高分子物理实验总结(加强版)
高分子物理实验报告
高分子物理实验报告高分子物理实验报告引言:高分子物理是研究高分子材料的结构、性质和行为的学科。
本实验旨在通过实验方法,对高分子材料的一些基本性质进行探究,以加深对高分子物理的理解。
实验一:高分子材料的熔融流动性材料:聚乙烯(PE)、聚丙烯(PP)方法:将PE和PP分别切成小块,放入两个不同的容器中,通过加热使其熔化,观察其流动性。
结果:PE在加热后迅速熔化,并呈现出较大的流动性,而PP则需要较高的温度才能熔化,且流动性较小。
结论:高分子材料的熔融流动性与其分子结构有关,分子链间的相互作用力越强,熔融温度越高,流动性越小。
实验二:高分子材料的拉伸性能材料:聚酯(PET)、聚氯乙烯(PVC)方法:将PET和PVC分别切成薄片状,用拉力试验机进行拉伸测试,记录其拉伸强度和断裂伸长率。
结果:PET具有较高的拉伸强度和断裂伸长率,而PVC的拉伸强度较低,断裂伸长率也较小。
结论:高分子材料的拉伸性能与其分子链的排列方式、分子量以及交联程度等因素有关,分子链越有序,交联程度越高,拉伸强度越大,断裂伸长率越小。
实验三:高分子材料的热稳定性材料:聚苯乙烯(PS)、聚碳酸酯(PC)方法:将PS和PC分别切成小块,放入热风箱中进行热稳定性测试,记录其质量损失。
结果:PS在高温下易分解,质量损失较大,而PC在相同条件下质量损失较小。
结论:高分子材料的热稳定性与其分子链的稳定性有关,分子链越稳定,热稳定性越好,质量损失越小。
实验四:高分子材料的玻璃化转变温度材料:聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)方法:将PMMA和PVA分别切成小块,通过差示扫描量热法(DSC)测试其玻璃化转变温度。
结果:PMMA的玻璃化转变温度较高,而PVA的玻璃化转变温度较低。
结论:高分子材料的玻璃化转变温度与其分子链的自由度有关,分子链越自由,玻璃化转变温度越低。
结论:通过以上实验,我们可以看到不同高分子材料在熔融流动性、拉伸性能、热稳定性和玻璃化转变温度等方面表现出不同的特性。
高分子化学与物理实验指导书总结
高分子化学与物理实验指导书总结高分子化学与物理实验指导书1. 实验课时间安排高分子化学实验是在学生主修《高分子化学与物理》课程基础上开设的。
其中学时安排如下:2. 预习情况检查方式要求学生在实验前必须做好实验预习,否则不予参加实验。
实验预习主要包括以下两个方面的内容:1、检查实验预习报告(预习报告要求包括实验目的、实验原理、实验所需仪器及药品、实验步骤等)2、老师在实验前要检查学生的实验预习情况,可采取口头提问的方式了解学是对实验的预习情况。
3. 相关知识的讲解针对高分子化学开设的不同实验,指导教师要做好相关的讲解工作。
主要包括:实验一甲基丙烯酸甲酯的本体聚合实验二酚醛树脂的缩聚实验三PP球晶观察实验四PS粘均分子量测定实验一甲基丙烯酸甲酯的本体聚合一、实验目的1. 掌握自由基本体聚合的原理及合成方法;2. 了解有机玻璃的生产工艺。
二、实验原理聚甲基丙烯酸甲酯(PMMA),俗称有机玻璃。
有机玻璃广泛用在工业、农业、军事、生活等的各个领域,如飞机、汽车的透明窗玻璃、罩盖等。
在建筑、电气、医疗卫生、机电等行业也广泛使用,如制造光学仪器、电器、医疗器械、透明模型、装饰品、广告铭牌等。
每年全世界要消耗数以百万吨的有机玻璃及其制品。
工业上制备有机玻璃主要采用本体、悬浮聚合法,其次是溶液和乳液法。
而有机玻璃的板、棒、管材制品通常都用本体浇铸聚合的方法来制备。
如果直接做甲基丙烯酸甲酯的本体聚合,则由于发热而产生气体只能得到有气泡的聚合物。
如果选用其它聚合方法(如悬浮聚合等)由于杂质的引入,产品的透明度都远不及本体聚合方法。
因此,工业上或实验室目前多采用浇注方法。
即:将本体聚合迅速进行到某种程度(转化率 10% 左右)做成单体中溶有聚合物的粘稠溶液(预聚物)后,再将其注入模具中,在低温下缓慢聚合使转化率达到93 ~95% 左右,最后在100 ℃下聚合至反应完全。
其反应方程式如下:本实验采用本体聚合法制备有机玻璃。
高分子物理实验报告-稀溶液黏度法测定聚合物的分子量
高分子物理实验报告学院:化学化工学院班级:应化152姓名:***学号:***********日期:2018.5.17实验一稀溶液黏度法测定聚合物的分子量一、实验目的1.了解聚合物分子量的统计平均的意义和黏度法表征,聚合物分子量的基本原理。
2.学会使用乌氏黏度计。
3.掌握测定聚合物稀溶液黏度的实验技术。
二、实验原理采用稀溶液黏度法测定聚合物的分子量、所用仪器设备简单,操作便利,适用的分子量范围大,又有相当好的实验精确度,因此黏度法是一种广泛应用的测定聚合物分子量的方法。
但它是一种相对方法。
为特性黏数与分子量经验关系式中的常数要用其它测定分子量的绝对方法予以制定、并且在不同的分子量范围内,通常要用不同常数的经验式。
液体的流动是因受外力作用分子进行不可逆位移的过程、液体分子间存在着分子间作用力,因此当液体流动时,分子间就产生反抗其相对位移的摩擦力(内摩擦力)、液体的黏度就是液体分子间这种内摩擦力的表现。
黏度表示法相对黏度:表示溶液黏度相当于纯溶剂黏度的倍数。
η为高分子溶液的黏度ηo 为纯溶剂的黏度增比黏度:表示溶液黏度比纯溶剂黏度增加的分数。
特性黏数(度):高分子溶液浓度c 趋近于0时,单位浓度增加对溶液增比黏度或相对黏度对数的贡献。
用黏度法测定聚合物的分子量时要消除浓度对黏度的影响。
常以两个经验式表达黏度对浓度的依赖关系:Huggins 方程式:ηsp/c=[η]+k[η]2c 稀释法(或外推法) Kraemer 方程式: ln ηr=[η]-β[η]2c 减少洗涤黏度计的次数当溶液体系确定后,在一定温度下,高分子溶液的特性黏度只与聚合物分子量大小有关,所以有时也用[η]来表示分子量的大小 。
Mark -Houwink 经验式表示: [η]=KM ηα聚乙烯醇水溶液,30℃时K=1.25 ×10-2, α=0.78。
[]gmL g dl ccrc spc //ln limlim00或,单位为ηηη→→==⇒测定次序浓度由大到小or ηηη=重点求ηr ?测定黏度的方法主要有:⑴毛细管法(测定液体在毛细管里的流出时间);⑵落球法(测定圆球在液体里下落速度);⑶旋筒法(测定液体与同心轴圆柱体相对转动的情况)测定高聚物溶液的黏度以毛细管法最方便,本实验采用乌氏黏度计测量高聚物稀溶液的黏度。
高分子物理实验报告
高分子物理实验报告高分子物理实验报告000一、实验名称:高聚物溶度参数的测定二、实验目的1、了解溶度参数的定义2、掌握浊度滴定法测量高聚物溶度参数三、实验原理聚合物由于分子间的相互作用能很大,气化较为困难,因此聚合物点溶度参数不能直接从气化能测得,而是用间接方法测定。
本实验运用浊度滴定法计算聚合物的溶解度参数。
在二元互溶体系中,通过调节两个互溶混合溶剂的溶度参数δsm值,使其和某聚合物定溶度参数δp很接近。
因此该混合溶剂的溶度参数δsm可近似地表示为:δsm=Φ1δ1+Φ2δ2 (1)式中:Φ1Φ2分别表示溶液中组分1和组分2的体积分数。
浊度滴定法是将待测聚合物溶于某一溶剂中,然后用沉淀剂(能与该溶剂混溶)来滴定,直至溶液开始出现混浊为止,这样便得到在混浊点混合溶剂的溶度参数δsm值。
聚合物溶于二元互溶溶剂的体系中,允许体系的溶度参数有一个范围。
溶解该聚合物混合溶剂参数的上限和下限之和取平均值即为聚合物的δp值。
(2)δmh和δml分别为高、低溶度参数的沉淀剂滴定聚合物溶液,在混浊点时混合溶剂的溶度参数。
四、实验仪器与药品10毫升自动滴定管两个(也可用普通滴定管代用),具塞三角烧瓶(25×200毫米)4个,5毫升和10毫升移液管各一支,5毫升容量瓶一个,50毫升烧杯一个粉末聚氯乙烯样品,四氢呋喃,石油醚、甲醇。
五、实验步骤(1)根据选定的溶剂配制聚合物溶液称取0.2克左右的聚合物样品(本实验采用聚氯乙烯)溶于25毫升的溶剂中(用四氢呋喃作溶剂)。
用移液管吸取5毫升(或10毫升)溶液,置于一具塞三角烧瓶中,先用石油醚滴定聚合物溶液,出现沉淀。
振荡烧瓶,使沉淀溶解。
继续滴入石油醚,沉淀逐渐难以振荡溶解。
滴定至出现的沉淀刚好无法溶解为止,记下用去的石油醚体积。
再吸取5毫升(或10毫升)溶液,置于一具塞三角烧瓶中,用甲醇滴定,操作同石油醚,记下所用甲醇体积。
(2)分别称取0.1克,0.05克左右的上述聚合物样品,溶于25毫升的溶剂中,同上操作进行滴定。
高分子物理总结.doc
高分子物理总结高分子物理期中总结材料的物理性能是其分子运动的宏观表现,分子运动与其结构有着密切的关系。
高分子物理主要研究内容是分子的结构分子的运动材料性能之间的关系,与小分子相比,高分子结构更为复杂,并有着自身的特点。
(1高分子是由若干结构单元组成的,在一个高分子链中结构单元可以是一种也可以是多种,它们以共价键连接,并呈现出不同的形状。
(2)高分子链结构存在不均一性,在同一反应中生成的高分子,其相对分子质量,分子结构,分子空间构型,支化度、交联度也不相同。
(3)高分子在凝聚态结构上存在多样性,同一高聚物在不同的条件下呈现出的晶态、非晶态、取向态、也可能同时存在一种高聚物中。
下面详细阐述(一)高分子链的近程结构l 化学结构(化学组成、间接方式与排列)l 立体结构(空间排列方式)(a 化学组成(组成决定性质) 1 碳链高分子大分子主链全部由碳原子构成,碳原子间以共价键连接。
(2杂链高分子分子主链除碳原子以外,还有氧、氮、硫等其它原子,原子间均以共价键相连接。
3元素有机高分子主链由Si、B、P、Al、Ti、As、O等元素组成,不含C原子,侧基为有机取代基团。
4无机高分子主链和侧基都不含碳原子的高分子(5)梯型高分子和双螺旋高分子大分子主链不是一条单链,而具有“梯子”或“双螺线”结构(b结构单元的键接方式基本结构单元在高分子链中连接的序列结构。
(1)线性均聚物有规键接方式头头,头尾,尾尾。
由键接方式不同而产生的异构体称顺序异构体。
表征键接方式可用化学分析法、x-射线衍射法;核磁共振法测量。
键接方式对大分子物理性质有明显影响,最显著的影响是不同键接方式使分子链具有不同的结构规整性,从而影响其结晶能力,影响材料性能。
(2)支化高分子(a 与线型高分子的化学组成性质相同,但支化对材料的物理、力学性能影响很大,一般短链支化主要对材料熔点、屈服强度、刚性、透气性以及与分子链结晶性有关的物理性能影响较大,而长链支化则对粘弹性和熔体流动性能有较大影响。
高分子物理实验总结(加强版)
高分子物理实验总结(加强版)实验一熔体流动速率的测定塑料熔体流动速率(MFR):是指在一定温度和负荷下,塑料熔体每10min通过标准口模的质量。
实验原理:一定结构的塑料熔体,若所测得MFR愈大,表示该塑料熔体的平均分子量愈低,成型时流动性愈好。
但此种仪器测得的流动性能指标是在低剪切速率下获得的,不存在广泛的应力-应变速率关系。
因而不能用来研究塑料熔体粘度与温度,粘度与剪切速率的依赖关系,仅能比较相同结构聚合物分子量或熔体粘度的相对数值。
(1)为什么要分段取样?答:分段取样取平均值能使实验结果更精确,且利于去除坏点,减小试验误差。
(2)哪些因素影响实验结果?举例说明。
答:①标准口模内径的选择不同的塑料应选择不同的口模内径,否则实验误差较大。
②实验温度物料的形态与温度有关,不同的温度下,物料的熔体流动速率不同。
③负荷不同负荷下,压力不同则影响样条质量。
实验二扫描电子显微镜观察物质表面微观结构背散射电子背散射电子是被固体样品中的原子核反弹回来的一部分入射电子,其中包括弹性背散射电子和非弹性背散射电子。
背散射电子来自样品表层几百纳米的深度范围,被散射电子系数可用л=KE m表示,式中,K,m均为与原子序数有关的常数。
因此,它的产额能随样品原予序数增大而增多.所以不仅能用作形貌分折,而且可以用来显示原子序数衬度,定性地用作成分分析。
二次电子在入射电子束作用下被轰击出来并离开样品表面的样品的核外电子叫做二次电子。
二次电子的能量较低,一般都不超过8×10-19J(50ev),大多数二次电子只带有几个电子伏能量,因此二次电子逃逸深度一般只在表层5-10nm深度范围内。
二次电子发射系数与入射电子和样品表面法线夹角а的关系可用σа=σ/cosа表示,可见样品的棱角、尖峰等处会产生较多的二次电子,因此,二次电子对样品的表面形貌十分敏感,能非常有效的显示样品的表面形貌。
二次电子的产额和原子序数之间役有明显的依赖关系。
高分子物理实验报告
竭诚为您提供优质文档/双击可除高分子物理实验报告篇一:高分子物理实验报告高分子物理实验报告实验名称:__________________________________________________ 学院:食品科学与工程专业:包装工程小组:姓名:学号:任课老师:董同力嘎指导教师:孙文秀实验完成日期:20XX.12.17-20XX.01.04一、实验项目综合训练方案二、实验结果与总结注明:(1)实验结果与总结用手写,其它用计算机打印,书写要整洁。
(2)必须进行误差分析。
篇二:高分子物理实验总结(加强版)实验一熔体流动速率的测定塑料熔体流动速率(mFR):是指在一定温度和负荷下,塑料熔体每10min通过标准口模的质量。
实验原理:一定结构的塑料熔体,若所测得mFR愈大,表示该塑料熔体的平均分子量愈低,成型时流动性愈好。
但此种仪器测得的流动性能指标是在低剪切速率下获得的,不存在广泛的应力-应变速率关系。
因而不能用来研究塑料熔体粘度与温度,粘度与剪切速率的依赖关系,仅能比较相同结构聚合物分子量或熔体粘度的相对数值。
(1)为什么要分段取样?答:分段取样取平均值能使实验结果更精确,且利于去除坏点,减小试验误差。
(2)哪些因素影响实验结果?举例说明。
答:①标准口模内径的选择不同的塑料应选择不同的口模内径,否则实验误差较大。
②实验温度物料的形态与温度有关,不同的温度下,物料的熔体流动速率不同。
③负荷不同负荷下,压力不同则影响样条质量。
实验二扫描电子显微镜观察物质表面微观结构背散射电子背散射电子是被固体样品中的原子核反弹回来的一部分入射电子,其中包括弹性背散射电子和非弹性背散射电子。
背散射电子来自样品表层几百纳米的深度范围,被散射电子系数可用л=Ke表示,式中,K,m均为与原子序数有关的常数。
因此,它的产额能随样品原予序数增大而增多.所以不仅能用作形貌分折,而且可以用来显示原子序数衬度,定性地用作成分分析。
二次电子在入射电子束作用下被轰击出来并离开样品表面的样品的核外电子叫做二次电子。
高分子物理小结
5、高分子溶液 的热力学性质
△M1—△M1E ψ1
u
F—K理论 α
6、理想溶液——高分子溶液——θ溶液
i M 1
M1E
M1
M1E 0
x1
u0
1 2
K1 1 0
Ga 0
a 1
T
7、
形态 形态 参数
良溶剂
舒伸(h2大)
θ溶剂
无扰或自然(h02)
>1x102 绝对法
>1x102
相对法
>1x102
相对法
偏重于理论研究
偏重于实际应用
2、Χ1、A2、θ的测定
A2 膜Π 光散射法 Χ1 溶胀平衡法 A2 →Χ1
V1(1 2 )2 1 RT
θ 膜Π 相分离法
3、粘度法测定M的原理、步骤和数据处理。 4、GPC测定MWD的原理,实验过程,数据处理
v~T 1/t1/2~T
利用可控的相分离的聚集态结构融 合各组分的各自的特长意义重大
• 高分子材料加工研究的一个主要课题; • 复合材料制备的重要课题; • 各相之间的相界面问题对共混聚合物材料的 宏观物理性能的影响明显; • 工业开发新材料的重要手段; • 共混材料的辐射加工技术的发展给新材料的 开发带来了新的手段和契机;
0~ M w :
M w Mc M w Mc
0
1.0~1.6 K1 M w 3.4 K2 M w
0
三、主要内容及思路
形变~流动的关系、温度范围、分子运动机理 牛顿流体→非牛顿流体
粘性流体→粘弹性流体
剪切流动→拉伸流动
1、T流的确定:Tf< T流<Td Tf 高,刚性链 低,柔性链 极性 M↑ 未增塑 非极性 M↓ 增塑 外力↑ t↑
高分子物理实验报告
光学解偏振法测聚合物的结晶速度一、实验目的1、加深对聚合物的结晶动力学特征的认识。
2、了解光学解偏振法测定结晶速度的基本原理。
3、熟悉JJY -3型结晶速度仪的操作。
4、掌握光学解偏振法测定等规聚丙烯结晶速度的实验技术。
二、实验原理熔融态结晶的聚合物大多数都呈现为球晶结构。
通过电子显微镜观察球晶长大的过程时,起始晶核先转变成一个小的微纤维,在结晶的过程中,它又以一些匀称的空间角度向外支化出微纤束,当长得足够大时,这些微纤束就构成球状结晶。
电子衍射实验证明了球晶中分子链(c 轴)总是垂直于球晶的半径方向,而b 轴总是沿着球晶半径方向,如图1所示,其中a 、b 、e 轴表示单位晶胞在各方向上的取向。
分子链的取向排列使球晶在光学性质上是各向异性的,都会发生双折射。
光学解偏振法是根据聚合物结晶过程中伴随着双折射性质变化的原理,即由置于正交偏光镜之间的聚合物熔体结晶时产生的解偏振光强度变化来确定结晶速度。
由实验测定等温结晶的解偏振光强-时间曲线(图2),从曲线可以看出,在达到样品的热平衡时间后,首先是结晶速度很慢的诱导期,在此期间没有透过光的解偏振发生,而随着结晶开始,解偏振光强的增强越来越快,并以指数函数形式增大到某一数值后又逐渐减小,直到趋近于一个平衡值。
对于聚合物而言,因链段松弛时间范围很宽,结晶终止往往需要很长时间,为了实验测量的方便,通常采用211t 作为表征聚合物结晶速度的参数,21t 为半结晶期,可从图2中直接求得,即令210=--∞∞I I I I t 时所对应的时间。
根据过冷熔体本体结晶的球状对称生长理论,阿夫拉米(Avrami )指出,聚合物结晶过程可用下面的方程式描述:21t 解偏振光强时间图2 等温结晶的解偏振光强—时间曲线nKt eC -=-1式中:C 为t 时刻的结晶度;K 为与成核及核成长有关的结晶速度常数;n 为Avrami 指数,为整数,它与成核机理和生长方式有关。
因为结晶速度与透射光的解偏振光强成正比,所以可将描述过冷聚合物熔体等温结晶过程的Avrami 方程推广到光学解偏振法中来:n Kt te I I I I =--∞∞0式中:0I 、t I 、∞I 分别为结晶开始时刻0t 、结晶进行到时刻t 和结晶终止(时刻∞t )时的解偏振光强度;公式左边的物理意义是在时刻t 时的结晶相对未结晶相的质量分数。
(完整版)高分子物理详细重点总结
名词解释:1. 时间依赖性:在一定的温度和外力作用下,高聚物分子从一种平衡态过渡到另一种平衡态需要一定的时间2. 松弛时间τ :橡皮由ΔX(t)恢复到ΔX(0)的 1/e 时所需的时间3. 松弛时间谱:松弛过程与高聚物的相对分子质量有关,而高聚物存在一定的分子量分布,因此其松弛时间不是一个定值,而呈现一定的分布。
4. 时温等效原理:升高温度或者延长观察时间(外力作用时间)对于聚合物的分子运动是等效的,对于观察同一个松弛过程也是等效的。
5. 模量:材料受力时,应力与应变的比值6. 玻璃化温度:为模量下降最大处的温度。
7. 自由体积:任何分子的转变都需要有一个自由活动的空间 ,高分子链活动的空间8. 自由体积分数(f):自由体积与总体积之比。
9. 自由体积理论:当自由体积分数为 2.5%时,它不能够再容纳链段的运动,链段运动的冻结导致玻璃化转变发生。
10. 物理老化:聚合物的某些性质随时间而变化的现象11. 化学老化:聚合物由于光、热等作用下发生的老化12. 外增塑:添加某些低分子组分使聚合物 T g 下降的现象13. 次级转变或多重转变: Tg 以下,链段运动被冻结,存在需要能量小的小尺寸运动单元的运动14. 结晶速率:物品结晶过程进行到一半所需要时间的倒数15. 结晶成核剂:能促进结晶的杂质在结晶过程中起到晶核的作用16. 熔融:物质从结晶态转变为液态的过程17. 熔限:结晶聚合物的熔融过程,呈现一个较宽的熔融温度范围18. 熔融熵S m :熔融前后分子混乱程度的变化19. 橡胶: 施加外力时发生大的形变,外力除去后可以恢复的弹性材料20. 应变: 材料受到外力作用而所处的条件使其不能产生惯性移动时 ,它的几何形状和尺寸将发生变化21. 附加应力:可以抵抗外力的力22. 泊松比:拉伸实验中材料横向应变与纵向应变比值的负数23. 热塑性弹性体:兼有橡胶和塑料两者的特性,在常温下显示高弹,高温下又能塑化成型24. 力学松弛:聚合物的各种性能表现出对时间的依赖性25. 蠕变:在一定的温度下和较小恒应力的持续作用下,材料应变随时间的增加而增大的现象26. 应力松驰:在恒定温度和形变保持不变条件下,聚合物内部应力随时间的增加而逐渐衰减的现象27. 滞后:聚合物在交变应力作用下形变落后于应力变化的现象28. 力学损耗或者内耗:单位体积橡胶经过一个拉伸 ~ 回缩循环后所消耗的功29. 储存模量 E’:同相位的应力与应变的比值30. 损耗模量 E”:相差 90 度相位的应力振幅与应变振幅的比值31. Boltzmann 叠加原理:聚合物的力学松弛行为是其整个历史上各松弛过程的线性加和32. 应变软化:随应变增大,应力不再增加反而有所下降33. 银纹屈服:聚合物受到张应力作用后,由于应力集中产生分子链局部取向和塑性变形,在材料表面或内部垂直于应力方向上形成的长 100 、宽 10 、厚为 1 微米左右的微细凹槽或裂纹的现象34. 裂纹:由于分子链断裂而在材料内部形成的空隙,不具有强度,也不能恢复。
高分子实习报告6篇(高分子实验报告总结)
高分子实习报告6篇(高分子实验报告总结)高分子实习报告1这学期我们专业开了为期10天的金工实习课程。
金工实习是机制类专业同学生疏冷热加工生产过程、培育实践动手力气、学习《机械制造技术基础》等后续课程的实践性教学环节,使同学生疏机械制造的一般过程,把握金属加工的主要工艺方法和工艺过程,生疏各种设备和工具的平安操作使用方法;了解新工艺和新技术在机械制造中的使用;把握对简洁零件冷热加工方法选择和工艺分析的力气;培育同学熟识图纸、加工符号及了解技术条件的力气。
通过实习,让同学养成宠爱劳动,遵守纪建的好习惯,培育经济观点和理论联系实际的严谨作风;并为学习《工程材料及成型工艺基础》和《机械制造技术基础》等后续课程打下良好的基础。
实习的第一天,大家的心情都很感动。
毕竟是第一次进工厂,第一次接触到各种机床。
第一堂课上,实习老师给我们讲了平安问题。
统一我们的服装,穿戴要严格依据金工实习工厂的要求,以避开因穿戴而发生不必要的人身事故。
其次是要求我们了解车床性能及把握各种操作要领,以此保证明习的平安性,也是提高我们的平安意识,树立正确的工作态度,观念;遵守劳动纪律,遵守平安技术规章。
接下来就是10天的实习了,期间,我们接触了,锻、焊、铣、刨、磨。
车等多个工种。
平均每个工种只有1天的时间,所以时间是很紧的。
我们必需在一天多一点的时间内,学会、了解一种工种。
并且能娴熟的操作车床,到能做出一件成品来。
下面,我结合实习期间遇到的一些困难、问题总结了以下几点:第一,要了解一项工种,娴熟车床的操作,光是靠啃书本是无用的,所谓实习就是要我们自己实际的去练习,去操作。
要真正的能从书本的理论学问转到实际操作,实践中来。
还有就是不能由着自己的性子来操作,确定要在师傅的指导,讲解下进行操作。
严格遵守操作规程。
不行自己耍小聪慧其次,在实习操作时,我们思想要集中,切不行开小差。
如,在开车前,和同伴要相互呼应,避开造成事故。
操作过程中也要做到细心、急躁。
高分子物理总结
第三章 高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。
除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。
高分子热运动是一个松驰过程。
在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -=式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。
因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小, τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。
②温度升高使高聚物发生体积膨胀。
升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能, 0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。
2. 高聚物的力学状态和热转变在一定的力学负荷下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复.这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t 称为玻璃态转变温度(T g ).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变.高弹态是高分子所特有的力学状态.流动温度:链段沿作用力方向的协同运动导致大分子的重心发生相对位移,聚合物呈现流动性,转变温度称为流动温度(T f ).粘流态:与小分子液体的流动相似,聚合物呈现粘性液体状,流动产生了不可逆变形.②交联高聚物的温度-形变曲线 交联度较小时,存在T g , 但T f 随交联度增加而逐渐消失.交联度较高时, T g 和T f 都不存在.③晶态聚合物的温度-形变曲线. 一般相对分子质量的晶态聚合物只有一个转变,即结晶的熔融,转变温度为熔点T m .当结晶度不高(X c <40%)时,能观察到非晶态部分的玻璃化转变,即有T g 和T m 两个转变.相对分子质量很大的晶态高聚物达到T m 后,先进入高弹态,在升温到T g 后才会进入粘流态,于是有两个转变.④增塑聚合物的温度-形变曲线 加入增塑剂一般使聚合物的T g 和T f 都降低,但对柔性链和刚性链,作用有所不同.对柔性链聚合物, T g 降低不多而T f 降低较多,高弹区缩小;对刚性链聚合物, T g 和T f 都显著降低,在增塑剂达到一定浓度时,由于增塑剂分子与高分子基团间的相互作用,使刚性链变为柔性链,此时T g 显著降低而T f 降低不大,即扩大了高弹区,称”增弹作用”,这点对生产上极为有用(如PVC 增塑后可作为弹性体用).3. 高聚物的松驰转变及其分子机理在T g 以下,链段是不能运动了,但较小的运动单元仍可运动,这些小运动单体从冻结到运动的变化过程也是松弛过程,称为次级松弛。
高分子实验小结
高分子实验小结高分子是一种由许多分子单元组成的大分子化合物,其具有非常重要的应用价值。
在高分子实验方面,涉及到许多不同的实验内容。
本文将结合自身在实验过程中的体验,按照实验类别进行概述和总结。
1. 高分子合成实验高分子的合成实验是高分子实验中的重头戏,也是最主要的实验内容。
在合成实验中,要注意反应温度、反应物比例、催化剂种类等等因素的控制。
在实验中,发现选择合适的催化剂对于反应速度和高分子的产量都有显著的影响。
同时,本实验还需要注意保持反应环境整洁、干净,以避免杂质的干扰。
2. 高分子物性测试实验在合成出高分子材料后,需要对其物性进行测试。
有些实验需要测试均匀性、韧性、强度等性质;而有些实验则需要测试其导电性或导热性等物理性质。
不同的实验需要注意注重不同的细节,对于测试结果的不确定性需要合理掌握。
同时,本实验还需要注意实验仪器的使用,以获得较为精确的测试数据。
3. 高分子加工实验高分子加工实验通常是在高分子材料合成之后进行的,目的是将高分子材料加工成实际可用的制品。
这类实验需要加工制成的制品具有一定的功能或使用价值,比如在医学领域中开发出用于人工心脏瓣膜的高分子材料等。
在实验中,需要注意控制加工的温度、时间等因素,以获得最佳的加工效果。
同时,本实验还需要注重材料的质量控制,以确保加工出来的制品有较高的品质。
综上所述,在高分子实验中,不同的实验内容都需要注重细节和专业知识的掌握,以获得较为精确的实验结果。
高分子实验还需要耐心和耐心,以及对实验所涉及到的技术知识的逐步积累。
通过努力和积累,我们相信可以取得更好的实验效果,为高分子应用领域的发展做出更大的贡献。
高分子物理实验的电子版教案2
高分子物理实验的电子版教案2第一篇:高分子物理实验的电子版教案2实验6 偏光显微镜观察聚合物的结构一、目的要求通过偏光显微镜直接观察,了解聚合物的结晶结构或无定形结构二、基本原理聚合物的性能主要决定于它的结构。
高分子聚集在一起有两种主要方式,即结晶态和无定形态。
如果高分子链在空间三个方向上形成有序排列,这种有规律的排列结构称为聚合物的结晶态结构;若高分子链成为无序排列,则称为非晶相或称为无定形结构。
利用普通光学显微镜能直接观察聚合物的外观结构,如均匀性、粒子的大小及分布等。
不含填料和杂质的多数无定形聚合物,在显微镜下都是无色清澈透明的。
但普通光学显微镜只能看到聚合物中的粒子形态,不能鉴别是晶体还是非晶体,而偏光显微镜利用晶体与非晶体对偏振光有不同的反应,可以观察到粒子是晶体还是非晶体。
三、试样与仪器1.偏光显微镜偏光显微镜的主要结构与普通光学显微镜相同,主要有目镜和物镜组成,所产生的图象是样品放大的倒像。
总的放大倍数等于目镜和物镜放大倍数的乘积。
不同的是偏光显微镜比普通光学显微镜多加了两块偏振镜。
下偏振镜位于光源与聚光镜之间,它的作用是使通过样品前的自然光变成偏振光,而上偏振镜位于目镜与物镜之间,它的物理作用与下偏振镜相同。
当光线通过上偏振镜时,如果是具有一定振动方向的偏振光,旋转上偏振镜则视场有明暗之别;如果是没有确定方向的自然光,旋转上偏振镜,光都能通过,则视场始终是明亮的,故上偏振镜又称检偏振镜。
上、下两偏振镜的偏振轴相互平行时,光线能全部通过上偏振镜,视场最亮。
上、下两偏振镜的偏振轴相互垂直时,光线完全不能通过上偏振镜,视场最暗。
因此,当固定其中一个偏振镜,把另一个偏振镜转动180º,就看到视场有明暗交替出现的现象。
上、下两偏振镜的偏振轴相互垂直,便组成所谓“正交偏光镜”,用偏光显微镜观察聚合物结晶状态时,通常是在正交偏光镜下观察。
在正交偏光镜下观察非晶态聚合物时,视场是暗的,这种现象叫消光。
高分子化学与物理总结
3.单体单元:(与单体具有相同的化学组成,只是电子结构不同的原子组合。
)4.结构单元:(构成高分子主链,并决定主链结构的最小的原子组合。
)5.重复结构单元:(主链上化学组成相同的最小原子组合,有时简称为重复单元或链节。
)1.体型缩聚:多官能单体参加反应,能形成非线性的多支链产物,支化的大分子有可能进一步交联成体型结构的产物,这种凡能形成体型结构缩聚物的缩聚反应,称为体型缩聚。
2.凝胶现象:体型缩聚反应在聚合过程中一般表现为反应体系的黏度在聚合初期逐渐增大,当反应进行一定程度后,黏度突然急剧增大,体系转变为具有弹性的凝胶状物质,这一现象称为凝胶化或凝胶现象。
3.凝胶点:出现凝胶现象时的反应程度(临界反应程度)称为凝胶点。
17. 转化率:已转化为聚合物的单体量占起始单体量的百分数18. 反应程度:参加反应的官能团数目与起始官能团数目的比值偶合终止:两个大分子自由基相互结合生成一个大分子的终止方式,称为偶合终止。
歧化终止:歧化终止两个大分子自由基相互间反应,生成两个大分子的终止方式,称为歧化终止。
链转移反应:链转移反应是指在聚合过程中,链自由基可能从单体、引发剂、溶剂或大分子上夺取一个原子(大多数为氢原子)而终止,而失去一个原子的分子则成为新的自由基,并能继续进行反应形成新的活性自由基链,使聚合反应继续进行。
引发剂效率:用于引发聚合的引发剂量占引发剂分解总量的百分率。
诱导分解:自由基(包括初级自由基、单体自由基、链自由基)向引发剂分子的链转移反应。
笼蔽效应:引发剂分解产生的初级自由基在与单体反应生成单体自由基之前,发生了副反应而失活这种效应称为笼蔽效应。
诱导效应:有机分子中引入一原子或基团后,使分子中成键电子云密度分布发生变化,从而使化学键发生极化的现象,称为诱导效应6.异构化聚合:阳离子聚合中由于碳正离子的不稳定,异构成更稳定的结构,发生所谓的异构化反应。
若异构化反应比链增长更快,则进行异构化聚合。
高分子物理总结
第三章 高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。
除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。
高分子热运动是一个松驰过程。
在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -=式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。
因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小, τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。
②温度升高使高聚物发生体积膨胀。
升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能, 0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。
2. 高聚物的力学状态和热转变在一定的力学负荷下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复.这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t称为玻璃态转变温度(T g).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变.高弹态是高分子所特有的力学状态.流动温度:链段沿作用力方向的协同运动导致大分子的重心发生相对位移,聚合物呈现流动性,转变温度称为流动温度(T f).粘流态:与小分子液体的流动相似,聚合物呈现粘性液体状,流动产生了不可逆变形.②交联高聚物的温度-形变曲线 交联度较小时,存在T g , 但T f 随交联度增加而逐渐消失.交联度较高时, T g 和T f 都不存在.③晶态聚合物的温度-形变曲线. 一般相对分子质量的晶态聚合物只有一个转变,即结晶的熔融,转变温度为熔点T m .当结晶度不高(X c <40%)时,能观察到非晶态部分的玻璃化转变,即有T g 和T m 两个转变.相对分子质量很大的晶态高聚物达到T m 后,先进入高弹态,在升温到T g 后才会进入粘流态,于是有两个转变.④增塑聚合物的温度-形变曲线 加入增塑剂一般使聚合物的T g 和T f 都降低,但对柔性链和刚性链,作用有所不同.对柔性链聚合物, T g 降低不多而T f 降低较多,高弹区缩小;对刚性链聚合物, T g 和T f 都显著降低,在增塑剂达到一定浓度时,由于增塑剂分子与高分子基团间的相互作用,使刚性链变为柔性链,此时T g 显著降低而T f 降低不大,即扩大了高弹区,称”增弹作用”,这点对生产上极为有用(如PVC 增塑后可作为弹性体用).3. 高聚物的松驰转变及其分子机理在T g 以下,链段是不能运动了,但较小的运动单元仍可运动,这些小运动单体从冻结到运动的变化过程也是松弛过程,称为次级松弛。
高分子物理总结
高分子物理第一章高分子链的结构与形态本章的重点是分子链的近程结构和远程结构,难点是分子链末端距的统计理论。
分子链的柔顺性及其表征方法等概念,初步了解末端距的统计理论。
主要内容:第一节:绪论各层次结构的关系以及各层次结构的内容。
第二节:高分子链的化学结构学习并掌握聚合物结构单元的化学组成;线性烯类均聚物的各种键接结构;多官能度单体聚合物的支化和交联结构;共聚物的序列分布结构;分子链的构型和几何异构。
第三节:高分子链的尺寸和形态学习并掌握分子链的内旋转、构象和内旋转位垒及其产生的原因;高分子链柔顺性的本质及其表征方法;影响高分子链柔顺性的重要因素,包括内因和外因。
第四节:高分子链的构象统计学习并了解高分子链均方末端矩的几何算法和统计算法,掌握高分子链柔顺性的表征方法。
习题与思考题1.概括高分子的结构层次2什么叫构象?什么叫构型?3.链段的定义。
4等效自由结合连定义分子链的柔顺性;均方末端局末端距表征,其表征方法有哪些?第二章高分子的凝聚态结构本章主要讲授高分子凝聚态结构的类型和结构模型。
重点是结晶高聚物的结构模型,介绍高分子的非晶态结构、取向态结构、高分子液晶及共混高分子的织态结构。
主要内容:第一节高分子间的作用力内聚能密度的概念,及内聚能对材料性能的影响。
第二节高聚物的结晶晶体结构和形态讲授内容主要包括晶体结构的基本概念,晶态高聚物的结晶结构、结晶形态,高分子链在晶体中的构象。
第三节晶态高聚物的结构模型讲授晶态高分子结构模型的种类和最新研究结果和观点。
第四节非晶态高聚物的结构模型、高聚物的取向结构主要讲授非晶态高聚物的结构模型,取向高聚物的取向现象、取向机理、取向对物性的影响,取向度的测定及应用。
第五节高聚物的液晶结构主要讲授内容为液晶态的结构,高分子液晶的结构和性质,高分子液晶的研究方向和应用。
教学环节:课堂讲授结合多媒体教学。
思考题1内聚能,内聚能密度的定义。
2.结晶高聚物的结晶过程与小分子结晶过程有何不同?在形态上又有何不同。
高分子物理内容期末总结
⾼分⼦物理内容期末总结第⼀章1.⾼分⼦的特点:2.统计平均分⼦量:测量⽅法:化学⽅法端基分析法热⼒学⽅法沸点升⾼,冰点降低,蒸⽓压下降,膜渗透压法(从物理意义上讲,正是溶液中溶剂的化学位与纯溶剂化学位的差异引起了渗透压的现象)?光学⽅法光散射法动⼒学⽅法粘度法,超速离⼼沉淀及扩散法其它⽅法电⼦显微镜,凝胶渗透⾊谱法3.分⼦量的分布及测定⽅法:利⽤聚合物溶解度的分⼦量依赖性, 将试样分成分⼦量不同的级分, 从⽽得到试样的分⼦量分布, 如沉淀分级, 溶解分级利⽤聚合物在溶液中的分⼦运动性质, 得到分⼦量分布, 如超速离⼼沉降速度法?利⽤⾼分⼦尺⼨的不同, 得到分⼦量分布, 如凝胶渗透⾊谱法, 电⼦显微镜法.4.⾼聚物性质与分⼦量及其分布的关系:拉伸强度和冲击强度与样品中低分⼦量部分有较⼤关系溶液粘度和熔体的低切流动性能与样品中中分⼦量部分有较⼤关系熔体强度与弹性与样品中⾼分⼦量部分有较⼤关系5.相对分⼦质量对聚合物性能的影响:聚合物有许多重要特性的⼀个根本原因是相对分⼦质量⼤。
因⽽随相对分⼦质量增⼤聚合物的许多性能发⽣了变化,变化趋势如下:柔顺性增⼤。
但达到临界相对分⼦质量MC约104后符合统计规律,柔性与相对分⼦质量⽆关;机械性能提⾼;粘度增加,熔融指数下降,可加⼯性下降;溶解速率下降;熔点提⾼;结晶速率下降;Tg和Tf均提⾼。
分⼦量分布宽度指数:凝胶渗透⾊谱法原理:体积排除机理:溶质分⼦的体积越⼩, 其淋出体积越⼤. 这种解释不考虑溶质与载体间的吸附效应以及溶质在流动相和固定相中的分配效应, 其淋出体积仅仅由溶质分⼦的尺⼨和载体的孔径尺⼨决定, 分离完全是由于体积排除效应所致, 所以GPC ⼜被称为体积排除⾊谱第⼆章:⾼分⼦链的结构概念:构型:构造:指聚合物分⼦的各种形状,⼀般为线型、也有⽀化或交联结构构象:由于单键的内旋转⽽产⽣的分⼦在空间的不同形态。
柔顺性:⾼分⼦链能够通过内旋转作⽤改变其构象的性能1.链的特点:1. 1近程结构:化学组成分类:碳链⾼分⼦——不易⽔解,易加⼯成型,易燃,耐热性差易⽼化。
高分子物理复习总结
高分子物理复习总结的光强。
因此,我们必须对干涉引起的效应进行校正。
高分子溶液散射光内干涉示意图考虑内干涉效应,采用在散射强度公式中引入不对称散射函数P(θ)来校正内干涉效应。
P(θ)是粒子尺寸和散射角的函数:见 4-44。
经过近似,利用式4-48即:1cos2KC18221hsin2A2C'22RM9 21cos2KCsin2qc2R对2测定不同浓度和不同角度下的瑞利比,以作图,将两个变量C和θ均外推至零,从截距求Mw,从斜率求h和A2。
这种方法称为Zimm作图法。
粘度法粘度法和凝胶色谱法便属于间接法。
这些方法测定分子量时,需要其它方法给予订定,称为间接法。
溶液的粘度一方面与高聚物的分子量有关,却也同时决定于高聚物分子的结构形态和在溶剂中的扩张程度,因此,粘度法用于测定分子量只是一种相对方法。
必须在确定的条件下,事先订定粘度与分子量的关系,才能根据这种关系溶液的粘度计算高聚物的分子量。
粘度法测定高聚物分子量的理论依据是Mark-Houwink 方程:[η]=KM 。
只要订定了K和值,测定高分子溶液的[η],即可计算高聚物的平均分子量。
粘度表示法相对黏度 r/0t/t0增比黏度spr1tt0t0比浓黏度sp/C 比浓对数黏度 lnr/C 特性黏数sp/CC0lnr/CC0特性粘数的单位:dl/g 或 ml/g粘度的测试方法测定所用的设备主要是一根黏度计,通常采用可稀释的乌氏黏度计。
在恒温条件下,用同一支粘度计测定不同浓度高分子溶液和纯溶剂的流动出时间。
假定t和t0分别为溶液和溶剂的流出时间。
ρ和ρ0分别为二者的密度。
溶液的相对粘度ηr为:这样,纯溶剂的流出时间t0和溶液的流出时间t,可求出溶液的相对粘度ηr 。
当黏度计流速在100秒以内时,有湍流出现,必须考虑动能校正,从泊肃叶定律出发,可导出校正式:r0At0B/t0AtB/t在恒温条件下,用两种或两种以上粘度相差较大的标准流体,分别测出时间t,即可算出A和B值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一熔体流动速率的测定塑料熔体流动速率(MFR):是指在一定温度和负荷下,塑料熔体每10min通过标准口模的质量。
实验原理:一定结构的塑料熔体,若所测得MFR愈大,表示该塑料熔体的平均分子量愈低,成型时流动性愈好。
但此种仪器测得的流动性能指标是在低剪切速率下获得的,不存在广泛的应力-应变速率关系。
因而不能用来研究塑料熔体粘度与温度,粘度与剪切速率的依赖关系,仅能比较相同结构聚合物分子量或熔体粘度的相对数值。
(1)为什么要分段取样?答:分段取样取平均值能使实验结果更精确,且利于去除坏点,减小试验误差。
(2)哪些因素影响实验结果?举例说明。
答:①标准口模内径的选择不同的塑料应选择不同的口模内径,否则实验误差较大。
②实验温度物料的形态与温度有关,不同的温度下,物料的熔体流动速率不同。
③负荷不同负荷下,压力不同则影响样条质量。
实验二扫描电子显微镜观察物质表面微观结构背散射电子背散射电子是被固体样品中的原子核反弹回来的一部分入射电子,其中包括弹性背散射电子和非弹性背散射电子。
背散射电子来自样品表层几百纳米的深度范围,被散射电子系数可用л=KE m表示,式中,K,m均为与原子序数有关的常数。
因此,它的产额能随样品原予序数增大而增多.所以不仅能用作形貌分折,而且可以用来显示原子序数衬度,定性地用作成分分析。
二次电子在入射电子束作用下被轰击出来并离开样品表面的样品的核外电子叫做二次电子。
二次电子的能量较低,一般都不超过8×10-19J(50ev),大多数二次电子只带有几个电子伏能量,因此二次电子逃逸深度一般只在表层5-10nm深度范围内。
二次电子发射系数与入射电子和样品表面法线夹角а的关系可用σа=σ/cosа表示,可见样品的棱角、尖峰等处会产生较多的二次电子,因此,二次电子对样品的表面形貌十分敏感,能非常有效的显示样品的表面形貌。
二次电子的产额和原子序数之间役有明显的依赖关系。
所以不能用它来进行成分分折。
X 射线当样品原子的内层电子被入射电子激发或者电离时,原子就会处于能量较高的激发状态,此时外层电子将向内层跃迁以填补内层电子的空缺。
从而使具有特征能量X射线释放出来。
2.2 扫描电子显微镜工作原理扫描电子显微镜(SEM)采用聚焦电子束在试样表面逐点扫描成像。
试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子、特征X 射线或俄歇电子,其中二次电子是最主要的成像信号,用于进行材料的表面形貌分析。
二次电子产生的数量依赖于入射电子束与样品表面法线的夹角(入射角),而样品表面形态的变化则会引起入射角的改变,因此,二次电子的产额是样品表面特征的函数。
电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室四、思考题2. 电镜的固有缺陷有哪几种?像闪是怎样产生的?答,球差,色差,衍色差,像闪。
极革化材料加工精度,极革化材料结构和成分不均匀性影响磁饱和,导致场的不均匀性造成像闪。
实验三聚合物差热热重同时热分析法差热分析是在温度程序控制下测量试样与参比物之间的温度差随温度变化的一种技术。
简称DTA差示扫描量热法是在温度程序控制下测量试样相对于参比物的热流速度随温度变化的一种技术。
简称DSCDTA、DSC在高分子方面的主要用途是:①研究聚合物的相转变,测定结晶温度T c、熔点T m、结晶度X D、等温结晶动力学参数。
②测定玻璃化转变温度T g。
③研究聚合、固化、交联、氧化、分解等反应,测定反应温度或反应温区、反应热、反应动力学参数。
聚合物DTA曲线或DSC曲线的模式图分析:当温度达到玻璃化转变温度T g时,试样的热容增大就需要吸收更多的热量,使基线发生位移。
假如试样是能结晶的,并且处于过冷的非晶状态,那么在T g以上可以进行结晶,同时放出大量的结晶热而产生一个放热峰。
进一步升温,结晶熔融吸热,出现吸热峰。
再进一步升温,试样可能发生氧化、交联反应而放热,出现放热峰,最后试样则发生分解,吸热,出现吸热峰。
热重分析法简称TGA:它是测定试样在温度等速上升时重量的变化,或者测定试样在恒定的高温下重量随时间的变化的一种分析技术。
TG-DTA同时热分析仪器的主要优点:1.能方便的区分物理变化和化学变化;2.TG和DTA曲线分别表示于同一反应的两重要侧面,一一对应,便于比较,相互补充,可得到较为准确的数据;3.节省人力、时间和开支,也可节省占地面积。
思考题1,影响Tg的因素?答:内因:①主链柔性:主链柔性越好,Tg越低。
②取代基:侧基的极性越强,Tg越高:增加分子链上极性基团的数量,也能提高聚合物的Tg;取代基位阻增加,分子链内旋转受阻程度增加,Tg升高。
③构型:全同结构的Tg较低④分子量:当分子量较低时,聚合物的Tg随分子量的增加而增加。
⑤链间的相对作用:高分子链间相互作用降低了链的活动性,因而Tg增高。
外因:因测量Tg的方式不同,而导致Tg不同。
当升温速率过快事,因聚合物分子量的滞后现象,而引起所测得的Tg偏高。
当升温速率过慢是,所测得的Tg偏低。
4同一聚合物样品,TG测试得到样品分解温度及DSC测试得到的玻璃化温度,结晶温度晶体熔融温度等分别在两次不同的测试下得到的结果有明显差异,请举例说明这些差异的原因。
答受条件不同,结果也不同,具体因素可能为1,通入气体的种类即气氛不同,N2不参与反应,热效应小,影响不大。
2升温速率不同。
累计质量变化能被天平检测的温度称为起始温度,累计质量变化达到最大的温度称为终了温度,之间的温度称为反应区间,如果升温速率太快反应温度就会不均匀不能得到准确的峰,相反,试量少一些温度会相对均匀,就可以得到尖锐的峰形和相对准确的峰温。
3,实验开始时仪器的校准不准确。
4样品用量的多少。
TG中式样用量多一点好,在侧重感相同的情况下,可以得到较高的相对精度。
:实验五聚合物的动态力学性能当样品受到变化着的外力作用时,产生相应的应变。
在这种外力作用下,对样品的应力-应变关系随温度等条件的变化进行分析,即为动态力学分析。
6. 问题讨论(1)如何通过动态力学分析仪分析共混聚合物两相相容的情况?答:(1)出现一个力学损耗峰,说明两相完全相容;(2)当出现两个力学损耗峰,但与两单一聚合物的力学损耗峰不一致且互相接近时说明两相不完全相容,(3)当出现两个力学损耗峰,但与两单一聚合物的力学损耗峰一致时,说明两相完全不相容。
(2)为什么在玻璃化转变区内tanδ会出现最大值?答:聚合物受到变化着的外力作用时产生相应的应变,在玻璃化转变温度之前分子链很难运动;在玻璃化转变温度时,力学损耗达到最大,随着温度上升,力学损耗先上升;在玻璃化温度时达到峰值,然后下降,力学损耗最大时tanδ最大。
实验六偏光显微镜法观察聚合物球晶球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。
因此,普通的偏光显微镜就可以对球晶进行观察,因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。
光在各向异性介质中传播时,其传播速度随振动方向不同而变化,折射率也随之改变,一般都发生双折射,分解成振动方向相互垂直,传播速度不同,折射率不同的两条偏振光,而这两束偏振光通过第二个偏振片时只有在与第二偏振轴平行方向的光线可以通过,而通过的两束光由于光程差将会发生干涉现象。
分子链的取向排列使球晶在光学性质上是各向异性的,即在平行于分子链和垂直于分子链的方向上有不同的折光率。
在正交偏光显微晶下观察时,在分子链平行于起偏镜或检偏镜或检偏镜的方向上将产生消光现象。
呈现出球晶特有的黑十字消光图案(称为Maltase十字)。
球晶在正交偏光显微镜下出现Maltase十字的现象可以通过图1-2来理解。
图中起偏镜的方向垂直于检偏镜的方向(正交)。
设通过起偏镜进入球晶的线偏振光的电矢量OR ,即偏振光方向沿OR 方向。
图1-2 绘出了任意两个方向上偏振光的折射情况,偏振光OR 通过与分子链发生作用,分解为平行于分子链η和分子链ε两部分,由于折光率不同,两个分量之间有一定的相差。
显然ε和η不能全部通过检偏镜,只有振动方向平行于检偏镜方向的分量OF 和OE 能够通过检偏镜。
由此可见,在起偏镜的方向上,η为零,OR =ε;在检偏镜方向上,ε为零,OR =η;在这些方向上分子链的取向使偏振光不能透过检偏镜,视野呈黑暗,形成Maltase十字。
此外,在有的情况下,晶片会周期性地扭转,从一个中心向四周生长,这样,在偏光显中就会看到由此而产生的一系列消光同心圆环五、思考题1.升温速率对Tm的影响?答:升温速率很大时链段运动受内摩擦力影响很小,应力很快就松弛掉了,分子链活动能力较强,形成的结晶比较完善,完善程度差别也小,故熔点较高,熔融温度范围较窄,所以Tm相应提高。
2,降温速率对结晶温度的影响?答;降温速率越快,结晶温度越低;降温速率越慢,随着熔体粘度的增加,分子链的活动性减小,来不及做充分的位置调整,则结晶温度会停留在较高温度上。
3聚合物捷径体生长依赖什么条件,在实际生产中如何控制晶体的形态?答:1控制形成速度:将熔体急速冷却生成较小球晶,缓慢冷却则生成较大球晶2采用共聚的方法:破坏链的均一性和规整性,生成小球晶3外加成核剂可获得甚至更微小的球晶。
实验七粘度法测定聚合物的分子量1,如何测定mark-houwink方程中的参数k,α值?答:将聚合物式样进行分级,获得分子量从小到大比均一的组分,然后测定各组分的平均分子量及特性粘度[η]=kMα,两边取对数,作图得斜率和截距。
实验八聚合物的蠕变性能实验蠕变:在一定温度和较小的恒定外力(拉力、压力或扭力等)作用下、材料的形变随时间的增加而逐渐增大的现象。
实验原理:从分子运动和变化的角度来看,蠕变过程包括下面三种形变:当高分子材料受到外力( )作用时,分子链内部键长和键角立刻发生变化,这种形变量是很小的,称为普弹形变(1ε)。
当分子链通过链段运动逐渐伸展发生的形变,称为高弹形变(2ε)。
如果分子间没有化学交联,线形高分子间会发生相对滑移,称为粘性流动(3ε)。
这种流动与材料的本体粘度(3η)有关。
在玻璃化温度以下链段运动的松弛时间很长,分子之间的内摩擦阻力很大,主要发生普弹形变。
在玻璃化温度以上,主要发生普弹形变和高弹形变。
当温度升高到材料的粘流温度以上,这三种形变都比较显著。
由于粘性流动是不能回复的,因此对于线形高聚物来说,当外力除去后会留下一部分不能回复的形变,称为永久形变。
蠕变与温度高低和外力大小有关,温度过低,外力太小,蠕变很小而且很慢,在短时间内不易觉察;温度过高、外力过大,形变发展过快,也感觉不出蠕变现象;在适当的外力作用下,通常在高聚物的玻璃化温度以上不远,链段在外力下可以运动,但运动时受到的内摩擦力又较大,只能缓慢运动,则可观察到较明显的蠕变现象。