换热器传热基础知识
2024年换热器培训课件(多应用)
换热器培训课件(多应用)换热器培训课件一、引言换热器是工业生产过程中重要的热能交换设备,广泛应用于石油、化工、制药、食品、电力等领域。
换热器的设计、制造、安装和维护对企业的生产效率和经济效益具有重要影响。
为了提高员工对换热器的了解和应用能力,本培训课件将介绍换热器的基本原理、分类、结构、性能、选型及维护等方面的知识。
二、换热器的基本原理1.热传递方式(1)对流换热:流体与固体表面之间的热量传递,主要受流体流速、温差、流体性质等因素影响。
(2)导热换热:固体内部的传热,主要受材料导热系数、温度梯度、几何尺寸等因素影响。
(3)辐射换热:物体表面之间的热量传递,主要受物体表面温度、颜色、形状等因素影响。
2.换热器的传热方程Q=U×A×ΔT×τ其中,Q表示热量(W);U表示总传热系数(W/(m²·K));A表示传热面积(m²);ΔT表示温差(K);τ表示时间(s)。
三、换热器的分类与结构1.按热流体与冷流体的流动方式分类(1)顺流式换热器:热流体与冷流体在换热器内同向流动。
(2)逆流式换热器:热流体与冷流体在换热器内反向流动。
(3)错流式换热器:热流体与冷流体在换热器内呈交叉流动。
(4)混合流式换热器:热流体与冷流体在换热器内呈混合流动。
2.按传热方式分类(1)直接接触式换热器:热流体与冷流体直接接触进行换热。
(2)间壁式换热器:热流体与冷流体通过换热器壁进行换热。
3.换热器的结构(1)壳体:用于容纳换热管束,承受工作压力。
(2)管束:由多根换热管组成,用于实现热流体与冷流体之间的热量交换。
(3)管板:用于连接换热管与壳体,并传递热量。
(4)折流挡板:用于引导流体流动,增加流体湍流程度,提高传热效率。
四、换热器的性能与选型1.换热器的性能指标(1)传热系数:表示单位时间内单位面积上的热量传递能力。
(2)压降:表示流体在换热器内流动时产生的压力损失。
传热学基本知识
导热分为两类
稳定导热:温度不随时间而变化的导热 不稳定导热:温度随时间而变化的导热
知识回顾
1
传热学基本知识
热传导
2、傅里叶导热定律
热传导的速率与垂直于热流方向的表面积成正比,与壁面两侧的温差成正比,与壁厚成反比。
QAt1t2
q
Q A
t
Q
t
t R
A
Q 导热量,传热速率 , W;
q 热流密度,W m2
2)流速的影响 流体流速增高时,对流传热系数就大。
3)流体的物理性质对给热系数的影响 导热系数、比热容c、密度越大,动力粘度越小,对流传 热系数越大
1
传热学基本知识
热对流
2)流体有相变发生时
蒸汽的冷凝 液体的沸腾
膜状冷凝 滴状冷凝(传热系数大)
自然对流
泡状沸腾或泡核沸腾(传热系数大)
膜状沸腾
1
蒸汽冷凝时的对流传热
传热学基本知识
热传导
4、导热计算
1)单层平壁的稳定热传导
计算公式:
Q A t
Q t R
热阻:
R A
当壁面两侧的温度不等时,且热量只沿垂直 于壁面的方向发生变化
或
q t
1
传热学基本知识
热传导
4、导热计算
2)多层平壁的稳定热传导
多层平壁是指由几层不同厚度、不同导热系数的材料组成 且其间接触良好的平壁
Q=qm热r热 Q=qm冷r冷 此法仅适于有相变过程
三、平均温度差
用传热速率方程式计算换热器的传 热速率时,因传热面各部位的传热温 度差不同,必须算出平均传热温度差 ⊿t均代替⊿t,
QKAt均
1
1、恒温传热时的平均温度差
《换热器基础知识》课件
换热器设计要素
了解设计换热器时需要考虑的重要因素。
传热面积
更大的传热面积可以提高换热效率。
传热介质
选择合适的传热介质可以提高传热率。
污垢堵塞
防止污垢堵塞可以维持换热器的正常运行。
压力损失
减少压力损失可以提高流体的流动性能。
换热器的性能评价
了解如何评价换热器的性能并进行比较。 热传导系数 传热表面积 污垢堵塞程度 压力损失
3
性能优化
结合实际情况进行换热器的性能优化和改进。
换热技术的发展趋势
了解换热技术的最新发展和趋势。
1 高效节能
新型换热器技术能够提高能量利用效率,实现更高效的热量传递。
2 先进材料
应用先进材料能够提高换热器的性能和耐久性。
3 智能控制
智能控制系统可以实现换热器的自动监测和优化。
总结和展望
回顾所学内容并对未来的换热技术发展进行展望。 通过本课程的学习,你已经对换热器的基础知识有了深入了解。期待在未来的工程项目中应用所学,并关注换 热技术的不断创新。
换热器基础知识
在本课程中,我们将深入讨论换热器的基础知识。了解换热器的定义、工作 原理、设计要素、性能评价、选型与应用以及技术的发展趋势。
换热器的定义和分类
什么是换热器?了解换热器的基本概念及其在不同工业领域中的分类。
换热器定义
换热器是一种用于传递热量 的设备,用于在流体之间进 行热量交换。
分类
换热器可以根据其结构和热 量传递原理分为不同类型, 如壳管式、板式、管束等。
热传导系数越高,换热效率越好。 更大的传热表面积可以提高换热效率。 较少的污垢堵塞能够维持换热器的正常运行。 较低的压力损失可以提高流体的流动性能。
换热基础必学知识点
换热基础必学知识点
1. 热传导:热传导是指通过物质内部的分子碰撞传递热量的现象。
物质的热传导性质取决于其导热系数和传热截面积。
2. 热对流:热对流是指通过流体的对流传递热量的现象。
流体的热对流性质取决于其传热系数和流体的流动速度。
3. 热辐射:热辐射是指物体通过辐射方式传递热量的现象。
热辐射不需要介质传递,可以在真空中传递热量。
4. 导热系数:导热系数是描述物质传导热量能力的物理量,表示单位时间内单位面积上的热量传递量。
导热系数越大,物体传导热量的能力越强。
5. 传热截面积:传热截面积是指传热过程中传热介质与边界之间接触的表面积。
传热截面积越大,热量传递的速度越快。
6. 传热系数:传热系数是描述传热过程中导热介质与边界之间热量传递能力的物理量,表示单位时间内单位面积上的热量传递量。
传热系数与传热介质的性质和流体流动状态有关。
7. 热阻:热阻是指阻碍热量传递的物理量。
热阻与介质的导热系数、传热截面积和传热路径长度有关,热阻越大,热量传递的难度越大。
8. 单位传热面积的传热率:单位传热面积的传热率是指单位时间内单位传热面积上的热量传递量。
传热率与传热系数和温度差有关。
9. 热平衡:热平衡是指在热传递过程中,两个或多个物体之间温度达
到一致的状态。
在热平衡状态下,热传递停止。
10. 热力学第一定律:热力学第一定律(能量守恒定律)是指能量在物体间转化和传递的过程中,能量的总量保持不变。
热量是能量的一种形式,因此热量的传递符合能量守恒定律。
换热器基础必学知识点
换热器基础必学知识点
以下是换热器基础的一些必学知识点:
1. 热传导:介质中的热能通过分子间的碰撞传递的现象,即由高温区到低温区的传导。
热传导正比于温度梯度和介质的热导率。
2. 对流传热:介质周围的流体通过对流现象将热能传递出去。
对流传热正比于流体的流速、温度差和传热系数。
3. 辐射传热:通过辐射形式将热能传递出去,不需要介质的存在。
辐射传热正比于表面的辐射率、温度差和黑体辐射功率。
4. 传热方程:换热器中的传热可以通过传热方程来描述,常用的传热方程有热传导方程(Fourier定律)和对流换热方程(Newton冷却定律)。
5. 传热系数:描述换热器界面传热能力的物理量,是传热率与温度差之间的比例关系。
传热系数决定了传热的效率和速率。
6. 换热器类型:常见的换热器类型有壳管式换热器、板式换热器、管束式换热器等,根据不同的工艺需求选择适合的换热器类型。
7. 换热器设计:换热器的设计要考虑流体流量、温度差、传热系数、换热面积等因素,并进行热力学和动力学计算。
8. 热媒介选择:根据不同的工艺要求选择适合的热媒介,并考虑其传热性能、耐腐蚀性和成本等因素。
9. 损失:换热器中存在一定的传热损失,包括壁面传热损失、传热介质的流动损失和泄漏损失等,需要进行合理的设计和控制。
10. 性能评价:换热器的性能评价包括换热效率、效果、能耗等指标的考核和比较,以提高换热器的工作效率和经济性。
以上是换热器基础必学的知识点,掌握了这些知识可以更好地理解和应用换热器的原理和设计。
换热器基础知识
.
15
隔板:增加管程数,提高管内流体流 速。流速增加,传热效率提高;但流 动的阻力也同时增加。
折流板:提高壳程流体的流速和湍 动 程度。
.
16
带膨胀节的固定管板式换热器结构图
.
17
(2)浮头式换热器:
.
18
浮头式换热器结构图
.
9
套管式换热器
.
10
套管式换热器的特点:
优点:结构简单,拆装方便,灵活性 大
管径可大可小,程数可增可减。 缺点:接头多, 易漏,金属用量大。
.
11
2.列管式换热器
.
12
(1)固定管板式换热器:
两端管板固定。
.
13
固定管板式换热器结构图
.
14
固定管板式换热器的特点:
优点:结构相对简单,应用广泛。
.
32
翅片管结构示意图:
.
33
翅片的作用:增加传热面积及管外流 体的湍动程度。
风机:提高空气流速。
空气冷却器的特点: 优点:省水。 缺点:设备庞大,消耗动力。
.
34
(6)板式换热器:
由传热板片、 密封垫片和压 紧装置组成。
.
35
板式换热器板片
.
36
板式换热器工作原理示意图
.
37
板式换热器的特点:
优点:传热效率高。 缺点:承受压力低。
.
38
(7)螺旋板式换热器:
.
39
螺旋板换热器工作原理示意图
.
40
(8)热管换热器
.
41
换热器基本知识
(2) 浮头式换热器
浮头式换热器 1—防冲板;2—折流板;3—浮头管板;4—钩圈;5—支耳
浮头式换热器
• 浮头式换热器 管束一端的管板可自由浮动,完 全消除了热应力;且整个管束可从壳体中抽出, 便于机械清洗和检修。浮头式换热器的应用较 广。
• 优点:管间和管内清洗方便,不会产生热应力 ;
• 缺点:结构复杂,造价比固定管板式换热器高 ,设备笨重,材料消耗量大,且浮头小盖在操 作中无法检查,制造时对密封要求较高。
• 流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。 图示为最简单的单壳程单管程换热器,简称为1-1型换热器。为提高管内 流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。这样 流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。 同样,为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次 通过壳体空间,称为多壳程。多管程与多壳程可配合应用。
设备。
二、间壁式换热器的类型
沉浸式蛇管换热器
管式换热器
间壁式换热器
板式换热器
喷淋式换热器
套管换热器
固定管板式
列管式换热器
U型管
平板式换热器
浮头式 填料函式
螺旋板式换热器 夹套式换热器
板翘式换热器 翘片式换热器
翘片管换热器
(一) 管式换热器
管式换热器特点
• 管式换热器虽然在换热效率、结构紧凑性和单位传热
• 缺点:由于受弯管曲率半径的限制,其换热管 排布较少,管束最内层管间距较大,管板的利 用率较低,壳程流体易形成短路,对传热不利 。当管子泄漏损坏时,只有管束外围处的U形 管才便于更换,内层换热管坏了不能更换,只 能堵死,而坏一根U形管相当于坏两根管,报 废率较高。
换热器传热基础知识
六、传热基本方式(传热机理) 1.热传导(导热)(conduction):由微观粒子(分子、原子、离子和电子)的微观运 动传递热量的过程。 金属,自由电子的运动。 固体 分子晶体,分子的振动。 非金属 原子晶体,原子的振动。 晶格结构的振动,弹性波。 离子晶体,离子的振动。 液体,分子的不规则热运动(布朗运动),介于气体与非金属之间。 气体,分子的不规则热运动(布朗运动)。 2 .热对流(对流) (convection) :由流体质点的宏观运动传递热量的过程。由于同 时存在分子不规则热运动,所以对流必然伴随导热。 自然对流:宏观运动由流体密度差引起,而密度差由温度差引起。 强制对流:宏观运动由外力(泵、风机、位差、压差等)引起。 3.热辐射(辐射)(radiation):由电磁波传递热量的过程。 在实际问题中,传热方式很少单独存在,常常两种或三种共存
2 1
( dQ1 dQ2 , q1 所以
dQ1 dQ2 q2 ) dS dS
t2
dQ 1
b
dQ2
q b 0 dx dt
t1
所以 q b dQ q 而
dS
(t1 t 2 )
所以 dQ b dS 沿平面定积分,得
t1 t 2 b
t1 t 2
qx dQ x (T Tw ), dS qx dQ x (t w t ) dS
或 dQ x (T Tw )dS, dQ x (tw t )dS
式中 qx——局部对流热流密度,W/m2; Q——对流传热速率或热流量,W; S——与流体接触的固体传热面积,m2; x——局部对流传热系数,W/(m2K); tw,Tw——分别为冷热流体侧的局部壁温,K,C; t,T——分别为冷热流体的有限空间内局部截面平均温度或大空间中流体主流温度,K,C。
换热器基础知识11条
换热器基础知识11条日常检查日常检查是及早发现和处理突发性故障的重要手段。
检查内容:运行异声、压力、温度、流量、泄漏、介质、基础支架、保温层、振动、仪表灵敏度等等。
温度温度是换热器运行中主要的操作指标,测定及检查换热器中各流体的进、出口温度计变化,可以分析判断介质流量的大小及换热情况的好坏。
传热效率主要表现在传热系统上,传热系统系数降低,换热器的效率也降低,通常传热系数在短时间变化较小,发生变化时会连续下降,定期测量换热器两种介质的出入口温度、流量,计算传热系数作记录图表,作为判断传热系数变化的依据。
若低于某一定值,则应清洗管束以提高传热系数,保证一定的传热效率。
要防止温度的急剧变化,因温度剧变会造成换热器内件,特别是管束与管板的膨胀和收缩不一致,产生温差应力,从而引起管束与管板脱离或局部变形及裂缝,还会加快腐蚀及产生热疲劳裂纹。
用水作为冷却介质时,水的出口温度最好在38℃以下,因为超过38℃,微生物的繁殖加速,腐蚀生产物的分解也加快,引起管子腐蚀穿孔,同时结垢情况会加重,故出口温度最大不能超过45℃。
压力通过对流体压力及进出口压差的测定与检查,可判断换热器内部结垢、堵塞情况及流体流量大小或泄漏情况。
高压流体往低压流体中泄漏,使低压流体压力很快上升,甚至超压,并可能产生各种不良后果,对运行中的高压换热器应特别警惕这一点。
操作中若发现压力骤变,除检查换热器本身问题以外,还应考虑系统内部其他因素的影响,如系统阀门损坏及输送流体的机械发生故障,等等。
泄漏换热器在运行中产生外漏是较容易发现的。
对低毒介质轻微的气体外漏,可以直接抹上肥皂水或发泡剂来检查,亦可借助试纸变色情况检查。
检查换热器外壳体表面涂层的剥落污染情况,来预测壳体的泄漏,是低压换热器检查壳体外泄漏点的一种常用方法。
对严禁泄漏的中高毒性介质,最常用的方法是在易泄漏口,如法兰、接管处涂对该毒性介质反应非常灵敏的涂料,有毒介质发生微小泄漏,涂料颜色即会发生明显的变化,以此可作出迅速判断,采取措施。
换热器基础知识
1.平板式换热器
由一组长方形的金属薄板平行排列在一起,采用夹紧装 置组装于支架上而构成,见图。而相邻板间的边缘衬有垫 片(橡胶或压缩石棉等),压紧后板内形成密封的液体通道。 每块板的4个角上有圆孔,其中一对圆孔和板间相通,而另 外一对圆孔通过加装垫片和板内相隔,在相邻板上错开以 分别形成两流体通道,从而使两流体交错地流过板片两侧 通过板片进行换热。板厚通常为0.5~3mm,板面压制成波 纹状,两板间距4~6mm,材质一般为不锈钢。
8/61
第9页/共61页
2.浮头式换热器
• 它是将一端管板与壳体相连,而另一端管 板不与壳体固定连接,可以沿轴向自由浮 动,如图示。这种结构不但可完全消除热 应力,而且在清洗和检修时整个管束可以 从壳体中抽出。因而尽管其结构复杂,造 价高,但应用较为普遍。
9/61
第10页/共61页
3.U型管式换热器
• 如各种管壳式、板式结构的换热器。
• 1.1.1.2 按用途分
• 1.加热器:用于把流体加热到所需温度,被加热流体在加热 过程中不发生相变。
• 2.预热器:用于流体的预热,以提高整套工艺装置的效率。
• 3.过热器:用于加热饱和蒸汽,使其达到过热状态。
• 4.蒸发器:用于加热液体,使其蒸发汽化。
3/61
24/61
第25页/共61页
3.几点讨论
• (1)传热计算时,总传热系数K的来源有三个方面: 选用生产实际的经验数据:在有关手册或传热的专业书中,都列有某些情况下
K的经验值,可供初步设计时参考。〖注意〗应选用与工艺条件相仿、传热设 备类似而且较为成熟的经验K值作为设计的基础。 实验测定:对现有的换热器,通过实验测定有关的数据,如流体的流量和温度 等,再用传热速率方程计算K值。实验测定可获得较为可靠的K值。实测K值的 意义不仅可提供设计换热器的依据,且可了解传热设备的性能,从而寻求提高 设备生产能量的途径。 K值的计算:通过前述公式计算。但计算得到的K值往往与实际值相差很大,主 要是由于h关联式有一定误差及污垢热阻不易估计准确等原因导致。总之,在 采用计算得到的K值时应慎重,最好与前述两种方法对照,以确定合适的K值。
换热器热计算基础
换热器热计算基础换热器是工程中常见的设备,用于在流体之间传递热量。
换热器热计算是指对换热器进行热力学分析和计算,以确定热负荷、传热面积、传热系数等参数的过程。
传热理论是换热器热计算的基础之一、传热过程主要有传导、对流和辐射三种形式。
对于大部分换热器来说,对流传热是主要形式。
传热理论通过数学模型描述了传热过程中的温度场、热流场等参数,这些参数对于换热器设计和性能评估具有重要意义。
传热方法是换热器热计算的基础之一、传热方法包括传导传热、对流传热和辐射传热。
传导传热是指热量通过物质内部的传导方式进行传递。
对流传热是指热量通过流体的对流方式进行传递。
辐射传热是指热量通过辐射方式进行传递。
不同的换热器根据其工作条件和结构,可能会采用不同的传热方法。
传热模型是换热器热计算的基础之一、传热模型是指用数学和物理方法描述换热器内部传热过程的模型。
常见的传热模型包括热平衡模型、LMTD法、NTU法等。
热平衡模型是最简单的传热模型,假设换热器中的热量平衡。
LMTD法(Logarithmic Mean Temperature Difference法)是一种常用的传热模型,它通过计算换热器的LMTD值来估算换热器的传热能力。
NTU法(Number of Transfer Units法)是另一种常用的传热模型,它通过计算传热器的NTU值估算传热器的传热能力。
传热模型的选择取决于具体的换热器设计要求和计算精度的要求。
换热器的结构和运行参数是换热器热计算的基础之一、换热器的结构参数包括传热面积、传热管管径、管道长度等。
传热面积是换热器设计的重要参数,它决定了换热器的传热能力。
传热管管径和管道长度是影响换热器内部流体流动的重要参数,它们决定了流体之间的传热能力和传热阻力。
换热器的运行参数包括进口温度、出口温度、流体流量等。
进口温度和出口温度决定了换热器内部的温度差,它们是计算传热能力的重要参数。
换热器的热计算是工程设计中非常重要的一环。
换热器基础知识
6.2、传热的基础知识6.2.1、传热在化工生产中的应用传热,即热量传递,是自然界中普遍存在的现象。
传热与化工过程的关系尤为密切。
因为无论生产中的化学过程(化学反应操作),还是物理过程(化工单元操作),几乎都伴有热量的传递。
传热在化工生产过程中的应用主要有以下几方面:(1)、物料的加热、冷却或冷凝,使物料达到指定的温度和相态,以满足反应、加工、储存等的要求;(2)、在某些单元操作(如蒸发、结晶、蒸馏和干燥等)中,都需要输入或输出热量,才能使这些单元操作正常的进行;(3)、化工生产中热能的合理利用和废热的回收;(4)、化工设备和管道的保温,减少热量(或冷量)的损失。
传热设备不仅在化工厂的设备投资中占有相当大的比例,而且它们所消耗的能量也是很大的。
化工生产过程中对传热的要求可分为两种情况:一是强化传热,如各种换热设备中的传热,要求传热速率快,传热效果良好;另一种是削弱传热,如设备和管道的保温,要求传热速率慢,以减小热损失。
传热是一门内容很广的学科,应用于许多工程领域。
这里讨论的重点是传热基本原理和典型传热设备在天然气处理厂的应用。
6.2.2、传热的基本方式根据传热机理的不同,热传递有三种基本方式:热传导、热对流和热辐射。
传热可以依靠一种方式进行,也可以以两种或三种方式同时进行。
(1)、热传导热传导又称导热。
由于物质的分子、原子或电子的运动使热量从物体内高温处向低温处的传递过程称为热传导。
一切物体,不论其内部有无质点的相对运动,只要存在温度差,就必发生热传导。
可见热传导是静止物体内的一种传递方式。
气体、液体和固体的热传导各不相同。
在气体中,热传导是由分子不规则的热运动引起的;在大部分液体和不良导体的固体中,热传导是由分子的动量传递所致;在金属固体中,热传导起因于自由电子的运动,因此良好的导电体也是良好的导热体。
热传导不能在真空中进行。
(2)热对流(对流传热)热对流是指流体中质点发生相对位移而引起的热量传递。
换热器基础知识及操作
换热器基础知识及操作
8万吨/年乙苯苯乙烯项目
设备培训课件
换热器基础知识及操作
CONTENTS
01
换热器的分类和结构形式
单击添加文本具体内容
03
换热器的投用操作
单击添加文本具体内容
02
常用换热器示意图
单击添加文本具体内容
04
换热器的吹扫和停用
单击添加文本具体内容
一 换热器的分类和结构形式
1、换热器的定义 以在两种流体之间用来传递热量为基本目的的设备称为换热器,换热器的主要功能是保证工艺过程对介质所要求的特定温度,同时也提高能源利用率、回收利用余热等低位热能。 2、按用途分类 1)加热器 用于把流体加热到所需温度,被加热流体在加热过程中不发生相变。 2)预热器 用于流体的预热,以提高整套工艺装置的效率。 3)过热器 用于加热饱和蒸汽,使其达到过热状态。 4)蒸发器 用于加热液体,使其蒸发汽化。 5)再沸器 用于加热已被冷凝的液体,使其再受热汽化,为精馏过程提供热能。 6)冷却器 用于冷却流体,使其达到所需温度。 7)冷凝器 用于冷凝饱和蒸汽,使其放出潜热而凝结液化。
Байду номын сангаас 四 换热器的停用和吹扫
1.换热器的停用 1.1先开热流体的副线阀,后关闭热流体进、出口阀。 1.2先开冷流体的副线阀,后关闭冷流体进、出口阀。 1.3若正常停用,随工艺管线一起进行蒸汽吹扫。 1.4若切除进行检修,换热器必须进行蒸汽吹扫。流体在200℃以上时,应适当冷却后再吹扫。 2、换热器的吹扫 2.1管壳程的扫线流程改通后方能给汽吹扫,以防止超压损坏设备。 2.2蒸汽吹扫时,应考虑到换热器所能承受的单向受热能力,吹扫单程时,另一程放空阀必须打开。 2.3吹扫干净后,停汽,放净水。
第一讲 传热基础知识
Q q A
式中 A──总传热面积,m2。
二、稳态与非稳态传热 非稳态传热 Q , q , t f x , y , z , 稳态传热
Q , q, t f x , y , z
t 0
三、冷热流体通过间壁的传热过程
T1 Q t2
对流 导热 对流 冷 流 体
式中 K──总传热系数,W/(m2·℃)或W/(m2·K); Q──传热速率,W或J/s; A──总传热面积,m2; tm──两流体的平均温差,℃或K。
2.4.2 热量衡算和传热速率方程间的关系
热流体 G1, T1,cp1,H1
t2 h2
冷流体 G2, t2,cp2,h1 T2 H2
无热损失: Q吸 Q放
t1
t T1 t2 T2 t1 A
t1 t 2 t m t1 ln t 2
t2
t1 T 1t 2
t 2 T2 t1
T1 t1 t t2 dt dA dT t t t1 T T2 t2
t1 T 1t 2
A
t 2 T2 t1
1)也适用于并流
2.4.6 壁温的计算
稳态传热 Q KAt m
T TW Tw tW tw t 1 b 1 1 A1 Am 2 A2
Q T 1 A1
tW
bQ TW Am
TW
tW
Q t 2 A2
1.大,即b/Am小,热阻小,tW=TW
2.当tW=TW,得
d1 1 1 b d1 1 d1 R1 R2 dm d2 2 d2 K 1
式中 R1、R2——传热面两侧的污垢热阻,m2·K/W。
列管换热器总传热系数K的经验数据
换热器原理知识点总结
换热器原理知识点总结一、换热器的基本原理(一)热传导和对流传热换热器的换热过程主要涉及到热传导和对流传热两种方式。
热传导是指热量通过物体内部的传递方式,对流传热则是指流体与物体表面发生热量交换的过程。
在换热器中,通过这两种方式实现两种流体之间的热量传递。
(二)换热器的热力学基础换热器的热力学基础主要涉及热平衡、温度差、热传导等概念。
在换热器中,不同流体之间必须达到热平衡,即两种流体的温度相等。
换热器的有效性取决于流体之间的温差,温差越大,热量传递效率越高。
此外,热传导是换热的主要方式之一,它取决于物体的热导率、厚度和传热面积等因素。
二、换热器的分类(一)按换热方式分类按照换热方式的不同,换热器可以分为直接接触换热器和间接换热器。
直接接触换热器是指两种流体直接接触并交换热量,常见的有冷凝器和蒸发器;间接换热器则是指通过换热表面将两种流体的热量传递,常见的有管壳式换热器和板式换热器等。
(二)按换热器结构分类换热器的结构形式有很多种,常见的包括管式换热器、壳管式换热器、板式换热器、螺旋板片换热器等。
不同的结构形式适用于不同的工艺条件和换热要求。
(三)按换热性能分类换热器的性能可分为传热效率、压降、热应力等,这些性能指标对换热器的运行稳定性、能效和安全性有重要影响。
传热效率是衡量换热器性能的重要指标,不同的流体、流速、换热面积等因素都会影响传热效率。
三、换热器的性能参数(一)传热系数传热系数是衡量换热器性能的重要参数之一,它表示单位时间内单位换热面积上的传热量。
传热系数的大小直接影响着换热效率和设备尺寸,传热系数越大,换热器的性能越好。
(二)压降压降是指流体在换热器中通过程中的压力损失,它与设备的阻力、流体速度、管道布局等因素有关。
理想的换热器应该具有较小的压降,以降低能耗和提高设备效率。
(三)换热面积换热面积是指换热器传热表面的总面积,它是决定传热效率的重要因素之一。
通过增加换热面积可以提高传热效率,但也会增加设备成本和维护难度。
换热器基础知识
05
换热器的维护与保养
使用注意事项
定期检查
在使用过程中,应定期 检查换热器的运行状况, 包括温度、压力、流量 等参数,以及换热器的 外观是否有异常。
避免超载
避免长时间高负荷运行, 以防换热器过热或损坏。
保持清洁
保持换热器周围环境的 清洁,防止杂物和污垢 进入换热器内部,影响 其散热效果和使用寿命。
03
热传导的速率与物体的导热系 数、温度差和物体厚度等因素 有关。
对流换热
对流换热是指流体与固体表面之间的 热量传递过程。
对流换热的强度取决于流体的流动速 度、流体与固体表面的温差、流体的 物理性质以及固体表面的特性等因素。
在对流换热过程中,流体与固体表面 之间的温差会导致流体的流动,流动 的流体将热量带走或带入物体表面。
清洗与保养
定期清洗
根据使用情况定期清洗换热器,清除内部的污垢和杂质, 保持其散热性能和使用寿命。
更换密封件
定期检查并更换换热器的密封件,以确保其密封性能良好, 防止泄漏。
涂防锈涂料
对于金属材质的换热器,可以在其表面涂防锈涂料,以防 止锈蚀和氧化。
THANKS FOR WATCHING
感谢您的观看
在传热过程中,热量会从温度高的区域流向温度低的区域,直到达到热平衡状态。
传热过程可以通过导热、对流和辐射等方式进行。
热传导
01
热传导是指物体内部或物体之 间直接接触时,热量从高温部 分传递到低温部分的过程。
02
热传导的机制主要是由于物体 内部微观粒子运动速度不同, 导致热量从高速运动的区域流 向低速运动的区域。
常见故障及排除方法
01
换热器泄漏
如果发现换热器有泄漏现象,应立即停机检查,找出泄漏原因并修复。
换热器基础知识
化工生产中的传热过程及常见换热器4.2 传导传热4.3 对流传热4.4 间壁式热交换的计算4.5 换热器的选择及传热过程的强化化工生产中的传热过程及常见换热器1.化工生产中的传热过程系统内由于温度的差异使热量从高温向低温转移的过程称之为热量传递过程,简称传热过程。
单元操作中的蒸发、精馏、干燥等过程也需要按一定速率供给热量或移走热量;设备和管道在高温或低温下运行,尽量减少它们与外界的传热,就需要保温;传热过程不但为化工生产过程提供了必要的温度条件,保证了过程的热量平衡,满足了生产的要求,而且也是化学工业提高经济效益、保护环境的重要措施。
的传递速率要高,目的是增大设备的传热强度、提高生产能力或减小设备尺寸、降低生产费用;另一类则是要求尽量避免热量传递,需要采用隔热等方法减小传热速率。
传热过程也分为定态传热和非定态传热两种,换热器传热面上各点温度不随时间而改变的过程称为定态传热,反之,称为不定态传热。
换热器的外形和管束如下图所示.换热器的外形换热器的管束有三种方式。
①直接接触式在某些传热过程中,热气体的直接水冷却及热水的直接空气冷却等。
这种方式传热面积大,设备亦简单。
②间壁式冷、热流体用间壁隔开来,通过间壁进行换热,其型式很多。
③蓄热式使热流体流过换热器,将器内固体填充物加热,然后停止热流体,使冷流体流过蓄热器内已被热流体加热的固体填充物,如此周而复始,达到冷、热流体之间的传热目的。
.传热基本方式热量传递的基本方式有传导传热、对流传热和辐射传热三种。
①传导传热系统温度较高部分的粒子因热运动与相邻的粒子碰撞将热量传递给温度较低粒子的过程称为传导传热,简称热传导或导热。
其特点是,粒子只是在平衡位置附近振动而不发生宏观位移。
②对流传热流体中粒子发生相对宏观位移和混合,将热量由一处传至另一处的过程。
因流体内部各处温度不同造成密度差异所引起的粒子宏观位移,称为自然对流;另一是由于外界机械能量的介入迫使其粒子宏观位移,称为强制对流。
《传热换热器》课件
结构分类包括管壳式换热器、板式换热器和盘式换热器等。
换热效率
1 换热系数的计算方法
换热系数可以通过实验测定、经验公式计算或数值模拟等方式得到。
2 影响换热系数的因素
换热系数受材料、流体性质、流动状态和表面特性等因素的影响。
3 如何提高换热效率
可以通过增加换热面积、提高流体流速和优化流体流动方式等方式来提高换热效率。
传热原理
1ห้องสมุดไป่ตู้
传热的方式
传热可以通过热对流、热辐射和热传导
四大传热基本原理
2
等方式进行。
传热的基本原理包括热对流、传导、辐
射和相变。
3
热传导、热对流和热辐射
热传导是通过物质直接传递热量,热对 流是通过流体传递热量,热辐射是通过 电磁波传递热量。
换热器分类
根据传热方式分类
传热方式分类包括对流换热、辐射换热和传导换热。
《传热换热器》PPT课件
热传递和能量转换是许多工业和生活过程中至关重要的环节。本课件将介绍 传热换热器的概念、原理、分类以及在工业和生活中的应用。
概念简介
1 传热换热器
传热换热器是一种能够促进热的传递和能量 转换的设备,通过不同的传热方式实现。
2 传热和换热的区别
传热指的是热量从一个物体传递到另一个物 体,而换热则是指热量传递过程中发生相变 或物质交换。
传热换热器对于各行各业 的热传递和能量转换至关 重要,不可或缺。
2 未来的研究方向
未来的研究将聚焦于高效 能量转换、新材料和热工 性能的改进等方面。
3 传热换热器的应用前
景
随着工业和生活需求的不 断增长,传热换热器将会 有更广泛的应用前景。
应用实例
《换热器基础知识》课件
安装前的准备
调试与试运行
根据换热器的型号和规格,确定安装 位置和固定方式,准备安装所需的工 具和材料。
对换热器进行调试和试运行,检查其 工作性能和运行稳定性,确保满足使 用要求。
安装步骤与注意事项
按照安装说明书逐步完成换热器的安 装,注意确保安装的正确性和安全性 。
换热器的维护与保养
日常检查与保养
01
实验测定法
通过在换热器进出口设置温度、 压力等传感器,测量实际运行中 的换热器性能参数。
数值模拟法
02
03
理论分析法
利用计算机模拟软件,对换热器 内部流动和传热过程进行数值计 算,预测换热器的性能。
基于传热学和流体力学的基本原 理,对换热器进行理论分析和计 算。
换热器性能测试设备介绍
温度测量仪表
辐射传热
总结词
辐射传热是通过电磁波的形式传递热量,不需要介质传递。
详细描述
辐射传热的基本原理是黑体辐射定律,即物体以电磁波的形式发射和吸收能量。辐射传热的热量与物体的发射率 、温度和波长等因素有关。在换热器中,辐射传热主要发生在高温环境下,如燃烧过程和高温气体冷却等场合。
03 换热器的设计与优化
衡量换热器传热效果的重要指标,通 常用换热器入口和出口温度的差值与 热负荷的比值表示。
热效率
换热器实际传递的热量与理论热量之 比,反映换热器的能量利用效率。
流动阻力
换热器内部流体流动时所受阻力的大 小,通常以进出口压差表示。
紧凑性
换热器单位体积内的传热面积,反映 了换热器的紧凑程度和空间利用率。
换热器性能测试方法
换热器设计的基本原则
高效性原则
换热器应具备高效率,能够快 速实现热量的传递,以满足工
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、导热系数:表征物质导热能力的物性参数。 1.固体
'
式中0固体在0 C的导热系数,W/(mK),W/(mC); 温度系数,1/ C 2.液体 (1) 金属液体:t , (2) 非金属液体(除水、甘油外):t, (略减小) (3) 有机化合物水溶液的导热系数估算式为
六、传热基本方式(传热机理) 1.热传导(导热)(conduction):由微观粒子(分子、原子、离子和电子)的微观运 动传递热量的过程。 金属,自由电子的运动。 固体 分子晶体,分子的振动。 非金属 原子晶体,原子的振动。 晶格结构的振动,弹性波。 离子晶体,离子的振动。 液体,分子的不规则热运动(布朗运动),介于气体与非金属之间。 气体,分子的不规则热运动(布朗运动)。 2 .热对流(对流) (convection) :由流体质点的宏观运动传递热量的过程。由于同 时存在分子不规则热运动,所以对流必然伴随导热。 自然对流:宏观运动由流体密度差引起,而密度差由温度差引起。 强制对流:宏观运动由外力(泵、风机、位差、压差等)引起。 3.热辐射(辐射)(radiation):由电磁波传递热量的过程。 在实际问题中,传热方式很少单独存在,常常两种或三种共存
S t S t t 1 t 2 1 2 dQ dS dS 0 0 0 b b Q
S 所以 Q
t1 t2 b
——单层平壁导热公式
过程动力 传递过程有共同规律:过程速率 过程阻力
如欧姆定律
U Q C ( 库仑 ) I , I , A ( 安培 ) R t s ( 秒 )
t1 t1 t 2 Q 1
1S b t2 t2 t3 Q 2 2 2S b t3 t3 t4 Q 3 3 3S
Q Q Q Q 1 2 3
t1
1
t2
2
3
t3
t4
Q
O
b1
b2
b3
x
而由一维稳态条件,得 所以相加并整理,得
Q t1 tn1 t1 tn1 n n bi Ri i1 i1 iS
Q
t t t t t 1 2 3 1 4 b b b R R 1 1 2 3 2 3 R S S S 1 2 3
或
四、 通过圆筒壁的导热 1.单层圆筒壁 如图所设,且假定为常数 则将一维稳态条件用于傅立叶定律: q t 得 或 所以
七、换热器的类型:间壁式、混合式(图4-1)、蓄热式(图4-2)。 八、典型间壁式换热器:套管式(图4-4)和列管(壳管)式(图4-5、4-6)。 九、间壁式换热器中的传热方式:对流导热对流
T1
t2பைடு நூலகம்
T
2
T
Tw
tw
t
t1
t
T2
十、载热体:提供或取走热量的流体。 1.加热剂:提供热量的载热体。热水、饱和蒸汽、矿物油、联苯、熔盐、烟气(表4-1)。 或电。 2.冷却剂:取走热量的载热体。冷水、空气、盐水、液氨(表4-2)。或氟里昂、液氮。
第二节 热传导
一、傅立叶定律:在物体内任何一点,沿任一方向的导热热流密度(单位时间内垂直 通过单位面积的热流量)与该方向上的温度变化率成正比,即
n
式中负号表示热量传递的方向指向温度降低的方向。 q——n方向的导热热流密度,W/m2; Q——n方向的导热传热速率或热流量,W,J/s; S——与热流方向垂直的导热面积,m2; ——导热系数,W/(mK),W/(mC); a t ——n方向的温度变化率,K/m,C/m;
0 . 9 a m i i
式中a ——组分i的质量分率。 (4) 有机化合物互溶混合液的导热系数估算式为 3、气体很小,对导热不利,但有利于保温和绝热 (1) t , 5 ( 3 kPa p 2 10 kPa ) (2) p ,
5 ( p 3 kPa ,or p 2 10 kPa )
第四章 传 热
第一节 概 述
一、定义:由温度差引起的能量转移过程称为热量传递过程或传热过程,简称传热。 二、传热现象:几乎无时不有,无处不在。因为温差几乎无时不有,无处不在。 三、传热原理的应用:十分广泛。尤其在能源动力、化工冶金部门。 化学过程 单元操作 设备管道 废热利用 四、问题类型 提高(强化)传热速率 遵循相同的传热原理 降低(削弱)传热速率 五、传热状态 稳态(定常)传热: 各点温度不随时间而变 非稳态(非定常)传热:否则
2 1
dQ , q ( dQ 1 2 1
dQ dQ 1 q 2) 2 dS dS
dQ 1
dQ 2
b
所以
qb dt 0 dx
t1
t2
(t1 t2) 所以 q b dQ q 而
dS
dS 所以 dQ b 沿平面定积分,得
t t2 1
——单层平壁微分导热公式
三、 通过平壁的导热
1.单层平壁 如图所设,且假定为常数, 则将一维稳态条件用于傅立叶定律:
t q n
z, t
t1
t
dS
得 所以
q
dt dx
t dt t2
dt q const dx
,t与x成线性关系。
O x dx b
x
qdx dt 或 t b qdx dt 0 沿x方向定积分,得 t 而由一维稳态条件,知q与x无关,
将单层平壁公式改写为 式中
t t t2 ——温差,K,C; 1 b R ——热阻,K/W。 S
t t t t t Q S 1 2 1 2 b b R S
2、多层平壁 以三层平壁为例,如图所设,且假定为常数,及层与层之间接触良好,没有接触热阻,则 由 z, t 单层平壁公式,得 b1
a m i i
(3) 常压下气体混合物的导热系数估算式为
m
i yi Mi1/ 3 yi Mi1/ 3
式中y i ——组分i的摩尔分率。 M i ——组分i的摩尔质量,kg/kmol。 4、一般规律 (1) 金 非金 (2) s l g (3) 晶 非晶 气体除外 ) (4) 混 ( 纯