高中物理之物体是由大量分子组成知识点
高中物理选修3-3知识点归纳
选修3-3知识点归纳 2017-11-15一、分子动理论1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由分子组成的。
①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ2、油膜法估测分子的大小: ①SV d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。
②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。
3、分子热运动:①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。
②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。
③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。
颗粒越小、温度越高,现象越明显。
从阳光中看到教室中尘埃的运动不是布朗运动。
4、分子力:①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。
②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r<r 0,表现为斥力。
③从无穷远到不能再靠近的距离过程中,分子力先增大,再减小,再增大。
④当r ≥10r 0=10-9m 时,分子力忽略不计,理想气体分子距离大于10-9m ,故不计分子力。
⑤两块纯净的铅压紧,它们会“粘”在一起,说明分子间存在引力,但破碎的玻璃不能重新拼接在一起不是因为其分子间存在斥力。
5、物体内能:①物体内能:物体所有分子做热运动的动能和分子势能的总和。
②温度是物体分子热运动的平均动能的标志。
③分子势能与分子间距离有关,分子间距离与体积有关,所以分子势能与体积有关,分子势能可类比弹簧弹性势能,原长相当于r 0位置。
两分子从很远处移到不能再靠近的距离过程中,分子势能先减小后增大。
④理想气体:理想化模型(与质点和点电荷一样),理想气体忽略分子间的作用力和分子势能,理想气体的内能只取决于温度。
高三物理上册第七章物体是由大量分子组成的知识点
高三物理上册第七章物体是由大量分子组成的知识点高三物理上册第七章物体是由大量分子组成的知识点1、分子的大小自然界中所有物质都是由大量的分子组成的。
此处所提出的“分子”是个广义概念,指组成物质的原子、离子或分子。
(1)分子模型首先,可以把单个分子看做一个立方体,也可以看做是一个小球。
通常情况下把分子看做小球,是对分子的简化模型。
实际上,分子有着复杂的内部结构,并不真的都是小球。
其次,不同的物质形态其分子的排布也有区别,任何物质的分子间都有空隙。
对固体和液体而言,分子间空隙比较小,我们通常认为分子是一个挨着一个排列的,而忽略其空隙的大小。
(2)用油膜法估测分子的大小估测分子的大小通常采用油膜法。
具体把一滴油膜滴到水面上,油酸在水面上散开形成单分子油膜,如果把分子看成球形,单分子油膜的厚度就可认为等于油膜分子的直径。
最后根据1滴油酸的体积v和油膜面积s就可以算出油膜的厚度(),即油酸分子的'尺寸。
其线度的数量级为。
用油膜法测定分子的直径时,实际是一种理想化处理过程,我们做了如下理想化处理:①把滴在水面上的油酸层当作单分子油膜层.②把分子看成球形.我们可以用不同的方法估测分子的大小。
用不同的方法测出的分子大小并不完全相同,但是数量级是一致的。
除了一些高分子有机物之外,一般分子直径的数量级约为。
2、阿伏加德罗常数(1)阿伏加德罗常数.即1 mol的任何物质都含有相同的粒子数,这个数就叫阿伏加德罗常数.(2)阿伏加德罗常数的取值:(3)阿伏加德罗常数的意义:阿伏加德罗常数用表示,它是微观世界的—个重要常数,是联系微观物理量和宏观物理量的桥梁,它的意义:①已知固体和液体(气体不适用)的摩尔体积vmol和一个分子的体积v,则;反之亦可估算分子的大小。
②已知物质(所有物质,无论液体、固体还是气体均适用)的摩尔质量m和一个分子的质量m,求;反之亦可估算分子的质量。
③已知固体和液体(气体不适用)的体积v和摩尔体积vmol,则物质的分子数.其中ρ是物质的密度,m是物质的质量。
人教版高中物理选修3-3知识点汇总_一册全_
人教版高中物理选修3—3知识点总结第七章 分子动理论第一节 物体是由大量分子组成的一、实验:用油膜法估测分子的大小 二、分子的大小 阿伏加德罗常数1.分子的大小:除了一些有机物质的大分子外,多数分子大小的数量级为10-10m 。
2.阿伏加德罗常数:N A =6.02×1023_mol -1。
3.两种分子模型 分子 模型意义分子大小或分子间的平 均距离图例球形 模型固体和液体可看成是由一个个紧挨着的球形分子排列而成的,忽略分子间的空隙d =36V 0π(分子大小)立方体 模型 (气体)气体分子间的空隙很大,把气体分成若干个小立方体,气体分子位于每个小立方体的中心,每个小立方体是每个分子占有的活动空间,这时忽略气体分子的大小d =3V 0 (分子间平 均距离)设物质的摩尔质量为M 、摩尔体积为V 、密度为ρ、每个分子的质量为m 0、每个分子的体积为V 0,有以下关系式:(1)一个分子的质量:m 0=MN A=ρV 0。
(2)一个分子的体积:V 0=V N A =MρN A (只适用于固体和液体;对于气体,V 0表示每个气体分子平均占有的空间体积)。
(3)一摩尔物质的体积:V =Mρ。
(4)单位质量中所含分子数:n =N A M 。
(5)单位体积中所含分子数:n ′=N AV 。
(6)气体分子间的平均距离:d = 3VN A 。
(7)固体、液体分子的球形模型分子直径:d =36V πN A ;气体分子的立方体模型分子间距:d = 3VN A。
第二节 分子的热运动一、扩散现象1.定义:不同物质能够彼此进入对方的现象。
2.产生原因:物质分子的无规则运动。
3.意义:反映分子在做永不停息的无规则运动。
二、布朗运动1.概念:悬浮微粒在液体(或气体)中的无规则运动。
2.产生原因:大量液体(或气体)分子对悬浮微粒撞击作用的不平衡性。
3.影响因素:微粒越小、温度越高,布朗运动越激烈。
4.意义:间接反映了液体(或气体)分子运动的无规则性。
人教版高中物理3-3知识点复习总结归纳
精心整理精心整理高中物理3-3一、分子动理论1、物体是由大量分子组成的微观量:分子体积V 0、分子直径d 、分子质量m 0宏观量:物质体积V 、摩尔体积m ol V 、物体质量m 、摩尔质量mol M 、物质密度ρ。
联系桥梁:阿伏加德罗常数(N A(1)分子质量:mol 0NM N m m A ==(2)分子体积:A mol 0N V N V V ==V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-10球体模型.mol mol 034N M N V V ρ===S ----单分子油膜的面积,V----滴到水中的纯油酸的体积d 应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列);气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。
(4)分子的个数:A A A N V N M N V N M m nN N molA mol mol A mol mv v ρρ===== 2、分子永不停息地做无规则运动(1)扩散现象:不同物质彼此进入对方的现象。
温度越高,扩散越快。
直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。
精心整理(2)布朗运动:悬浮在液体中的固体微粒的无规则运动。
发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间.接.说明了液体分子在永不停息地做无规则运动. ① 布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液体分子的运动.③课本中所示的布朗运动路线,不是固体微粒运动的轨迹.④微粒越小,布朗运动越明显;温度越高,布朗运动越明显.3、分子间存在相互作用的引力和斥力①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力②分子力的表现及变化,对于曲线注意两个距离,即平衡距离r 0(约10-10m )与10r 0。
高中物理3-3复习知识点(详细)
3-3复习一、分子动理论1、物体是由大量分子组成的微观量:分子体积V 0、分子直径d 、分子质量m 0宏观量:物质体积V 、摩尔体积V A 、物体质量m 、摩尔质量M 、物质密度ρ。
联系桥梁:阿伏加德罗常数(N A =6.02×1023mol -1) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:AA 0N M N V N V V A ρ=== (对气体,V 0应为气体分子占据的空间大小)(3)分子大小:(数量级10-10m)○1球体模型.30)2(34d N M N V V A A A πρ=== 直径306πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d =S —单分子油膜的面积,V —滴到水中的纯油酸的体积 ○2立方体模型.30=V d (气体一般用此模型;对气体,d 应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列);气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。
(4)分子的数量:A A N MV N M m nN N A ρ=== 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动(1)扩散现象:不同物质彼此进入对方的现象。
温度越高,扩散越快。
直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。
(2)布朗运动:悬浮在液体中的固体微粒的无规则运动。
发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接..说明了液体分子在永不停息地做无规则运动.① 布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动.②布朗运动反映液体分子的无规则运动但不是液体分子的运动.③课本中所示的布朗运动路线,不是固体微粒运动的轨迹.④微粒越小,布朗运动越明显;温度越高,布朗运动越明显.3、分子间存在相互作用的引力和斥力①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力③分子力的表现及变化,对于曲线注意两个距离,即平衡距离r 0(约10-10m )与10r 0。
《物体是由大量分子组成的》 知识清单
《物体是由大量分子组成的》知识清单一、分子的概念分子是保持物质化学性质的最小微粒。
这意味着当物质被分解到分子层面时,其化学性质仍然得以保持。
但如果继续分割分子,物质的化学性质就会发生改变。
例如,水由水分子组成,水分子保持了水的化学性质。
当水分子被分解为氢原子和氧原子时,水的化学性质就不再存在。
二、物体由大量分子组成的证据1、扩散现象扩散现象是指不同物质能够彼此进入对方的现象。
例如,在一个密闭容器中,分别装有氧气和氮气,经过一段时间后,氧气和氮气会相互混合,这表明气体分子在不停地做无规则运动,从而证明了物体是由大量分子组成的。
2、布朗运动悬浮在液体或气体中的微粒所做的永不停息的无规则运动叫做布朗运动。
布朗运动不是分子的运动,但它反映了液体或气体分子的无规则运动。
通过观察布朗运动,可以间接证明物体是由大量分子组成的。
3、油膜法测分子直径将一滴油滴在水面上,油会在水面上形成一层单分子油膜。
通过测量油膜的面积和油滴的体积,可以计算出油分子的直径。
这个实验直观地展示了分子的存在以及分子的微小尺寸。
三、分子的大小分子的大小通常用分子的直径来衡量。
不同的分子直径大小不同,一般在 10^(-10) 米的数量级。
例如,水分子的直径约为 38×10^(-10) 米,氧气分子的直径约为36×10^(-10) 米。
由于分子非常小,难以直接测量,通常采用一些间接的方法来估算分子的大小。
四、阿伏伽德罗常数阿伏伽德罗常数是一个重要的物理常量,用 N_A 表示,其数值约为 602×10^23 mol^(-1)。
阿伏伽德罗常数的意义在于:1 摩尔任何物质所含的粒子数均为阿伏伽德罗常数个。
通过阿伏伽德罗常数,可以将宏观物体的质量、体积等物理量与微观分子的数量联系起来。
例如,已知某物质的摩尔质量 M 和质量 m,就可以通过公式 n =m / M 计算出物质的物质的量 n,再通过 N = n × N_A 计算出分子的总数 N。
高中物理必备知识点:物质是由大量分子组成的
第七章分子动理论7.1 物质是由大量分子组成的三维教学目标1、知识与技能(1)知道一般分子直径和质量的数量级;(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;(3)知道用单分子油膜方法估算分子的直径。
2、过程与方法:通过单分子油膜法估算测量分子大小,让学生体会到物质是由大量分子组成的。
形成正确的唯物主义价值观。
3、情感、态度与价值观教学重难点(1)使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;(2)运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。
教学教具(1)教学挂图或幻灯投影片:水面上单分子油膜的示意图;离子显微镜下看到钨原子分布的图样;(2)演示实验:演示单分子油膜:油酸酒精溶液(1:20O),滴管,直径约20cm圆形水槽,烧杯,画有方格线的透明塑料板。
教学过程:第一节物质是由大量分子组成的(一)热学内容简介(1)热现象:与温度有关的物理现象。
如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。
(2)热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。
(3)热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。
(二)新课教学1、分子的大小:分子是看不见的,怎样能知道分子的大小呢?(1)单分子油膜法是最粗略地说明分子大小的一种方法。
演示:如果油在水面上尽可能地散开,可认为在水面上形成单分子油膜,可以通过幻灯观察到,并且利用已制好的方格透明胶片盖在水面上,用于测定油膜面积。
如图1所示。
提问:已知一滴油的体积V和水面上油膜面积S,那么这种油分子的直径是多少?(如果分子直径为d,油滴体积是V,油膜面积为S,则d=V/S,根据估算得出分子直径的数量级为10-10m)(2)利用离子显微镜测定分子的直径。
看物理课本上彩色插图,钨针的尖端原子分布的图样:插图的中心部分亮点直接反映钨原子排列情况。
经过计算得出钨原子之间的距离是2×10-10m。
新教材 人教版高中物理选择性必修第三册 第一章 分子动理论 知识点考点重点难点提炼汇总
第一章分子动理论1.分子动理论的基本内容 (1)2. 实验:用油膜法估测油酸分子的大小 (6)3. 分子运动速率分布规律 (9)章末复习提高 (21)1.分子动理论的基本内容一、物体是由大量分子组成的1.分子:把组成物体的微粒统称为分子。
2.1 mol水中含有水分子的数量就达6.02×1023个。
二、分子热运动1.扩散(1)扩散:不同的物质能够彼此进入对方的现象。
(2)产生原因:由物质分子的无规则运动产生的。
(3)发生环境:物质处于固态、液态和气态时,都能发生扩散现象。
(4)意义:证明了物质分子永不停息地做无规则运动。
(5)规律:温度越高,扩散现象越明显。
2.布朗运动(1)概念:把悬浮微粒的这种无规则运动叫作布朗运动。
(2)产生的原因:大量液体(气体)分子对悬浮微粒撞击的不平衡造成的。
(3)布朗运动的特点:永不停息、无规则。
(4)影响因素:微粒越小,布朗运动越明显,温度越高,布朗运动越激烈。
(5)意义:布朗运动间接地反映了液体(气体)分子运动的无规则性。
3.热运动(1)定义:分子永不停息的无规则运动。
(2)宏观表现:扩散现象和布朗运动。
(3)特点①永不停息;②运动无规则;③温度越高,分子的热运动越激烈。
三、分子间的作用力1.分子间有空隙(1)气体分子的空隙:气体很容易被压缩,说明气体分子之间存在着很大的空隙。
(2)液体分子间的空隙:水和酒精混合后总体积会减小,说明液体分子间有空隙。
(3)固体分子间的空隙:压在一起的金片和铅片,各自的分子能扩散到对方的内部,说明固体分子间也存在着空隙。
2.分子间作用力(1)当用力拉伸物体时,物体内各部分之间要产生反抗拉伸的作用力,此时分子间的作用力表现为引力。
(2)当用力压缩物体时,物体内各部分之间会产生反抗压缩的作用力,此时分子间的作用力表现为斥力。
说明:分子间的作用力指的是分子间相互作用引力和斥力的合力。
四、分子动理论1.内容:物体是由大量分子组成的,分子在做永不停息的无规则运动,分子之间存在着相互作用力。
高中物理光、原子、热知识点汇总
高三物理部分知识点汇总一、热学知识点1.物体是由大量分子组成的(1)分子大小数量级为10-10m. 分子质量数量级为10-26 kg.2.分子永不停息地做无规则热运动(1)扩散现象:由于分子的无规则运动而产生的物质迁移现象.温度越高,扩散越快.(2)布朗运动:在显微镜下看到的悬浮在液体中的固体颗粒的永不停息地无规则运动,不是固体颗粒内分子的运动.布朗运动反映了液体内部的分子的无规则运动.颗粒越小,运动越明显;温度越高,运动越剧烈.3.分子间存在着相互作用力(1)分子间同时存在引力和斥力,实际表现的分子力是它们的合力.(2)引力和斥力都随分子间距离的增大而减小,但斥力比引力变化得快.(1)当r=r0时,F引=F斥,F=0;(2)当r<r0时,斥力大于引力,F表现为斥力;(3)当r>r0时,引力大于斥力,F表现为引力;注:分子间作用力可能随着分子间距离的增大而增大,也可能随着分子间距离的增大而减小4,内能:物体中所有分子的热运动的动能与分子势能的总和,温度是物体分子热运动的平均动能的标志,温度高,则物体的平均动能大。
分子势能是由分子间相对位置而决定的势能,它随着物体体积的变化而变化,分子势能可能随分子间距离的增大而增大,也可能随分子间距离的增大而减小。
5.物体内能的改变:做功和热传递是改变物体内能的两种方式。
从外界吸收热量不一定使内能增加,外界对物体做功也不一定使物体的内能增加。
6.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.(2)表达式:ΔU=Q+W若过程是绝热的,则Q =0,W=ΔU,外界对物体做的功等于物体内能的增加量.7,微观量:分子体积V0、分子质量m0.宏观量:摩尔体积V m、摩尔质量M、物体的密度ρ.关系:(1)分子的质量:m0=MNA(2)分子的体积:V0=MρNA.二、原子知识点1,汤姆生利用阴极射线管发现了电子,说明原子可分,并提出原子的枣糕模型。
高中物理选修知识点
选修3-3[规律要点]一、分子动理论 1.分子动理论的内容(1)物体是由大量分子组成的。
(2)分子永不停息地做无规则运动。
(3)分子间存在相互作用力。
2.物体是由大量分子组成的 (1)分子很小①直径数量级为10-10 m 。
②质量数量级为10-27~10-26 kg 。
③分子大小的实验测量:油膜法估测分子大小。
(2)阿伏加德罗常数N A =6.02×1023__mol -1。
(3)分子模型①球体模型:d 固、液体一般用此模型),如图1甲。
油膜法估测分子大小时d =VS ,S 为单分子油膜的面积,V 为滴到水中的纯油酸的体积。
图1②立方体模型:d 1乙。
对气体,d 应理解为相邻分子间的平均距离。
(4)微观量的估算①分子的质量:m =M mol N A =ρV molN A 。
②分子的体积:V 0=V mol N A =M molρN A。
对于气体,V 0表示分子占据的空间。
③物体所含的分子数:n =V V mol N A =M ρV mol N A 或n =M M mol N A =ρVM mol N A 。
3.分子永不停息地做无规则热运动 (1)扩散现象:温度越高,扩散越快。
(2)布朗运动:发生原因是固体颗粒受到液体分子无规则撞击的不平衡性造成的。
间接说明了液体或气体分子在永不停息地无规则运动。
4.分子间存在着相互作用力(1)分子间同时存在引力和斥力,实际表现的分子力是它们的合力。
引力和斥力都随分子间距离的增大而减小,随分子间距离的减小而增大,斥力比引力变化得更快。
(2)分子力和分子势能随分子间距变化的规律如下:分子力F分子势能E p变化图象随分子间距的变化情况r <r 0F 引和F 斥都随距离的增大而减小,随距离的减小而增大,F 引<F 斥,F 表现为斥力 r 增大,分子力做正功,分子势能减小;r 减小,分子力做负功,分子势能增加r >r 0F 引和F 斥都随距离的增大而减小,随距离的减小而增大,F 引>F 斥,F 表现为引力 r 增大,分子力做负功,分子势能增加;r 减小,分子力做正功,分子势能减小r =r 0 F 引=F 斥,F =0分子势能最小,但不为零 r >10r 0(10-9m) F 引和F 斥都已十分微弱,可以认为F =0分子势能为零二、温度和内能1.温度:宏观上温度是表示物体冷热程度的物理量,微观上温度是分子平均动能的标志。
高中物理《分子动理论内能》
⾼中物理《分⼦动理论内能》选修3-3《热学》第⼀单元《分⼦动理论内能》【基础知识梳理】知识点⼀、分⼦动理论⼀.物体是由⼤量分⼦组成的1、分⼦的⼤⼩(1).直径数量级:m.(2).油膜法测分⼦直径:d=,V是油滴的体积,S是⽔⾯上形成的的⾯积.(3).分⼦质量的数量级为kg.2.微观量的估算(1).微观量:分⼦体积V0、分⼦直径d、分⼦质量m0。
(2).宏观量:物体的体积V、摩尔体积V m、物体的质量m、摩尔质量M、物体的密度ρ。
(3).关系①分⼦的质量:m0=MN A=ρV mN A。
②分⼦的体积:V0=V mN A=MρN A。
③物体所含的分⼦数:N=VV m·N A=mρV m·N A或N=mM·N A=ρVM·N A。
(4).分⼦的两种模型①球体模型直径d=36Vπ。
(常⽤于固体和液体)②⽴⽅体模型边长d=3V0。
(常⽤于⽓体)对于⽓体分⼦,d=3V0的值并⾮⽓体分⼦的⼤⼩,⽽是两个相邻的⽓体分⼦之间的平均距离。
【例1】空调在制冷过程中,室内空⽓中的⽔蒸⽓接触蒸发器(铜管)液化成⽔,经排⽔管排⾛,空⽓中⽔分越来越少,⼈会感觉⼲燥。
某空调⼯作⼀段时间后,排出液化⽔的体积V=1.0×103 cm3。
已知⽔的密度ρ=1.0×103kg/m3、摩尔质量M=1.8×10-2kg/mol,阿伏加德罗常数N A =6.0×1023 mol-1。
试求:(结果均保留⼀位有效数字)(1)该液化⽔中含有⽔分⼦的总数N;(2)⼀个⽔分⼦的直径d。
⼆.分⼦的热运动1、扩散现象:由于分⼦的⽆规则运动⽽产⽣的物质迁移现象。
温度越,扩散越快。
2、布朗运动:在显微镜下看到的悬浮在液体中的的永不停息地⽆规则运动。
其特点是:①永不停息、运动。
②颗粒越⼩,运动越。
③温度越⾼,运动越。
提⽰:①运动轨迹不确定,只能⽤不同时刻的位置连线确定微粒做⽆规则运动。
高中物理:分子动理论的基本观点
高中物理:分子动理论的基本观点【知识点的认识】一、分子动理论1.物体是由大量分子组成的(1)分子的大小①分子直径:数量级是10﹣10m;②分子质量:数量级是10﹣26kg;③测量方法:油膜法。
(2)阿伏加德罗常数1mol任何物质所含有的粒子数,N A=6.02×1023mol﹣1。
2.分子永不停息地做无规则热运动一切物质的分子都在永不停息地做无规则运动。
(1)扩散现象相互接触的不同物质彼此进入对方的现象。
温度越高,扩散越快,可在固体、液体、气体中进行。
(2)布朗运动悬浮在液体(或气体)中的微粒的无规则运动,微粒越小,温度越高,布朗运动越显著。
3.分子间存在着相互作用力分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快。
【命题方向】常考题型是考查对分子动理论的理解:分子动理论较好地解释了物质的宏观热力学性质。
据此可判断下列说法中错误的是()A.显微镜下观察到墨水中的小炭粒在不停的作无规则运动,这反映了液体分子运动的无规则性B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大C.分子势能随着分子间距离的增大,可能先减小后增大D.在真空、高温条件下,可以利用分子扩散向半导体材料掺入其它元素分析:解答本题需要掌握:分子热运动特点,分子力、分子势能与分子之间距离关系;明确布朗运动特点是固体微粒的无规则运动,反应了液体分子的无规则运动。
解:A、墨水中的碳粒的运动是因为大量水分子对它的撞击作用力不平衡导致向各方向运动,并且没有规则,故A正确;B、当分子间距离为r0时,分子间作用力最小,所以当分子从大于r0处增大时,分子力先增大后减小,故B错误;C、当分子间距离等于r0时,分子间的势能最小,分子可以从距离小于r0的处增大分子之间距离,此时分子势能先减小后增大,故C正确;D、温度越高,分子无规则运动的剧烈程度越大,因此在真空、高温条件下,可以利用分子扩散向半导体材料掺入其它元素,故D正确。
高考物理系统性复习 (要点归纳+夯实基础练) 第一节 分子动理论(附解析)
第一节 分子动理论【要点归纳】一、物体是由大量分子组成的一、分子的大小:1.分子直径的数量级为10-10 m.2.分子体积的数量级一般为10-29 m 3.3.分子质量的数量级一般为10-26 kg. 二、阿伏加德罗常数:1.定义:1 mol 的任何物质都含有相同的粒子数,这个数量可以用阿伏加德罗常数来表示.2.数值:阿伏加德罗常数常取N A =6.02×1023mol -1,粗略计算中可取N A =6.0×1023mol -1.3.意义:阿伏加德罗常数是一个重要常数.它把摩尔质量、摩尔体积这些宏观物理量与分子质量、分子的大小等微观物理量联系起来了,即阿伏加德罗常数N A 是联系宏观世界与微观世界的桥梁.4.宏、微观物理量与阿伏加德罗常数间的关系(1)已知固体和液体(气体不适用)的摩尔体积V mol 和一个分子的体积v ,则N A =V mol v;反之亦可估算分子的大小. (2)已知物质(所有物质,无论液体、固体还是气体均适用)的摩尔质量M 和一个分子的质量m ,则N A =M m;反之亦可估算分子的质量. (3)已知物体(无论固体、液体还是气体均适用)的体积V 和摩尔体积V mol ,则物体含有的分子数n =V V mol N A =M ρV mol N A.其中ρ是物质的密度,M 是物质的质量. (4)已知物体(无论液体、固体还是气体均适用)的质量和摩尔质量,则物体含有的分子数n =M mN A . (5)分子体积v =V m N A =M m ρN A .如果把分子简化成球体,可进一步求出分子的直径d =36v π=36MmρN Aπ三、估算气体分子间的距离气体分子间的间隙不能忽略,设想气体分子平均分布,且每个气体分子平均占有的空间设想成一个小立方体,气体分子间的距离就等于小立方体的边长,如图所示.每个空气分子平均占有的空间体积v′=v mN A=M mρN A,分子间的距离a=3v′.二、分子热运动一、扩散现象:1.定义:不同的物质互相接触,过一段时间后物质分子会彼此进入对方,这一现象称为扩散,扩散是一种常见的物理现象.如在房间的一角撒上香水,整个房间都能闻到香味;金块和铅块压紧在一起,放置足够长的时间,会发现铅中有金,金中有铅等,都是扩散.2.产生原因:是由物质分子的无规则运动产生的.3.特点:(1)在气体、液体、固体中均能发生,而气体的扩散现象最明显.(2)扩散快慢与温度有关,温度越高,扩散越快,表明温度越高,分子运动越剧烈.(3)从浓度大处向浓度小处扩散,且受“已进入对方”的分子浓度的限制,当进入对方的分子浓度较低时,扩散现象较为显著.二、布朗运动1.定义:布朗运动是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的.2.布朗运动的三个主要特点:微粒在永不停息地做无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显.3.产生布朗运动的原因:由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性所造成.4.影响布朗运动的因素:微粒的大小和液体(或气体)温度的高低.(1)微粒越小,布朗运动越明显.(2)温度越高,布朗运动越激烈.5.布朗运动与分子热运动的关系(1)布朗运动是无规则的――→反映分子运动是无规则的;(2)布朗运动是永不停息的――→反映分子运动是永不停息的;(3)温度越高,布朗运动越激烈――→反映温度越高,分子的运动越激烈.三、分子间的作用力 1.分子间有空隙(1)气体分子的空隙:气体很容易被压缩,表明气体分子间有很大的空隙.(2)液体分子间的空隙:水和酒精混合后总体积会变小,说明液体分子间有间隙.(3)固体分子间的空隙:压在一起的金片和铅片,各自的分子能彼此进入到对方的内部说明固体分子间也存在着空隙.2.分子间的作用力(1)分子间同时存在着相互作用的引力和斥力.分子间实际表现出的作用力是引力和斥力的合力.(2)分子间作用力与分子间距离变化的关系(如图所示):分子间的引力和斥力都随分子间距离r 的增大而减小,随分子间距离的减小而增大.但斥力比引力变化得快.(3)平衡位置:我们把分子间距离r =r 0时,引力与斥力大小相等,分子力为零.分子间距离等于r 0(数量级为10-10m)的位置叫做平衡位置.(4)分子间的引力和斥力随分子间距离r 的变化关系分子间的引力和斥力都随分子间距离r 的增大而减小,但斥力减小得更快.F 随r 变化的关系如图:当r <r 0时,合力随距离的增大而减小;当r >r 0时,合力随距离的增大先增大后减小. ①当r =r 0时,F 引=F 斥,F =0.②当r<r 0时,F 引和F 斥都随分子间距离的减小而增大,但F 斥增大得更快,分子力表现为斥力.③当r>r0时,F引和F斥都随分子间距离的增大而减小,但F斥减小得更快,分子力表现为引力.④当r≥10r0(10-9m)时,F引和F斥都十分微弱,可认为分子间无相互作用力(F=0).四、分子动理论1.分子动理论内容:物体是由大量分子组成的,分子在永不停息地做无规则运动,分子之间存在着引力和斥力.2.根据分子力说明物体三态不同的宏观特征分子间的距离不同,分子间的作用力表现也就不一样.(1)固体分子间的距离小,分子之间的作用力表现明显,分子只能在平衡位置附近做范围很小的无规则振动.因此,固体不但具有一定的体积,还具有一定的形状.(2)液体分子间的距离也很小,分子之间的作用力也能体现得比较明显,但与固体分子相比,液体分子可以在平衡位置附近做范围较大的无规则振动,而且液体分子的平衡位置不是固定的,在不断地移动,因而液体虽然具有一定的体积,却没有固定的形状.(3)气体分子间距离较大,彼此间的作用力极为微小,可认为分子除了与其他分子或器壁碰撞时有相互作用外,分子力可以忽略.因而气体分子总是做匀速直线运动,直到碰撞时才改变方向.所以气体没有一定的体积,也没有一定的形状,总是充满整个容器.五、气体分子运动的特点气体分子运动的“三性”1.自由性:由于气体分子间的距离比较大,大约是分子直径的10倍左右,分子间的作用力很弱,因此除了相互碰撞或者跟器壁碰撞外,不受力而做匀速直线运动,因而气体能充满它所达到的整个空间.2.无序性:由于分子之间频繁地碰撞,每个分子的速度大小和方向频繁改变,分子的运动杂乱无章,在某一时刻向着任何一个方向运动的分子都有,而且向着各个方向运动的气体分子数目都相等.3.规律性:气体分子速率分布呈现出“中间多,两头少”的分布规律.当温度升高时,速率大的分子数增多,速率小的分子数减少,分子的平均速率增大.反之,分子的平均速率减小.如图所示。
高中物理 知识点考点解析含答案 知识讲解 物体是由大量分子组成的
物体是由大量分子组成的【学习目标】1.知道物质是由大量分子组成的。
2.知道油膜法测分子大小的原理,并能进行测量和计算。
通过油膜法实验知道科学研究中的一种方法:利用宏观量求微观量。
3.知道分子的球形模型,知道分子直径的数量级。
初步认识到微观世界是可以认知的,人类探究微观世界经历了漫长的过程,而且意识到这种探究还将持续下去。
4.知道阿伏伽德罗常数的物理意义、数值和单位。
会用这个常数进行有关的计算和估算;理解用油膜法测分子直径的原理和方法. 【要点梳理】 要点一、分子 1.分子分子是具有各种物质的化学性质的最小粒子.实际上,构成物质的单元是多种多样的,或是原子(如金属)或是离子(如盐类)或是分子(如有机物).在热学中,由于这些微粒做热运动时遵从相同的规律,所以统称分子. 2.分子大小(1)分子的大小可以从以下几个方面来认识○1从分子几何尺寸的大小来感受,一般地,分子直径数量级为1010m -.○2从分子的体积的数量级来感受:29310m -.○3从一个分子的质量的多少来体会“大量”的含意:一般分子质量的数量级为2610kg -.○4分子如此微小,用肉眼根本无法直接看到它们,就是用高倍的光学显微镜也看不到.直到1982年人们研制了能放大几亿倍的扫描隧道显微镜,才观察到物质表面原子的排列.(2)分子模型实际分子的结构是很复杂的,可以把单个分子看做一个立方体,也可以看做是一个小球,通常情况下把分子当作一个球形处理.球的体积343V R π=/,R 为球半径. ○1球形模型:固体和液体可看做一个紧挨着一个的球形分子排列而成的,忽略分子间空隙,如图甲所示.○2立方体模型:气体分子间的空隙很大,把气体分成若干个小立方体,气体分子位于每个小立方体的中心,每个小立方体是平均每个分子占有的活动空间,忽略气体分子的大小,如图乙所示.(3)分子大小的估算○1对于固体和液体,分子间距离比较小,可以认为分子是一个个紧挨着的,设分子体积为V,则分子直径d =,或d =.○2对于气体,分子间距离比较大,处理方法是建立立方体模型,从而可计算出两气体分子之间的平均间距d =要点诠释:不论把分子看做球形,还是看做立方体,都只是一种简化的模型,是一种近似处理的方法.由于建立的模型不同,得出的结果稍有不同,但数量级都是1010m -.一般在估算固体或液体分子直径或分子间距离时采用球形模型,在估算气体分子间的距离时采用立方体模型.3.油膜法测分子大小 详见试验。
人教版物理选必三知识点总结
人教版物理选必三知识点总结一、分子动理论。
1. 物体是由大量分子组成的。
- 分子的大小:油膜法测分子直径d = (V)/(S),一般分子直径的数量级为10^-10m。
- 阿伏伽德罗常数N_A = 6.02×10^23mol^-1,1mol任何物质含有的微粒数相同。
可以通过m = nM=(N)/(N_A)M(m为质量,n为物质的量,M为摩尔质量,N为分子数)来联系宏观量与微观量。
2. 分子的热运动。
- 扩散现象:不同物质能够彼此进入对方的现象,温度越高,扩散越快。
- 布朗运动:悬浮微粒的无规则运动,反映了液体分子的无规则运动。
微粒越小,温度越高,布朗运动越明显。
3. 分子间的作用力。
- 分子间同时存在引力和斥力,当r = r_0(r_0的数量级为10^-10m)时,F_引=F_斥,分子力F = 0;当r< r_0时,F_斥> F_引,分子力表现为斥力;当r> r_0时,F_引> F_斥,分子力表现为引力;当r>10r_0时,分子力可以忽略不计。
4. 温度和内能。
- 温度:宏观上表示物体的冷热程度,微观上反映分子热运动的剧烈程度,是分子平均动能的标志,T = t+273.15K(t为摄氏温度)。
- 内能:物体内所有分子的动能和分子势能的总和。
分子动能与温度有关,分子势能与分子间距离有关。
理想气体的内能只与温度有关。
二、气体、固体和液体。
1. 气体实验定律。
- 玻意耳定律:一定质量的某种理想气体,在温度不变的情况下,pV = C(C 为常量),即压强与体积成反比。
- 查理定律:一定质量的某种理想气体,在体积不变的情况下,(p)/(T)=C,即压强与热力学温度成正比。
- 盖 - 吕萨克定律:一定质量的某种理想气体,在压强不变的情况下,(V)/(T)=C,即体积与热力学温度成正比。
2. 理想气体状态方程。
- (pV)/(T)=C或(p_1V_1)/(T_1)=(p_2V_2)/(T_2),适用于一定质量的理想气体。
《物体是由大量分子组成的》 知识清单
《物体是由大量分子组成的》知识清单一、分子的概念分子是能够独立存在并保持物质化学性质的最小微粒。
比如,氧气由氧分子组成,水由水分子组成。
不同的物质由不同的分子构成。
二、物体由大量分子组成的证据1、扩散现象当我们打开一瓶香水,很快就能在整个房间闻到香味。
这是因为香水分子在空气中不断地运动,从浓度高的地方向浓度低的地方扩散。
还有,把墨水滴入清水中,过一段时间,整杯水都会变黑,这也是墨水分子扩散的结果。
扩散现象表明分子在不停地做无规则运动,同时也证明了物体是由大量分子组成的。
2、布朗运动在显微镜下观察悬浮在液体中的花粉颗粒,会发现花粉颗粒不停地做无规则运动。
这种运动不是由外界因素引起的,而是液体分子不断撞击花粉颗粒造成的。
布朗运动进一步说明了分子的无规则运动,间接证明了物体是由大量分子组成的。
三、分子的大小分子的直径非常小,通常以纳米(nm)为单位来度量。
例如,水分子的直径约为 03 纳米。
通过油膜法可以粗略地测量分子的大小。
将油滴到水面上,让油尽可能地散开,形成单分子油膜。
通过测量油膜的面积和所用油的体积,就可以计算出油分子的直径。
四、分子的数量1、物质的量为了方便描述分子的数量,引入了“物质的量”这个物理量,单位是摩尔(mol)。
1 摩尔任何物质所含的粒子数均为阿伏伽德罗常数个,约为602×10²³个。
2、计算分子的数量如果已知物质的质量 m、摩尔质量 M 和阿伏伽德罗常数Nₐ,那么该物质所含的分子数 N 可以通过公式 N =(m /M) × Nₐ 计算得出。
五、分子间的相互作用1、分子间引力当两个分子之间的距离较小时,分子间表现出引力。
比如,把两块表面光滑的铅块压紧,它们会“粘”在一起,这就是分子间引力的作用。
2、分子间斥力当分子间距离非常小时,分子间表现出斥力。
比如,用力压缩固体和液体很难压缩,就是因为分子间斥力的存在。
3、分子间作用力与距离的关系分子间的引力和斥力都随分子间距离的增大而减小,但斥力减小得更快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理之物体是由大量分子组成知识点
习题演练
1、物体由大量分子组成,下列说法正确的是()
A.分子热运动越剧烈,物体内每个分子的动能越大
B.分子间引力总是随着分子间的距离减小而减小
C.物体的内能跟物体的温度和体积有关
D.只有外界对物体做功才能增加物体的内能
2、(1)物质是由大量分子组成的,分子直径的数量级一般是m.能说明分子都在永不停息地做无规则运动的实验事实有(举一例即可)。
在两分子间的距离由r(此时分子间的引力和斥力相互平衡,分子作用力为零)逐渐增大的过程中,分子力的变化情况是(填“逐渐增大”、“逐渐减小”、“先增大后减小”、“先减小后增大”)
(2)一定质量的理想气体,在保持温度不变的情况下,如果增大气体体积,气体压强将如何变化?请你从分子动理论的观点加以解释.如果在此过程中气体对外界做了900J的功,则此过程中气体是放出热量还是吸收热量?放出或吸收多
少热量?(简要说明理由)
习题解析
1. C
分子热运动越剧烈,物体分子的平均动能越大,分子间引力总是随着分子间的距离减小而增大,物体的内能跟物体的温度和体积有关,做功和热传递都能改变物体的内能。
A、分子热运动越剧烈,物体分子的平均动能越大,A错误。
B、分子间引力总是随着分子间的距离减小而增大,B错误。
C、物体的内能跟物体的温度和体积有关,C正确。
D、做功和热传递都能改变物体的内能,D错误。
2. 本题考查分子动理论:物质是由大量分子组成的,分子在永不停息地做无规则运动,分子间存在着相互作用的引力和斥力;分子直径的数量级为是10-10m;当分子间距大于平衡位置时,分子力将先增大后减小.一定质量的理想气体,在保持温度不变的情况下,如果增大气体体积,气体压强减小,根据热力学第一定律,当气体对外做功时,气体一定吸收热量,吸收的热量等于气体外做的功。
(1)分子直径数量级一般是10-10m,布朗运动说明分子都在永不停息地做无规则运动,当分子间距大于平衡位置时,若间距增大,则分子引力与斥力都在减小,但斥力减小得快,所以体现为引力,则引力越来越大,随着间距增大一定值时,引力与斥力都变小,所以分子力也变小,故分子力先增大后
减小。
(2)一定质量的理想气体,在保持温度不变的情况下,如果增大气体体积,气体压强减小;一定质量的气体,温度不变时,分子的平均动能一定,气体体积增大,分子的密集程度减小,所以气体压强减小.一定质量的理想气体,温度不变时,内能不变,根据热力学第一定律,当气体对外做功时,气体一定吸收热量,吸收的热量等于气体外做的功量即900J。
故答案为:10-10m,布朗运动,先增大后减小
气体压强减小,吸热900J。