点的距离不变.本题可通过设出AC的中点坐标,根据B、D、O在一条直线上时,点B到原点O的最大可得出答案.【详解】作AC的中点D,连接OD、DB,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵D是AC中点,∴OD=12AC=2, ∵BD=22222=2+,OD=12AC=2, ∴点B 到原点O 的最大距离为2+22, 故选D . 【点睛】此题主要考查了两点间的距离,以及勾股定理的应用,本题的难度较大,理解D 到O 的距离不变是解决本题的关键. 10.C 【解析】∵展开后由勾股定理得:AB 2=12+(1+1)2=5, ∴AB=5, 故选C .【点睛】本题考查了平面展开-最短路径问题,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键. 11.80008【解析】根据镜面对称可得这串数字是80008,故答案为:80008. 12.22.5︒ 12+ (112n -+【解析】∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3, ∴△A 1A 2A 3为等腰直角三角形, ∴∠A 2A 1A 3=45°, 又AA 1=A 1A 2, ∴∠A =∠AA 2A 1,又∠A 2A 1A 3为△AA 2A 1的外角, ∴∠A =∠AA 2A 1=12∠A 2A 1A 3=22.5°;∵AA1=A1A2=A2A3=1,∴A1A2=a1=1;在Rt△A1A2A3中,根据勾股定理得:A1A3,∴AA3=A3A4=a2=AA1+A1A3;同理AA5=A5A6=a3=AA3+A3A5()=()2;以此类推,a n=()n-1.故答案为:22.5°;;()n-1.点睛:此题考查了等腰直角三角形的性质,勾股定理,以及三角形的外角性质,属于规律型题,锻炼了学生归纳总结的能力,是中考中常考的题型.13.对称轴垂直平分相等【解析】【分析】根据轴对称图形对应点和对应角的性质可解得此题.【详解】根据轴对称图形的性质:轴对称图形对应点连线被对称轴垂直平分,对应角对应线段都相等.【点睛】此题考查了学生轴对称图形知识,掌握轴对称图形的性质是解决此题的关键.14.5或4【解析】【分析】此题分为两种情况:5cm是等腰三角形的底边或5cm是等腰三角形的腰,然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:当5cm是等腰三角形的底边时,则其腰长是(13-5)÷2=4(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是13-5×2=3(cm),能够组成三角形.故答案为:4或5.【点睛】此题考查了等腰三角形的两腰相等的性质与三角形的三边关系,解题时要注意分类讨论思想的运用. 15.30或150 【解析】如图,作AD ⊥BC 于点D ,在Rt △ACD 中,∵AC=3、cos ∠ACB=223,∴CD=ACcos ∠ACB=3×223=22,则AD=()2222322AC CD -=-=1,①若点B 在AD 左侧,∵AB=2、AD=1,∴∠ABC=30°;②若点B 在AD 右侧,则∠AB′D=30°,∴∠AB′C=150°,故答案为30或150.16.96m 2 【解析】试题解析:如图,连接AC .在△ACD 中,∵AD=12m ,CD=9m ,∠ADC=90°, ∴AC=15m ,又∵AC 2+BC 2=152+202=252=AB 2, ∴△ABC 是直角三角形,∴这块地的面积=△ABC 的面积-△ACD 的面积=12×15×20-12×9×12=96(平方米). 故答案为:96m 2. 17.140° 【解析】 【分析】根据等腰三角形的性质和三角形内角和定理可得1902ADB ABD ∠=︒-∠,1902CDB CBD ∠=︒-∠,由于∠ADC=∠ADB+∠CDB ,∠ABC=80°,依此即可求解.【详解】 ∵AB =BC =BD ,∴11909022ADB ABD CDB CBD ,,∠=︒-∠∠=︒-∠ ∴11909022ADC ADB CDB ABD CBD ∠=∠+∠=-∠+-∠11180()1808018040140.22ABD CBD =-∠+∠=-⨯=-=故答案为140. 【点睛】考查等腰三角形的性质以及三角形的内角和,得到190,2ADB ABD ∠=︒-∠ 190,2CDB CBD ∠=︒-∠是解题的关键.18.(5,2)【解析】试题解析:由点P (x ,x+y )与点Q (5,x ﹣7)关于x 轴对称,得 x=5,x+y=7﹣x . 解得x=5,y=﹣3, 点P 的坐标为(5,2).点睛:对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.19.【解析】 【分析】根据运动速度乘以时间,可得P 的位置,根据线段的和差,可得CP 的长,最好根据勾股定理,可得PQ 的长度. 【详解】由题可得:点P 运动2.5秒时,P 点运动了5cm , 此时,点P 在BC 上,853cmCP∴=-=,Rt PCQ中,由勾股定理,得223332cmPQ=+=,故答案为:32.【点睛】本题考查了动点函数图象,依据点P的位置,利用勾股定理进行计算是解题关键.20.74【解析】【分析】A点沿表面到C l共有三种情况,一是经平面AB1,A1C1,二是经平面AB1,BC1,三是经平面AC,BC1,画出三种情况下的图形,并利用勾股定理进行求解,最后比较三个结果,最小的即为答案.【详解】从A点沿表面到C l的情况可以分为以下三种:与A1B1相交,如下图示:此时174AC②与BB1相交,如下图示:此时180AC=③与BC相交,如下图示:此时190AC=综上,从A点沿表面到C l7474【点睛】考查多面体表面上的最短路径问题,利用数形结合思想,根据两点之间,线段最短,用勾股定理求解即可.21.(1)证明见解析;(2)55°.【解析】【分析】(1)根据三角形外角的性质可得到∠CEF=∠BDE,可证△BDE≌△CEF;(2)由(1)可得DE=FE,即△DEF是等腰三角形,由等腰三角形的性质可求出∠B=70°,即∠DEF=∠B=70°,从而求出∠EDF的度数.【详解】(1)∵∠DEC=∠B+∠BDE=∠CEF+∠DEF,∠DEF=∠B,∴∠CEF=∠BDE.∵AB =AC ,∴∠C =∠B .又∵CE =BD ,∴△BDE ≌△CEF . (2)∵△BDE ≌△CEF ,∴DE =FE . ∴△DEF 是等腰三角形,∴∠EDF =∠EFD . ∵AB =AC ,∠A =40°,∴∠B =70°.∵∠DEF =∠B ,∴∠DEF =70°,∴∠EDF =∠EFD =12×(180°﹣70°)=55°. 【点睛】本题考查了等腰三角形的性质和判定、三角形的外角与内角的关系及全等三角形的判定及性质;证得三角形全等是正确解答本题的关键.22.(1)该城市会受到这次台风的影响(2)415小时(3)6.5级 【解析】试题分析:(1)求是否会受到台风的影响,其实就是求A 到BC 的距离是否大于台风影响范围的半径,如果大于,则不受影响,反之则受影响.如果过A 作AD BC ⊥于D ,AD 就是所求的线段 Rt △ABD 中,有ABD ∠的度数,有AB 的长,AD 就不难求出了.(2)受台风影响时,台风中心移动的距离,应该是A 为圆心,台风影响范围的半径为半径,所得圆截得的BC 上的线段的长即EF 得长,可通过在Rt AED △和Rt AFD 中,根据勾股定理求得.有了路程,有了速度,时间就可以求出了.(3)风力最大时,台风中心应该位于D 点,然后根据题目给出的条件判断出时几级风. 试题解析:(1)该城市会受到这次台风的影响。

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (833)

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (833)
28.(7 分)试判断:三边长分别为 2n2 + 2n , 2n +1 、 2n2 + 2n +1(n>O)的三角形是否是直角三 角形?并说明理由. 29.(7 分)如图,在 Rt△ABC 中,∠BAC=90°,AB=AC,AD 是斜边 BC 上的中线, AD=5 cm,求△ABC 的面积.
30.(7 分)如图,已知△ABC 是等边三角形,BD 是 AC 边上的高,延长 BC 到 E,使 CE=CD.试判断△DEB 是不是等腰三角形,并说明理由.
B.HL
C.SAS
2.(2 分)下列图形中,不是轴对称图形的是( )
D. AAA
A.线段
B.角
C.直角三角形 D.等腰三角形
3.(2 分)已知在△ABC 和△DFE 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△
DEF 全等的是( ) A.AB=DE,AC=DF B.AC=EF,BC=DF C.AB=DE,BC=FED.∠C=∠F,BC=FE 4.(2 分)如图,D 是∠BAC 内部一点,DE⊥AB,DF⊥AC,DE=DF,则下列结论不.正.确. 的是( )
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.D 2.C 3.B 4.D 5.C 6.A 7.B 8.D 9.D 10.C 11.C 12.C
评卷人
得分
二、填空题
13.AB=AD 14.55°
15. 3 a
4 16.45° 17.12 18.25° 19.10 20.30° 21.3 22.120 23.10 24.l2
27.(7 分) 如图①所示是某立式家具(角书橱)的横断面,请你设计一个方案(角书橱高 2 m, 房间高 2.6 m,所以不必从高度方面考虑方案的设计),按此方案,可使该家具通过图② 中的长廊搬人房间,在图②中把你设计的方案画成草图,并通过近似计算说明按此方案可 把家具搬人房间的理由.

特殊三角形(压轴必刷30题)—2024学年八年级数学上册同步讲义(浙教版)(解析版)

特殊三角形(压轴必刷30题)—2024学年八年级数学上册同步讲义(浙教版)(解析版)

特殊三角形(压轴必刷30题7种题型专项训练)一.全等三角形的判定与性质(共1小题)1.(2022秋•南昌期中)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.【分析】(1)先用等式的性质得出∠CAE=∠BAD,进而得出△ABD≌△ACE,有∠B=∠ACE,最后用等式的性质即可得出结论;(2)①由(1)的结论即可得出α+β=180°;②同(1)的方法即可得出结论.【解答】解:(1)∵∠DAE=∠BAC,∠BAC=∠BAD+∠DAC=∠EAC+∠DAC;∴∠CAE=∠BAD;在△ABD和△ACE中,∴△ABD≌△ACE(SAS);∴∠B=∠ACE;∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180°﹣∠BAC=90°;故答案为90°;(2)①由(1)中可知β=180°﹣α,∴α、β存在的数量关系为α+β=180°;②当点D在射线BC上时,如图1,同(1)的方法即可得出,△ABD≌△ACE(SAS);∴∠ABD=∠ACE,∴β=∠BCE=∠ACB+∠ACE=∠ACB+∠ABD=180°﹣∠BAC=180°﹣α,∴α+β=180°;当点D在射线BC的反向延长线上时,如图2,同(1)的方法即可得出,△ABD≌△ACE(SAS);∴∠ABD=∠ACE,∴β=∠BCE=∠ACE﹣∠ACB=∠ABD﹣∠ACB=∠BAC=α,∴α=β.【点评】此题是作图﹣﹣﹣复杂作图,主要考查了等式的性质,全等三角形的判定,解本题的关键是得出△ABD≌△ACE.二.等腰三角形的性质(共7小题)2.(2022秋•拱墅区期末)如图,△ABC中,AB=AC,AD⊥BC于点D,DE平分∠ADC,交AC与点E,EF⊥AB于点F,且交AD于点G,若AG=2,BC=12,则AF=.【分析】过点B作BH⊥AC于H,过点D作DK⊥AC于K,过点E作EM⊥CD于M,EN⊥AD于N,连接BE,先证得△DEG≌△DEC(AAS),运用勾股定理可得AB=10,利用面积法可求得:DK=,BH=,EM=EN=,AE=,EF=,再运用勾股定理即可求得答案.【解答】解:如图,过点B作BH⊥AC于H,过点D作DK⊥AC于K,过点E作EM⊥CD于M,EN⊥AD于N,连接BE,∵AB=AC,AD⊥BC,∴BD=CD=BC=×12=6,∠BAD+∠ABC=90°,∠ABC=∠C,∵EF⊥AB,∴∠BAD+∠AGF=90°,∴∠ABC=∠AGF=∠C,∵∠AGF=∠DGE,∴∠DGE=∠C,∵DE平分∠ADC,EM⊥CD,EN⊥AD,∴EM=EN,∠EDG=∠EDC,在△DEG和△DEC中,,∴△DEG≌△DEC(AAS),∴DG=CD=6,∵AG=2,∴AD=AG+DG=2+6=8,在Rt△ABD中,AB===10,∴AC=AB=10,∵AC•DK=AD•CD,∴10DK=8×6,∴DK=,∵AC•BH=BC•AD,∴10BH=12×8,∴BH=,∵S△ADE+S△CDE=S△ACD,∴AD•EN+CD•EM=AD•CD,∴4EN+3EM=24,∵EN=EM,∴7EN=24,∴EN=,∴EM=EN=,∵DK•AE=AD•EN,∴AE=8×,∴AE=,∵AB•EF=AE•BH,∴10EF=×,∴EF=,在Rt△AEF中,AF===.故答案为:.【点评】本题考查了等腰三角形三线合一的性质,角平分线上的点到角的两边的距离相等的性质,等边对等角,直角三角形性质,勾股定理,三角形面积,全等三角形的判定和性质等,综合性强,有一定难度,添加辅助线作三角形的高,运用面积法是解题关键.3.(2022秋•金华期中)已知:如图,在△ABC中,AB=AD=DC,∠BAD=30°;试求∠B和∠C的度数.【分析】由题意,在△ABC中,AB=AD=DC,∠BAD=30°,根据等腰三角形的性质可以求出底角,再根据三角形内角与外角的关系即可求出内角∠C.【解答】解:在△ABC中,AB=AD=DC,∵AB=AD,在三角形ABD中,∠B=∠ADB=(180°﹣30°)=75°,又∵AD=DC,在三角形ADC中,∴∠C=∠ADB=37.5°.∴∠B=75°,∠C=37.5°.【点评】本题考查等腰三角形的性质及应用等腰三角形两底角相等,还考查了三角形的内角和定理及内4.(2022秋•余杭区校级期中)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.(1)AD与CE相等吗?为什么;(2)若∠BCD=75°,求∠ACE的度数;(3)若∠BCE=α,∠ACE=β,则α,β之间满足一定的数量关系,请直接写出这个结论.【分析】(1)由SAS证明△ABD≌△EBC,根据全等三角形的性质即可得出AD=CE;(2)根据等腰三角形的性质可得∠BCD=∠BDC=75°,由三角形的内角和以及角平分线的定义得出∠DBC=∠ABD=30°,再根据全等三角形的性质和三角形的内角和即可求解;(3)根据等腰三角形的性质可得∠BCD=∠BDC,由角平分线的定义得∠DBC=∠ABD,再根据全等三角形的性质和三角形的内角和得∠ACE=∠ABD=∠DBC=β,由∠BCE=∠BCD+∠ACE=α和三角形的内角和即可得出结论.【解答】解:(1)AD=CE,理由:∵BD为△ABC的角平分线,∴∠ABD=∠CBE,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴AD=CE;(2)∵BD=BC,∠BCD=75°∴∠BCD=∠BDC=75°,∴∠DBC=∠ABD=30°,∴∠ABC=60°,由(1)知△ABD≌△EBC,∴∠BAD=∠BEC,∵∠ADB=∠EDC,∴∠ACE=∠ABD=30°;(3)∵BD=BC,∴∠BCD=∠BDC,∵BD为△ABC的角平分线,∴∠DBC=∠ABD,由(1)知△ABD≌△EBC,∴∠BAD=∠BEC,∵∠ADB=∠EDC,∴∠ACE=∠ABD=∠DBC=β,∵∠BCE=∠BCD+∠ACE=α,∴∠BCD=∠BDC=α﹣β,∵∠DBC+∠BDC+∠BCD=180°,∴β+(α﹣β)+(α﹣β)=180°,∴2α﹣β=180°.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质与判定、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.5.(2022秋•隆回县期中)探究与发现:如图①,在Rt△ABC中,∠BAC=90°,AB=AC,点D在底边BC 上,AE=AD,连接DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)上运动时,试猜想并探究∠BAD与∠CDE的数量关系;(3)深入探究:若∠BAC≠90°,试就图②探究∠BAD与∠CDE的数量关系.【分析】(1)CAD=∠BAD=60°,由于AD=AE,于是得到∠ADE=60°,根据三角形的内角和即可得到∠CDE=75°﹣45°=30°;(2)设∠BAD=x,于是得到∠CAD=90°﹣x,根据等腰三角形的性质得到∠AED=45°+,于是得到结论;(3)设∠CDE=x,∠C=y,由等腰三角形的性质和外角的性质可求解.【解答】解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=x,∴∠CAD=90°﹣x,∵AE=AD,∴∠AED=45°+,∴∠CDE=x,∴∠BAD=2∠CDE;(3)设∠CDE=x,∠C=y,∵AB=AC,∠C=y,∴∠B=∠C=y,∵∠CDE=x,∴∠AED=y+x,∵AD=AE,∴∠ADE=∠AED=y+x,∵∠ADC=∠B+∠BAD=∠ADE+∠CDE,∴y+∠BAD=y+x+x,∴∠BAD=2∠CDE.【点评】本题考查等腰三角形的性质,三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.(2022秋•岳阳县校级期中)在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.【分析】(1)等腰三角形三线合一,所以∠DAE=30°,又因为AD=AE,所以∠ADE=∠AED=75°,所以∠DEC=15°.(2)同理,易证∠ADE=70°,所以∠DEC=20°.(3)通过(1)(2)题的结论可知,∠BAD=2∠EDC(或∠EDC=∠BAD).(4)由于AD=AE,所以∠ADE=∠AED,根据已知,易证∠BAD+∠B=2∠EDC+∠C,而B=∠C,所以∠BAD=2∠EDC.【解答】解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠BAD=∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=15°.(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=20°.(3)∠BAD=2∠EDC(或∠EDC=∠BAD)(4)仍成立,理由如下∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC=2∠EDC+∠C又∵AB=AC,∴∠B=∠C∴∠BAD=2∠EDC.故分别填15°,20°,∠EDC=∠BAD【点评】本题考查了等腰三角形三线合一这一性质,即等腰三角形底边上中线、高线以及顶角的平分线三线合一.得到角之间的关系是正确解答本题的关键.7.(2022秋•余姚市校级期中)若a、b是△ABC的两边且|a﹣3|+(b﹣4)2=0(1)试求a、b的值,并求第三边c的取值范围.(2)若△ABC是等腰三角形,试求此三角形的周长.(3)若另一等腰△DEF,其中一内角为x°,另一个内角为(2x﹣20)°试求此三角形各内角度数.【分析】(1)利用非负数的性质可求得a、b的值,根据三角形三边关系可求得c的范围;(2)分腰长为3或4两种情况进行计算;(3)分这两个内角一个为顶角和两个都是底角三种情况,结合三角形内角和定理可求得x,可得出三个角的度数.【解答】解:(1)∵|a﹣3|+(b﹣4)2=0,∴a=3 b=4,∵b﹣a<c<b+a,∴1<c<7;(2)当腰长为3时,此时三角形的三边为3、3、4,满足三角形三边关系,周长为10;当腰长为4时,此时三角形的三边长为4、4、3,满足三角形三边关系,周长为11;综上可知等腰三角形的周长为10或11;(3)当底角为x°、顶角为(2x﹣20)°时,则根据三角形内角和为180°可得:x+x+2x﹣20=180,解得x=50,此时三个内角分别为50°、50°、80°;当顶角为x°、底角为(2x﹣20)°时,则根据三角形内角和为180°可得:x+2x﹣20+2x﹣20=180,解得x=44,此时三个内角分别为44°、68°、68°;当底角为x°、(2x﹣20)°时,则等腰三角形性质可得:x=2x﹣20,解得x=20,此时三个内角分别为20°、20°、140°;综上可知三角形三个内角为50度、50度、80度或44度、68度、68度或20度、20度、140度.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形的两腰相等、两底角相等是解题的关键.8.(2022秋•金华期末)如图,在△ABC中,∠ABC=2∠ACB,BD为△ABC的角平分线;(1)若AB=BD,则∠A的度数为°(直接写出结果);(2)如图1,若E为线段BC上一点,∠DEC=∠A;求证:AB=EC.(3)如图2,若E为线段BD上一点,∠DEC=∠A,求证:AB=EC.【分析】(1)如图1中,设∠C=x.则可证∠A=∠ADB=2x,利用三角形内角和定理,构建方程求出x 即可解决问题;(2)证明△ABD≌△ECD(AAS),可得结论;(3)如图2中,延长BD到T,使得CD=CT.证明△ABD≌△ECT(AAS),可得结论.【解答】(1)解:如图1中,设∠C=x.∵∠ABC=2∠C,∴∠ABC=2x,∵BD平分∠ABC,∴∠ABD=∠CBD=x,∵AB=BD,∴∠A=∠ADB=∠DBC+∠C=2x,∵∠A+∠ABC+∠C=180°,∴2x+2x+x=180°,∴x=36°,∴∠A=2x=72°,故答案为:72.(2)证明:如图1中,∵∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC.(3)证明:如图2中,延长BD到T,使得CD=CT.∵CD=CT,∴∠T=∠CDT=∠ADB,∵BD=CD,∴BD=CT,在△ABD和△ECT中,,∴△ABD≌△ECT(AAS),∴AB=EC.【点评】本题属于三角形综合题,考查了等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题.三.等腰三角形的判定(共3小题)9.(2022秋•泗洪县期中)如图,已知直线OM垂直于直线ON,点A在直线OM上,且∠OAB=30°,点B在直线ON上,在直线OM或直线ON上找一点C(与A、B不重合),使△ABC成为一个等腰三角形,这样的点C能找到个.【分析】分两种情况讨论,当AB是底边时,当AB是腰时,即可求解.【解答】解:(1)当AB是底边时,作AB的垂直平分线,分别与AO,线段BO的延长线相交,共两个交点,都符合题意;(2)当AB是腰时①以A圆心AB长为半径画圆交直线OM于两点,交线段BO延长线于一点(该点与前面的点重合)②以B圆心AB长为半径画圆交直线ON于两点(有一个点与前面的点重合),交线段AO延长线于一点,有两个交点符合题意,因此这样的点C能找到6个,使△ABC成为等腰三角形.故答案为:6.【点评】本题考查等腰三角形,关键是分两种情况讨论,并注意有重合的点.10.(2022秋•涟源市期中)如图,在△ABC中,∠B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)BP=(用t的代数式表示)(2)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(3)当点Q在边CA上运动时,出发秒后,△BCQ是以BC或BQ为底边的等腰三角形?【分析】(1)根据题意即可用t可分别表示出BP;(2)结合(1),根据题意再表示出BQ,然后根据等腰三角形的性质可得到BP=BQ,可得到关于t的方程,可求得t;(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.【解答】解:(1)由题意可知AP=t,BQ=2t,∵AB=16cm,∴BP=AB﹣AP=(16﹣t)cm,故答案为:(16﹣t)cm;(2)当点Q在边BC上运动,△PQB为等腰三角形时,则有BP=BQ,即16﹣t=2t,解得t=,∴出发秒后,△PQB能形成等腰三角形;(3)①当△BCQ是以BC为底边的等腰三角形时:CQ=BQ,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10(cm),∴BC+CQ=22(cm),∴t=22÷2=11;②当△BCQ是以BQ为底边的等腰三角形时:CQ=BC,如图2所示,则BC+CQ=24(cm),∴t=24÷2=12,综上所述:当t为11或12时,△BCQ是以BC或BQ为底边的等腰三角形.故答案为:11秒或12.【点评】本题考查了等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.11.(2022秋•江干区校级期中)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.四.等腰三角形的判定与性质(共2小题)12.(2022秋•拱墅区校级期中)(1)如图1,△ABC中,作∠ABC、∠ACB的角平分线相交于点O,过点O 作EF∥BC分别交AB、AC于E、F.①求证:OE=BE;②若△ABC的周长是25,BC=9,试求出△AEF的周长;(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,试探求∠BAC与∠P AC的数量关系式.【分析】(1)①由等腰三角形的性质和平行线的性质即可得到结论;②根据三角形的周长公式即可得到结论;(2)根据角平分线的性质即可得出答案.【解答】解:(1)①∵BO平分∠ABC,∴∠EBO=∠OBC,∵EF∥BC,∴∠EOB=∠OBC,∴∠EOB=∠EBO,∴OE=BE;②△AEF的周长=AE+AF+EF=AE+AF+EB+FC=AB+AC=25﹣9=16;(2)解:延长BA,做PN⊥BD,PF⊥BA,PM⊥AC,∵CP平分∠ACD,∴∠ACP=∠PCD,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∴∠F AP=∠P AC,∴∠F AC=2∠P AC,∵∠F AC+∠BAC=180°,∴2∠P AC+∠BAC=180°.【点评】本题考查了等腰三角形的性质和判定,平行线的性质,熟练掌握等腰三角形的判定和性质是解题的关键.13.(2022秋•房县期中)如图,A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE 的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.【分析】(1)①根据平行线的性质得到∠ADB=∠DBC,由角平分线的定义得到∠ABD=∠DBC,等量代换得到∠ABD=∠ADB,根据等腰三角形的判定即可得到AB=AD;②根据平行线的性质得到∠ADC=∠DCE,由①知AB=AD,等量代换得到AC=AD,根据等腰三角形的性质得到∠ACD=∠ADC,求得∠ACD=∠DCE,即可得到结论;(2)根据角平分线的定义得到∠DBC=∠ABC,∠DCE=∠ACE,由于∠BDC+∠DBC=∠DCE于是得到∠BDC+∠ABC=∠ACE,由∠BAC+∠ABC=∠ACE,于是得到∠DC+∠ABC=∠ABC+∠BAC,即可得到结论.【解答】解:(1)①∵AD∥BE,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD∥BE,∴∠ADC=∠DCE,由①知AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE;(2)∠BDC=∠BAC,∵BD、CD分别平分∠ABE,∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠BDC+∠DBC=∠DCE,∴∠BDC+∠ABC=∠ACE,∵∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠ABC+∠BAC,∴∠BDC=∠BAC.【点评】本题考查了等腰三角形的判定和性质,角平分线的定义,平行线的性质,熟练掌握等腰三角形的判定和性质是解题的关键.五.勾股定理(共8小题)14.(2022秋•镇海区校级期中)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC 边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8﹣t,列式求得t即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=12,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【解答】解:(1)∵BQ=2×24(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或1213.2秒时,△BCQ为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质,注意分类讨论思想的应用.15.(2022秋•嵊州市期中)如图,△ABC中,BA=BC,CO⊥AB于点O,AO=4,BO=6.(1)求BC,AC的长;(2)若点D是射线OB上的一个动点,作DE⊥AC于点E,连结OE.①当点D在线段OB上时,若△AOE是以AO为腰的等腰三角形,请求出所有符合条件的OD的长.②设DE交直线BC于点F,连结OF,若S△OBF:S△OCF=1:4,则BD的长为(直接写出所有结果).【分析】(1)由勾股定理即可计算;(2)①分两种情况:AO=OE或AO=AE,由等腰三角形的性质和判定,余角的性质,全等三角形的判定和性质,即可求解;②分两种情况:点D在线段OB上时或点D在线段OB延长线上时,由余角的性质,等腰三角形的性质和判定,三角形面积公式,即可求解.【解答】解:(1)∵AB=AO+BO=4+6=10,∴BC=AB=10,∵CO⊥AB,∴CO===8,∴AC===4;(2)①当AO=OE时,∴∠A=∠AEO,∵∠OED+∠AEO=∠ODE+∠A=90°,∴∠ODE=∠OED,∴OD=OE=AO=4;当AO=AE时,∵∠A=∠A,∠AOC=∠AED=90°,∴△AED≌△AOC(ASA),∴AD=AC=4,∴OD=AD﹣AO=4﹣4,②当点D在线段OB上时,∵S△OBF:S△OCF=1:4,∴BF:CF=1:4,∴BF:BC=1:3,∵BC=10,∴BF=,∵BC=BA,∴∠A=∠BCA,∵∠EDA+∠A=90°,∠BDF=∠EDA,∴∠BDF+∠A=90°,∵∠BFD+∠BCA=90°,∴∠BDF=∠BFD,∴BD=BF=,当点D在线段OB的延长线上时,∵S△OBF:S△OCF=1:4,∴BF:CF=1:4,∴BF:BC=1:5,∵BC=10,∴BF=2,同理可证:∠D=∠DFB,∴BD=BF=2.故答案为:或2.【点评】本题考查勾股定理,三角形全等判定和性质,等腰三角形的判定和性质,余角的性质,关键是熟练掌握以上知识点,并注意解题时分情况讨论.16.(2022秋•天宁区校级期中)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B 出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.【分析】(1)直接根据勾股定理求出BC的长度;(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP值.【解答】解:(1)在Rt△ABC中,BC2=AB2﹣AC2=102﹣62=64,∴BC=8(cm);(2)由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=8cm,即t=4;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣8)cm,AC=6cm,在Rt△ACP中,AP2=62+(2t﹣8)2,在Rt△BAP中,AB2+AP2=BP2,即:102+[62+(2t﹣8)2]=(2t)2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=16cm,t=8;③当BP=AP时,AP=BP=2tcm,CP=|2t﹣8|cm,AC=6cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=62+(2t﹣8)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.【点评】本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握勾股定理的应用,以及分情况讨论,注意不要漏解.17.(2022秋•闵行区期中)阅读材料:在直角三角形中,斜边和两条直角边满足定理:两条直角边的平方和,等于斜边的平方.因此如果已知两条边的长,根据定理就能求出第三边的长.例如:在Rt△ABC中,已知∠C=90°,AC=3,BC=4,由定理得AC2+BC2=AB2,代入数据计算求得AB=5.请结合上述材料和已学几何知识解答以下问题:已知:如图,∠C=90°,AB∥CD,AB=5,CD=11,AC=8,点E是BD的中点,那么AE的长为.【分析】作EG⊥AC,垂足为G.根据△ABF∽△CDF,求出AF=AC=×8=,FC=,然后利用勾股定理求出BF,DF,然后求出EB,EF.根据△ABF∽△GEF,求出EG、FG,然后利用勾股定理求出AE的长.【解答】解:作EG⊥AC,垂足为G.∵AB∥CD∴△ABF∽△CDF,∴=,∵AB=5,DC=11,∴=,∴AF=AC=×8=;∴FC=8﹣2.5=,∴BF==,DF==,∴EB=×(+)=4,∴EF=4﹣=.易得,△ABF∽△GEF,∴,,∴,,∴EG=3,FG=,∴AG=+=4,在Rt△AEG中,AE==5.故答案为:5.【点评】本题考查了勾股定理和相似三角形,作出辅助线,构造直角三角形是解题的关键.18.(2022秋•莲都区期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)由题意得出BQ=BP,即2t=8﹣t,解方程即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时(图2),则BC+CQ=12(cm),易求得t;③当BC=BQ时(图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ===2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t=;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∵∠B=90°,AB=8cm,BC=6cm,∴AC==10(cm),∴CQ=AQ=AC=5(cm),∴BC+CQ=11(cm),∴t=11÷2=5.5秒.②当CQ=BC时,如图2则BC+CQ=12(cm),∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE===4.8(cm)∴CE==3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.19.(2022秋•江干区校级期中)如图,△ABC中,BA=BC,CO⊥AB于点O,AO=6,BO=9.(1)求BC,AC的长;(2)若点D是射线OB上的一个动点,作DE⊥AC于点E,连结OE.①当点D在线段OB是以AO为腰的等腰三角形,请求出所有符合条件的OD的长.②设直线DE交直线BC于点F连结OF,CD,若S△OBF:S△OCF=1:4,则CD的长为(直接写出结果).【分析】(1)根据BA=BC可得BC的长,分别根据勾股定理可得OC和AC的长;(2)①分两种情况:AO=OE和AO=AE时,分别画图,根据三角形的中位线定理和证明三角形全等可解决问题;②分两种情况:i)当D在线段OB上时,如图3,过B作BG⊥EF于G,根据同高三角形面积的比等于对应底边的比,得=,可得BF=5,证明△BDF是等腰三角形,得BD=BF=5,最后利用勾股定理可得结论;ii)当D在线段OB的延长线上时,过B作BG⊥DE于G,同i)计算可得结论.【解答】解:(1)∵AO=6,BO=9,∴AB=15,∵BA=BC,∴BC=15,∵CO⊥AB,∴∠AOC=∠BOC=90°,由勾股定理得:CO===12,AC===6;(2)①分两种情况:i)当AO=OE=4时,过O作ON⊥AC于N,如图1所示:∴AN=EN,∵DE⊥AC,∴ON∥DE,∴ON是△ADE的中位线,∴OD=AO=6;ii)当AO=AE=4时,如图2所示:在△CAO和△DAE中,,∴△CAO≌△DAE(ASA),∴AD=AC=6,∴OD=AD﹣AO=6﹣6;综上所述,OD的长为6或6﹣6;②分两种情况:i)当D在线段OB上时,过B作BG⊥EF于G,如图3所示:∵S△OBF:S△OCF=1:4,∴=,∴=,∵CB=15,∴BF=5,∵EF⊥AC,∴BG∥AC,∴∠GBF=∠ACB,∵AE∥BG,∴∠A=∠DBG,∵AB=BC,∴∠A=∠ACB,∴∠DBG=∠GBF,∵BG⊥DF,∴△BDF是等腰三角形,∴BD=BF=5,∴OD=OB﹣BD=9﹣5=4,∴CD===4;ii)当D在线段OB的延长线上时,过B作BG⊥DE于G,如图4所示:同理得:=,∵BC=15,∴BF=3,同理得:△BDF是等腰三角形,∴BD=BF=3,∴OD=BO+BD=9+3=12,Rt△COD中,CD===12;综上所述,CD的长为4或12,故答案为:4或12.【点评】本题是三角形的综合题,考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定和性质、三角形的面积、勾股定理、分类讨论等知识;证明△BDF是等腰三角形是解题的关键.20.(2022秋•上城区校级期中)如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.【分析】(1)要证明△BCE≌△DCF,已知一对直角相等和一对边相等,只需再创造一个条件,所以根据已知条件运用角平分线的性质定理即可证明另一对边对应相等;(2)结合(1)中的结论进行分析,发现:AB=AE+BE=AF+BE=AD+DE+BE=AD+2BE,求出BE的长,再根据勾股定理求得CE的长,再运用勾股定理进行求解即可.【解答】(1)证明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,∴∠CFD=90°,∠CEB=90°(垂线的意义)CE=CF(角平分线的性质)∵BC=CD(已知)∴Rt△BCE≌Rt△DCF(HL)(2)解:由(1)得,Rt△BCE≌Rt△DCF∴DF=EB,设DF=EB=x,∵∠CFD=90°,∠CEB=90°,CE=CF,AC=AC∴Rt△AFC≌Rt△AEC(HL)∴AF=AE即:AD+DF=AB﹣BE∵AB=21,AD=9,DF=EB=x∴9+x=21﹣x解得,x=6在Rt△DCF中,∵DF=6,CD=10∴CF=8∴Rt△AFC中,AC2=CF2+AF2=82+(9+6)2=289∴AC=17答:AC的长为17.【点评】(1)掌握全等三角形的判定方法,能够根据已知条件探求需要的边相等或角相等;(2)注意线段的等量代换,熟练运用勾股定理.21.(2022秋•江阴市期中)如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)按要求作出草图,并求∠ADE=;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.【分析】(1)根据题意作出图形;根据题意可知MN是线段AC的垂直平分线,由此可得出结论;(2)先根据勾股定理求出BC的长,再根据线段垂直平分线的性质即可得出结论.【解答】解:(1)如图所示.∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°.故答案为:90°;(2)∵MN是线段AC的中垂线,∴EA=EC,在Rt△ABC中,BC=,∴C△ABE=AB+BE+EA=AB+BE+EC=AB+BC=3+4=7.【点评】本题考查的是作图﹣基本作图,勾股定理,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.六.作图-轴对称变换(共5小题)22.(2022秋•滨江区校级期中)直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、F.(1)如果∠AFE=65°,求∠CDF的度数;(2)若折叠后的△CDF与△BDE均为等腰三角形,那么纸片中∠B的度数是多少?写出你的计算过程,并画出符合条件的折叠后的图形.【分析】(1)在△CDF中,求出∠CFD即可解决问题;(2)先确定△CDF是等腰三角形,得出∠CFD=∠CDF=45°,因为不确定△BDE是以那两条边为腰的等腰三角形,故需讨论,①DE=DB,②BD=BE,③DE=BE,然后分别利用角的关系得出答案即可.【解答】解:(1)根据翻折不变性可知:∠AFE=∠DFE=65°,∴∠CFD=180°﹣65°﹣65°=50°,∵∠C=90°,∴∠CDF=90°﹣50°=40°.(2)∵△CDF中,∠C=90°,且△CDF是等腰三角形,∴CF=CD,∴∠CFD=∠CDF=45°,设∠DAE=x°,由对称性可知,AF=FD,AE=DE,∴∠FDA=∠CFD=22.5°,∠DEB=2x°,分类如下:①当DE=DB时,∠B=∠DEB=2x°,由∠CDE=∠DEB+∠B,得45°+22.5°+x=4x,解得:x=22.5°.此时∠B=2x=45°;见图形(1),说明:图中AD应平分∠CAB.②当BD=BE时,则∠B=(180°﹣4x)°,由∠CDE=∠DEB+∠B得:45°+22.5°+x=2x+180°﹣4x,解得x=37.5°,此时∠B=(180﹣4x)°=30°.图形(2)说明:∠CAB=60°,∠CAD=22.5°.③DE=BE时,则∠B=()°,由∠CDE=∠DEB+∠B得,45°+22.5°+x=2x+,此方程无解.∴DE=BE不成立.综上所述∠B=45°或30°.【点评】本题考查了翻折变换及等腰三角形的知识,有一定的综合性,在不确定等腰三角形的腰时要注意分类讨论,不要漏解,另外要注意方程思想在求解几何问题中的应用.23.(2022秋•西湖区校级期中)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)在直线l上找一点P,使PB+PC的长最短.【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用轴对称求最短路线求法得出P点位置.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:点P即为所求.【点评】此题主要考查了轴对称变换以及最短路径求法,正确得出对应点位置是解题关键.24.(2022秋•城阳区期中)(1)在下面的平面直角坐标系中画△ABC,使△ABC各顶点坐标分别为A(2,﹣1),B(﹣2,0),C(0,﹣2);(2)使ABC各点的横坐标保持不变,纵坐标分别乘﹣1,得△A1B1C1,画出△A1B1C1并说明△A1B1C1与△ABC有怎样的位置关系?【分析】(1)直接利用A,B,C各点的坐标画出三角形即可;(2)利用坐标之间的关系得出△A1B1C1各顶点位置,进而得出答案.【解答】解:(1)如图所示:△ABC即为所求;(2)如图所示:△A1B1C1即为所求,△A1B1C1与△ABC关于x轴对称.【点评】此题主要考查了轴对称变换,正确得出各对应点位置是解题关键.25.(2022秋•泸县校级期中)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标.(3)求出△ABC的面积.。

浙教版八年级上第2章 特殊三角形期末复习(含答案)

浙教版八年级上第2章 特殊三角形期末复习(含答案)

期末复习(二) 特殊三角形01 知识结构特殊三角形⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧图形的轴对称⎩⎪⎨⎪⎧轴对称图形轴对称轴对称和轴对称图形的性质等腰三角形⎩⎪⎨⎪⎧轴对称性性质定理判定定理逆命题和逆定理⎩⎪⎨⎪⎧互逆命题互逆定理线段垂直平分线定理的逆定理直角三角形⎩⎪⎨⎪⎧性质定理判定定理勾股定理勾股定理的逆定理全等的判定角平分线的性质定理02 重难点突破重难点1 等腰三角形的性质及判定【例1】 (萧山区期中)如图,在△ABC 中,AD 平分∠BAC .(1)若AC =BC ,∠B ∶∠C =2∶1,试写出图中的所有等腰三角形,并给予证明; (2)若AB +BD =AC ,求∠B ∶∠C 的比值、 【思路点拨】 (1)根据等腰三角形的定义及“等角对等边”判定等腰三角形;(2)利用“截长法”或“补短法”添加辅助线,将AC -AB 或AB +BD 转化成一条线段,通过全等得到线段相等,从而得到角相等、解:(1)等腰三角形有3个:△ABC ,△ABD ,△ADC ,证明:∵AC =BC ,∴△ABC 是等腰三角形、 ∴∠B =∠BAC .∵∠B ∶∠C =2∶1,∠B +∠BAC +∠C =180°, ∴∠B =∠BAC =72°,∠C =36°. ∵∠BAD =∠DAC =12∠BAC =36°,∴∠B =∠ADB =72°,∠DAC =∠C =36°. ∴AB =AD ,DA =DC .∴△ABD 和△ADC 是等腰三角形、(2)在AC 上截取AE =AB ,连结DE , 又∵∠BAD =∠DAE ,AD =AD , ∴△ABD ≌△AED .∴∠AED =∠B ,BD =DE .∵AB +BD =AC ,AC =AE +EC , ∴BD =EC . ∴DE =EC .∴∠EDC =∠C .∴∠B =∠AED =∠EDC +∠C =2∠C . ∴∠B ∶∠C =2∶1.1、(上城区期中)如图,△AB C 、△ADE 中,C 、D 两点分别在AE 、AB 上,BC 与DE 相交于点F .若BD =CD =CE ,∠ADC +∠ACD =104°,则∠DFC 的度数为( C )A 、104°B 、118°C 、128°D 、136°2、如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在A B 、B C 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数、解:(1)证明:∵AB =AC , ∴∠B =∠C .在△BDE 和△CEF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△BDE ≌△CEF (SAS )、∴DE =EF ,即△DEF 是等腰三角形、 (2)∵∠A =40°,AB =AC , ∴∠B =∠C =70°.由(1)知,△BDE≌△CEF,∴∠BDE=∠CEF.∴∠DEF=180°-∠BED-∠CEF=180°-∠BED-∠BDE=∠B=70°.重难点2直角三角形的性质及判定【例2】在Rt△ABC中,∠BAC=90°,BF平分∠ABC,∠AEF=∠AFE.(1)求证:AD⊥BC(请用一对互逆命题进行证明);(2)写出你所用到的这对互逆命题、【思路点拨】由“直角三角形的两个锐角互余”得到∠ABF+∠AFB=90°,又因为∠ABF=∠CBF,∠AEF=∠BED,从而转化为∠CBF+∠BED=90°,从而AD⊥BC得证、解:(1)证明:在Rt△ABC中,∵∠BAC=90°,∴∠ABF+∠AFB=90°.∵BF平分∠ABC,∴∠ABF=∠CBF.∵∠AEF=∠AFE,∠BED=∠AEF,∴∠BED=∠AFE.∴∠CBF+∠BED=90°.∴∠BDE=90°.∴AD⊥BC.(2)互逆命题:直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形、3、(庆元县岭头中学月考)已知,如图,B、C、D三点共线,AB⊥BD,ED⊥CD,C是BD 上的一点,且AB=CD,∠1=∠2,请判断△ACE的形状并说明理由、解:△ACE是等腰直角三角形,理由:∵∠1=∠2,∴AC=CE.∵AB⊥BD,ED⊥CD,∴∠B=∠D=90°.在Rt△ABC和Rt△CDE中,⎩⎨⎧AC =CE ,AB =CD ,∴Rt △ABC ≌Rt △CDE . ∴∠ACB =∠CED .∵∠CED +∠ECD =90°, ∴∠ACB +∠ECD =90°. ∴∠ACE =90°.∴△ACE 是等腰直角三角形、重难点3 勾股定理及其逆定理【例3】 如图,在Rt △ABC 中,∠ABC =90°,点D 是AC 的中点,作∠ADB 的平分线DE 交AB 于点E .(1)求证:DE ∥BC ;(2)若AE =3,AD =5,点P 为线段BC 上的一动点,当BP 为何值时,△DEP 为等腰三角形?请求出所有BP 的值、【思路点拨】 (1)要证DE ∥BC ,可转化为证∠AED =∠ABC =90°,即证DE ⊥AB ,由等腰三角形“三线合一”的性质可推导得出;(2)△DEP 为等腰三角形,存在三种情况:DE =EP ,DP =EP ,DE =DP ,结合勾股定理可求得BP 的值、解:(1)证明:∵∠ABC =90°,点D 是AC 的中点,∴BD =AD =12AC .∵DE 是∠ADB 的平分线, ∴DE ⊥AB .又∵∠ABC =90°,∴DE ∥BC . (2)∵AE =3,AD =5,DE ⊥AB , ∴DE =AD 2-AE 2=4. ∵DE ⊥AB ,AD =BD , ∴BE =AE =3.①DE =EP 时,BP =42-32=7; ②DP =EP 时,BP =12DE =12×4=2;③DE =DP 时,过点D 作DF ⊥BC 于点F ,则DF =BE =3, 由勾股定理,得FP =42-32=7, 点P 在F 下边时,BP =4-7,点P 在F 上边时,BP =4+7,综上所述,BP 的值为7,2,4-7或4+7.4、如图,在Rt △ABC 中,∠C =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm /s 的速度运动,设运动时间为t (s )、(1)当△ABP 为直角三角形时,求t 的值; (2)当△ABP 为等腰三角形时,求t 的值、解:(1)∵∠C =90°,AB =5 cm ,AC =3 cm ,∴BC =4 cm .①当∠APB 为直角时,点P 与点C 重合,BP =BC =4 cm , ∴t =4.②当∠BAP 为直角时,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=32+(t -4)2, 在Rt △BAP 中,AB 2+AP 2=BP 2, ∴52+[32+(t -4)2]=t 2, 解得t =254.综上,当△ABP 为直角三角形时,t =4或254.(2)①当BP =BA =5 cm 时,t =5.②当AB =AP 时,BP =2BC =8 cm ,∴t =8.③当PB =P A 时,PB =P A =t cm ,CP =(4-t )cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2, ∴t 2=32+(4-t )2,解得t =258. 综上,当△ABP 为等腰三角形时,t =5或8或258.03 备考集训一、选择题(每小题3分,共30分)1、(上城区期中)下列四个图形中,是轴对称图形的是( C )2、下列各命题的逆命题成立的是( C )A 、全等三角形的对应角相等B、如果两个数相等,那么它们的绝对值相等C、两直线平行,同位角相等D、如果两个角都是45°,那么这两个角相等3、如图,在△ABC中,∠ACB=90°,CD是AB边上的高,如果∠A=50°,那么∠DCB =( A )A、50°B、45°C、40°D、25°4、下列条件不可以判定两个直角三角形全等的是( B )A、两条直角边对应相等B、两个锐角对应相等C、一条直角边和它所对的锐角对应相等D、一个锐角和锐角所对的直角边对应相等5、(永嘉县校级期中)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( D )A、60°B、120°C、60°或150°D、60°或120°6、如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,如果△DAB的面积为10,那么DC的长是( B )A、4B、3C、5D、4.5第6题图第7题图7、如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC 于点D,连结BD,下列结论错误的是( D )A、∠C=2∠AB、BD平分∠ABCC、图中有三个等腰三角形D、S△BCD=S△BOD8、(萧山区期中)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB 于点D,PE⊥AC于点E,则PD+PE的长是( A )A、4.8B、4.8或3.8C、3.8D、59、(庆元县岭头中学月考)如图,三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD 折叠,点B落在AC边上的E处,那么下列等式成立的是( B )A、AC=AD+BDB、AC=AB+BDC、AC=AD+CDD、AC=AB+CD第9题图第10题图10、(河北中考)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有(D)A、1个B、2个C、3个D、3个以上二、填空题(每小题4分,共24分)11、等腰三角形的一个角是110°,则它的底角是35°、12、(永嘉县校级期中)如图是一个外轮廓为长方形的机器零件的平面示意图,根据图中的尺寸(单位:cm),计算两个圆孔中的A和B的距离为10cm.第12题图第13题图13、如图,在△ABC中,AB=AC=7,BC=6,AF⊥BC于F,BE⊥AC于E,D是AB的中点,则△DEF的周长是10、14、(萧山区期中)如图,已知∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为32、第14题图第15题图15、(江山期末)如图,在边长为2的等边△ABC中,AD是BC边上的高,点E是AC中点,点P是AD上一动点,则PC+PE的最小值是3、16、(杭州期中)已知:如图,BD 为△ABC 的角平分线,且BD =BC ,E 为BD 延长线上的一点,BE =BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC ;②∠BCE +∠BCD =180°;③AD =EF =EC ;④BA +BC =2BF .其中正确的结论有①②④(填序号)、三、解答题(共46分)17、(10分)如图,请将下面两个三角形分成两个等腰三角形、(要求重新画图,且标出每个等腰三角形的内角的度数)解:如图:18、(10分)(杭州中考)如图,在△ABC 中,已知AB =AC ,AD 平分∠BAC ,点M ,N 分别在AB ,AC 边上,AM =2MB ,AN =2NC .求证:DM =DN .证明:∵AM =2MB ,AN =2NC ,AB =AC , ∴AM =AN .∵AD 平分∠BAC , ∴∠MAD =∠NAD .在△AMD 和△AND 中,⎩⎨⎧AM =AN ,∠MAD =∠NAD ,AD =AD ,∴△AMD ≌△AND (SAS )、 ∴DM =DN .19、(12分)(萧山区期中)(1)用直尺和圆规作一个等腰三角形,使得底边长为线段a ,底边上的高的长为线段b ,要求保留作图痕迹;(不要求写出作法)(2)在(1)中,若a =6,b =4,求等腰三角形的腰长、解:(1)如图,等腰三角形ABC 即为所求作三角形,其中AB =a ,OC =b . (2)由题意知AC =BC ,AO =BO ,CO ⊥AB ,且CO =4,AB =6, ∴AO =3.∴AC =OA 2+OC 2=5,即等腰三角形的腰长为5.20、(14分)如图1,OA =2,OB =4,以A 点为顶点、AB 为腰在第三象限作等腰Rt △ABC . (1)求C 点的坐标; (2)如图2,P 为y 轴负半轴上一个动点,当P 点沿y 轴负半轴向下运动时,以P 为顶点,P A 为腰作等腰Rt △APD ,过D 作DE ⊥x 轴于E 点,求OP -DE 的值、解:(1)过C 作CM ⊥x 轴于M 点,∵∠MAC +∠OAB =90°,∠OAB +∠OBA =90°, ∴∠MAC =∠OBA .在△MAC 和△OBA 中,⎩⎨⎧∠CMA =∠AOB =90°,∠MAC =∠OBA ,AC =BA ,∴△MAC ≌△OBA (AAS )、 ∴CM =OA =2,MA =OB =4.∴OM =OA +AM =2+4=6. ∴点C 的坐标为(-6,-2)、(2)过D 作DQ ⊥OP 于Q 点,则DE =OQ . ∴OP -DE =OP -OQ =PQ .∵∠APO +∠QPD =90°,∠APO +∠OAP =90°, ∴∠QPD =∠OAP .在△AOP 和△PQD 中,⎩⎨⎧∠AOP =∠PQD =90°,∠OAP =∠QPD ,AP =PD ,∴△AOP ≌△PQD (AAS )、 ∴PQ =OA =2, 即OP -DE =2.。

浙教版八上第二章:特殊三角形知识点复习

浙教版八上第二章:特殊三角形知识点复习

类型之一轴对称及轴对称图形1.下列图形中,是轴对称图形的为()A B C D2.如图2-1,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD 的周长为____.(第2题图)(第8题图)(第9题图)类型之二等腰三角形的性质与判定3. 等腰三角形的一个角是80°,则它的顶角度数是.4.已知实数x,y满足|x-4|+y-8=0,则以x,y的值为两边长的等腰三角形的周长_____ 5.等腰三角形的周长为40,其中一边长为15,那么它的底边长为.6.等腰三角形一腰上的高线与另一腰的夹角为30°,则顶角的度数为_______.7.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为.8.如图2-3,在△ABC中,△ABC=63°,点D,E分别是△ABC的边BC,AC上的点,且AB=AD=DE=EC,则△C的度数是()A.21°B.19°C.18°D.17°9.已知等边三角形ABC的边长为12,D是AB上的动点,过D作DE△AC于点E,过E作EF△BC于点F,过F作FG△AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.910.如图,点C ,E 和点B ,D ,F 分别在△GAH 的两边上,且AB =BC =CD =DE =EF.若△A =18°,则△GEF 的度数是 .11.如图,在等腰△ABC 中,△ABC =90°,D 为AC 边上的中点,过点D 作DE △DF ,交AB 于点E ,交BC 于点F .若AE =4,FC =3,则EF 的长为 .12.如图,在等边三角形ABC 中,D ,E 分别为AB ,BC 边上的两动点,且总使AD =BE ,AE 与CD 交于点F ,AG△CD 于点G ,则△FAG = .13.△ABC ,△CDE 均为等边三角形,BD ,AE 交于点O ,BC 与AE 交于点P .求证:△AOB =60°.14.已知:在△ABC 中,AD △BC ,垂足为D ,BE △AC ,垂足为E ,M 为AB 边的中点,连结ME ,MD ,ED .求证: (1)△MED 为等腰三角形; (2)△EMD =2△DAC .(第13题图)(第14题图)(第11题图)(第10题图)(第12题图)类型之三 勾股定理的应用1.将下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A.3,4, 5 B .1,2,3 C .6,7,8 D .2,3,4 2.若一个三角形的三边长a ,b ,c 满足(a +c )(a -c )=b 2,则该三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .都有可能3.如图,以三角形的三边长为直径向外作三个半圆,若较小的两个半圆的面积之和等于较大的半圆的面积,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形 4.如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数是( )A. 6B. 7C. 8D. 95.四个全等的直角三角形按图2-7的方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .己知AM 为Rt△ABM 较长直角边,AM =22EF ,则正方形ABCD 的面积为( ) A .12S B .10S C .9S D .8S6.在△ABC 中,BC =42,AB =9,AC =7,则△C =_____.7. 某个直角三角形斜边上的中线是5 cm ,其周长为24 cm ,则此三角形的面积是____cm 2. 8.若三角形的三边长分别为n +1,n +2,n +3,当n =____时,这个三角形是直角三角形. 9.在△ABC 中,AB =AC =12,BC =12,则BC 边上的中线AD =_____.10.△ACB =90°,AB =5,AC =3,CD 是AB 边上的高线,则CD =_____.11.一张三角形纸片ABC ,△C =90°,AC =8 cm ,BC =6 cm ,现将纸片折叠:使点A 与点B 重合,那么折痕长等于____cm.(第11题图)(第9题图)(第10题图)(第5题图)(第3题图)(第4题图)12.如图是一块地的平面示意图,已知AD =4 m ,CD =3 m ,AB =13 m ,BC =12 m ,△ADC =90°,则这块地的面积为__ _m 2.13.如图,长方体的底面边长分别为 2 cm 和 4 cm ,高为5 cm.若一只蚂蚁从点P 开始经过4个侧面爬行一圈到达点Q ,则蚂蚁爬行的最短路径长为____cm.14.如图,在△ABC 中,CD 是边AB 上的高线,BC =2,CD =3,AC =2 3.求证:△ABC 是直角三角形.15.如图,已知AC △BC ,垂足为C ,AC =4,BC =33,将线段AC 绕点A 按逆时针方向旋转60°,得到线段AD ,连结DC ,DB . (1)线段DC =____; (2)求线段DB 的长度.16.如图△,一架梯子AB 长2.5 m ,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5 m ,梯子滑动后停在DE 的位置上,如图△所示,测得BD =0.5 m ,求梯子顶端A 下滑的距离.类型之四 直角三角形(第13题图)(第12题图)1.在全等三角形的判定方法中,一般三角形不具有,而直角三角形具有的判定方法是( ) A .SSS B .SAS C .ASA D .HL 2.如图,用“HL ”判定Rt △ABC 和Rt △DEF 全等的条件可以是( ) A .AC =DF ,BC =EF B .△A =△D ,AB =DE C .AC =DF ,AB =DE D .△B =△E ,BC =EF3.如图,已知AD 是△ABC 的BC 边上的高,下列能使△ABD△△ACD 的条件是( ) A .AB =AC B .△BAC =90° C .BD =AC D .△B =45°4.如图,P 是AD 上一点,PE △AC 于点E ,PF △AB 于点F .若PE =PF ,△CAD =20°,则△BAD 为( ) A. 10° B. 20° C. 30° D. 40°5.已知点P 在△BAC 的角平分线OD 上,且PE △AB 于点E,PF △AC 于点F .若PE =3cm,则PF = cm. 6.如果Rt△ABC △Rt△DEF ,AC =DF =4,AB =7, △C =△F =90°,则DE = ,EF = .7.如图,AB =AC ,CD △AB 于点D ,BE △AC 于点E ,BE 与CD 相交于点O ,图中有 对全等的直角三角形.8.如图,CA △AB ,垂足为点A ,AB =8 cm ,AC =4 cm ,射线BM △AB ,垂足为点B ,一动点E 从A 点出发以2 cm /s 的速度沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED =CB ,当点E 运动 秒时,△DEB 与△BCA 全等.9.如图,Rt △ABC 中,△ACB 是直角,D 是AB 上一点,BD =BC ,过D 作AB 的垂线交AC 于点E ,求证:CD △BE .10.在Rt△ABC 中,△A =90°,D 为斜边BC 上一点,且BD =BA ,过点D 作BC 的垂线交AC 于点E .求(第2题图)(第4题图)(第3题图)(第8题图)(第7题图)(第9题图)证:点E在△ABC的平分线上.11.如图,在△ABC中,AB=CB,△ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE△Rt△CBF;(2)若△CAE=30°,求△ACF的度数.(第11题图)12.(1)如图△,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高线AG与正方形的边长相等,求△EAF的度数;(2)如图△,在Rt△BAD中,△BAD=90°,AB=AD,点M,N是BD边上的任意两点,且△MAN=45°.将△ABM 绕点A逆时针旋转90°至△ADH位置,连结NH,试判断MN,ND,DH之间的数量关系,并说明理由;专项训练:思想方法荟萃名师点金:本章涉及的数学思想方法有:(1)分类讨论思想:在等腰三角形中,当角没确定是底角还是顶角时,当边没确定是底边还是腰时常用分类讨论思想;(2)方程思想:在解决有关等腰三角形边角问题时常通过设适当的边或角为未知数,列方程求解;(3)数形结合思想:在解决有关实际问题时,常从实际问题中抽象出几何图形,借助几何图形来解决;(4)转化思想:证线段的和,差关系时,通常将分散的线段转化到同一条线段上,使复杂的问题简单化.分类讨论思想1.等腰三角形的一个外角等于110°,则这个三角形的顶角应该为____________.2.已知等腰三角形的两边长分别为a,b,且a,b满足2a-3b+5+(2a+3b-13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10方程思想3.如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,求∠A的度数.4.如图,P是等边三角形ABC边AB上任一点,AB=2,PE⊥BC于E,EF⊥AC于F,FQ⊥AB 于Q,设BP=x.(1)用含有x的式子表示AQ;(2)当x等于多少时,点P和点Q重合?数形结合思想5.上午8时,一条渔船从海岛A出发,以15海里/时的速度匀速向正北航行,10时到达海岛B处.已知在海岛A测得灯塔C在北偏西42°方向上,在海岛B测得灯塔C在北偏西84°方向上.求海岛B到灯塔C的距离.转化思想6.如图,已知在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于E,求证:BE=12(AC-AB).。

浙教版数学八年级上册第二章《特殊三角形》单元综合练习.doc

浙教版数学八年级上册第二章《特殊三角形》单元综合练习.doc

特殊三角形单元测试一、选择题(每题3分,共30分)1.等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°2.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或203.下列各组数中,能组成直角三角形三边的是()A.1,2,3 B.4,5,6 C.3,4,5 D.7,8,94.边长为2的等边三角形的高为()A.1 B.2 C.2 D 35.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点D,过点D作直线EF∥BC,交AB于E,交AC于F,图中等腰三角形的个数共有()A.3个B.4个C.5个D.6个7.如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AM=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个(第5题) (第6题) (第7题)8.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CD E的周长为()A.20 B.12 C.14 D.139.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m10.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A .1个B .2个C .3个D .4个(第8题) (第9题) (第10题)二、填空题(每题4分,共24分)11.等腰三角形的一个外角是100°,则它的底角是_______.12.等腰三角形有 条对称轴. 13.已知△ABC ,AB=2,BC=2,AC=22,则△ABC 是 三角形.14. 如图,在△ABC中,AB=AC ,∠A=40°,则△ABC的外角∠BCD= °15.长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,则DE= .16. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 2的边长为6cm ,正方形B 的边长为5cm ,正方形C 的边长为5cm ,则正方形D 的面积是 cm 2.(第14题) (15 题)三、简答题(共46分)17. (6分)图1、图2中的每个小正方形的边长都是1,在图1中画出一个边长都是无理数的直角三角形;在图2中画出一条长度等于(第16题)13的线段.18.(6分)如图所示,已知:Rt △ABC 中,∠C=90°,AC=BC ,AD 是∠A 的平分线. 求证:AC+CD=AB ..cB AD C 20.(8分)在一次数学课上,苏老师在黑板上画出图,如图,并写下了四个等式:①AB=DC ,②BE=CE ,③∠B=∠C ,④∠BAE=∠CDE .要求同学从这四个等式中选出两个作为条件,推出△AED 是等腰三角形.请你试着完成苏老师提出的要求,并说明理由.(写出一种即可)我选择:理由如下:21.(8分)已知BD ,CE 是△ABC 的两条高,M 、N 分别为BC 、DE 的中点(1)请写出线段EM 与DM 的大小关系,并说明理由。

第2章 特殊三角形 浙教版八年级上册数学测试卷(含答案)

第2章 特殊三角形 浙教版八年级上册数学测试卷(含答案)

浙教版八年级上册数学第二章特殊三角形一、选择题1.下列关于体育运动的图标是轴对称图形的为( )A.B.C.D.2.已知△ABC中,a、b、c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是( )A.∠A=∠C-∠B B.a2=b2-c2C.a:b:c=2:3:4D.a=34,b=54,c=13.等腰三角形的顶角是50°,则这个三角形的底角的大小是( )A.50°B.65°或50°C.65°D.80°4.在锐角△ABC中,AB=15,AC=13,高AD=12,则BC的长度为( )A.16B.15C.14D.135.下列命题的逆命题是真命题的是( )A.直角都相等B.全等三角形的对应角相等C.在Rt△ABC中,30°角所对的边是斜边的一半D.在△ABC中,a、b、c为三角形三边的长,若a2=(b+c)(b―c),则△ABC是直角三角形6.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于( )A.5B.4C.3D.27.如图,在△ABC中,∠C=90°,AC=4cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CD的长为( )A .1cmB .43cmC .53cmD .2cm8.《九章算术》中记录了这样一则“折竹抵地”问题:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)如果我们假设折断后的竹子高度为x 尺,根据题意,可列方程为( )A .x 2+42=102B .(10―x)2+42=102C .(10―x)2+42=x 2D .x 2+42=(10―x)29.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于 12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.A .1B .2C .3D .410.如图,在△ABC 中,AB =2,∠B =60°,∠A =45°,点D 为BC 上一点,点P 、Q 分别是点D 关于AB 、AC 的对称点,则PQ 的最小值是( )A.6B.8C.4D.2二、填空题11.在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为 .12.命题“两直线平行,同位角相等.”的逆命题是 .13.小明同学将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件是 .14.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC= °.15.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M,P是直线MN上一动点,点H 为BC中点.若BC=5,△ABC的面积是30,则PB+PH的最小值为 .16.如图,等边△ABC中,BF是AC边上中线,点D为BF上一动点,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,则∠CFE的大小是 .三、解答题17.如图,AB⊥BC于点B,AD⊥DC于点D,BC=DC.求证:∠1=∠2.18.如图,在△ABC中,AD⊥BC于D,AC=5,BC=9,AD=4,求AB的长.19.如图,△ABC中,CA=CB,D是AB的中点,∠B=42°,求∠ACD的度数.20.如图所示,若MP和NQ 分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ 的度数.21.如图,在△ABC中,AB=AC=5,BC=6,点D在AC边上,BD=AB.(1)求△ABC的面积;(2)求AD的长.22.(1)如图1,点D、E分别是等边△ABC边AC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE (2)如图2,在(1)问的条件下,点H在BA的延长线上,连接CH交BD延长线于点F,.若BF=BC,求证:EH=EC.23.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动,设点P的运动时间为t,连接AP.(1)当t=3秒时,求AP的长度;(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E,连接PD,在点P的运动过程中,当PD平分∠APC时,直接写出t的值.答案解析部分1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】C6.【答案】B7.【答案】B8.【答案】D9.【答案】D10.【答案】A11.【答案】2612.【答案】同位角相等,两直线平行13.【答案】∠A=60°(答案不唯一)14.【答案】3015.【答案】1216.【答案】90°17.【答案】证明:∵AB⊥BC,AD⊥DC∴∠B=∠D=90°又∵在Rt△ABC和Rt△ADC中AC=AC BC=DC,∴Rt△ABC≌Rt△ADC(HL).∴∠1=∠2.18.【答案】21319.【答案】48°20.【答案】(1)12;(2)30°.21.【答案】(1)解:过点A作AM⊥BC于点M,如图所示:∵AB =AC ,AM ⊥BC ,∴M 是BC 的中点,∵AB =5,BC =6,∴BM =CM =3,∴AM =AB 2―BM 2=52―32=4,∴△ABC 的面积=12BC•AM =12×6×4=12;(2)解:过点B 作BN ⊥AC 于点N ,如图所示:∵BD =AB ,∴AN =DN =12AD ,∵△ABC 的面积=12AC•BN =12×5•BN =12;∴BN =245,AN =AB 2―BN 2=75∴AD =2AN =145.22.【答案】(1)证明:∵△ABC 是等边三角形,∴AB=BC=AC ,∠A=∠ABC=∠BCA.∴在△AEC 和△CDB 中AE =CD ∠EAC =∠DCB AC =CB∴△AEC ≌△CDB (SAS )∴BD=CE.(2)证明:如图:由(1)△AEC≌△CDB,∴∠ACE=∠CBD.∴60°-∠ACE=60°-∠CBD,即∠ABD=∠ECB.∵BC=CF,∴∠BCF=∠BFC,又∵∠BCF=∠ECB+∠ECH,∠BFC=∠ABD+∠H,∴∠ECH=∠H,∴EH=EC.23.【答案】(1)241(2)当△ABP为等腰三角形时,t的值为45、16、5;(3)当t的值为5或11时,PD平分∠APC.。

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (60)

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (60)

浙教版初中数学试卷2019-2020年八年级数学上册《特殊三角形》测试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)有6条线段,它们的长度分别为5、7、8、11、15、17,从中取出 3条组成一个直角三角形,则这 3条线段的长度分别是()A.5,7,8 B.7,8,11 C. 8,11,15 D. 8,15,172.(2分)三角形内到三角形各边的距离都相等的点必在三角形的()A.中线上B.平分线上C.高上D.中垂线上3.(2分)等腰直角三角形两直角边上的高所的角是()A.锐角B.直角C.钝角D.锐角或钝角4.(2分)在△ABC中,∠BAC=90°,AD⊥BC于D,若AB=3,BC=5,则DC的长度是()A.85B.45C.165D.2255.(2分)已知一个三角形的周长为l5 cm,且其中两边长都等于第三边的2倍,那么这个三角形的最短边为()A.1cm B.2cm C.3 cm D.4 cm6.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点0,过点O作EF∥BC,交AB于点E,交AC于点F,△ABC的周长是24cm ,BC=10cm,则△AEF的周长是()A.10 cm B.12cm C.14 cm D.34 cm7.(2分)如图,在等腰△ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于( )A . 68°B .46°C .44°D .22°8.(2分)下列命题不正确的是( )A .在同一三角形中,等边对等角B .在同一三角形中,等角对等边C .在等腰三角形中与顶角相邻的外角等于底角的2倍D .等腰三角形是等边三角形9.(2分) 等腰三角形的一个外角为140°,则顶角的度数为( )A .40°B . 40°或 70°C .70°D . 40°或 100°10.(2分)我们知道,等腰三角形是轴对称图形,下列说法中,正确的是( )A .等腰三角形顶角的平分线所在的直线是它的对称轴B .等腰三角形底边上的中线所在的直线是它的对称轴C .等腰三角形底边上的高线所在的直线是它的对称轴D .以上都对11.(2分)我们知道,等腰三角形是轴对称图形,下列说法中,正确的是( )A .等腰三角形顶角的平分线所在的直线是它的对称轴B . 等腰三角形底边上的中线所在的直线是它的对称轴C . 等腰三角形底边上的高线所在的直线是它的对称轴D .以上都对12.(2分)等腰三角形的周长为l8 cm ,其中一边长为8 cm ,那么它的底边长为( )A .2 cmB .8 cmC .2 cm 或8 cmD .以上都不对 评卷人得分 二、填空题13.(2分)已知等腰三角形的两边长x 、y 满足27(4222)0x y x y +−++−=,且底边比腰长,则它的一腰上的高于 .14.(2分)如图,在平面直角坐标系中,OA=10,点B 的坐标为(8,0),则点A 的坐标为 .15.(2分)E,F分别是Rt△ABC的斜边AB上的两点,AF=AC,BE=BC,则∠ECF= .16.(2分)如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C= .17.(2分)有一个角等于70°的等腰三角形的另外两个角的度数是.18.(2分)在△ABC中,∠A=120°,∠B=30°,AB=4 cm,AC= cm.19.(2分)如图,从电线杆离地面8 m处拉一条缆绳,这条缆绳在地面上的固定点距离电线杆底部6m,则这条缆绳的长为 m.20.(2分)在△ABC中,∠A:∠B:∠C=1:2:3,BC=4,那么AB= .21.(2分)如图,锐角△ABC中,∠BOC=140°,两条高BD、CE交于点0,则∠A= .解答题22.(2分)如图所示,等边三角形ABC中,AD、BE、CF分别是△ABC的三条角平分线,它们相交于点O,将△ABC绕点0至少旋转度,才能和原来的三角形重合.23.(2分)等腰三角形的对称轴最多有条.评卷人得分三、解答题24.(7分)如图,在△ABC中,AB =AC,D 为 BC边上的一点,∠BAD = ∠CAD,BD = 6cm,求BC的长.25.(7分)已知:如图,在△ABC中,AD是么BAC的平分线,AD的垂直平分线交BC的延长线于F.试说明∠BAF=∠ACF成立的理由.26.(7分)下列几组数能否作为直角三角形的三边,请说明理由.①7,24,25 ②23,1,54③10,24,2627.(7分)如图,在等边△ABC所在平面内求一点,使△PAB、△PBC、△PAC都是等腰三角形,你能找到这样的点吗?28.(7分)如图,C表示灯塔,轮船从A处出发以每小时21海里的速度向正北(AN方向)航行,在A处测得么∠NAC=30°,3小时后,船到达B处,在B处测得么∠NBC=60°,求此时B到灯塔C的距离.29.(7分) 如图,在△ABC 中,AB=AC,若AD∥BC,则 AD 平分∠C,请说明理由.30.(7分)如图,在△ABC中,∠1=∠2,AB=AC=10,BD=4,求△ABC的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.B3.B4.C5.C6.C7.D8.D9.D10.D11.D12.C二、填空题1314.(8,6)15.45°16.25°17.55°,55°或70°,40°18.419.1020.821.40°22.12023.3三、解答题24.∵∠BAD=∠CAD,∴AD是∠BAC的平分线.∵AB=AC,∴△ABC是等腰三角形.∴AD是△ABC的BC边上的中线,∴BD=CD=12 BC.∵BD=6cm,∴BC=12(cm)25.略26.①能②不能③能27.共有10个,等边三角形共有三条对称轴,每条对称轴上有4个点,有3个点重合28.63海里29.说明∠l=∠230.28。

2021-2022学年浙教版八年级数学上册《第2章特殊三角形》期末综合复习训练2(附答案)

2021-2022学年浙教版八年级数学上册《第2章特殊三角形》期末综合复习训练2(附答案)

2021-2022学年浙教版八年级数学上册《第2章特殊三角形》期末综合复习训练2(附答案)1.等腰△ABC中,∠C=50°,则∠A的度数不可能是()A.80°B.50°C.65°D.45°2.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于D,CE平分∠ACB 交BD于E,图中等腰三角形的个数是()A.3 个B.4 个C.5 个D.6 个3.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个4.如果等腰三角形的一个角是80°,那么它的底角是()A.80°或50°B.50°或20°C.80°或20°D.50°5.在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A.7B.7或11C.11D.7或106.等腰三角形一腰上的高与另一腰的夹角为45°,则等腰三角形的底角为()A.67°B.67.5°C.22.5°D.67.5°或22.5°7.如图,把一个含45°的三角板的直角顶点放在直线b上,已知a∥b,∠1=55°,则∠2的度数为()A.35°B.45°C.55°D.65°8.下列说法中,正确的是()A.直角三角形中,已知两边长为3和4,则第三边长为5B.三角形是直角三角形,三角形的三边为a,b,c,则满足a2﹣b2=c2C.以三个连续自然数为三边长不可能构成直角三角形D.△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形9.如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成30°角,如图所示,这棵树在折断前的高度是()A.10m B.15m C.5m D.20m10.下列四组数:①3、4、5;②、、;③0.3、0.4、0.5;④、、,其中是勾股数的有()A.4组B.3组C.2组D.1组11.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A.B.C.D.12.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示﹣1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A.﹣1B.﹣+1C.D.﹣13.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2C.72cm2D.108cm214.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c215.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形16.下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个B.2个C.3个D.4个17.用反证法证明“直角三角形中至少有一个锐角不大于45°”,应先假设()A.直角三角形中两个锐角都大于45°B.直角三角形中两个锐角都不大于45°C.直角三角形中有一个锐角大于45°D.直角三角形中有一个锐角不大于45°18.若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长是.19.如图,将圆桶中的水倒入一个直径为40cm,高为55cm的圆口容器中,圆桶放置的角度与水平线的夹角为45°.若使容器中的水面与圆桶相接触,则容器中水的深度至少应为.20.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=°.21.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有(填序号)22.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M 在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为厘米/秒.23.已知直角三角形中有两边长分别为3cm和4cm,那么它的斜边长为.24.如图,要将楼梯铺上地毯,则需要米的地毯.25.已知等腰三角形的周长是13.(1)如果腰长是底边长的,求底边的长;(2)若该三角形其中两边的长为3x和2x+5,求底边的长.26.(1)如图1,点B、D在射线AM上,点C、E在射线AN上,且AB=BC=CD=DE,已知∠EDM=88°,求∠A的度数;(2)①如图2,∠MAN=11°,点B在AM上,且AB=1,按下列要求画图:以点B为圆心,1为半径向右画弧交AN于点B1,得第1条线段BB1;再以点B1为圆心,1为半径向右画弧交AM于点B2,得第2条线段B1B2,…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段,则n为多少?②已知∠MAN按照①思路画图,现在一共最多可以画出6条线段,请你求出∠MAN的度数范围.27.已知如图1:△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠ABC的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?28.如图所示,在△ABC中,CD⊥AB于D,AC=4,BC=3,CD=(1)求AD的长;(2)求证:△ABC是直角三角形.29.如图所示,四边形ABDC,BD⊥CD,BD=6,CD=8,AB=24,AC=26,求该四边形的面积.30.已知a,b,c为三角形的三边,若a=2,b=3,当c为何值时,△ABC是:(1)锐角三角形?(2)直角三角形?(3)钝角三角形?31.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,请你利用图1或图2证明勾股定理(其中∠DAB=90°)求证:a2+b2=c2.参考答案1.解:当∠C为顶角时,则∠A=(180°﹣50°)=65°;当∠A为顶角时,则∠A=180°﹣2∠C=80°;当∠A、∠C为底角时,则∠C=∠A=50°;∴∠A的度数不可能是45°,故选:D.2.解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∵∠BDC=∠A+∠ABD=72°=∠C,∴△BDC是等腰三角形.∵∠EBC=∠ECB=36°,∴△BCE是等腰三角形,∵∠DEC=∠EBC+∠ECB=72°=∠EDC,∴△CDE是等腰三角形,∴共有5个等腰三角形.故选:C.3.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故选:A.4.解:根据题意,一个等腰三角形的一个角等于80°,①当这个角是底角时,即该等腰三角形的底角的度数是80°,②当这个角80°是顶角,设等腰三角形的底角是x°,则2x+80°=180°,解可得,x=50°,即该等腰三角形的底角的度数是50°;故选:A.5.解:根据题意,①当AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故选:B.6.解:有两种情况;(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°﹣45°=45°,∵AB=AC,∴∠ABC=∠C=×(180°﹣45°)=67.5°;(2)如图,当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°﹣45°=45°,∴∠FEG=180°﹣45°=135°,∵EF=EG,∴∠EFG=∠G=×(180°﹣135°)=22.5°,综合(1)(2)得:等腰三角形的底角是67.5°或22.5°.故选:D.7.解:∵直线a∥b,∴∠3=∠1=55°,又∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°﹣55°﹣90°=35°.故选:A.8.解:A、应为“直角三角形中,已知两直角边的边长为3和4,则斜边的边长为5”,故不符合题意;B、应为“三角形是直角三角形,三角形的直角边分别为b,c,斜边为a,则满足a2=b2+c2,即a2﹣b2=c2”,故不符合题意;C、比如:边长分别为3,4,5,有32+42=25=52,能构成直角三角形,故不符合题意;D、根据三角形内角和定理可求出三个角分别为15°,75°,90°,因而是直角三角形,故符合题意.故选:D.9.解:如图,在Rt△ABC中,∠C=90°,CB=5,∠A=30°∴AB=10,∴大树的高度为10+5=15m.故选:B.10.解:①3、4、5属于勾股数;②、、不属于勾股数;③0.3、0.4、0.5不属于勾股数;④、、不属于勾股数;∴勾股数只有1组.故选:D.11.解:如图,过C作CD⊥AB于D,∵AB=6,AC=8,∴CD≤8,∴当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC的面积最大,∴BC==10,∴四个三角形中面积最大的三角形的三边长分别为6,8,10,故选:C.12.解:由勾股定理得,正方形的对角线的长==,∴数轴上点A所表示的数﹣1,故选:A.13.解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F、G的面积之和为3个G的面积.∵G的面积是62=36cm2,∴A、B、C、D、E、F、G的面积之和为36×3=108cm2.故选:D.14.解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.15.解:由a2c2﹣b2c2=a4﹣b4,得a4+b2c2﹣a2c2﹣b4=(a4﹣b4)+(b2c2﹣a2c2)=(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=(a2﹣b2)(a2+b2﹣c2)=(a+b)(a﹣b)(a2+b2﹣c2)=0,∵a+b>0,∴a﹣b=0或a2+b2﹣c2=0,即a=b或a2+b2=c2,则△ABC为等腰三角形或直角三角形.故选:D.16.解:①斜边和一直角边对应相等的两个直角三角形全等,正确;②有两边和它们的夹角对应相等的两个直角三角形全等,正确;③一锐角和斜边对应相等的两个直角三角形全等,正确;④两个锐角对应相等的两个直角三角形全等,错误;故选:C.17.解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设两个锐角都大于45°.故选:A.18.解:由(a﹣3)2+|b﹣6|=0,得a﹣3=0,b﹣6=0.则以a、b为边长的等腰三角形的腰长为6,底边长为3.∴周长为6+6+3=15,故答案为:15.19.解:如图,∵圆桶放置的角度与水平线的夹角为45°,∠BCA=90°,∴依题意得△ABC是一个斜边为40cm的等腰直角三角形,∴此三角形中斜边上的高应该为20cm,∴水深至少应为55﹣20=35cm.20.解:当AP⊥ON时,∠APO=90°,则∠A=50°,当P A⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为:50或90.21.解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.22.解:∵AB=AC,∴∠B=∠C,①当BD=CM=6厘米,BM=CN时,△DBM≌△MCN,∴BM=CN=2厘米,t==1,∴点N运动的速度为2厘米/秒.②当BD=CN,BM=CM时,△DBM≌△NCM,∴BM=CM=4厘米,t==2,CN=BD=6厘米,∴点N的速度为:=3厘米/秒.故点N的速度为2或3厘米/秒.故答案为:2或3.23.解:(1)当边长为4cm的边为斜边时,该直角三角形中斜边长为4cm;(2)当边长为4cm的边为直角边时,则根据勾股定理得斜边长为cm=5cm,故该直角三角形斜边长为4cm或5cm,故答案为4cm或5cm.24.解:根据勾股定理,另一直角边==3,∴3+4=7,故应填7.25.解:(1)设底边的长为x,则腰长为x,依题意得2×x+x=13,解得x=5,∴底边的长为5;(2)分三种情况讨论:①若两腰长分别为3x和2x+5,则3x=2x+5,解得x=5,∴腰长3x=15(不合题意);②若腰长为3x,底边长为2x+5,则6x+2x+5=13,解得x=1,3x=3,2x+5=7(不合题意);③若底边长为3x,腰长为2x+5,则3x+2(2x+5)=13,解得x=,∴底边长=3x=;综上所述,底边的长为.26.解:(1)∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED =∠EDM,设∠A=x°,则∠CBD=∠CDB=2x°,∠DCE=∠CED=3x°,∠EDM=4x°又∵∠EDM=88°,∴4x=88,x=22即∠A=22°;(2)①由题意可知,△ABB1,△BB1B2,△B1B2B3都是等腰三角形,第一个等腰三角形△ABB1的底角为11°,由三角形外角的性质可以得到,第二个等腰三角形△BB1B2的底角为22°,第三个等腰三角形△B1B2B3的底角为33°,于是可得,第n个等腰三角形的底角为(11n)°,而等腰三角形的底角小于90°,所以当n=8时,底角为88°;当n=9时,底角为99°,所以n=8以后就不能再画出符合要求的线段了,故n=8;②设∠MAN=n°,同理可知:第一个等腰三角形的底角为n°,第二个等腰三角形的底角为2n°,第三个等腰三角形的底角为3n°,于是可得,第6个等腰三角形的底角为6n°,第7个等腰三角形的底角为7n°,而等腰三角形的底角小于90°,则,∴≤n<15,即∠MAN的度数范围是:≤n<15.27.解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF,理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF,又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中的EF与BE,CF的关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE﹣CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点),又∵OB,OC分别是∠ABC与∠ACG的角平分线,∴∠EBO=∠OBC,∠ACO=∠OCD,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO,又∵EO=EF+FO,∴EF=BE﹣CF.28.解:(1)∵CD⊥AB,∴∠ADC=90°,∴AD===;(2)证明:由上题知AD=,同理可得BD=,∴AB=AD+BD=5,∵32+42=52,∴BC2+AC2=AB2,∴△ABC是直角三角形.29.解:如图,连接BC,∵BD⊥DC,∴∠D=90°,∴△DBC为直角三角形,∵BC2=BD2+CD2=82+62=102,∴BC=10,在△ABC中,∵AB2+BC2=100+576=676,AC2=262=676,∴AB2+BC2=AC2,∴△ABC为直角三角形,且∠ABC=90°,∴S四边形ABDC=S△ABC﹣S△BCD=×10×24﹣×6×8=96.30.解:(1)分三种情况讨论:①a<b<c,②a<c<b,③c<a<b,①a<b<c,当a2+b2>c2时,△ABC是锐角三角形,即c2<22+32=13,∴c<,∵a<b<c∴3<c<.∴当3<c<时,△ABC是锐角三角形,②a<c<b当a2+c2>b2时,△ABC是锐角三角形,即c2>b2﹣a2=32﹣22=5,∴c>,∵a<c<b,∴<c<3,∴当<c<3,时,△ABC是锐角三角形,③c<a<b当c2+a2>b2时,△ABC是锐角三角形,即c2>b2﹣a2=32﹣22=5,∴c>,∵c<a<b,∴<c<2(舍去),∴当<c<3,或3<c<时,△ABC是锐角三角形;(2)分三种情况讨论:①a<b<c,②a<c<b,③c<a<b,①a<b<c当a2+b2=c2时,△ABC是直角三角形,即c2=22+32=13,∴c=,∴当c=时,△ABC是直角三角形,②a<c<b当a2+c2=b2时,△ABC是直角三角形,即c2=b2﹣a2=32﹣22=5,∴c=,∴当c=时,△ABC是直角三角形,③c<a<b当c2+a2=b2时,△ABC是直角三角形,即c2=b2﹣a2=32﹣22=5,∴c=,∴当c=时,△ABC是直角三角形,∴当c=或时,△ABC是直角三角形;(3)分三种情况讨论:①a<b<c,②a<c<b,③c<a<b,①a<b<c,当a2+b2<c2时,△ABC是钝角三角形,即c2>22+32=13,∴c>,∵a<b<c∴c>.∴当c>时,△ABC是钝角三角形,②a<c<b当a2+c2<b2时,△ABC是钝角三角形,即c2<b2﹣a2=32﹣22=5,∴c<,∵a<c<b,∴2<c<,∴当2<c<,时,△ABC是钝角三角形,③c<a<b当c2+a2<b2时,△ABC是钝角三角形,即c2<b2﹣a2=32﹣22=5,∴c<,∵c<a<b,∴0<c<2,∴当0<c<2时,△ABC是钝角三角形,∴当c>或当2<a<或0<c<2时,△ABC是钝角三角形.31.解:利用图1进行证明:证明:∵∠DAB=90°,点C,A,E在一条直线上,BC∥DE,则CE=a+b,∵S四边形BCED=S△ABC+S△ABD+S△AED=ab+c2+ab,又∵S四边形BCED=(a+b)2,∴ab+c2+ab=(a+b)2,∴a2+b2=c2.利用图2进行证明:证明:如图,连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a,∵S四边形ADCB =S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a),∴b2+ab=c2+a(b﹣a),∴a2+b2=c2.。

浙教版数学八上第2章 特殊三角形优生综合题特训

浙教版数学八上第2章 特殊三角形优生综合题特训

浙教版数学八上第2章特殊三角形优生综合题特训一、综合题1.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l 的对称点P′的坐标为(不必证明);(3)运用与发现:已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.2.如图,正方形中,点E在边上(不与端点A,D重合),点A关于直线的对称点为点F,连接,设.(1)求的大小(用含的式子表示);(2)过点C作,垂足为G,连接.判断与的位置关系,并说明理由;(3)将绕点B顺时针旋转得到,点E的对应点为点H,连接,.当为等腰三角形时,求的值.3.如图,在△ABC中,AB=AC,∠B=50°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=50°,DE交线段AC于点E.(1)当∠BDA=100°时,∠BAD= °,∠DEC= °;(2)当DC=AB时,△ABD和△DCE是否全等?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数,若不存在,请说明理由.4.如图1,中,,,,点D为斜边上动点.(1)如图2,过点D作交CB于点E,连接AE,当AE平分时,求CE;(2)如图3,在点D的运动过程中,连接CD,若为等腰三角形,直接写出AD的值.5.在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.6.如图所示,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.7.如图1,在Rt△ABC中,∠A=90°,∠B=30°,D,G分别是AB,BC上的点,连接GD,且GD=GB.以点D为顶点作等边△DEF,使点E,F分别在AC,GC上.(1)求∠DGF的大小;(2)求证:△FDG≌△EFC;(3)如图2,当DE//BC时,若△DEF的面积为2,请直接写出△ABC的面积.8.如图1,已知在Rt△ABC中,∠ACB=90°,将Rt△ABC绕C点顺时针旋转α(0°<α<90°)得到Rt△DCE(1)当α=15°,则∠ACE= °;(2)如图2,过点C作CM⊥BF于M,作CN⊥EF于N,证明:CF平分∠BFE(3)求Rt△ABC绕C点顺时针旋转,当旋转角α(0°<α<90°)为多少度时,△CFG为等腰三角形9.如图1,点P为等腰Rt△ABC斜边AB下侧一个动点,连AP、BP,且∠APB=45°,过C作CE⊥AP于点E,AB=12.(1)若∠ACE=15°,求△ABP的面积;(2)求的值;(3)如图2,当△APC为等腰三角形时,则其面积为 .10.在中,若最大内角是最小内角的倍(为大于1的整数),则称为倍角三角形.例如:在中,,,,则称为6倍角三角形.(1)在中,,,则为倍角三角形;(2)若一个等腰三角形是4倍角三角形,求最小内角的度数;(3)如图,点在上,交于点,,,,.找出图中所有的倍角三角形,并写出它是几倍角三角形.11.如图,已知.(1)与全等吗?请说明理由;(2)若,垂足为F,请说明线段;(3)在(2)的基础上,猜想线段存在的数量关系,并直接写出结论.12.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B 呢?分析:把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C'处,即AC=AC',据以上操作,易证明△ACD≌△AC'D,所以∠AC'D=∠C,又因为∠AC'D>∠B,所以∠C>∠B.感悟与应用:(1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,①求证:∠B+∠D=180°;②求AB的长.13.问题探究(1)如图①,已知,,,则的大小为;(2)如图②,在四边形中,,,对角线,求四边形的面积;小明这样来计算,延长,使得,连接,通过证明,从而可以计算四边形的面积,请你将小明的方法完善,并计算四边形的面积;(3)如图③,四边形是正在建设的城市花园,其中,,,米,米,请计算出对角线的长度.14.在四边形ABCD中,对角线AC平分∠BAD.(1)(探究发现)如图①,若∠BAD=,∠ABC=∠ADC=.求证:AD+AB=AC;(2)(拓展迁移)如图②,若∠BAD=,∠ABC+∠ADC=.①猜想AB、AD、AC三条线段的数量关系,并说明理由;②若AC=10,求四边形ABCD的面积.15.我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,四边形的顶点,,在网格格点上,请你在的网格中分别画出3个不同形状的等邻边四边形,要求顶点在网格格点上.(2)如图2,,,平分,求证:四边形为“等邻边四边形”.(3)如图3,在(2)的条件下,,,是的中点,点是边上一点,当四边形是“等邻边四边形”时,求的长.16.将一副直角三角尺按如图方式叠放,与交于点,,,,.(1)如图1,点在上,过点作直线,求的度数;(2)图中含的三角尺固定不动,将含三角尺绕顶点顺时针转动.①如图2,当时,求的度数;②若将含的三角尺绕顶点顺时针继续转动,使两块三角尺至少有一组边互相平行,直接写出符合条件的()的度数为°.17.如图,铁路上A、B两点相距,C、D为两村庄,若,,于A,于B,现要在上建一个中转站E,使得C、D两村到E站的距离相等.(1)求E应建在距A多远处?(2)和垂直吗?试说明理由.18.如图,已知△OMN为等腰直角三角形,∠MON=90°,点B为NM延长线上一点,OC⊥OB,且OC=OB,连接CN.(1)如图1,求证:CN=BM;(2)如图2,作∠BOC的平分线交MN于点A,求证:AN2+BM2=AB2;(3)如图3,在(2)的条件下,过点A作AE⊥ON于点E,过点B作BF⊥OM于点F,EA,BF的延长线交于点P,请探究:以线段AE,BF,AP为长度的三边长的三角形是何种三角形?并说明理由.19.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.20.如图,中,,若点从点出发,以每秒1个单位长度的速度沿折线运动,设运动时间为秒.(1)若点在上,且满足时,求此时的值;(2)若点恰好在的平分线上,求的值.21.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:求证:(1)△ABE是等边三角形;(2)△ABC≌△EAD;(3).22.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为62+82=4×52=100,所以这个三角形是常态三角形.(1)若三边长分别是2,和4,则此三角形________常态三角形(填“是”或“不是”);(2)若是常态三角形,则此三角形的三边长之比为________(请按从小到大排列);(3)如图,中,∠ACB=90°,BC=6,AD=DB=DC,若是常态三角形,求的面积.23.如图,Rt△ABC中,∠C= Rt∠,BC=4 cm,∠ABC=30°。

2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)

2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)

2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.下面说法错误的个数有()(1)全等三角形对应边上的中线相等.(2)有两条边对应相等的等腰直角三角形全等.(3)一条斜边对应相等的两个直角三角形全等.(4)两边及其一边上的高也对应相等的两个三角形全等.A.1个B.2个C.3个D.4个2.观察下面A,B,C,D四幅图,其中与如图成轴对称的是()A.B.C.D.3.如图,∠BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则∠P AQ 的大小是()A.70°B.55°C.40°D.30°4.如图案分别表示“福”“禄”“寿”“喜”,其中不是轴对称图形的是()A.B.C.D.5.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④EA=ED;⑤BP=EQ.其中正确的结论个数是()A.4个B.3个C.2个D.1个6.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°7.如图,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C、E,再分别以点C与点E为圆心,大于CE长的一半为半径画弧,两弧交于点F,连接BF交AC于点D,若∠A=50°,则∠CBD的大小是()A.25°B.40°C.50°D.65°8.已知射线OC平分∠AOB,点P、M、N分别在射线OC、OA、OB上,且PM=PN,PE ⊥OA于点E,若∠PNO=110°,则∠EPM的度数为()A.20°B.35°C.55°D.70°9.如图,△ABC中,AB=AC,∠B=40°,D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E,以下四个结论:①∠CDE=∠BAD;②当D为BC中点时,DE⊥AC;③当△ADE为等腰三角形时,∠BAD=20°;④当∠BAD =30°时,BD=CE.其中正确的结论的个数是()A.1B.2C.3D.410.如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是()A.∠B=∠C B.AD⊥BC C.∠BAD=∠CAD D.AB=2BC二.填空题(共6小题,满分24分)11.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的直角三角形有对.12.如图,在△ABC中,∠BAC=90°,AB=4,AC=3,点D是BC上一动点(点D与点B不重合),连接AD,作B关于直线AD的对称点E,当点E在BC的下方时,连接BE、CE,则CE的取值范围是;△BEC面积的最大值为.13.如图,△APT与△CPT关于直线PT对称,∠A=∠APT,延长AT交PC于点F,当∠A =°时,∠FTC=∠C.14.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)15.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出个格点三角形与△ABC成轴对称.16.如图,∠A=∠C=90°,且AB=AC=4,D,E分别为射线AC和射线CF上两动点,且AD=CE,当BD+BE有最小值时,则△BDE的面积为.三.解答题(共7小题,满分56分)17.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.18.如图,直线l1∥l2,直线l3交直线l1于点B,交直线l2于点D,O是线段BD的中点.过点B作BA⊥l2于点A,过点D作DC⊥l1于点C,E是线段BD上一动点(不与点B,D 重合),点E关于直线AB,AD的对称点分别为P,Q,射线PO与射线QD相交于点N,连接PQ.(1)求证:点A是PQ的中点;(2)请判断线段QN与线段BD是否相等,并说明理由.19.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.20.如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.21.如图,△ABC在正方形网格中,已知网格的单位长度为1,点A,B,C均在格点上,按要求回答下列问题:(1)分别写出点A,B,C的坐标;(2)求△ABC的面积;(3)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称.22.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.(1)如图(1),点D在线段BC上移动时,①角α与β之间的数量关系是;②若线段BC=2,点A到直线BC的距离是3,则四边形ADCE周长的最小值是;(2)如图(2),点D在线段BC的延长线上移动时,①请问(1)中α与β之间的数量关系还成立吗?如果成立,请说明理由;②线段BC、DC、CE之间的数量是.23.如图,在△ABC中,AB=AC,∠A=2∠ABD,当△BDC是等腰三角形时,求:∠DBC 的度数.参考答案一.选择题(共10小题,满分40分)1.解:(1)全等三角形对应边上的中线相等.正确;(2)有两条边对应相等的等腰直角三角形一定全等.正确;(3)一条斜边对应相等的两个直角三角形不一定全等.错误;(4)两边及其一边上的高也对应相等的两个三角形一定全等.错误;故选:B.2.解:与已知图形成轴对称的图形是选项C:.故选:C.3.解:∵∠BAC=110°,∴∠B+∠C=70°,∵A,B关于直线MP对称,A,C关于直线NQ对称,又∵MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠P AQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:C.4.解:第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,故选:A.5.解:∵△ABD和△ACE是△ABC的轴对称图形,∴∠BAD=∠CAE=∠BAC,AB=AE,AC=AD,∴∠EAD=3∠BAC﹣360°=3×150°﹣360°=90°,故①正确;∴∠BAE=∠CAD=(360°﹣90°﹣150°)=60°,由翻折的性质得,∠AEC=∠ABD=∠ABC,又∵∠EPO=∠BP A,∴∠BOE=∠BAE=60°,故②正确;∵△ACE≌△ADB,∴S△ACE=S△ADB,BD=CE,∴BD边上的高与CE边上的高相等,即点A到∠BOC两边的距离相等,∴OA平分∠BOC,故③正确;只有当AC=AB时,∠ADE=30°,才有EA=ED,故④错误;在△ABP和△AEQ中,∠ABD=∠AEC,AB=AE,∠BAE=60°,∠EAQ=90°,∴BP<EQ,故⑤错误;综上所述,结论正确的是①②③共3个.故选:B.6.解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图,此时BE+EF最小.∵AD是△ABC的角平分线,∴∠BAD=∠B′AD=25°,∴∠AE′F′=65°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,∵AG=AG,∴△ABG≌△AB′G(ASA),∴BG=B′G,∠ABG=∠AB′G,∴AD垂直平分BB′,∴BE=BE′,∴∠E′B′G=∠E′BG,∵∠BAC=50°,∴∠AB′F′=40°,∴∠ABE=40°,∴∠BE′F′=50°,∴∠AE′B=115°.故选:B.7.解:∵AB=AC,∠A=50°,∴∠ACB=(180°﹣50°)÷2=65°,由题意可知,BC=BE,∴∠BEC=∠ACB=65°,∴∠CBE=180°﹣65°×2=50°,∴∠CBD=∠CBE=25°.故选:A.8.解:连接MN,∵射线OC平分∠AOB,PM=PN,∴OP⊥MN,∠MOP=∠NOP,∴∠MPO=∠NPO,在△MOP与△NOP中,,∴△MOP≌△NOP(ASA),∴∠OMP=∠PNO=110°,∴∠EPM=∠OMP﹣∠OEP=110°﹣90°=20°.故选:A.9.解:①∵AB=AC,∴∠B=∠C=40°,∴∠BAD=180°﹣40°﹣∠ADB,∠CDE=180°﹣40°﹣∠ADB,∴∠BAD=∠CDE;故①正确;②∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=50°,∵∠C=40°,∴∠DEC=90°,∴DE⊥AC,故②正确;③∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE,∴∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=60°,或∵△ADE为等腰三角形,∴AD=DE,∴∠DAE=∠AED=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=30°,故③错误,④∵∠BAD=30°,∴∠CDE=30°,∴∠ADC=70°,∴∠CAD=180°﹣70°﹣40°=70°,∴∠DAC=∠ADC,∴CD=AC,∵AB=AC,∴CD=AB,∴△ABD≌△DCE(ASA),∴BD=CE;故④正确;故选:C.10.解:A.∵AB=AC,∴∠B=∠C,故A不符合题意;B.∵AB=AC,点D是BC边中点,∴AD⊥BC,故B不符合题意;C.∵AB=AC,点D是BC边中点,∴∠BAD=∠CAD,故C不符合题意;所以排除A,B,C,故选:D.二.填空题(共6小题,满分24分)11.解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB(AAS);∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD(AAS);∴BE=CD,∴AD=AE,∵AO=AO,∴Rt△AOD≌Rt△AOE(HL);∵∠DOC=∠EOB,∴△COD≌△BOE(AAS);∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF(SSS),△COF≌△BOF(SSS),综上所述,共有6对全等的直角三角形.故答案是:6.12.解:∵B、E关于AD对称,∴AE=AB=4,则可知E点在以A点为圆心、AE为半径的圆上,如图,在Rt△ABC中,AB=4,AC=3,则BC=5,当E点与B点重合时,有CE最长,即为5;又∵B、E不重合,∴CE<5,当E点移动到F点时,使得A、C、F三点共线,此时CF最短,且为CF=AF﹣AC=4﹣3=l,即CE最短为l,即CE的取值范围为:1≤CE<5;当点E移动到使得AE⊥BC时,A点到BC的距离最短,则E点到BC的距离最大,则此时△BCE的面积最大,设AE交BC于点G点,利用面积可知AB×AC=BC×AG,∴AG=2.4,∵AE=AB=4,∴EG=4﹣2.4=1.6,∴△BCE的面积最大值为:1.6×5×=4,∴△BCE的面积的最大值为4;故答案为:1≤CE<5;4.13.解:∵△APT与△CPT关于直线PT对称,∴∠A=∠C,TA=TC,∠APT=∠CPT,∵∠A=∠APT,∴∠A=∠C=∠APT=∠CPT,∵∠FTC=∠C,∴∠AFP=∠C+∠FTC=2∠C=2∠A,∵∠A+∠APF+∠AFP=180°,∴5∠A=180°,∴∠A=36°,故答案为:36°.14.解:AD=CD,理由:在△ABD与△CBD中,,∴△ABD≌△CBD,∴四边形ABCD是一个轴对称图形,故答案为:AD=CD.15.解:如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.16.解:过点B作BE⊥CF于点N,∵∠A=∠C=90°,且AB=AC=4,∴四边形ACNB是正方形,∴AC=CN,∵AD=CE,∴CD=NE△BEN≌△NDC,∴BE=DN,延长BA到M.使得AM=AB,则B,M关于AC对称,∴BD=MD,∴BD+BE=MD+DN,最小时,M,N,D三点共线,此时D为AC的中点,△BDE的面积为:0.5×(2+4)×4﹣0.5×4×2﹣0.5×2×2=6.故答案为:6.三.解答题(共7小题,满分56分)17.证明:(1)在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC为公共边,∴Rt△ABC≌Rt△DCB(HL);(2)△OBC是等腰三角形,∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,∴OB=OC,∴△OBC是等腰三角形.18.(1)证明:连接AE.∵点E关于直线AB,AD的对称点分别为P,Q,∴AP=AE,AQ=AE,∠1=∠2,∠3=∠4,∴AP=AQ,∵AB⊥l2,∴∠2+∠3=90°,∴∠1+∠2+∠3+∠4=180°,∴P,A,Q三点在同一条直线上,∴点A是PQ的中点.(2)解:结论QN=BD,理由如下:连接PB.∵点E关于直线AB,AD的对称点分别为P,Q,∴BP=BE,DQ=DE,∠5=∠6,∠7=∠8,∵l1∥l2,DC⊥l1,∴DC⊥l2,∴∠7+∠9=90°,∴∠8+∠10=90°,∴∠9=∠10,又∵AB⊥l2,DC⊥l2,∴AB∥CD,∴∠6=∠9,∴∠5+∠6=∠9+∠10,即∠OBP=∠ODN,∵O是线段BD的中点,∴OB=OD,又∠BOP=∠DON,在△BOP和△DON中,∴△BOP≌△DON(AAS),∴BP=DN,∴BE=DN,∴QN=DQ+DN=DE+BE=BD.19.解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)(1)中结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.20.解:如下图所示:(答案不唯一).21.解:(1)由图知,A(0,3)、B(﹣4,4)、C(﹣2,1);(2)△ABC的面积为3×4﹣×2×2﹣×1×4﹣×2×3=5,答:△ABC的面积为5;(3)如图所示,△A1B1C1即为所求.22.解:(1)①α+β=180°;理由如下:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC∴∠CAE=∠BAD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°,故答案为:α+β=180°;②由①知,△ABD≌△ACE,∴BD=CE,AD=AE,∴CD+CE=BD+CD=BC=2,当AD⊥BC时,AD最短,即四边形ADCE周长的值最小,∵点A到直线BC的距离是3,∴AD=AE=3,∴四边形ADCE周长的最小值是2+3+3=8,故答案为:8;(2)①成立,理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∴∠BAC+∠BCE=∠DCE+∠BCE=180°,即α+β=180°;②∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,∵BD=BC+CD,∴CE=BC+CD,故答案为:CE=BC+CD.23.解:∵AB=AC,∴∠ABC=∠C.①当BD=CD时,∠C=∠CBD<∠ABC,故不成立;②当BD=BC时,∠C=∠BDC=∠A+∠ABD,∵∠A+∠ABC+∠C=180°,∴∠A+∠A+∠ABD+∠A+∠ABD=180°,∴3∠A+2∠ABD=180°,4∠A=180°,∴∠A=45°,∴∠ABD=22.5°,∴∠ABC=(180°﹣45°)=67.5°,∴∠DBC=∠ABC﹣∠ACD=45°;③当CB=CD时,∠CBD=∠CDB=∠A+∠ABD,设∠ABD=x,∴∠A=2x,∴∠CBD=∠CDB=3x,∴∠ABC=∠C=4x,∵∠A+∠ABC+∠C=180°,∴2x+4x+4x=180°,∴x=18°,∴∠DBC=54°;综上所述:∠DBC的度数为54°或45°.。

浙教版数学八年级上册 特殊三角形综合复习

浙教版数学八年级上册 特殊三角形综合复习

一、等腰三角形定义及其性质【知识梳理】1.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”);(3)等腰三角形是轴对称图形,它的对称轴是顶角平分线(底边上的中线、底边上的高)所在的直线.【例题精讲】例1.如图,有甲,乙两个三角形,请你用一条直线把每一个三角形分成两个等腰三角形,并标出每个三角形各角的度数.例2.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是__________ .例3.探究题:(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;直接写出结论,不用证明.②线段AD、BE之间的数量关系是.直接写出结论,不用证明.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.猜想:①∠AEB= °;②(CM、AE、BE的数量关系).证明:。

【巩固练习】1.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为__________ .2.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(如图1所示)(1)请你在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.3.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A. 2个B. 3个C. 4个D. 5个二、直角三角形及全等的判定【知识梳理】1.定理2:直角三角形斜边上的中线等于斜边的一半.(1)推论1:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.【说明】“推论”是从某一个定理直接推出的定理.【例题精讲】例1.如图1,四边形ABCD中,AD∥BC,AB⊥BC,点E在边AB上,∠DEC=900,且DE=EC.(1)求证:△ADE≌△BEC;(2)若AD=a,AE=b,DE=c,请用图1证明勾股定理:a2+b2=c2;(3)线段AB上另有一点F(不与点E重合),且DF⊥CF(如图2),若AD=2,BC=4,求EF的长.例2.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点.点P 从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,点P、Q同时出发,当点Q运动到点A时停止,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)D、F两点间的距离等于______;(2)以点D为圆心,DC长为半径作圆交DE于M,能否在弧CM上找一点N,使直线QN切⊙D于N,且四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;(3)作射线QK⊥AB,交折线BC-CA于点G,当t为何值时,点P恰好落在射线QK上;(4)连接PG,当PG∥AB时,直接写出t的值.【巩固练习】1.将一块三角板的直角顶点放在正方形ABCD的对角线交点位置,两边与对角线重合如图甲,将这块三角板绕直角顶点顺时针方向旋转(旋转角小于90°)如图乙.(1)试判断△ODE和△OCF是否全等,并证明你的结论.(2)若正方形ABCD的对角线长为10,试求三角板和正方形重合部分的面积.2.已知,把Rt△ABC和Rt△DEF按图1摆放,(点C与E点重合),点B、C、E、F始终在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如图2,△DEF从图1出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从A出发,沿AB以每秒1个单位向点B匀速移动,AC与△DEF的直角边相交于Q,当P到达终点B时,△DEF同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)△DEF在平移的过程中,当点D在Rt△ABC的边AC上时,求t的值;(2)在移动过程中,是否存在△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)在移动过程中,当0<t≤5时,连接PE,是否存在△PQE为直角三角形?若存在,求出t的值;若不存在,说明理由.四、探索勾股定理【知识梳理】1.勾股定理:如果直角三角形的两直角边长分别为和,斜边长为,那么.【注意】应用勾股定理时,应分清直角边和斜边,避免机械地运用公式.【说明】(1)解决直角三角形中线段的求值问题,要首先联想到勾股定理;(2)勾股定理是求线段长度、证明线段平方关系的重要依据.【例题精讲】例1.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.【巩固练习】1.在Rt△ABC中,∠C=90°,以三边为边分别向外作正方形,如图所示,过C作CH⊥AB于H,延长CH交MN于点I.(1)如图(1)若AC=3,BC=2,试通过计算证明:四边形AHIN的面积等于正方形AEFC的面积.(2)请利用图(2)证明直角三角形勾股定理:AC2+BC2=AB2.2.已知:正方形ABCD的边长为2,△EFG为等腰直角三角形,∠EGF=90°.(1)如图1,当点G与点D重合,点E在正方形ABCD的对角线AC上时.求AE+AF的值;(2)如图2,当点G与点D重合,点E在线段CA的延长线上时.通过观察、计算,你能发现AF与AE有怎样的数量关系,并说明理由;(3)如图3,当点G在线段DA的延长线上时,设AG=x.则线段AE、AF与x有怎样的数量关系,请说明理由.课后巩固● 请将本次课错题组卷,进行二次练习,培养错题管理习惯● 学霸笔记复习,培养复习习惯1.(1)如图1,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;(2)如图2,点B、F、D在射线AM上,点G、C、E在射线AN上,且AB=BC=CD=DE=EF=FG=GA,求∠A的度数.2.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.3.如图,四边形OABC为直角梯形,A(4,0〕,B(3,4〕,C(0,4〕.点P从O点出发,以每秒2个单位长度的速度向A运动,同时点Q从B点出发,以每秒1个单位长度的速度向点C运动,其中一个动点到达终点时,另一个动点也随之停止运动.过点Q作 QD丄x轴,垂足为点D,交AC于点E.(1)求△APE的面积S与运动时间t(单位:秒)的函数关系式,并写出自变量t的取值范围;(2)当t为何值时,S的值最大;(3)是否存在点P,使得△APE为直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由.4.已知:如图1,等边△OAB的边长为3,另一等腰△OCA与△OAB有公共边OA,且OC=AC,∠C=120°.现有两动点P、Q分别从B、O两点同时出发,点P以每秒3个单位的速度沿BO向点O运动,点Q以每秒1个单位的速度沿OC向点C运动,当其中一个点到达终点时,另一个点也随即停止运动.请回答下列问题:(1)在运动过程中,△OPQ的面积记为S,请用含有时间t的式子表示S.(2)在等边△OAB的边上(点A除外),是否存在点D,使得△OCD为等腰三角形?如果存在,这样的点D共有个.(3)如图2,现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着点C 旋转,使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.5.提出问题:如图,在△ABC中,∠A=90°,分别以边AB、AC向外作正方形ABDE和正方形ACFG,连接EG,小亮发现△ABC与△AEG面积相等.小亮思考:这个问题中,如果∠A≠90°,那么△ABC与△AEG面积是否仍然相等?猜想结论:经过研究,小亮认为:上述问题中,对于任意△ABC,分别以边AB、AC向外作正方形ABDE 和正方形 ACFG,连接EG,那么△ABC与△AEG面积相等.证明猜想:(1)请你帮助小亮画出图形,并完成证明过程.已知:以△ABC的两边AB、AC为边长分别向外作正方形ABDE、ACFG,连接GE.求证:S△AEG=S△ABC.结论应用:(2)学校教学楼前的一个六边形花圃被分成七个部分,分别种上不同品种的花卉,其中四边形ABCD、CIHG、GFED均为正方形,且面积分别为9m2、5m2和4m2.求这个六边形花圃ABIHFE的面积.。

最新浙教版八年级数学上学期《特殊三角形》单元综合测试题及答案解析.docx

最新浙教版八年级数学上学期《特殊三角形》单元综合测试题及答案解析.docx

第二章特殊三角形单元检测一.选择题(共10小题,满分30分,每小题3分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40° D.45°3.(3分)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36° B.60° C.72° D.108°4.(3分)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个5.(3分)(2016•贵阳模拟)如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30° B.45° C.60° D.90°6.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个7.(3分)如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形 B.直角三角形 C.等边三角形 D.非等腰三角形8.(3分)等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于()A.30° B.30°或150°C.120°或150°D.30°或120°或150°9.(3分)(2016春•龙岗区期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP 绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.410.(3分)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a2二、填空题(共8小题,满分32分,每小题4分)11.(4分)如图,已知△ABC中,AB=5,AC=7,AD⊥BC于点D,点M为AD上任意一点,则MC2﹣MB2等于______.12.(4分)(2016•厦门校级模拟)在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.13.(4分)(2016春•高安市期中)如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PB•PC=______.14.(4分)如图,在等腰△ABC中,AB=AC,将△ABC沿DE折叠,使底角顶点C落在三角形三边的垂直平分线的交点O处,若BE=BO,则∠ABC=______度.15.(4分)(2016•迁安市一模)如图,在矩形ABCD中,AB=12cm,BC=6cm.点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD 外部的点A1、D1处,则整个阴影部分图形的周长为______.16.(4分)(2016•湖州一模)如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,若AB=6,BC=4,则FD的长为______.17.(3分)(2016春•乌拉特前旗期末)如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=______.18.(4分)(2016•萧山区模拟)如图,将正方形ABCD的边AD和边BC折叠,使点C与点D重合于正方形内部一点O,已知点O到边CD的距离为a,则点O到边AB 的距离为______.(用a的代数式表示)三.选择题(共12小题,满分90分)19.(6分)(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC 的平分线,求∠BDC的度数.20.(6分)(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C 的距离?21.(6分)(2016春•芦溪县期中)如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,且交∠BAC的平分线于点D,求证:MD=MA.22.(6分)(2016春•临清市期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.23.(6分)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.24.(8分)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.25.(8分)(2016春•十堰期末)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.26.(8分)(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.27.(8分)(2016•丹东模拟)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.28.(12分)(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.29.(14分)如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:AM⊥CD.第二章特殊三角形单元检测参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40° D.45°【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.3.(3分)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36° B.60° C.72° D.108°【分析】根据∠A=36°,AB=AC求出∠ABC的度数,根据角平分线的定义求出∠ABD 的度数,根据三角形的外角的性质计算得到答案.【解答】解:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=36°,∴∠1=∠A+∠ABD=72°,故选:C.【点评】本题考查的是三角形的外角的性质和等腰三角形的性质,掌握等腰三角形的两个底角相等和三角形的一个外角等于与它不相邻的两个内角之和是解题的关键.4.(3分)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个【分析】根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,即可得出答案.【解答】解:共有5个.(1)∵AB=AC∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:A.【点评】此题主要考查学生对等腰三角形判定和三角形内角和定理的理解和掌握,属于中档题.5.(3分)(2016•贵阳模拟)如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30° B.45° C.60° D.90°【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:连接AC,设每个小正方形的边长都是a,根据勾股定理可以得到:AC=BC=a,AB=a,∵(a)2+(a)2=(a)2,∴AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°,故选B.【点评】本题主要考查了勾股定理,利用勾股定理判断△ABC是等腰直角三角形是解决本题的关键.6.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.7.(3分)如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形 B.直角三角形 C.等边三角形 D.非等腰三角形【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.【点评】三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题结合三角形全等的知识,考查了等边三角形的性质.8.(3分)等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于()A.30° B.30°或150°C.120°或150°D.30°或120°或150°【分析】题中没有指明等腰三角形一腰上的高是哪边长的一半,故应该分三种情况进行分析,从而不难求解.【解答】解:①如图,∵∠ADB=90°,AD=AB,∴∠B=30°,∵AC=BC,∴∠CAB=30°,∴∠ACB=180°﹣30°﹣30°=120°.②如图,∵∠ADB=90°,AD=AC,∴∠ACD=30°,∵AC=BC,∴∠CAB=∠B=15°,∠ACB=180°﹣30°=150°.③如图,∵∠ADB=90°,AD=BC,∴∠B=30°,∵AB=BC,∴∠CAB=∠C=75°,∴∠B=30°.故选D.【点评】此题主要考查等腰三角形的性质,三角形内角和定理及三角形外角性质的综合运用.9.(3分)(2016春•龙岗区期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP 绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.10.(3分)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a2【分析】过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN 的面积等于正方形PCQE的面积求解.【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.【点评】本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.二.选择题(共8小题,满分32分,每小题4分)11.(4分)如图,已知△ABC中,AB=5,AC=7,AD⊥BC于点D,点M为AD上任意一点,则MC2﹣MB2等于24 .【分析】在Rt△ABD及RtADC中可分别表示出BD2及CD2,在Rt△BDM及RtCDM 中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ADC中,BD2=AB2﹣AD2,CD2=AC2﹣AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2﹣AD2+MD2,MC2=CD2+MD2=AC2﹣AD2+MD2,∴MC2﹣MB2=(AC2﹣AD2+MD2)﹣(AB2﹣AD2+MD2)=AC2﹣AB2=72﹣52=24.故答案为:24.【点评】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握.12.(4分)(2016•厦门校级模拟)在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8 .【分析】本题由题意可知有两种情况,AB+AD=15或AB+AD=21.从而根据等腰三角形的性质及三角形三边关系可求出底边为8或16.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.【点评】本题主要考查等腰三角形的性质及三角形三边关系;注意:求出的结果一定要检验时符合三角形三边性质.分类讨论是正确解答本题的关键.13.(4分)(2016春•高安市期中)如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PB•PC= 25 .【分析】首先过点A作AD⊥BC于D,可得∠ADP=∠ADB=90°,又由AB=AC,根据三线合一的性质,可得BD=CD,由勾股定理可得PA2=PD2+AD2,AD2+BD2=AB2,然后由AP2+PB•PC=AP2+(BD+PD)(CD﹣PD),即可求得答案.【解答】解:过点A作AD⊥BC于D,∵AB=AC=5,∠ADP=∠ADB=90°,∴BD=CD,PA2=PD2+AD2,AD2+BD2=AB2,∴AP2+PB•PC=AP2+(BD+PD)(CD﹣PD)=AP2+(BD+PD)(BD﹣PD)=AP2+BD2﹣PD2=AP2﹣PD2+BD2=AD2+BD2=AB2=25.故答案为25.【点评】本题考查了勾股定理与等腰三角形的性质的正确及灵活运用.注意得到AP2+PB•PC=AP2+(BD+PD)(CD﹣PD)是解此题的关键.14.(4分)如图,在等腰△ABC中,AB=AC,将△ABC沿DE折叠,使底角顶点C落在三角形三边的垂直平分线的交点O处,若BE=BO,则∠ABC= 63 度.【分析】首先连接OC,设∠OCE=x°,由折叠的性质易得:∠COE=∠OCE=x°,又由三角形三边的垂直平分线的交于点O,可得OB=OC,且O是△ABC外接圆的圆心,然后利用等边对等角与三角形外角的性质,可用x表示出∠OBC、∠BOE,∠OEB的度数,又由三角形内角和定理,可得方程x+2x+2x=180,解此方程求得∠OCE的度数,继而求得∠ABC的度数.【解答】解:连接OC,设∠OCE=x°,由折叠的性质可得:OE=CE,∴∠COE=∠OCE=x°,∵三角形三边的垂直平分线的交于点O,∴OB=OC,且O是△ABC外接圆的圆心,∴∠OBC=∠OCE=x°,∠BOC=2∠A,∵∠OEB=∠OCE+∠COE=2x°,BE=BO,∴∠BOE=∠OEB=2x°,∵△OBE中,∠OBC+∠BOE+∠OEB=180°,∴x+2x+2x=180,解得:x=36,∴∠OBC=∠OCE=36°,∴∠BOC=180°﹣∠OBC﹣∠OCE=108°,∴∠A=∠BOC=54°,∵AB=AC,∴∠ABC=∠ACB==63°,故答案为:63.【点评】此题考查了折叠的性质、等腰三角形的性质、三角形内角和定理、三角形外角的性质以及三角形外接圆的性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.15.(4分)(2016•迁安市一模)如图,在矩形ABCD中,AB=12cm,BC=6cm.点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD 外部的点A1、D1处,则整个阴影部分图形的周长为36cm .【分析】根据折叠的性质,得A1E=AE,A1D1=AD,D1F=DF,则阴影部分的周长即为矩形的周长.【解答】解:根据折叠的性质,得A1E=AE,A1D1=AD,D1F=DF.则阴影部分的周长=矩形的周长=2(12+6)=36(cm).【点评】此题要能够根据折叠的性质得到对应的线段相等,从而求得阴影部分的周长.16.(4分)(2016•湖州一模)如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,若AB=6,BC=4,则FD的长为4 .【分析】根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可.【解答】解:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6﹣x,在Rt△BCF中,(4)2+(6﹣x)2=(6+x)2,解得x=4.故答案为:4.【点评】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件ED=EG是解题的关键.17.(3分)(2016春•乌拉特前旗期末)如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3= 12 .【分析】根据勾股定理的几何意义解答.【解答】解:∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.【点评】解决本题的关键是根据勾股定理得到三个面积之间的关系.18.(4分)(2016•萧山区模拟)如图,将正方形ABCD的边AD和边BC折叠,使点C与点D重合于正方形内部一点O,已知点O到边CD的距离为a,则点O到边AB 的距离为(3+2)a .(用a的代数式表示)【分析】作OG⊥CD于G,交AB于H,根据翻转变换的性质得到OA=AD,OB=BC,∠EOA=∠D=90°,∠FOB=∠C=90°,根据直角三角形的性质和勾股定理求出DE、EF、FC,得到正方形的边长,计算即可.【解答】解:作OG⊥CD于G,交AB于H,∵CD∥AB,∴OH⊥AB于H,由翻转变换的性质可知,OA=AD,OB=BC,∠EOA=∠D=90°,∠FOB=∠C=90°,∴△OAB是等边三角形,∠EOF=120°,∴∠OEF=30°,∴EO=2a,EG=a,∴DE=OE=2a,OF=FC=2a,EF=2EG=2a,∴DC=4a+2a,∴点O到边AB的距离为4a+2a﹣a=3a+2a=(3+2)a.故答案为:(3+2)a.【点评】本题考查的是翻转变换的性质和等边三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三.解答题(共12小题,满分88分)19.(6分)(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC 的平分线,求∠BDC的度数.【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C的度数.20.(6分)(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C 的距离?【分析】根据已知条件“上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处”可以求得AB=120海里,然后根据三角形的内角和定理求得∠C=32°,所以△ABC是等腰三角形;最后由等腰三角形的两腰相等的性质来求从B处到灯塔C的距离.【解答】解:根据题意,得AB=30×4=120(海里);在△ABC中,∠NAC=32°,∠ABC=116°,∴∠C=180°﹣∠NAC﹣∠ABC=32°,∴∠C=∠NAC,∴BC=AB=120(海里),即从B处到灯塔C的距离是120海里.【点评】本题考查了等腰三角形的性质、方向角.解答该题时充分利用了三角形的内角和定理.21.(6分)(2016春•芦溪县期中)如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,且交∠BAC的平分线于点D,求证:MD=MA.【分析】由MD⊥BC,且∠B=90°得AB∥MD,∠BAD=∠D,再利用AD为∠BAC的平分线得∠BAD=∠MAD,利用等量代换即可证明.【解答】证明:∵MD⊥BC,且∠B=90°,∴AB∥MD,∴∠BAD=∠D又∵AD为∠BAC的平分线∴∠BAD=∠MAD,∴∠D=∠MAD,∴MA=MD【点评】此题考查学生对等腰三角形的判定与性质和平行线段的判定与性质的理解和掌握,难度不大,是一道基础题.22.(6分)(2016春•临清市期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD 的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC=,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四边形ABCD=S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.23.(6分)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【分析】根据三角形三线合一的性质可得∠CAD=∠BAD,根据同角的余角相等可得:∠CBE=∠CAD,再根据等量关系得到∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.【点评】考查了余角的性质,等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.24.(8分)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.【分析】首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.【解答】证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.【点评】(1)此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(2)此题还考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.25.(8分)(2016春•十堰期末)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.【分析】(1)利用勾股定理,找长为有理数的线段,画三角形即可.(2)画一个边长,2,的三角形即可;(3)画一个边长为的正方形即可.【解答】解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).【点评】考查了格点三角形的画法.本题需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.26.(8分)(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【分析】由于AB=BD=DC,所以△ABD和△BDC都是等腰三角形,可设∠C=∠CDB=x,则∠BDA=∠A=2x,根据等腰三角形的性质和三角形内角和定理的推论,可以求出∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;解题中运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解有关角的度数问题.27.(8分)(2016•丹东模拟)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.【分析】此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.【解答】证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.【点评】本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.28.(12分)(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.【分析】一、(1)由勾股定理即可得出结论;(2)作AD⊥BC于D,则BD=BC﹣CD=a﹣CD,由勾股定理得出AB2﹣BD2=AD2,AC2﹣CD2=AD2,得出AB2﹣BD2=AC2﹣CD2,整理得出a2+b2=c2+2a•CD,即可得出结论;(3)作AD⊥BC于D,则BD=BC+CD=a+CD,由勾股定理得出AD2=AB2=BD2,AD2=AC2﹣CD2,得出AB2﹣BD2=AC2﹣CD2,整理即可得出结论;二、分两种情况:①当∠C为钝角时,由以上(3)得:<c<a+b,即可得出结果;②当∠B为钝角时,得:b﹣a<c<,即可得出结果.【解答】一、解:(1)∵∠C为直角,BC=a,CA=b,AB=c,∴a2+b2=c2;(2)作AD⊥BC于D,如图1所示:则BD=BC﹣CD=a﹣CD,在△ABD中,AB2﹣BD2=AD2,在△ACD中,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a﹣CD)2=b2﹣CD2,整理得:a2+b2=c2+2a•CD,∵a>0,CD>0,∴a2+b2>c2;(3)作AD⊥BC于D,如图2所示:则BD=BC+CD=a+CD,在△ABD中,AD2=AB2=BD2,在△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a+CD)2=b2﹣CD2,整理得:a2+b2=c2﹣2a•CD,∵a>0,CD>0,∴a2+b2<c2;二、解:当∠C为钝角时,由以上(3)得:<c<a+b,即5<c<7;当∠B为钝角时,得:b﹣a<c<,即1<c<;综上所述:第三边c的取值范围为5<c<7或1<c<.【点评】本题考查了勾股定理的综合运用、完全平方公式;熟练掌握勾股定理,通过作辅助线运用勾股定理是解决问题的关键.29.(14分)如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:AM⊥CD.【分析】延长AM到F,使MF=AM,交CD于点N,构造平行四边形,利用条件证明△ABF≌△CAD,可得出∠BAF=∠ACD,再结合条件可得到∠ANC=90°,可证得结论.【解答】证明:延长AM到F,使MF=AM,交CD于点N,∵BM=EM,∴四边形ABFE是平行四边形,∴BF=AE,∠ABF+∠BAE=180°,∵∠BAC=∠DAE=90°,∴∠CAD+∠BAE=180°,∴∠ABF=∠CAD,∵BF=AE,AD=AE,∴BF=AD,在△ABF和△CAD中,,∴△ABF≌△CAD(SAS),∴∠BAF=∠ACD,∵∠BAC=90°,∴∠BAF+∠CAN=90°,∴∠ACD+∠CAN=90°,∴∠ANC=90°,∴AM⊥CD.【点评】本题主要考查全等三角形的判定和性质,通过辅助线构造平行四边形证明三角形全等得到∠BAF=∠ACD是解题的关键.。

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (836)

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (836)
4 17.4
18.斜边,直角边,HL
19.3
20.(1)40°;(2)20°
21.30°或 75°
22.2.5
评卷人 得分
三、解答题
23.∵∠BAD=∠CAD,∴AD 是∠BAC 的平分线. ∵AB=AC,∴△ABC 是等腰三角形.
∴AD 是△ABC 的 BC 边上的中线,∴BD=CD= 1 BC. 2
25.(7 分) 如图①所示是某立式家具(角书橱)的横断面,请你设计一个方案(角书橱高 2 m, 房间高 2.6 m,所以不必从高度方面考虑方案的设计),按此方案,可使该家具通过图② 中的长廊搬人房间,在图②中把你设计的方案画成草图,并通过近似计算说明按此方案可 把家具搬人房间的理由. (注:搬运过程中不准拆卸家具,不准损坏墙壁)
湖到点 B 的距离为( )
A.86 m
B.90 m
C.96 m
D.l00 m
7.(2 分)已知等腰三角形一腰上的高线等于底边的一半,则这个等腰三角形的顶角等于
()
A.120°
B.90°
C. 60°
D.30°
8.(2 分)把等边三角形 ABC 一边 AB 延长一倍到 D,则∠ADC 是( )
A.等腰三角形
B 的坐标是( )
A. (-2,0) C.(0,2)
B.(0,-2) D.(0,-2)或(0,2)
2.(2 分)判断两个直角三角形全等,下列方法中,不能应用的是( )
A. AAS
B.HL
C.SAS
D. AAA
3.(2 分)如图,在边长为 4 的等边三角形 ABC 中,AD 是 BC 边上的高,点 E、F 是 AD 上
A.等腰直角三角形 B.长方形
C.正方形

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (854)

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (854)
29.(7 分)如图,已知等腰直角三角形 ABC 中,∠BAC=90°,∠ABC 的平分线交 AC 于 D,过 C 作 BD 的垂线交 BD 的延长线于 E,交 BA 的延长线于 F,请说明: (1)△BCF 是等腰三角形; (2)△ABD≌△ACF; (3)BD=2CE.
30.(7 分) 如图,在△ABC 中,AB=AC,若 AD∥BC,则 AD 平分∠C,请说明理由.
5.(2 分)下列判断中,正确的是( )
A.顶角相等的两个等腰三角形全等
B.腰相等的两个等腰三角形全等
C.有一边及锐角相等的两个直角三角形全等
D.顶角和底边分别相等的两个等腰三角形全等 6.(2 分)如图,D 是∠BAC 内部一点,DE⊥AB,DF⊥AC,DE=DF,则下列结论不.正.确.
的是( )
27.(7 分)一艘潜艇在水下 800 m 处用声纳测得水面上一艘静止的轮船与它的直线距离为 l000m,潜艇的速度为 20m/s,若它向这艘轮船方向驶去(深度保持不变),则经多少时间它 会位于轮船正下方?
28.(7 分)如图,在四边形 ABCD 中,∠BAD=90°,∠DBC=90°,AD=3,AB=4,CD =13,求 BC 的长.
形是直角三角形
21.120°
22.△ABD,△CBD,△ABC
评卷人 得分
三、解答题
23.略 24.40° 25.(1)证明:△AOB≌△AOC,得 AB=AC,∴△ABC 是等腰三角形; (2)由(1)得,∠OAB=∠OAC,∴AO⊥BC. 26.(1)50 m(2)CD⊥AB 时造价最低,即 CD=48m,最低造价 480 元 27.30s 28.12 29.(1)利用△CBE≌△FBE 来说明;(2)利用 ASA 说明;(3)利用 CF=2CE 而 CF=BD 来 说明 30.说明∠l=∠2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等腰三角形定义及其性质【知识梳理】1.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”);(3)等腰三角形是轴对称图形,它的对称轴是顶角平分线(底边上的中线、底边上的高)所在的直线.【例题精讲】例1.如图,有甲,乙两个三角形,请你用一条直线把每一个三角形分成两个等腰三角形,并标出每个三角形各角的度数.例2.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是__________ .例3.探究题:(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;直接写出结论,不用证明.②线段AD、BE之间的数量关系是.直接写出结论,不用证明.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.猜想:①∠AEB= °;②(CM、AE、BE的数量关系).证明:。

【巩固练习】1.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为__________ .2.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(如图1所示)(1)请你在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.3.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A. 2个B. 3个C. 4个D. 5个二、直角三角形及全等的判定【知识梳理】1.定理2:直角三角形斜边上的中线等于斜边的一半.(1)推论1:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.【说明】“推论”是从某一个定理直接推出的定理.【例题精讲】例1.如图1,四边形ABCD中,AD∥BC,AB⊥BC,点E在边AB上,∠DEC=900,且DE=EC.(1)求证:△ADE≌△BEC;(2)若AD=a,AE=b,DE=c,请用图1证明勾股定理:a2+b2=c2;(3)线段AB上另有一点F(不与点E重合),且DF⊥CF(如图2),若AD=2,BC=4,求EF的长.例2.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点.点P 从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,点P、Q同时出发,当点Q运动到点A时停止,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)D、F两点间的距离等于______;(2)以点D为圆心,DC长为半径作圆交DE于M,能否在弧CM上找一点N,使直线QN切⊙D于N,且四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;(3)作射线QK⊥AB,交折线BC-CA于点G,当t为何值时,点P恰好落在射线QK上;(4)连接PG,当PG∥AB时,直接写出t的值.【巩固练习】1.将一块三角板的直角顶点放在正方形ABCD的对角线交点位置,两边与对角线重合如图甲,将这块三角板绕直角顶点顺时针方向旋转(旋转角小于90°)如图乙.(1)试判断△ODE和△OCF是否全等,并证明你的结论.(2)若正方形ABCD的对角线长为10,试求三角板和正方形重合部分的面积.2.已知,把Rt△ABC和Rt△DEF按图1摆放,(点C与E点重合),点B、C、E、F始终在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如图2,△DEF从图1出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从A出发,沿AB以每秒1个单位向点B匀速移动,AC与△DEF的直角边相交于Q,当P到达终点B时,△DEF同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)△DEF在平移的过程中,当点D在Rt△ABC的边AC上时,求t的值;(2)在移动过程中,是否存在△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)在移动过程中,当0<t≤5时,连接PE,是否存在△PQE为直角三角形?若存在,求出t的值;若不存在,说明理由.四、探索勾股定理【知识梳理】1.勾股定理:如果直角三角形的两直角边长分别为和,斜边长为,那么.【注意】应用勾股定理时,应分清直角边和斜边,避免机械地运用公式.【说明】(1)解决直角三角形中线段的求值问题,要首先联想到勾股定理;(2)勾股定理是求线段长度、证明线段平方关系的重要依据.【例题精讲】例1.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.【巩固练习】1.在Rt△ABC中,∠C=90°,以三边为边分别向外作正方形,如图所示,过C作CH⊥AB于H,延长CH交MN于点I.(1)如图(1)若AC=3,BC=2,试通过计算证明:四边形AHIN的面积等于正方形AEFC的面积.(2)请利用图(2)证明直角三角形勾股定理:AC2+BC2=AB2.2.已知:正方形ABCD的边长为2,△EFG为等腰直角三角形,∠EGF=90°.(1)如图1,当点G与点D重合,点E在正方形ABCD的对角线AC上时.求AE+AF的值;(2)如图2,当点G与点D重合,点E在线段CA的延长线上时.通过观察、计算,你能发现AF与AE有怎样的数量关系,并说明理由;(3)如图3,当点G在线段DA的延长线上时,设AG=x.则线段AE、AF与x有怎样的数量关系,请说明理由.课后巩固● 请将本次课错题组卷,进行二次练习,培养错题管理习惯● 学霸笔记复习,培养复习习惯1.(1)如图1,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;(2)如图2,点B、F、D在射线AM上,点G、C、E在射线AN上,且AB=BC=CD=DE=EF=FG=GA,求∠A的度数.2.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.3.如图,四边形OABC为直角梯形,A(4,0〕,B(3,4〕,C(0,4〕.点P从O点出发,以每秒2个单位长度的速度向A运动,同时点Q从B点出发,以每秒1个单位长度的速度向点C运动,其中一个动点到达终点时,另一个动点也随之停止运动.过点Q作 QD丄x轴,垂足为点D,交AC于点E.(1)求△APE的面积S与运动时间t(单位:秒)的函数关系式,并写出自变量t的取值范围;(2)当t为何值时,S的值最大;(3)是否存在点P,使得△APE为直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由.4.已知:如图1,等边△OAB的边长为3,另一等腰△OCA与△OAB有公共边OA,且OC=AC,∠C=120°.现有两动点P、Q分别从B、O两点同时出发,点P以每秒3个单位的速度沿BO向点O运动,点Q以每秒1个单位的速度沿OC向点C运动,当其中一个点到达终点时,另一个点也随即停止运动.请回答下列问题:(1)在运动过程中,△OPQ的面积记为S,请用含有时间t的式子表示S.(2)在等边△OAB的边上(点A除外),是否存在点D,使得△OCD为等腰三角形?如果存在,这样的点D共有个.(3)如图2,现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着点C 旋转,使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.5.提出问题:如图,在△ABC中,∠A=90°,分别以边AB、AC向外作正方形ABDE和正方形ACFG,连接EG,小亮发现△ABC与△AEG面积相等.小亮思考:这个问题中,如果∠A≠90°,那么△ABC与△AEG面积是否仍然相等?猜想结论:经过研究,小亮认为:上述问题中,对于任意△ABC,分别以边AB、AC向外作正方形ABDE 和正方形 ACFG,连接EG,那么△ABC与△AEG面积相等.证明猜想:(1)请你帮助小亮画出图形,并完成证明过程.已知:以△ABC的两边AB、AC为边长分别向外作正方形ABDE、ACFG,连接GE.求证:S△AEG=S△ABC.结论应用:(2)学校教学楼前的一个六边形花圃被分成七个部分,分别种上不同品种的花卉,其中四边形ABCD、CIHG、GFED均为正方形,且面积分别为9m2、5m2和4m2.求这个六边形花圃ABIHFE的面积.最新文档可修改欢迎下载 1。

相关文档
最新文档