高考素材复习素材:一题多解 专题三 利用导数证明不等式问题
利用导数证明或解决不等式问题
![利用导数证明或解决不等式问题](https://img.taocdn.com/s3/m/4a93e466cdbff121dd36a32d7375a417866fc126.png)
利用导数证明或解决不等式问题
导数在解决不等式问题中起着非常重要的作用,利用导数可以轻松地证明和解决各种
不等式问题。
本文将通过一些具体的例子,来展示导数在不等式问题中的应用。
我们来看一个简单的例子:证明当x>0时,e^x\geq1+x。
我们可以利用导数来证明这
个不等式。
我们计算e^x和1+x的导数,分别为e^x和1。
然后我们发现e^x-1\geq x,这意味着在x>0时,e^x\geq1+x。
这样就利用导数证明了这个不等式。
除了证明不等式,我们还可以利用导数来解决不等式问题。
我们要求解不等式
x^2-5x+6>0。
我们可以通过求解x^2-5x+6的导数来判断x^2-5x+6的增减性。
首先求导得
到2x-5,然后令2x-5=0,解得x=\frac{5}{2}。
这说明在x<\frac{5}{2}时,x^2-5x+6<0,而在x>\frac{5}{2}时,x^2-5x+6>0。
不等式x^2-5x+6>0的解集是x<\frac{5}{2}或
x>\frac{3}{2}。
高三总复习数学精品课件 利用导数证明不等式
![高三总复习数学精品课件 利用导数证明不等式](https://img.taocdn.com/s3/m/ce99957b24c52cc58bd63186bceb19e8b8f6eca7.png)
19
已知函数 f(x)=ln x+x2+x.若正实数 x1,x2 满足 f(x1)+f(x2)
+x1x2=0.求证:x1+x2≥
5-1 2.
证明:f(x)=ln x+x2+x(x>0).
由 f(x1)+f(x2)+x1x2=0, 得 ln x1+x21+x1+ln x2+x22+x2+x1x2=0. 从而(x1+x2)2+(x1+x2)=x1x2-ln(x1x2),
33
(2)证明:由(1)知 a=1,所以 f(x)=x+xln x. 令 g(x)=f(x)-3(x-1), 即 g(x)=xln x-2x+3(x>0). g′(x)=ln x-1,由 g′(x)=0,得 x=e. 由 g′(x)>0,得 x>e;由 g′(x)<0,得 0<x<e. 所以 g(x)在(0,e)上单调递减,在(e,+∞)上单调递增, 所以 g(x)在(1,+∞)上的最小值为 g(e)=3-e>0. 于是在(1,+∞)上,都有 g(x)≥g(e)>0, 所以 f(x)>3(x-1).
4
已知 f(x)=1-lnxx-eex+1x+x.证明:当 x≥1 时,f(x)≥2x. 证明:由 f(x)≥2x得 1-lnxx-eex-1x+x≥0. 令 h(x)=1-lnxx-eex-1x+x(x≥1), 则 h(1)=0,h′(x)=-1-xl2n x+eex+x12+1=lnx2x+eex+1.
因此原不等式 x1x2>e2 得证.
18
换元法构造函数证明不等式的基本思路是直接消掉参数 a,再结合所证问题,
巧妙引入变量 c=xx12,从而构造相应的函数.其解题要点为: 联立消参 利用方程 f(x1)=f(x2)消掉解析式中的参数 a
高考数学一轮总复习课件:专题研究-利用导数证明不等式
![高考数学一轮总复习课件:专题研究-利用导数证明不等式](https://img.taocdn.com/s3/m/85f5dfde112de2bd960590c69ec3d5bbfd0adaa2.png)
2a2-4或x=a+
a2-4 2.
当x∈(0,a- 2a2-4),(a+ 2a2-4,+∞)时,f′(x)<0;当
x∈(a- 2a2-4,a+ 2a2-4)时,f′(x)>0.
所以f(x)在
0,a-
a2-4
2
,
a+
2a2-4,+∞
上单调递
减,在a- 2a2-4,a+ 2a2-4上单调递增.
(2)证明:由(1)知,f(x)存在两个极值点时,当且仅当a>2时
课外阅读
一、赋值法证明正整数不等式 (1)函数中与正整数有关的不等式,其实质是利用函数性质 证明数列不等式,证明此类问题时常根据已知的函数不等式, 用关于正整数n的不等式替代函数不等式中的自变量.通过多次 求和达到证明的目的.此类问题一般至少两问,所证的不等式 常由第一问根据待证式的特征而得到. (2)已知函数式为指数不等式(或对数不等式),而待证不等式 为与对数有关的不等式(或与指数有关的不等式),还要注意指、 对数式的互化,如ex>x+1可化为ln(x+1)<x等.
所以函数h′(x)=ex+1-
1 x+1
在(-1,+∞)上有唯一零点
x0,且x0∈-12,0. 因为h′(x0)=0,所以ex0+1=x0+1 1, 即ln(x0+1)=-(x0+1). 当x∈(-1,x0)时,h′(x)<0,h(x)单调递减;当x∈(x0,+
∞)时,h′(x)>0,h(x)单调递增,
(2)若f(x)存在两个极值点x1,x2,证明:
f(x1)-f(x2) x1-x2
<a
-2.
【思路】 (1)求f(x)的定义域,对函数f(x)求导,对参数a进
行分类讨论,即可判断f(x)的单调性;(2)结合(1),求出f(x)存在
利用导数证明不等式的常见题型及解题技巧(附经典详解)
![利用导数证明不等式的常见题型及解题技巧(附经典详解)](https://img.taocdn.com/s3/m/73ee5ce9900ef12d2af90242a8956bec0975a5d5.png)
利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+<分析:主要考查利用导数证明不等式的能力。
分析:主要考查利用导数证明不等式的能力。
证明:1ln )(+=¢x x g ,设)2(2)()()(xa g x g a g x F +-+=2ln ln )2()(21)2(2)()(''''x a x x a g x g xa g x g x F +-=+-=´+-=¢当a x <<0时0)(<¢x F ,当a x >时 0)(>¢x F , 即)(x F 在),0(a x Î上为减函数,在),(+¥Îa x 上为增函数上为增函数 ∴0)()(min==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+ba gb g a g设2ln )()2(2)()()(a x x a g x g a g x G --+-+=)ln(ln 2ln 2ln ln )(x a x xa x x G +-=-+-=¢\当0>x 时,0)('<x G ,因此)(x G 在区间),0(+¥上为减函数;上为减函数; 因为0)(=a G ,又a b > ∴0)()(=<a G b G , 即 02ln )()2(2)()(<--+-+a x x a g x g a g故2ln )()2(2)()(a x xa g x g a g -<+-+ 综上可知,当综上可知,当b a <<0时,2ln )()2(2)()(0a b ba b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。
专题3 导数解决不等式的恒成立和证明
![专题3 导数解决不等式的恒成立和证明](https://img.taocdn.com/s3/m/9214f6e705a1b0717fd5360cba1aa81145318f43.png)
第三章 导数专题3 导数解决不等式的恒成立和证明【三年高考精选】(2021年全国新高考Ⅰ卷数学试题) 1. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b ≠.由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--,当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=,从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.①令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=,从而()x f x e +<,所以11()f e b b +<.又由1(0,1)a ∈,可得11111(1ln )()()f f a a a a b <-==,所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b ==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>.再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<.令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换 证明112a b+>同证法2.以下证明12x x e +<. 不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<,即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s ss ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法 由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)exh x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增.因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<. 综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.视频(2020年高考全国Ⅰ卷文数20) 2. 已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2xea x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,从方程可知,2x =-不成立,即2x e a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果. 【三年高考刨析】【2022年高考预测】预测2022年高考仍是考查函数的单调性,根据不等式恒成立求参数的取值范围或不等式的证明..【2022年复习指引】由前三年的高考命题形式,在2022年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2022高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性强.所以在复习中要熟记相关的定义,法则;2.利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.4.要深入体会导数应用中蕴含的数学思想方法.数形结合思想,如通过从导函数图象特征解读函数图象的特征,或求两曲线交点个数等;等价转化思想,如将证明的不等式问题等价转化为研究相应问题的最值等.【2022年考点定位】 考点1 证明不等式典例1 (安徽省蚌埠市2021-2022学年高三上学期第一次教学质量检查)已知函数()()212,2e 21x x f x x x g x x =+-=---. (1)求()f x 的单调区间;(2)当(),1x ∈-∞时,求证:()()g x f x .【答案】(1)在(),1-∞单调递增,在()1,+∞上单调递减;(2)证明见解析. 【分析】(1)由题可以求函数的导函数,则可得()f x 的单调区间; (2)由题知要证()()g x f x ,即证2201e 2x x x x x x ---+≥-,然后利用导函数判断函数的单调性,最后利用单调性证明即可. 【详解】 (1)因为()21e 2x x f x x x =+-, 所以()()()21e 1e e 1e ex x x x x x x f x x +--=+-=', 令()0f x '=,解得1x =,∴当(),1x ∈-∞时,()()0,1,f x x ∞∈'>+时,()0f x '< 所以()f x 在(),1-∞单调递增,在()1,+∞上单调递减; (2)要证()()g x f x即证22121e 2x x x x x --+--, 即22e 0112x x x x x x --+-≥-, 设2()11e 21x F x x x=---+-,即证()0xF x .因为()2211(1)e 2xF x x =++-' 所以当(),1x ∈-∞时,()0F x '>恒成立,()F x 单调递增, 又当0x =时,()0F x =,所以当01x <<时,()0F x >,当0x <时,()0F x <; 所以当()(),1,0x xF x ∞∈-, 即当(),1x ∈-∞时,()()g x f x .【规律方法技巧】利用导数证明不等式f (x )>g (x )的基本方法 (1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max ;(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0. 2.证明不等式时的一些常见结论(1)ln x ≤x -1,等号当且仅当x =1时取到; (2)e x ≥x +1,等号当且仅当x =0时取到; (3)ln x <x <e x ,x >0; (4)≤ln(x +1)≤x ,x >-1,等号当且仅当x =0时取到.【考点针对训练】(2022贵州省贵阳市五校联考)3. 已知函数()xe f x x =.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-. 【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析. 【解析】【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x >-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【详解】(1)解:2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<; 当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值.(2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -',当40e x <<时,()0h x '>; 当4e x >时,()0h x '<,()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减,()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.【点睛】题目比较综合,第一小题是已知函数求单调性极值的问题,属于常规题目;第二小题证明不等式成立,有两种类型,一种是构造左右两个函数,若最小值大于最大值,则不等式恒成立,但是只能做证明题;若最小值不大于最大值,不能说明不等式不成立;另外一种是构造一个函数,证明最小值大于0恒成立,这种的函数会比较困难,所以优先用第一种尝试,再选取第二种方法考点2 不等式恒成立问题典例2 (2020辽宁省沈阳市2019届高三一模)已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( )A.2a ≤B.2a ≥C.0a ≤D.02a ≤≤ 【答案】A【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围. 【详解】设()1,x g x e x =--则()1x g x e '=-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【规律方法技巧】利用导数解决恒成立问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;(2)如果无法分离参数可以考虑对参数a 或自变量进行分类求解,如果是二次不等式恒成立的问题,可以考虑限制二次项系数或判别式的方法求解.(3)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. 【考点针对训练】(山西省运城市2021届高三检测)4. 当0x <时,不等式()2e e 3xxx x k k -≥恒成立,则实数k 的取值范围是__. 【答案】[]3e,0- 【解析】 【分析】由题意可得()232e 3x k x x +≤对0x <恒成立,讨论320x +=,320x +>,320x +<,运用参数分离和构造函数,利用导数判断单调性,求最值,可得所求范围.【详解】解:当0x <时,不等式()2e e 3xxx x k k -≥恒成立, 即为()232e 3x k x x +≤对0x <恒成立,Ⅰ当320x +=即23x =-时,403≤恒成立;Ⅰ当320x +<,即23x <-时,()2332e x x k x +≥恒成立,等价为()2max 332e x x k x ⎡⎤⎢⎥+⎣⎦≥, 设()()2332e x x f x x =+,()()()()()232222632e 335e 931232e 32e x x x x x x x x x x x f x x x +-+-++'==++ ()()()2313432exx x x x -+-=+,可得1x <-时,()0f x >′,()f x 递增;213x -<<-时,()0f x <′,()f x 递减, 可得()f x 在1x =-处取得最大值,且为3e -, 则3e k ≥-;Ⅰ当320x +>,即203x -<<时,()2332e x x k x +≤恒成立, 等价为()2min332e x x k x ⎡⎤⎢⎥+⎣⎦≤,设()()2332e x x f x x =+,()()()()2313432e x f x x x x x -+-'=+, 可得203x -<<时,()0f x <′,()f x 递减, 可得()0f x >, 则0k ≤,综上可得,k 的范围是[]3e,0-.【点睛】本题考查不等式恒成立问题解法,参变分离是常用的解题方法,属于中档题.方法点睛:(1)将参数和变量分离,转化为求最值问题; (2)构造函数,求导数,分析单调性; (3)求函数的最值,求出参数的范围.考点3 不等式存在成立问题典例3 (黑龙江省大庆铁人中学2021届高三第三次模拟)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A.(],2-∞B.1,8⎛⎫-+∞ ⎪⎝⎭C.12,8⎛⎫-- ⎪⎝⎭ D.()2,-+∞【答案】D 【分析】将函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间,转化1()20f x ax x '=+>在区间1()22,成立,再转化为min 212()a x>-,进而可求出结果. 【详解】因为函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间, 所以1()20f x ax x '=+>在区间1()22,上成立, 即min 212()a x>-在区间1()22,上成立,又函数2yx 在1()22,上单调递增, 所以函数21y x =-在1()22,上单调递增, 故当12x =时21y x =-最小,且min 21()=4x --,即24a >-,得2a >-. 故选:D【规律方法技巧】1.有关存在成立问题的解题方法∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.2.注意不等式恒成立与存在成立的异同不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f (a )≥g (x )(f (a )≤g (x ))对存在x ∈D 能成立等价于f (a )≥g (x )min (f (a )≤g (x )max ),f (a )≥g (x )(f (a )≤g (x ))对任意x ∈D 都成立等价于f (a )≥g (x )max (f (a )≤g (x )min ),应注意区分,不要搞混. 【考点针对训练】 (2019·吉林白山联考)5. 设函数f (x )=e x 33x x ⎛⎫+- ⎪⎝⎭-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【答案】e 【解析】【分析】已知不等式转化为2(33)x a e x x ≥-+,此不等式有正数解,只要求得2()(33)x g x e x x =-+在(0,)+∞上的最小值即可得a 的范围.【详解】原问题等价于存在x Ⅰ(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=x e (x 2-3x +3),x Ⅰ(0,+∞),则a ≥g (x )min ,而g ′(x )=x e (x 2-x ),由g ′(x )>0,得x Ⅰ(1,+∞),此时()g x 递增,由g ′(x )<0,得x Ⅰ(0,1),此时()g x 递减,Ⅰ函数g (x )在区间(0,+∞)上的极小值也是最小值为g (1)=e , Ⅰa ≥e ,即实数a 的最小值为e . 故答案为:e .【点睛】本题考查不等式有解问题,解题关键是用分离参数法转化为求函数的最值.只是求解时要注意与不等式恒成立区分开来,不等式恒成立也常常用分离参数法转化为求函数的最值,但两者所求最值一个是最大值,一个是最小值,要根据题意确定.考点4 利用导数研究方程的根(或函数的零点)典例4 (河南省郑州市商丘市名师联盟 2020-2021学年高三质量检测)已知函数()2ln f x x x =-,()33g x x xm =-+,方程()()f x g x =在区间1,e e ⎡⎤⎢⎥⎣⎦内有两个不同的实根,则m 的取值范围是( )A.2121,333e ⎛⎤+ ⎥⎝⎦ B.2221e -2,33e 3⎡⎤+⎢⎥⎣⎦ C.221,133e ⎡⎫+⎪⎢⎣⎭ D.21e 2,33⎛⎤- ⎥⎝⎦【答案】A 【分析】由题可得232ln m x x =-,构造函数()22ln h x x x =-,讨论其在1,e e ⎡⎤⎢⎥⎣⎦的变化情况即可得出答案. 【详解】由()()f x g x =,得232ln m x x =-,令()22ln h x x x =-,则()()()211x x h x x-+'=,所以()h x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,所以()()min 11h x h ==,()221122h e e h e e ⎛⎫=->=+ ⎪⎝⎭,则21132m e <≤+,即2121333m e <≤+. 故选:A.【规律方法技巧】求解涉及函数零点或方程根的问题的注意点 (1)利用函数零点存在性定理求解.(2)分离参数a 后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y =a 的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解. 【考点针对训练】(重庆市秀山高级中学校2022届高三上学期9月月考) 6. 已知函数2eln ()x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为___________.【答案】324⎛⎫⎪ ⎪⎝⎭【解析】【分析】利用导数求出函数()f x 的单调区间和最值,设()f x t =,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,故12121201102201t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,从而可求出实数m 的取值范围 【详解】依题意,求导243e 2eln e(12ln )()x x xx x f x x x ⋅--'==,令()0f x '=,解得:x =当x ∈时,()0f x '>,()f x 单调递增;当)x ∈+∞,()0f x '<,函数单调递减,且max 1()e 2f x f ===, 又0x →时,()f x →-∞;又x →+∞时,()0f x →;设()f x t =,显然当10,2t ⎛⎫∈ ⎪⎝⎭时,方程()f x t =有两个实数根,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根, 故121212011022010t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩,解得:324m ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:3,24⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:此题考查函数与方程的综合应用,考查导数的应用,解题的关键是利用导数判断出函数()f x 的单调区间和最值,设()f x t =,将问题转化为方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,然后利用一元二次方程根的分布情况求解即可,考查数学转化思想和计算能力,属于中档题【二年模拟精选】(2020河北省衡水市第二中学高三检测) 7. 已知函数21()ln 2f x x a x =+,若对任意两个不等的正数1x ,2x ,都有()()12124f x f x x x ->-恒成立,则a 的取值范围为A. [4,)+∞B. (4.?)+∞C. (,4]-∞D. (,4)-∞【答案】A 【解析】【分析】根据题意先确定g (x )=f (x )﹣4x 在(0,+∞)上单增,再利用导数转化,可得24x a x ≥-恒成立,令()24h x x x =-,求得()h x max ,即可求出实数a 的取值范围.【详解】令()()4g x f x x =-,因为()()12124f x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,+∞上单调递增,故()40ag x x x=-'+≥在()0,+∞上恒成立, 即24x a x ≥-,令()()24,0,h x x x x =-∈+∞.则()()2424h x x x h =-≤=,()h x max 4=,即a 的取值范围为[4,+∞).故选A.【点睛】本题考查了函数单调性的判定及应用,考查了原函数单调与导函数正负的关系,确定g (x )在(0,+∞)上单增是关键,属于中档题. (2020辽宁省沈阳市高三上学期一模)8. 已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( ) A. 2a ≤ B. 2a ≥C. 0a ≤D. 02a ≤≤【答案】A 【解析】【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围.【详解】设()1,x g x e x =--则()'1x g x e =-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【点睛】本题考查了构造新函数,也考查了导数的应用以及由单调性求参数的问题,属于中档题.(江西省萍乡市2021届高三上期数学期中复习试卷)9. 已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A. 2⎡⎤-⎣⎦B. (],1-∞C. ()2-D. 2⎡⎤-⎣⎦【答案】A 【解析】 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知:要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++,解得m =2a =-由图象可得222a -,综上可得a 的范围是[2-1]. 故选:A【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解. (四川省内江市威远中学2020-2021学年高三月考)10. 已知函数32()f x x x ax b =-++,12,(0,1)x x ∀∈且12x x ≠,都有1212|()()|||f x f x x x -<-成立,则实数a 的取值范围是( )A. 2(1,]3--B. 2(,0]3-C. 2[,0]3-D. [1,0]-【答案】C 【解析】 【分析】原不等式等价于()()211212x x f x f x x x --<-<恒成立,得到()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++在()0,1上严格单调,转化为()0g x '≤在()0,1上恒成立,()0h x '≥在()0,1上恒成立,利用分离参数思想转化为求最值问题即可. 【详解】不妨设1210x x >>>,则1212|()()|||f x f x x x -<-等价于()()211212x x f x f x x x --<-<,即()()()()11221122 f x x f x x f x x f x x ⎧-<-⎪⎨+>+⎪⎩,设()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++,依题意,函数()g x 在()0,1上为严格的单调递减函数, 函数()h x 在()0,1上为严格的单调递增函数,Ⅰ()23210g x x x a '=-+-≤在()0,1上恒成立,()23210h x x x a '=-++≥在()0,1上恒成立,Ⅰ2321a x x ≤-++在()0,1上恒成立,2321a x x ≥-+-在()0,1上恒成立, 而二次函数2321y x x =-++在[0,1]上的最小值在1x =时取得,且最小值为0, 二次函数2321y x x =-+-在[0,1]上的最大值在13x =时取得,其最大值为23-, 综上,实数a 的取值范围是2[,0]3-, 故选:C.【点睛】关键点点睛:去绝对值,得到两个函数的单调性,结合导数与单调性的关系,利用分离参数的思想转化为求二次函数最值问题. (2020湖南省益阳市高三上学期期末)11. 已知变量()()12,0,0x x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为(e 2.71828=为自然对数的底数)( ) A. eB.C.1eD. 1【答案】A 【解析】 【分析】不等式两边同时取对数,然后构造函数()ln xf x x=,求函数的导数,研究函数的单调性即可得到结论. 【详解】21122112ln ln x x x x x x x x <⇒<,()12,0,,0x x m m ∈>,1212ln ln x x x x ∴<恒成立, 设函数()ln xf x x=,12x x <,()()12f x f x <,()f x ∴在()0,m 上为增函数,函数的导数()21ln xf x x -'=, ()00f x x e '>⇒<<,即函数()f x 的增区间是()0,e ,则m 的最大值为e . 故选:A【点睛】关键点点睛:本题考查利用函数研究函数的单调性,本题的关键点是对已知等式变形,211212211212ln ln ln ln x x x x x x x x x x x x <⇒<⇒<,转化为求函数()ln xf x x=的单调区间. (山东省泰安肥城市2021届高三高考适应性训练)12. 已知函数()ln f x x x x =+,()g x kx k =-,若k Z ∈,且()()f x g x >对任意2x e >恒成立,则k 的最大值为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】【分析】由不等式,参变分离为ln 1x x x k x +⎛⎫< ⎪-⎝⎭,转化为求函数()ln 1x x x u x x +=-,()2,x e ∈+∞的最小值,利用导数求函数的最小值.【详解】()()f x g x >,即ln x x x kx k +>-.由于()()f x g x >对任意()2,x e ∈+∞恒成立,所以ln 1x x x k x +⎛⎫< ⎪-⎝⎭,即min ln 1x x x k x +⎛⎫< ⎪-⎝⎭.令()ln 1x x x u x x +=-,()2,x e ∈+∞,()()2ln 21x x u x x --'=-.令()ln 2h x x x =--,()1110x h x x x='-=->, 所以()h x 在()2,x e ∈+∞上单调递增,所以()()22e e 40h x h >=->,可得()0u x '>,所以()u x 在()2,e +∞上单调递增.所以()()()22223e 3e 33,4e 1e 1u x u >==+∈--.又k Z ∈,所以max 3k =. 故选:B.(广西柳州市2021届高三摸底考试)13. 已知函数212,(0)()2ln ,(0)x x x f x x x x ⎧++≤⎪=⎨⎪>⎩,若存在0x R ∈,使得()2012f x m m ≤-成立,则实数m 的取值范围是( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤⎢⎥⎣⎦D. 1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】分析函数()f x 的最小值,只需使()2min 12f x m m ≤-成立即可. 【详解】当0x ≤时,()2122f x x x =++,根据二次函数的性质可知,当1x =-时,()f x 有最小值12-;当0x >时,()ln f x x x =,由()ln 10f x x '=+=得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>, 所以()ln f x x x =在10,e x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,x e ⎛⎫∈+∞ ⎪⎝⎭上单调递增,所以()ln f x x x =最小值为11111ln 2f e e ee ⎛⎫==->- ⎪⎝⎭,则()min 12f x =-若存在0x R ∈,使得()2012f x m m ≤-成立,则()2min 12f x m m ≤- 所以21122m m -≤-,解得112m -≤≤故选:A .(重庆实验外国语学校2022届高三上学期入学考试)14. 关于函数()xf x e =,()lng x x =下列说法正确的是( )A. 对0x ∀>,()1g x x ≤-恒成立B. 对x R ∀∈,()f x ex ≥恒成立C. 若a b e >>,()()ag b bg a <D. 若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【解析】【分析】选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确; 选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()xF x e x =-的单调性即可求出答案,从而判断选项正确.【详解】选项A :令()()ln 10h x x x x =-+>,则()111xh x x x -'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >, 所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立, 即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()xx e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1-∞内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x R ∀∈,()0x ϕ≥恒成立,即对x R ∀∈,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0x e <<;由()0m x '<得x e >,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减, 所以当a b e >>时,()()m a m b <,即()()g a g b a b<, 所以a b e >>,()()ag b bg a >成立,故选项C 错误; 选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-, 所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()xF x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()xF x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立, 由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.【点睛】利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f x g x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max ()()f x g x >.(T 8联考八校2020-2021学年高三上学期第一次联考) 15. 已知函数()()ln 202x af x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【解析】 【分析】根据()0f x >恒成立,可得到含有x a ,的不等式,再进行分离变量,将“恒成立”’转化为求函数的最大值或最小值,最后得出a 的范围. 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++, 两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-, 令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减,()()max ln 11a g x g ∴>=-=,a e ∴>.故答案为:(),e +∞【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得()f x a >恒成立,可得出()min f x a >; 对于任意的x ,使得()f x a <恒成立,可得出()max f x a <. (浙江省百校2020-2021学年高三上学期12月联考)16. 已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a 的最小值为______.【答案】3e【解析】 【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x xe x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤- 令()ln f x x x =-,()111x f x x x-'=-=, Ⅰ()f x 在[)1,+∞上单调递增.Ⅰ1a >,1[,)3x ∈+∞,Ⅰ[)3,1,xe x a ∈+∞,Ⅰ33x x eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=,Ⅰ1[,1),()0,()3x g x g x ∈'>单调递增,Ⅰ(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,Ⅰ3a e ≥,Ⅰa 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键. (河北省部分学校2022届高三上学期第一次月考)17. 已知函数()32f x x x ax =--在R 上单调递增,则a 的取值范围是____________.【答案】1(,]3-∞-【解析】【分析】求出函数()f x 的导函数()f x ',再由()0f x '≥恒成立即可得解.【详解】依题意:()232x x a f x '=--,因函数()32f x x x ax =--在R 上单调递增,于是得2320x x a --≥对x ∈R 恒成立,则4120a ∆=+≤,解得13a ≤-,所以a 的取值范围是1(,]3-∞-.故答案为:1(,]3-∞-18. 已知函数()f x 的定义域为R ,()12f -=,对任意(),2x R f x '∈>,则()24f x x >+的解集为____________.【答案】(1,)-+∞. 【解析】【分析】构造()()24g x f x x =--,根据题意得到()g x 在R 为单调递增函数,又由()12f -=,得到()10g -=,进而得到1x >-时,()0g x >,即可求解.【详解】设()()24g x f x x =--,可得()()2g x f x ''=-,因为对任意(),2x R f x '∈>,所以()0g x '>,所以()g x 在R 为单调递增函数, 又由()12f -=,可得()12240g -=+-=,所以当1x >-时,()0g x >,即不等式()24f x x >+的解集为(1,)-+∞. 故答案为:(1,)-+∞.(浙江省宁波市北仑中学2021-2022学年高三上学期返校考试) 19. 设函数()ln 2ef x x mx n x=--+,若不等式()0f x ≤对任意(0,)x ∈+∞恒成立,则nm的最大值为______________. 【答案】2e 【解析】【分析】根据()0ln 22e n f x x m x x m ⎛⎫≤⇒-≤- ⎪⎝⎭转化成两个函数比较大小的问题.【详解】不等式()0f x ≤对任意(0,)x ∈+∞恒成立,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭,0x >恒成立, 设()()'21ln 0e e g x x g x x x x=-⇒=+> 所以()g x 在()0,∞+单调递增,且()0g e =,当0x →时()g x →-∞ 当x →+∞时()g x →+∞ 作出()g x 的图像如图,再设()22n h x m x m ⎛⎫=- ⎪⎝⎭,当0x >可得()h x 表示过点,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm 的最大值且满足不等式恒成立,可求2n m的最大值,由点,02n m ⎛⎫⎪⎝⎭在x 轴上方移动,只需找到合适的0m >,且()h x 与()g x 图像相切于点,02n m ⎛⎫⎪⎝⎭,如图所示,此时22n n e e m m =⇒= 故答案为:2e(江苏省扬州市仪征市精诚高级中学2021-2022学年高三上学期9月月考) 20. 已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性; (2)证明不等式2()x e ax f x --≥恒成立. 【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】(1)11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x e xϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增.又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x ex ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.(贵州省铜仁市思南中学2021届高三第十次月考)21. 已知函数()e (0)x f x ax a -=≠存在极大值1e .(1)求实数a 的值;(2)若函数F (x )=f (x )﹣m 有两个零点x 1,x 2(x 1≠x 2),求实数m 的取值范围,并证明:x 1+x 2>2.【答案】(1)a =1 (2)10e m <<,证明见解析【解析】【分析】(1)利用极值的定义,列式求出a 的值,然后进行验证即可; (2)利用(1)中的结论,确定()f x 的单调性、极值以及函数的取值情况,由零点的定义,即可得到m 的取值范围,利用12()()F x F x =,得到2211lnx x x x -=,将问题转化为证明2122111ln 2x x x x x x -<+,即证明21221111ln 21x x x x x x -<+,不妨设12x x <,令21x t x =,则1t >,从而将问题转化为证明1112t lnt t -<+对于1t >恒成立,构造函数11()ln 21t g t t t -=-+,利用导数研究函数的单调性,求解函数的取值情况,即可证明.【小问1详解】解:函数()e (0)x f x ax a -=≠, 则(1)()e xa x f x -'=, 令()0f x '=,解得1x =, 所以f (1)1e ea ==,解得1a =, 此时1()e xxf x -'=, 当1x <时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以当1x =时,函数()f x 取得极大值f (1)1e=,符合题意,。
2023年高考备考利用导数证明不等式(含答案)
![2023年高考备考利用导数证明不等式(含答案)](https://img.taocdn.com/s3/m/b99b3c95294ac850ad02de80d4d8d15abe2300c1.png)
高考材料高考材料专题10 利用导数证明不等式1.〔2023·北京市第九中学模拟预测〕已知. ()sin 2f x k x x =+(1)当时,推断函数零点的个数; 2k =()f x (2)求证:.()sin 2ln 1,(0,2x x x x π-+>+∈(答案)(1)1; (2)证明见解析. (解析) (分析)〔1〕把代入,求导得函数的单调性,再由作答. 2k =()f x (0)0f =〔2〕构造函数,利用导数借助单调性证明作答.()2sin ln(1)g x x x x =--+(1)当时,,,当且仅当时取“=〞,所以在R 上单调2k =()2sin 2f x x x =+()2cos 20f x x '=+≥(21)π,Z x k k =-∈()f x 递增,而,即0是的唯—零点, (0)0f =()f x 所以函数零点的个数是1.()f x (2),令,则,因,则,因此,函数(0,)2x π∈()2sin ln(1)g x x x x =--+()12cos 1g x x x =-'-+1cos 1,11x x <<+()0g x '>在上单调递增,,,()g x (0,)2π(0,2x π∀∈()(0)0g x g >=所以当时,成立.(0,)2x π∈()sin 2ln 1x x x -+>+2.〔2023·河南·开封市东信学校模拟预测〔文〕〕已知函数. ()ln (0)f x x ax a a =-+>(1)当时,求的单调区间; 2a =()f x (2)设函数的最大值为m ,证明:.()f x 0m ≥(答案)(1)增区间为,减区间为;10,2⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭(2)证明见解析. (解析)(分析)〔1〕利用导数研究的单调区间.()f x 〔2〕应用导数求得的最大值,再构造并利用导数证明不等式.()f x 1ln 1m f a a a ⎛⎫==-- ⎪⎝⎭()ln 1h a a a =--(1)当时,. 2a =()ln 22f x x x =-+∴,令,得. 112()2x f x x x -'=-=()0f x '=12x =∴当时,,函数单调递增; 102x <<()0f x '>()f x 当时,,函数单调递减. 12x >()0f x '<()f x 故函数的减区间为,增区间为;()f x 1,2⎛⎫+∞ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭(2)由,令,得. 1()axf x x -'=()0f x '=1x a=∴当时,,函数单调递增; 10x a<<()0f x '>()f x 当时,,函数单调递减. 1x a>()0f x '<()f x ∴.max 1()ln 1m f x f a a a ⎛⎫===-- ⎪⎝⎭令,则. ()ln 1h a a a =--11()1a h a a a-'=-=∴当时,,函数单调递减; 01a <<()0h x '<()h x 当时,,函数单调递增. 1a >()0h x '>()h x ∴,即.()(1)0h a h ≥=0m ≥3.〔2023·江苏无锡·模拟预测〕已知函数,其中m >0,f '(x )为f (x )的导函数,设,且()e (1ln )xf x m x =+()()ex f x h x '=恒成立.5()2h x ≥(1)求m 的取值范围;(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1. (答案)(1)3,2⎡⎫+∞⎪⎢⎣⎭(2)证明见解析 (解析)(分析)〔1〕求导可得解析式,即可得解析式,利用导数求得的单调区间和最小值,结合题意,即可()'f x ()h x ()h x 得m 的范围.〔2〕求得解析式,令,利用导数可得的单调性,依据零点存在性定理,可()f x ''22()1ln (0)m mt x m x x x x =++->()t x 得存在,使得t (x 2)=0,进而可得f '(x )在x =x 2处取得极小值,即x 1=x 2,所以21,12x ⎛⎫∈ ⎪⎝⎭,令,分析可得s (x 1)<0,即可得证 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭()1ln s x m x =+(1)由题设知, ()e (1ln xmf x m x x'=++则, 1ln (())0h mm x x xx ++>=所以 22(1)()m m m x h x x x x -'=-=当x >1时,h '(x )>0,则h (x )在区间(1,+∞)是增函数, 当0<x <1时,h '(x )<0,则h (x )在区间(0,1)是减函数, 所以h (x )min =h 〔1〕=,解得,512m +≥32m ≥所以m 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭高考材料高考材料(2) 222e 1ln e )n (1l x x m m m m m m x m x x x x x x f x ⎛⎫⎛⎫+++-=++- ⎪ ⎪⎝⎭⎝'=⎭'令 22()1ln (0)m mt x m x x x x=++->则=恒成立, 2322()m m m t x x x x '=-+2233(1)1(22)0m x m x x x x⎡⎤-+-+⎣⎦=>所以t (x )在(0,+∞)单调递增.又,1(1)10,1l 3ln 20n 2122t m t m ⎛⎫=+>=-≤- ⎪⎝⎭<所以存在,使得t (x 2)=0,21,12x ⎛⎫∈ ⎪⎝⎭当x ∈(0,x 2)时,t '(x )<0,即f ''(x )<0,则f '(x )在(0,x 2)单调递减; 当x ∈(x 2,+∞) 时,t '(x )>0,即f ''(x )>0,则f '(x )在(x 2,+∞)单调递增; 所以f '(x )在x =x 2处取得极小值.即x 1=x 2, 所以t (x 1)=0,即, 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭所以, 1122111(12)21ln 0m x m m m x x x x -+=-=<令,则 s (x )在(0,+∞)单调递增; ()1ln s x m x =+所以s (x 1)<0因为f (x )的零点为x 0,则,即s (x 0)=0 01ln 0m x +=所以s (x 1)<s (x 0),所以x 0>x 14.〔2023·全国·郑州一中模拟预测〔理〕〕已知函数. ()()ln 0f x ax x a =≠(1)商量函数的单调性;()f x (2)当时,证明:.1a =()e sin 1xf x x <+-(解析) (1)依题意知,,()0,x ∈+∞()()ln ln 1f x a x a a x '=+=+令得,()0f x '=1ex =当时,在上,单调递减,在单调递增;0a >10,e ⎛⎫⎪⎝⎭()0f x '<()f x 1,e ⎛⎫+∞ ⎪⎝⎭当时,在上,单调递增,在单调递减.0a <10,e ⎛⎫⎪⎝⎭()0f x '>()f x 1,e ⎛⎫+∞ ⎪⎝⎭(2)依题意,要证,ln e sin 1x x x x <+-①当时,,,故原不等式成立, 01x <≤ln 0x x ≤1sin 0e x x -+>②当时,要证:,即证:,1x >ln e sin 1x x x x <+-ln sin 1e 0x x x x --+<令,则,, ()()e ln sin 11x h x x x x x =--+>()e ln cos 1xh x x x '=--+()e 1sin 0xh x x x''=-+<∴在单调递减,∴,∴在单调递减,∴()h x '()1,+∞()()11e cos10h x h ''<=--<()h x ()1,+∞,即,故原不等式成立.()()11e sin10h x h <=--<ln sin 1e 0xx x x --+<5.〔2023·浙江·三模〕已知实数,设函数. 0a ≥2()2ln(1)(1)ln ,0f x x ax a ax x x =-++-->(1)当时,求函数的单调区间; 0a =()f x (2)假设函数单调递增,求a 的最大值;()f x (3)设是的两个不同极值点,是的最大零点.证明:. 12,x x ()f x 3x ()f x 31211x x x +<注:是自然对数的底数.e 2.71828=⋅⋅⋅(答案)(1)在上单调递增;(2)1;(3)证明见解析. ()f x (0,)+∞(解析)(分析)〔1〕求导,结合导数正负可直接求解函数的单调区间. ()f x 〔2〕由题意得对任意的的恒成立,即可求出a 的最大值. 1()23ln 0f x x a a x x--'=+≥()0,x ∞∈+〔3〕由〔2〕知,当有两个不同极值点时,,则存在两个零点,故,()f x 1a >()0f x '=12,x x ()()111222123ln 0,123ln 0.x a x x x a x x ⎧+-+=⎪⎪⎨⎪+-+=⎪⎩由此可得出,再证明:. 12112a x x +<32x a >即可证明。
2024年高考数学一轮复习+ppt+利用导数研究不等式的证明问题
![2024年高考数学一轮复习+ppt+利用导数研究不等式的证明问题](https://img.taocdn.com/s3/m/b21b623ccbaedd3383c4bb4cf7ec4afe04a1b1ad.png)
x-1 3.(2021·山东菏泽模拟)已知函数f(x)=1- ex ,g(x)=x-ln x. (1)证明:g(x)≥1; (2)证明:(x-ln x)f(x)>1-e12. 证明 (1)由题意得g′(x)=x-x 1(x>0). 当0<x<1时,g′(x)<0;当x>1时,g′(x)>0, 即g(x)在(0,1)上是减函数,在(1,+∞)上是增函数. 所以g(x)≥g(1)=1.
证明
(2)由(1)可知0<1+31n<e31n,由不等式的性质得
1+131+312…1+31n<e13·e312·…·e31n
1
=
Байду номын сангаас
<e2= e<2.
证明
2
PART TWO
课时作业
解答题 1.(2021·沧州七校联考)设a为实数,函数f(x)=ex-2x+2a,x∈R. (1)求f(x)的单调区间与极值; (2)求证:当a>ln 2-1且x>0时,ex>x2-2ax+1. 解 (1)由f(x)=ex-2x+2a,x∈R, 得f′(x)=ex-2,x∈R, 令f′(x)=0,得x=ln 2. 于是当x变化时,f′(x),f(x)的变化情况如下表:
解
单变量不等式的证明方法
(1)移项法:证明不等式f(x)>g(x)(f(x)<g(x))的问题转化为证明f(x)-g(x)> 0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x).
(2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数, 把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造 辅助函数.
利用导数证明不等式考点与题型归纳
![利用导数证明不等式考点与题型归纳](https://img.taocdn.com/s3/m/b658913ccd1755270722192e453610661ed95ab1.png)
利用导数证明不等式考点与题型归纳例1]已知函数$f(x)=1-\frac{1}{x\ln x}$,$g(x)=\frac{1}{x}-bxe^{-x}$,若曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直.(1)求$a$,$b$的值;(2)求证:当$x\geq 1$时,$f(x)+g(x)\geq\frac{1}{x\ln x}$.解](1)因为$f(x)=1-\frac{1}{x\ln x}$,所以$f'(x)=\frac{1}{x^2\ln x}$,$f'(1)=-1$。
因为$g(x)=\frac{1}{x}-bxe^{-x}$,所以$g'(x)=-\frac{1}{x^2}-be^{-x}+bxe^{-x}$,$g'(1)=1-a-b$。
因为曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直,所以$g(1)=1$,且$f'(1)\cdot g'(1)=-1$,即$g(1)=a+1-b=1$,$g'(1)=-a-1-b=1$,解得$a=-1$,$b=-1$.2)证明:由(1)知,$g(x)=-\frac{1}{x}+x$,则$f(x)+g(x)\geq\frac{1}{x\ln x}\Leftrightarrow 1-\frac{1}{x\ln x}-\frac{1}{x}+x\geq 0$,即$\frac{1}{x\ln x}-\frac{1}{x}+x\geq 1$。
令$h(x)=1-\frac{1}{x\ln x}-\frac{1}{x}+x(x\geq 1)$,则$h'(x)=\frac{2}{x^3}-\frac{1}{x^2}+\frac{1}{x\ln^2 x}+1$,因为$x\geq 1$,所以$h'(x)>0$,所以$h(x)$在$[1,+\infty)$上单调递增,所以$h(x)\geq h(1)=1-\frac{1}{\ln e}-1+1=0$,即$\frac{1}{x\ln x}-\frac{1}{x}+x\geq 1$,所以当$x\geq 1$时,$f(x)+g(x)\geq\frac{1}{x\ln x}$.解题技法]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.例2](2019·长沙模拟)已知函数$f(x)=e^{x^2}-x\ln x$.求证:当$x>1$时,$f(x)<x e^x$.证明]要证$f(x)<xe^x$,只需证$e^x-e^{-x}<\frac{\lnx}{x}$.令$h(x)=\ln x+\frac{1}{x}(x>0)$,则$h'(x)=\frac{1}{x^2}-\frac{1}{x^2}=0$,$h''(x)=\frac{2}{x^3}>0$,所以$h(x)$在$(0,+\infty)$上下凸,所以$h(x)\geq h(1)=1$,即$\lnx+\frac{1}{x}\geq 1$,即$\frac{\ln x}{x}\geq 1-\frac{1}{x}$.再令$\varphi(x)=e^x-e^{-x}$,则$\varphi'(x)=e^x+e^{-x}>0$,所以$\varphi(x)$在$(0,+\infty)$上单调递增,所以$\varphi(x)<\varphi(1)=e-e^{-1}$.因为$\frac{\ln x}{x}\geq 1-\frac{1}{x}>1-e^{-1}$,所以$\varphi(x)1$时,$f(x)<e^{x^2}-x\ln x<xe^x$.3.已知不等式 $\frac{e^{1-x_2}-e^{1-x_1}}{\ln{x_1}-\ln{x_2}}>\frac{1}{x_2}$,证明 $\ln{x_1}-\ln{x_2}>1-\frac{1}{e^{1-x_2}-e^{1-x_1}}$。
高考中用导数求解有关不等式的三类问题
![高考中用导数求解有关不等式的三类问题](https://img.taocdn.com/s3/m/b9175b45360cba1aa811daf3.png)
高考中用导数解决有关不等式的三类综合问题导数是研究函数性质的一种重要工具,例如求函数的单调区间、求最大(小)值、求极大(小)值、求函数的值域等等.而在处理有关不等式的综合性问题时往往需要利用函数的性质。
因此,很多时侯可以利用导数作为工具去研究函数的性质,从而解决很多不等式问题.下面结合近几年高考试题具体讨论导数在解决与不等式有关的三类综合问题时的作用.归,去具体研究二次函数的图像与性质。
2009年宁夏海南数学文:已知函数3223()39f x x ax a x a =--+,若14a >,且当[]1,4x a ∈时,)('x f ≤a 12恒成立,试确定实数a 的取值范围.解析:'22()369f x x ax a =--的图像是一条开口向上的抛物线,关于a x =对称. 若'11,()4a f x <≤则在[1,4a]上是增函数,从而 '()f x 在[1,4a]上的最小值是'2(1)369,f a a =--最大值是'2(4)15.f a a =由'22|()|12,1236912,f x a a x ax a a ≤-≤--≤得于是有'2'2(1)36912,(4)1512.f a a a f a a a =--≥-=≤且 由''14(1)121,(4)120.35f a a f a a a ≥--≤≤≤≤≤得由得 所以11414(,1][,1][0,],(,].43545a a ∈-∈I I 即 若1>a ,则'2'|()|1212.[1,4]|()|12f a a a x a f x a =>∈≤故当时不恒成立.所以使'|()|12([1,4])f x a x a ≤∈恒成立的实数a 的取值范围是14(,].45二、利用导数证明不等式(一)利用导数得出函数单调性后,证明不等式我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减). 高考中,在证明不等式时,根据不等式的特点,常常把不等式通过移项,适当变形,让不等号一端变为0后,把另一端构造成一个新函数,用导数研究该函数的单调性,再用函数单调性达到证明不等式的目的.2013年辽宁高考数学理第21题:已知函数x x x ax x g ex x f x cos 212)(,)1()(32+++=+=-,当]1,0[∈x 时, 求证:xx f x +≤≤-11)(1 解析:要证]1,0[∈x 时,x e x x -≥+-112)(,只需证明x x e x e x )1(1-≥+-)( . 记=)(x h x x e x e x )1(1--+-)(,则)()('x x e e x x h --=, 当)1,0(∈x 时,0)('>x h ,因此)(x h 在]1,0[上是增函数,故0)0()(=≥h x h .所以]1,0[∈x 时,x x f -≥1)(.要证]1,0[∈x 时,xe x x +≤+-1112)(,只需证明1+≥x e x . 记1)(--=x e x K x ,则1)('-=x e x K ,当)1,0(∈x 时,0)('>x K ,因此)(x K 在]1,0[上是增函数,故0)0()(=≥K x K .所以]1,0[∈x 时,xx f +≤11)(,. 综上,]1,0[∈x 时,x x f x +≤≤-11)(1. 当待证明的不等式中变量较多时,往往把其中一个作为主要的变量,其他的视作常量处理,去构造辅助函数处理,易于打开解题突破口.2004年全国高考数学理压轴题: 已知x x x g ln )(=,b a <<0,证明:<0()()2()()ln 22a b g a g b g b a ++-<- 证明:()ln g x x x =,'()ln 1g x x =+,设()()()2()2a x F x g a g x g +=+-, 则'''()()2[()]ln ln 22a x a x F x g x g x ++=-=-, 当a x <<0时'()0F x <,因此)(x F 在),0(a 内为减函数当a x >时'()0F x >,因此)(x F 在),(+∞a 上为增函数从而,当a x =时,)(x F 有极小值)(a F因为0)(=a F ,a b >,所以0)(>b F ,即0()()()2a b g a g b g +<+-. 设()()()ln 2G x F x x a =--,则'()ln ln ln 2ln ln()2a x G x x x a x +=--=-+ 当0>x 时,'()0G x <,因此)(x G 在),0(+∞上为减函数,因为0)(=a G ,a b >,所以0)(<b G .即<0()()2()()ln 22a b g a g b g b a ++-<- (二)利用导数求出函数的最值(或值域)后,再证明不等式.导数的另一个作用是求函数的最值. 因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立.从而把证明不等式问题转化为函数求最值问题.2013年课标全国Ⅱ高考数学理第21题:已知函数)ln()(m x e x f x +-=,当2≤m 时,证明:0)(>x f .解析:当2≤m ,),(+∞-∈m x 时,)2ln()ln(+≤+x m x ,故只需证明当2=m 时,0)(>x f .当2=m 时,函数21)('+-=x e x f x 在)(+∞-,2单调递增. 又0)0(,0)1(''><-f f ,故0)('=x f 在)(+∞-,2有唯一实根0x ,且)0,1(0-∈x .当),2(0x x -∈ 时,0)('<x f ;当)(0∞+∈,x x 时,0)('>x f , 从而当0x x =时,)(x f 取得最小值.由0)(0'=x f 得0e x =012x +,00)2ln(x x -=+, 故02)1(21)()(020000>++=++=≥x x x x x f x f 综上,当2≤m 时,0)(>x f . 三、利用导数解不等式一旦运用导数得到具体或抽象函数的单调性,再利用单调性的定义,结合函数值的大小关系,就可以得到自变量的大小关系,使得目标不等式获解。
利用导数证明不等式-高考数学复习
![利用导数证明不等式-高考数学复习](https://img.taocdn.com/s3/m/429c42770166f5335a8102d276a20029bd6463cd.png)
不妨设x1≥x2,由于a≤-2, 由(1)可得f(x)在(0,+∞)上单调递减. 所以|f(x1)-f(x2)|≥4|x1-x2|等价于 f(x2)-f(x1)≥4(x1-x2), 即f(x2)+4x2≥f(x1)+4x1. 令g(x)=f(x)+4x, 则 g′(x)=a+x 1+2ax+4=2ax2+4xx+a+1.
则g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而g(x)≤g(1) =0,当且仅当x=1时,等号成立. 故f(x)>g(x),即ex+xln x+x2-2x>0.
题型三 双变量不等式的证明
例3 已知函数f(x)=(a+1)ln x+ax2+1. (1)讨论函数f(x)的单调性;
f(x)的定义域为(0,+∞), f′(x)=a+x 1+2ax=2ax2+x a+1. 当a≥0时,f′(x)>0, 故f(x)在(0,+∞)上单调递增; 当a≤-1时,f′(x)<0, 故f(x)在(0,+∞)上单调递减;
利用导数证明不等式
课标要求
导数中的不等式证明是高考的常考题型,常与函数的性质、函 数的零点与极值、数列等相结合,虽然题目难度较大,但是解 题方法多种多样,如构造函数法、放缩法等,针对不同的题目, 灵活采用不同的解题方法,可以达到事半功倍的效果.
题型一 将不等式转化为函数的最值问题
例1 (12分)(2023·新高考全国Ⅰ)已知函数f(x)=a(ex+a)-x. (1)讨论f(x)的单调性;[切入点:求导,讨论a的正负] (2)证明:当a>0时,f(x)>2ln a+3 .
a+23→求
g(a)最小值
方法二:证明不等式 ex≥x+1→aex=ex+ln a≥x+ln a+1→f(x)≥a2+ln a+
文科数学高考二轮复习专题篇3用导数证明函数不等式的四种常用方法
![文科数学高考二轮复习专题篇3用导数证明函数不等式的四种常用方法](https://img.taocdn.com/s3/m/cdf5534b2a160b4e767f5acfa1c7aa00b52a9de0.png)
用导数证明函数不等式的四种常用方法本文将介绍用导数证明函数不等式的四种常用方法.例 1证明不等式:x ln( x 1()x0) .证明设 f ( x)x ln( x1)( x0),可得欲证结论即 f ( x) f (0)( x0) ,因此只要证明函数 f ( x) 是增函数.而这用导数易证:f ( x)110( x 0)x1因此欲证结论建立 .注欲证函数不等式 f (x)g ( x)( x a)( 或f ( x)g (x)( x a) ),只需证明f (x) g( x) 0( x a) (或 f ( x) g( x) 0( x a) ).设 h( x) f (x) g( x)( x a) (或 h( x) f ( x)g(x)( x a) ),即证 h( x) 0( x a)(或h( x) 0( x a) ).若 h(a)0 ,则即证 h( x)h(a)( x a) (或 h(x) h(a)( x a) ).接下来,若能证得函数h( x) 是增函数即可,这常常用导数简单解决.例 2证明不等式:x ln( x 1) .证明设 f ( x)x ln( x1)( x1) ,可得欲证结论即 f ( x)0( x1) .明显,此题不可以用例1的单一性法来证,但能够这样证明:即证f (x) x ln( x 1)( x1) 的最小值是0,而这用导数易证:f ( x) 11x( x1)x 1x1因此函数 f ( x) 在 ( 1,0],[0,) 上分别是减函数、增函数,从而可得f (x)min f ( 1) 0( x1)因此欲证结论建立.注欲证函数不等式 f (x) ( ) g( x)( x I , I是区间),只需证明f (x) g( x) ( )0( x I ) .设 h( x) f (x)g( x)( x I ),即证 h(x) ()0( x I ) ,也即证 h( x)min()0( x I ) (若h( x)min不存在,则须求函数h(x)的下确界 ) ,而这用导数常常简单解决 .例 3(2014 年高考课标全国卷I 理科第21 题 )设函数f (x)ae x ln x be x1,曲线xy f (x) 在点(1, f (1))处的切线为y e(x1) 2 .(1)求a, b;(2)证明:f (x)1.解 (1) f ( x)ae x ln x a e x b2e x 1 b e x 1.x x x题设即 f (1) 2, f(1) e ,可求得 a1, b 2 .(2)即证x ln x xe x2( x0)(请注意1,而这用导数可证 1 ):e e设 g( x)x ln x( x0),得 g( x)min g1 1 .e e设h( x)xe x2( x0) ,得 h( x) max h(1)1.e e注i) 欲证函数不等式 f ( x)g( x)( x I , I是区间),只要证明f (x) min g(x)max ( x I ) ,而这用导数常常能够解决.欲证函数不等式 f ( x)g( x)( x I , I是区间 ),只要证明f ( x)min g ( x)max( x I) ,或证明 f ( x) min g ( x) max ( x I )且两个最值点不相等,而这用导数常常也能够解决.ii) 例 3第 (2)问与《 2009年曲靖一中高考冲刺卷理科数学(一)》压轴题第 (3)问完整同样,这道压轴题 (即第 22题 )是:已知函数 f (x)xln x, g(x)x2ax 3 .(1)求函数f (x)在[t ,t2]( t0) 上的最小值;(2)对全部x (0,),2 f (x)g( x) 恒建立,务实数 a 的取值范围;(3)证明:对全部x(0,) ,都有ln x12建立.e x ex例 4(2013 年高考北京卷理科第18 题 )设 L 为曲线 C:y=ln x在点 (1, 0)处的切线.x(1)求 L 的方程;(2)证明:除切点(1, 0)以外,曲线 C 在直线 L 的下方.解 (1)( 过程略 )L 的方程为 y= x- 1.(2)即证ln x(当且仅当x1时取等号).x 1xx2-1+ ln x设 g ( x)ln x( x 0) . x 1,得 g′(x)=2x x当 0< x<1 时,x2-1<0 ,ln x<0,因此 g′(x)<0 ,得 g(x)单一递减;当 x>1 时,x2- 1>0 ,ln x>0,因此 g′(x)>0 ,得 g(x)单一递加.因此 g( x)min g(1)0 ,得欲证结论建立.(2)的另解即证 ln x x1(当且仅当x 1 时取等号),也即证x2x ln x 0 (当且仅当 x 1 时取等号).x设 g( x)x2x ln x ,可得g ( x)2x 1( x 1)( x 0) .x从而可得 g (x)min g (1)0 ,因此欲证结论建立.(2)的再解即证 ln x x 1 (当且仅当x 1 时取等号),也即证ln x x2x (当且仅当xx 1 时取等号).如图 1 所示,可求得曲线y ln x 与 y x2x(x 0) 在公共点(1,0)处的切线是 y x 1,因此接下来只要证明ln x x 1, x 1 x2x( x0) (均当且仅当x 1时取等号)前者用导数易证,后者移项配方后明显建立.因此欲证结论建立 .图 1例 5(2013 年高考新课标全国卷II 理 21(2) 的等价问题 )求证:e x ln( x 2) .剖析用前三种方法都不易解决本问题,下边介绍用导数证明函数不等式的第四种常用方法 .设f ()e x (x2),(x) ln(x2)(x2),我们想方法找寻出一个函数h( x) ,使x g得 f ( x)h( x)g( x)( x2)且两个等号不是同时取到 .自然,函数 h(x) 越简短越好.但 h( x) 不行能是常数(由于函数 g (x)ln( x2)( x2) 的值域是R),因此我们可试试h( x) 可否为一次函数,自然应该考虑切线.如图 2 所示,可求得函数 f (x)e x ( x2) 在点 A(0,1) 处的切线是y x1,从而可得f (x)h( x)( x2) ;还可求得函数g( x)ln( x 2)( x2) 在点 B(1, 0) 处的切线也是y x1,从而可得 h( x)g (x)( x2) .图 2从而可用导数证得 f ( x)h(x)g(x)( x2)且两个等号不是同时取到,因此欲证结论建立 .自然,用例 2的方法,也可给出该题的证明(设而不求 ):设 f ( x)e x ln( x2) ,得f(x) e x1(x2) .x 2可得 f (x) 是增函数(两个增函数之和是增函数),且f 120, f(1) e 10,所以函数 g (x) 存在唯一的零点 x0(得e2(x02) e x01, x02e x0 , e x01),再由均值不等式可得x02f ( x) min f ( x0 )e x0ln( x02)1ln e x0x01x02 2 0x022(由于可证x01)因此欲证结论建立 .例 6 求证:e x ln x 2 .证法 1( 例 5的证法 ) 用导数可证得e x x 1 (当且仅当x0时取等号),x 1 ln x 2 (当且仅当 x 1 时取等号),因此欲证结论建立.证法 2(例 2 的证法 )设f ( x)e x ln x ,得f( x)e x1( x0) .x可得 f(x) 是增函数且 g 11110 ,因此函数 g( x) 存在独一2e0, g (0)21.5的零点 x0(得e x01, x0 e x0),再由均值不等式可得x0f ( x)min f (x0 )e x0ln x01ln e x01x0 2 (由于可证 x01)x0x0因此欲证结论建立 .注欲证函数不等式 f ( x)g( x)( x I , I 是区间),只要找寻一个函数h( x) (能够考虑曲线y h( x)是函数y f ( x), y g( x)的公切线 ) 使得f ( x)h( x)g ( x)( x且两个等2)号不是同时取到,而这用导数常常简单解决.下边再给出例5和例 6的联系.关于两个常用不等式e x x1,ln x x 1,笔者发现y e x与 y ln x 互为反函数,y x1与 y x1也互为反函数,从而获得了本文的几个结论.定理已知 f (x), g( x) 都是单一函数,它们的反函数分别是 f 1(x), g1 (x) .(1)若f (x)是增函数, f (s)g(s) 恒建立,则 f1(t)g 1 (t ) 恒建立;(2)若f (x)是减函数, f (s)g(s)(3)若f (x)是增函数, f (s)g(s)(4)若f (x)是减函数, f (s)g(s)恒建立,则 f 1(t)g1(t ) 恒建立;恒建立,则f1(t)g1(t ) 恒建立;恒建立,则f1(t)g1(t ) 恒建立.证明下边只证明 (1),(4) ;(2),(3) 同理可证 .(1)设不等式 f (s) g(s) 中s的取值范围是A,当s A 时, f (s), g(s)的取值范围分别是f A , g A,得不等式 f 1(t ) g 1(t)中t的取值范围是 f A g A,所以t f A g A , x0A, t g( x0 ), x0g 1 (t ) .由 f ( s) g (s) 恒建立,得g( x0 ) f (x0 ) .由 f (x)是增函数,得 f 1 ( x)也是增函数,所以f 1 (g ( x0 )) f 1 ( f ( x0 )) x0g 1 ( g( x0 )) ,即 f 1(t)g 1 (t ) .得t f A g A, f 1(t ) g 1 (t ) ,即欲证结论建立.(4)设不等式 f (s) g(s) 中s的取值范围是A,当s A 时, f (s), g(s)的取值范围分别是f A , g A,得不等式 f 1(t ) g 1(t)中t的取值范围是 f A g A,所以t f A g A , x0A, t g( x0 ), x0g 1 (t ) .由 f ( s) g (s) 恒建立,得g( x0 ) f (x0 ) .由 f (x)是减函数,得 f 1( x)也是减函数,所以f 1 (g ( x0 )) f 1 ( f ( x0 )) x0g 1 ( g( x0 )) ,即 f 1(t)g 1 (t ) .得t f A g A, f 1(t ) g 1 (t ) ,即欲证结论建立.推论 1已知 f (x), g (x)都是单一函数,它们的反函数分别是 f 1 (x), g 1 (x) .(1)若f ( x), g(x)都是增函数,则 f ( s)g ( s)(2)若f ( x), g(x)都是减函数,则 f ( s)g ( s)恒建立f1 (t )g1(t) 恒建立;恒建立f1 (t )g1(t) 恒建立.证明(1) 由定理 (1) 知“”建立 .下证“”:因为 g(x) 是增函数, g 1 (t ) f 1 (t) 恒成立, g 1 (x), f1 (x) 的反函数分别是g( x), f ( x) ,因此由“”的结论得 g (s) f ( s) 恒建立,即 f (s)g(s) 恒建立.(2)同 (1)可证 .,, ”后,获得的结论均建立.推论 2把定理和推论 1 中的“”分别改为“(证法也是把相应结论中的“,”分别改为“, ”.)在例 5 与例 6 这一对姊妹结论“e x ln( x2),ln x e x 2 ”中 y e x与 y ln x 互为反函数, y ln( x2) 与 y e x 2也互为反函数,因此推论 2 中的结论“若 f ( x), g ( x)都是增函数,则 f(s)g ( s) 恒建立f1(t )g 1 (t) 恒建立”给出了它们的联系.。
专题3.4利用导数证明不等式(2021年高考数学一轮复习专题)
![专题3.4利用导数证明不等式(2021年高考数学一轮复习专题)](https://img.taocdn.com/s3/m/e001dccfdaef5ef7bb0d3c4b.png)
专题利用导数证明不等式一、题型全归纳题型一作差法构造函数证明不等式【题型要点】(1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可.(2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I).设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决.【例1】(2020·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.【解析】(1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)在(-∞,ln 2)上单调递减;当x>ln 2时,f′(x)>0,f(x)在(ln 2,+∞)上单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.【例2】已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值.(1)求实数a的值;(2)当x>1时,求证:f(x)>3(x-1).【解析】(1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x,所以f′(x)=a+ln x+1,因为函数f(x)在x=e-2处取得极小值,所以f′(e-2)=0,即a+ln e-2+1=0,所以a =1,所以f ′(x )=ln x +2.当f ′(x )>0时,x >e -2;当f ′(x )<0时,0<x <e -2, 所以f (x )在(0,e -2)上单调递减,在(e -2,+∞)上单调递增, 所以f (x )在x =e-2处取得极小值,符合题意,所以a =1.(2)证明:由(1)知a =1,所以f (x )=x +x ln x .令g (x )=f (x )-3(x -1),即g (x )=x ln x -2x +3(x >0). g ′(x )=ln x -1,由g ′(x )=0,得x =e.由g ′(x )>0,得x >e ;由g ′(x )<0,得0<x <e. 所以g (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, 所以g (x )在(1,+∞)上的最小值为g (e)=3-e >0.于是在(1,+∞)上,都有g (x )≥g (e)>0,所以f (x )>3(x -1).题型二 拆分法构造函数证明不等式【题型要点】(1)在证明不等式中,若无法转化为一个函数的最值问题,则可以考虑转化为两个函数的最值问题.(2)在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.【例1】设函数f (x )=ax 2-(x +1)ln x ,曲线y =f (x )在点(1,f (1))处切线的斜率为0. (1)求a 的值;(2)求证:当0<x ≤2时,f (x )>12x .【解】(1)f ′(x )=2ax -ln x -1-1x ,由题意,可得f ′(1)=2a -2=0,所以a =1.(2)证明:由(1)得f (x )=x 2-(x +1)ln x ,要证当0<x ≤2时,f (x )>12x ,只需证当0<x ≤2时,x -ln x x -ln x >12,即x -ln x >ln x x +12.令g (x )=x -ln x ,h (x )=ln x x +12,令g ′(x )=1-1x=0,得x =1,易知g (x )在(0,1)上单调递减,在(1,2]上单调递增,故当0<x ≤2时,g (x )min =g (1)=1.因为h ′(x )=1-ln xx 2,当0<x ≤2时,h ′(x )>0,所以h (x )在(0,2]上单调递增,故当0<x ≤2时,h (x )max =h (2)=1+ln 22<1,即h (x )max <g (x )min .故当0<x ≤2时,h (x )<g (x ),即当0<x ≤2时,f (x )>12x . 【例2】已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,求证:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),∈若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;∈若a >0,令f ′(x )=0,得x =e a ,则当0<x <e a 时,f ′(x )>0;当x >ea时,f ′(x )<0,故f (x )在⎪⎭⎫ ⎝⎛a e ,0上单调递增,在⎪⎭⎫⎝⎛+∞,a e 上单调递减. (2)证明:因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e. 记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e ,即xf (x )-e x +2e x ≤0.题型三 换元法构造函数证明不等式【题型要点】换元法构造函数证明不等式的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:【例1】已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12. 【解】(1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点(1,1),又因为f ′(x )=1x +1,所以切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0).由f (x 1)+f (x 2)+x 1x 2=0,得ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2),令t =x 1x 2(t >0),令φ(t )=t -ln t ,得φ′(t )=1-1t =t -1t,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1,所以(x 1+x 2)2+(x 1+x 2)≥1,因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. 题型四 两个经典不等式的应用【题型要点】逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决其他问题,降低了思考问题的难度,优化了推理和运算过程. (1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链: e x >x +1>x >1+ln x (x >0,且x ≠1). 【例1】设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x <x .【解析】(1)由题设知,f (x )的定义域为(0,+∞), f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增;当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1. 故当x ∈(1,+∞)时,ln x <x -1,x -1ln x >1.∈因此ln 1x <1x -1,即ln x >x -1x ,x -1ln x<x .∈故当x ∈(1,+∞)时恒有1<x -1ln x<x . 二、高效训练突破1.(2020·四省八校双教研联考)已知函数f (x )=ax -ax ln x -1(a ∈R ,a ≠0). (1)讨论函数f (x )的单调性; (2)当x >1时,求证:1x -1>1e x-1.【解析】:(1)f ′(x )=a -a (ln x +1)=-a ln x ,若a >0,则当x ∈(0,1)时,f ′(x )>0,当x ∈(1,+∞),f ′(x )<0,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减;若a <0,则当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞),f ′(x )>0,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)证明:要证1x -1>1e x -1,即证x x -1>e -x ,即证x -1x <e x ,又由第(1)问令a =1知f (x )=x -x ln x -1在(1,+∞)上单调递减,f (1)=0, 所以当x >1时,x -x ln x -1<0,即x -1x <ln x ,则只需证当x >1时,ln x <e x 即可.令F (x )=e x -ln x, x >1,则F ′(x )=e x -1x 单调递增,所以F ′(x )>F ′(1)=e -1>0,所以F (x )在(1,+∞)上单调递增,所以F (x )>F (1),而F (1)=e ,所以e x -ln x >e>0, 所以e x >ln x ,所以e x >ln x >x -1x ,所以原不等式得证.2.(2020·唐山市摸底考试)设f (x )=2x ln x +1.(1)求f (x )的最小值;(2)证明:f (x )≤x 2-x +1x+2ln x .【解】 (1)f ′(x )=2(ln x +1).所以当x ∈⎪⎭⎫ ⎝⎛e 1,0时,f ′(x )<0,f (x )单调递减;当x ∈⎪⎭⎫ ⎝⎛+∞,1e 时,f ′(x )>0,f (x )单调递增.所以当x =1e 时,f (x )取得最小值⎪⎭⎫⎝⎛e f 1=1-2e .(2)证明:x 2-x +1x +2ln x -f (x )=x (x -1)-x -1x -2(x -1)ln x =(x -1)⎪⎭⎫⎝⎛--x x x ln 21,令g (x )=x -1x -2ln x ,则g ′(x )=1+1x 2-2x =(x -1)2x 2≥0,所以g (x )在(0,+∞)上单调递增,又g (1)=0,所以当0<x <1时,g (x )<0,当x >1时,g (x )>0,所以(x -1)⎪⎭⎫⎝⎛--x x x ln 21≥0,即f (x )≤x 2-x +1x +2ln x . 3.(2020·福州模拟)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解】(1)f ′(x )=ex-a (x >0).∈若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ∈若a >0,则当0<x <e a 时,f ′(x )>0,当x >ea 时,f ′(x )<0,故f (x )在(0,e a )上单调递增,在(ea ,+∞)上单调递减.(2)证明:法一:因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以f (x )max =f (1)=-e.记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx -2e ,即xf (x )-e x +2e x ≤0.法二:由题意知,即证e x ln x -e x 2-e x +2e x ≤0,从而等价于ln x -x +2≤e xe x.设函数g (x )=ln x -x +2,则g ′(x )=1x -1.所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而g (x )在(0,+∞)上的最大值为g (1)=1. 设函数h (x )=e xe x ,则h ′(x )=e x (x -1)e x 2.所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而h (x )在(0,+∞)上的最小值为h (1)=1. 综上,当x >0时,g (x )≤h (x ),即xf (x )-e x +2e x ≤0. 4.(2019·高考北京卷节选)已知函数f (x )=14x 3-x 2+x .(1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x .【解析】:(1)由f (x )=14x 3-x 2+x 得f ′(x )=34x 2-2x +1.令f ′(x )=1,即34x 2-2x +1=1,得x =0或x =83.又f (0)=0,⎪⎭⎫ ⎝⎛38f =827,所以曲线y =f (x )的斜率为1的切线方程是y =x 与y -827=x -83, 即y =x 与y =x -6427.(2)证明:令g (x )=f (x )-x ,x ∈[-2,4].由g (x )=14x 3-x 2得g ′(x )=34x 2-2x .令g ′(x )=0得x =0或x =83.g ′(x ),g (x )的情况如下:故-6≤g (x )≤0,即x -6≤f (x )≤x .5.已知函数f (x )=ln x -ax (x >0),a 为常数,若函数f (x )有两个零点x 1,x 2(x 1≠x 2).求证:x 1x 2>e 2. 【证明】不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令c =x 1x 2(c >1),则不等式变为ln c >2(c -1)c +1.令h (c )=ln c -2(c -1)c +1,c >1,所以h ′(c )=1c -4(c +1)2=(c -1)2c (c +1)2>0,所以h (c )在(1,+∞)上单调递增,所以h (c )>h (1)=ln 1-0=0,即ln c -2(c -1)c +1>0(c >1),因此原不等式x 1x 2>e 2得证.6.已知函数()()x a ax x x f 12ln 2+++=.(1)讨论()x f 的单调性;(2)当0<a 时,证明()243--≤ax f 【解析】(1)()x f 的定义域为(0,+∞),()()()xax x a ax x x f 1211221++=+++=' 当0≥a ,则当x ∈(0,+∞)时,()0>'x f ,故()x f 在(0,+∞)上单调递增.当0<a ,则当x ∈⎪⎭⎫ ⎝⎛-a 21,0时,f ′(x )>0;当x ∈⎪⎭⎫⎝⎛+∞-,21a 时,f ′(x )<0. 故()x f 在⎪⎭⎫ ⎝⎛-a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞-,21a 上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a取得最大值,最大值为⎪⎭⎫ ⎝⎛-a f 21=a a 41121ln --⎪⎭⎫⎝⎛-. 所以()243--≤a x f 等价于24341121ln --≤--⎪⎭⎫ ⎝⎛-a a a ,即012121ln ≤++⎪⎭⎫ ⎝⎛-aa . 设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,012121ln ≤++⎪⎭⎫ ⎝⎛-a a ,即()243--≤a x f . 7.已知函数f (x )=1x -x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.【解析】(1)f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.(∈)若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0,所以f (x )在(0,+∞)单调递减. (∈)若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∈⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. (2)证明:由(1)知,f (x )存在两个极值点时,当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1. 由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x -x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减,又g (1)=0,从而当x ∈(1,+∞)时g (x )<0.所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.8.已知函数f (x )=e x ,g (x )=ln(x +a )+b .(1)当b =0时,f (x )-g (x )>0恒成立,求整数a 的最大值;(2)求证:ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <ee -1(n ∈N *).【解析】(1)现证明e x ≥x +1,设F (x )=e x -x -1,则F ′(x )=e x -1,当x ∈(0,+∞)时,F ′(x )>0,当x ∈(-∞,0)时,F ′(x )<0,所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立,即e x ≥x +1.同理可得ln(x +2)≤x +1,即e x >ln(x +2),当a ≤2时,ln(x +a )≤ln(x +2)<e x ,所以当a ≤2时,f (x )-g (x )>0恒成立. 当a ≥3时,e 0<ln a ,即e x -ln(x +a )>0不恒成立.故整数a 的最大值为2. (2)证明:由(1)知e x >ln(x +2),令x =-n +1n ,则e -n +1n >ln ⎝⎛⎭⎫-n +1n +2, 即e-n +1>ln ⎝⎛⎭⎫-n +1n +2n=[ln(n +1)-ln n ]n ,所以e 0+e -1+e -2 +…+e -n +1>ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n ,又因为e 0+e -1+e -2+…+e -n +1=1-1e n 1-1e <11-1e=e e -1, 所以ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <e e -1.。
高考数学复习点拨 利用导数解答不等式问题
![高考数学复习点拨 利用导数解答不等式问题](https://img.taocdn.com/s3/m/8c7cbced0242a8956bece463.png)
利用导数解答不等式问题导数是研究函数的工具,而不等式与函数又有着千丝万缕的联系.因此导数在分析和解决一些不等式问题具有优越性.下面举例说明:一、利用函数单调性证明不等式例1 已知a b e >>,其中e 为自然对数的底.求证:b a a b <. 证明:设ln ()()x f x x e x =>,则21ln ()x f x x -'=. 又x e >时,ln 1x >∴.()0f x '<∴.()f x ∴在()e +,∞上单调递减.又a b e >>,()()f a f b <∴,即ln ln a b a b<. ln ln b a a b <∴,ln ln b a a b <∴,即b a a b <.点评:利用导数证明不等式的关键在于构造函数,其基本的思维程序为:证明不等式()()f x g x >可等价转化为证明()()()0F x f x f x =-->.利用()0F x '>,则函数()F x 在()a b ,上是增函数加以证明.例2 证明:321sin (0)x x x x x x -++>>∈R ,.证明:构造32()1f x x x x =-++,则2()321f x x x '=-+.该二次式的判别式4120∆=-<,()0f x '>∴,()f x ∴是R 上的增函数.0x >∵,()(0)1f x f >=∴,而sin 1x ≤,321sin x x x x -++>∴.∴ x3-x2+x+1>sinx.点评:本题并没有千篇一律的将不等式右边也纳入到所构造函数中,而是具体问题具体分析,考虑三角函数的有界性,用(0)1f =架桥铺路,使问题得解.二、利用函数最值解决不等式问题例3 已知函数3()6f x x x =+-,若不等式2()23f x m m -+≤对于所有满足[22]x ∈-,恒成立,则实数m 的取值范围是 .分析:不等式2()23f x m m -+≤对于所有的[22]x ∈-,恒成立,只需223m m -+大于等于()f x 在[22]-,上的最大值. 解:2()310f x x '=+>∵,()f x ∴在[22]x ∈-,内是增函数.()f x ∴在[22]x ∈-,上的最大值是(2)4f =.2234m m -+∴≥,解得1m ≤1m ≥例4 已知函数3()3f x x x =-,证明:对任意12(11)x x -,,,不等式12()()4f x f x -<恒成立.分析:可通过证明max min ()()4f x f x -<来证明对任意12(11)x x ∈-,,,不等式12()()f x f x -恒成立,而()f x 的最大、最小值可利用导数求得.证明:()3(1)(1)f x x x '=+-. 当x 变化,()()f x f x ',变化情况如下表:得()f x 在[11]-,内是减函数,()f x 在[11]-,上的最大值max ()(1)2f x f =-=,最小值min ()(1)2f x f ==-.所以,对任意的12(11)x x ∈-,,,恒有12max min ()()()()4f x f x f x f x -<-=.广州美甲学校 峈奣尛。
高数利用导数证明不等式及导数的应用
![高数利用导数证明不等式及导数的应用](https://img.taocdn.com/s3/m/03e66d849a89680203d8ce2f0066f5335a8167b3.png)
an n2
a n a n1 ln a
a n1 (n 1)2
x x2 x3 ln(1 x) 0 f (x) 0 x x2 x3 ln(1 x)
23
23
20 利用函数的单调性 当要证的不等式两端是给定的两个表达式,或不等式一端 或两端含f(x),且知道f’(x)>0(或f”(x)>0)则常需要用单调性证. 解::为证不等式,只要证 例2 当x>0时,证明不等式
ln a n(n 1)
n 1 n
其中 ( 1 , 1)
n 1 n
1
an
1
a n1
a
ln a(1
1
),
n n 1
1
1
1
1
a n a a n1
an
a
a n1
n(n 1) n(n 1) n(n 1)
a 1, 1 1
n
n 1
1
1
1
1
1
1
an n2
a n(n 1)
a n1 (n 1)2
其辅助函数为
f
( x)
2
2 (1 x)3
2[1
(1
1 x)3
]
0
(x 0)
f (x) 1 x x 2 1 1 x
f (x) 1 2x 1 , (1 x) 2
f (0) 0 f (0) 0
f (x) x x 2 x3 ln(1 x) f (x) 0 f (0) 23
一. 证明不等式 二. 证明方程根的个数 三. 导数的应用
第五讲 利用导数 证明不等式
单击此处添加正文具体内容
一.利用导数证明不等式
利用导数证明不等式是常考的题型.主要的方法有:
高考数学(理)总复习:利用导数解决不等式问题(解析版)
![高考数学(理)总复习:利用导数解决不等式问题(解析版)](https://img.taocdn.com/s3/m/9058084b76232f60ddccda38376baf1ffc4fe31d.png)
精品基础教育教学资料,仅供参考,需要可下载使用!高考数学(理)总复习:利用导数解决不等式问题题型一 利用导数解决不等式的恒成立与能成立问题 【题型要点】已知不等式f (x ,λ)≥0(λ为实参数)对任意的x ∈D 恒成立,求参数λ的取值范围.利用导数解决这个问题的常用思想方法如下:(1)分离参数法:第一步,将原不等式f (x ,λ)≥0(x ∈D ,λ为实参数)分离,使不等式的一边是参数,另一边不含参数,即化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式;第二步,利用导数求出函数f 2(x )(x ∈D )的最大(小)值;第三步,解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min 从而求出参数λ的取值范围. (2)函数思想法:第一步,将不等式转化为某含参数的函数的最值问题; 第二步,利用导数求出该函数的极值(最值); 第三步,构建不等式求解.【例1】已知函数f (x )=x 4+ax 3+2x 2+b (x ∈R ),其中a ,b ∈R . (1)当a =-103时,讨论函数f (x )的单调性;(2)若函数f (x )仅在x =0处有极值,求a 的取值范围;(3)若对于任意的a ∈[-2,2],不等式f (x )≤1在[-1,1]上恒成立,求b 的取值范围. 【解】 (1)f ′(x )=4x 3+3ax 2+4x =x (4x 2+3ax +4). 当a =-103时,f ′(x )=x (4x 2-10x +4)=2x (2x -1)(x -2).令f ′(x )=0,解得x 1=0,x 2=12,x 3=2.当x 变化时,f ′(x ),f (x )的变化情况如下表: 所以f (x )在(0,12),(2,+∞)内是增函数,在(-∞,0),(12,2)内是减函数.(2)f ′(x )=x (4x 2+3ax +4),显然x =0不是方程4x 2+3ax +4=0的根. 为使f (x )仅在x =0处有极值,必须4x 2+3ax +4≥0成立,即有Δ=9a 2-64≤0. 解此不等式,得-83≤a ≤83.这时,f (0)=b 是唯一极值.因此满足条件的a 的取值范围是[-83,83]. (3)解:由条件a ∈[-2,2],可知Δ=9a 2-64<0,从而4x 2+3ax +4>0恒成立. 当x <0时,f ′(x )<0;当x >0时,f ′(x )>0.因此函数f (x )在[-1,1]上的最大值是f (1)与f (-1)两者中的较大者.为使对任意的a ∈[-2,2],不等式f (x )≤1在[-1,1]上恒成立,当且仅当⎩⎪⎨⎪⎧f (1)≤1f (-1)≤1,即⎩⎪⎨⎪⎧b ≤-2-ab ≤-2+a 在a ∈[-2,2]上恒成立.所以b ≤-4,因此满足条件的b 的取值范围是(-∞,-4].题组训练一 利用导数解决不等式的恒成立与能成立问题 已知函数f (x )=e x -1+ax ,a ∈R . (1)讨论函数f (x )的单调区间;(2)若∈x ∈[1,+∞),f (x )+ln x ≥a +1恒成立,求a 的取值范围.【解析】 (1)f ′(x )=e x -1+a ,(∈)当a ≥0时,f ′(x )>0,函数f (x )在R 上单调递增; (∈)当a <0时,令f ′(x )=0,则x =ln(-a )+1, 当f ′(x )>0,即x >ln(-a )+1时,函数f (x )单调递增; 当f ′(x )<0,即x <ln(-a )+1时,函数f (x )单调递减.综上,当a ≥0时,函数f (x )在R 上单调递增;当a <0时,函数f (x )的单调递增区间是(ln(-a )+1,+∞),单调递减区间是(-∞,ln(-a )+1).(2)令a =-1,由(1)可知,函数f (x )=e x -1-x 的最小值为f (1)=0,所以e x -1-x ≥0,即e x -1≥x .f (x )+ln x ≥a +1恒成立与f (x )+ln x -a -1≥0恒成立等价,令g (x )=f (x )+ln x -a -1,即g (x )=e x -1+a (x -1)+ln x -1(x ≥1),则g ′(x )=e x -1+1x +a ,∈当a ≥-2时,g ′(x )=e x -1+1x +a ≥x +1x+a ≥2x ·1x +a =a +2≥0(或令φ(x )=e x -1+1x, 则φ′(x )=e x -1-1x 2在[1,+∞)上递增,∈φ′(x )≥φ′(1)=0,∈φ(x )在[1,+∞)上递增,∈φ(x )≥φ(1)=2,∈g ′(x )≥0)∈g (x )在区间[1,+∞)上单调递增, ∈g (x )≥g (1)=0,∈f (x )+ln x ≥a +1恒成立, ∈当a <-2时,令h (x )=ex -1+1x +a ,则h ′(x )=e x -1-1x 2=x 2e x -1-1x 2, 当x ≥1时,h ′(x )≥0,函数h (x )单调递增. 又h (1)=2+a <0, h (1-a )=e 1-a -1+11-a +a ≥1-a +11-a +a =1+11-a>0,∈存在x 0∈(1,1-a ),使得h (x 0)=0,故当x ∈(1,x 0)时,h (x )<h (x 0)=0,即g ′(x )<0,故函数g (x )在(1,x 0)上单调递减;当x ∈(x 0,+∞)时,h (x )>h (x 0)=0,即g ′(x )>0,故函数g (x )在(x 0,+∞)上单调递增.∈g(x)min=g(x0)<g(1)=0,即∈x∈[1,+∞),f(x)+ln x≥a+1不恒成立,综上所述,a的取值范围是[-2,+∞).题型二利用导数证明与函数有关的不等式【题型要点】用导数证明不等式的方法(1)利用单调性:若f(x)在[a,b]上是增函数,则∈∈x∈[a,b],则f(a)≤f(x)≤f(b);∈对∈x1,x2∈[a,b],且x1<x2,则f(x1)<f(x2).对于减函数有类似结论.(2)利用最值:若f(x)在某个范围D内有最大值M(或最小值m),则对∈x∈D,有f(x)≤M(或f(x)≥m).(3)证明f(x)<g(x),可构造函数F(x)=f(x)-g(x),证明F(x)<0.【例2】已知函数f(x)=(ln x-k-1)x(k∈R).(1)当x>1时,求f(x)的单调区间和极值;(2)若对于任意x∈[e,e2],都有f(x)<4ln x成立,求k的取值范围;(3)若x1≠x2,且f(x1)=f(x2),证明:x1x2<e2k.(1)【解析】f′(x)=1x·x+ln x-k-1=ln x-k,∈当k≤0时,因为x>1,所以f′(x)=ln x-k>0,函数f(x)的单调递增区间是(1,+∞),无单调递减区间,无极值;∈当k>0时,令ln x-k=0,解得x=e k,当1<x<e k时,f′(x)<0;当x>e k时,f′(x)>0.所以函数f(x)的单调递减区间是(1,e k),单调递增区间是(e k,+∞),在区间(1,+∞)上的极小值为f(e k)=(k-k-1)e k=-e k,无极大值.(2)【解析】 由题意,f (x )-4ln x <0,即问题转化为(x -4)ln x -(k +1)x <0对于x ∈[e ,e 2]恒成立. 即k +1>(x -4)ln xx 对x ∈[e ,e 2]恒成立.令g (x )=(x -4)ln x x ,则g ′(x )=4ln x +x -4x 2,令t (x )=4ln x +x -4,x ∈[e ,e 2],则t ′(x )=4x +1>0,所以t (x )在区间[e ,e 2]上单调递增, 故t ()x min =t (e)=e -4+4=e>0,故g ′(x )>0, 所以g (x )在区间[e ,e 2]上单调递增, 函数g ()x max =g (e 2)=2-8e2.要使k +1>(x -4)ln xx 对于x ∈[e ,e 2]恒成立,只要k +1>g ()x max ,所以k +1>2-8e2,即实数k 的取值范围为⎪⎭⎫ ⎝⎛+∞-,812e (3)[证明] 因为f (x )=f (x 2),由(1)知,函数f (x )在区间(0,e k )上单调递减, 在区间(e k ,+∞)上单调递增,且f (e k +1)=0. 不妨设x 1<x 2,则0<x 1<e k <x 2<e k +1, 要证x 1x 2<e 2k ,只要证x 2<e 2k x 1,即证e k<x 2<e 2k x 1. 因为f (x )在区间(e k ,+∞)上单调递增,所以f (x 2)<f ⎪⎪⎭⎫⎝⎛12x e k .又f (x )=f (x 2),即证f (x 1)<f ⎪⎪⎭⎫⎝⎛12x e k ,构造函数h (x )=f (x )-f ⎪⎪⎭⎫⎝⎛12x e k=(ln x -k -1)x -⎪⎪⎭⎫ ⎝⎛--1ln 2k x e k e 2kx ,即h (x )=x ln x -(k +1)x +e 2k ⎪⎭⎫⎝⎛--x k x x 1ln , x ∈(0,e k ).h ′(x )=ln x +1-(k +1)+e 2k ⎪⎭⎫⎝⎛-+-221ln 1x k xx =(ln x -k )(x 2-e 2k )x 2,因为x ∈(0,e k ),所以ln x -k <0,x 2<e 2k ,即h ′(x )>0,所以函数h (x )在区间(0,e k )上单调递增,故h (x )<h (e k ),而h (e k )=f (e k )-f ⎪⎪⎭⎫ ⎝⎛k k e e2=0,故h (x )<0,所以f (x 1)<f ⎪⎪⎭⎫ ⎝⎛12x e k ,即f (x 2)=f (x 1)<f ⎪⎪⎭⎫⎝⎛12x e k ,所以x 1x 2<e 2k 成立.题组训练二 利用导数证明与函数有关的不等式 已知函数f (x )=ln x +ax(a >0).(1)若函数f (x )有零点,求实数a 的取值范围;(2)证明:当a ≥2e时,f (x )>e -x .(1)【解】 方法一 函数f (x )=ln x +ax 的定义域为(0,+∞).由f (x )=ln x +a x ,得f ′(x )=1x -a x 2=x -ax 2.因为a >0,则当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 当x =a 时,f (x )min =ln a +1. 当ln a +1≤0,即0<a ≤1e时,又f (1)=ln 1+a =a >0,则函数f (x )有零点.所以实数a 的取值范围为⎥⎦⎤⎝⎛e1,0方法二 函数f (x )=ln x +a x 的定义域为(0,+∞).由f (x )=ln x +ax =0,得a =-x ln x .令g (x )=-x ln x ,则g ′(x )=-(ln x +1).当x ∈⎪⎭⎫ ⎝⎛e 1,0时,g ′(x )>0;当x ∈⎪⎭⎫ ⎝⎛+∞,1e时,g ′(x )<0.所以函数g (x )在⎪⎭⎫ ⎝⎛e 1,0上单调递增,在⎪⎭⎫ ⎝⎛+∞,1e上单调递减.故当x =1e 时,函数g (x )取得最大值g ⎪⎭⎫⎝⎛e 1=-1e ln 1e =1e.因为函数f (x )=ln x +a x 有零点,则0<a ≤1e,所以实数a 的取值范围为⎥⎦⎤ ⎝⎛e 1,0.(2)【证明】 要证明当a ≥2e 时,f (x )>e -x ,即证明当x >0,a ≥2e 时,ln x +a x >e -x ,即x ln x +a >x e -x .令h (x )=x ln x +a ,则h ′(x )=ln x +1. 当0<x <1e 时,h ′(x )<0;当x >1e时,h ′(x )>0.所以函数h (x )在⎪⎭⎫⎝⎛e 1,0上单调递减,在⎪⎭⎫ ⎝⎛+∞,1e上单调递增.当x =1e 时,h (x )min =-1e +a .于是,当a ≥2e 时,h (x )≥-1e +a ≥1e.∈令φ(x )=x e -x ,则φ′(x )=e -x -x e -x =e -x (1-x ). 当0<x <1时,φ′(x )>0;当x >1时,φ′(x )<0.所以函数φ(x )在()0,1上单调递增,在(1,+∞)上单调递减. 当x =1时,φ(x )max =φ(1)=1e .于是,当x >0时,φ(x )≤1e.∈显然,不等式∈∈中的等号不能同时成立.故当a ≥2e时,f (x )>e -x .题型三 用赋值法证明与正整数有关的不等式 【题型要点】(1)利用导数研究的正整数不等式一般都与题目给出的函数不等式有关,如本例中给出的函数f (x )在a =12,x ≥1时,有不等式12⎪⎭⎫ ⎝⎛-x x 1≥ln x ,根据函数的定义域,这个不等式当然对一切大于等于1的数成立,这样根据所证不等式的特点,给定x 以适当的数值即可证明正整数不等式.凡涉及从1到n 的整数的不等式,而且不等式中含有ln n 的问题,一般都是通过赋值使之产生ln n +1n ,ln n n -1等使问题获得解决的,如证明12+23+…+nn +1<n +ln 2-ln(n+2)时,就是通过变换n n +1=1-1n +1,进而通过不等式x >ln(1+x )(x >0),得1n >ln ⎪⎭⎫ ⎝⎛+n 11=ln(n +1)-ln n .(2)证明正整数不等式时,要把这些正整数放在正实数的范围内,通过构造正实数的不等式进行证明,而不能直接构造正整数的函数,因为这样的函数不是可导函数,使用导数就是错误的.【例3】已知函数f (x )=ax +bx +c (a >0)的图象在点(1,f (1))处的切线方程为y =x -1.(1)用a 表示出b ,c ;(2)若f (x )≥ln x 在[1,+∞)上恒成立,求a 的取值范围; (3)证明:1+12+13+…+1n >ln(n +1)+n2(n +1)(n ≥1).【解析】 (1)f ′(x )=a -bx 2,则有⎩⎪⎨⎪⎧f (1)=a +b +c =0,f ′(1)=a -b =1,解得⎩⎪⎨⎪⎧b =a -1c =1-2a .(2)由(1)知f (x )=ax +a -1x+1-2a .令g (x )=f (x )-ln x =ax +a -1x +1-2a -ln x ,x ∈[1,+∞),则g (1)=0,g ′(x )=a -a -1x 2-1x=ax 2-x -(a -1)x 2=21)1(xa a x x a ⎪⎭⎫ ⎝⎛--- (∈)当0<a <12时,1-a a>1.若1<x <1-aa ,则g ′(x )<0,g (x )是减函数,所以g (x )<g (1)=0,即f (x )<ln x 故f (x )≥ln x 在[1,+∞)上不恒成立. (∈)当a ≥12时,1-a a≤1,若x >1,则g ′(x )>0,g (x )是增函数,所以g (x )>g (1)=0,即f (x )>ln x , 故当x ≥1时,f (x )≥ln x .综上所述,所求a 的取值范围为⎪⎭⎫⎢⎣⎡+∞,21(3)证法一:由(2)知当a ≥12时,有f (x )≥ln x (x ≥1).令a =12,有f (x )=12⎪⎭⎫ ⎝⎛-x x 1≥ln x (x ≥1),且当x >1时,12⎪⎭⎫ ⎝⎛-x x 1>ln x .令x =k +1k ,且ln k +1k <12⎪⎭⎫ ⎝⎛+-+11k k k k =12⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+11111k k ,即ln(k +1)-ln k <12⎪⎭⎫ ⎝⎛++111k k ,k =1,2,3,…,n .将上述n 个不等式依次相加得ln(n +1)<12+⎪⎭⎫ ⎝⎛+⋅⋅⋅++n 13121+12(n +1),整理得1+12+13+…1n >ln(n +1)+n2(n +1).证法二:用数学归纳法证明. ∈当n =1时,左边=1, 右边=ln 2+14<1,不等式成立.∈假设n =k 时,不等式成立,就是 1+12+13+…+1k >ln(k +1)+k 2(k +1). 那么1+12+13+…+1k +1k +1>ln(k +1)+k 2(k +1)+1k +1=ln(k +1)+k +22(k +1).由(2)知当a ≥12时,有f (x )≥ln x (x ≥1).令a =12,有f (x )=12⎪⎭⎫ ⎝⎛-x x 1≥ln x (x ≥1).令x =k +2k +1,得12⎪⎭⎫⎝⎛++-++2112k k k k ≥ln k +2k +1=ln(k +2)-ln(k +1).∈ln(k +1)+k +22(k +1)≥ln(k +2)+k +12(k +2).∈1+12+13+…+1k +1k +1>ln(k +2)+k +12(k +2).这就是说,当n =k +1时,不等式也成立, 根据∈和∈,可知不等式对任何n ∈N *都成立.题组训练三 用赋值法证明与正整数有关的不等式 设函数f (x )=e x -ax -1,对∈x ∈R ,f (x )≥0恒成立. (1)求a 的取值集合;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).【解析】 (1)f (x )=e x -ax -1,f ′(x )=e x -a ,∈当a ≤0时,f ′(x )>0,f (x )在x ∈R 上单调递增,又f (0)=0,所以当x ∈(-∞,0),f (x )<0,不合题意,舍去;∈当a >0时,x ∈(-∞,ln a ),f ′(x )<0,f (x )单调递减,x ∈(ln a ,+∞),f ′(x )>0,f (x )单调递增,f (x )min =f (ln a )=a -a ln a -1,则需a -a ln a -1≥0恒成立.令g (a )=a -a ln a -1,g ′(a )=-ln a ,当a ∈(0,1)时,g ′(a )>0,g (a )单调递增,当a ∈(1,+∞)时,g ′(a )<0,g (a )单调递减,而g (1)=0,所以a -a ln a -1≤0恒成立.所以a 的取值集合为{1}.(2)由(1)可得e x -x -1>0(x >0),x >ln(x +1)(x >0),令x =1n ,则1n >ln ⎪⎭⎫⎝⎛+11n =ln n +1n =ln(n +1)-ln n , 所以1+12+13+…+1n>(ln 2-ln 1)+(ln 3-ln 2)+…+(ln(n +1)-ln n )=ln(n +1)(n ∈N *).题型四 构造函数法在解题中的应用【例4】 已知函数f (x )=e x -3x +3a (e 为自然对数的底数,a ∈R ). (1)求f (x )的单调区间与极值;(2)求证:当a >ln 3e ,且x >0时,e x x >32x +1x -3a .【解析】 (1)由f (x )=e x -3x +3a ,知f ′(x )=e x -3. 令f ′(x )=0,得x =ln 3,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f f (x )在x =ln 3处取得极小值,极小值为f (ln 3)=3(1-ln 3+a ). (2)证明:待证不等式等价于e x >32x 2-3ax +1,设g (x )=e x -32x 2+3ax -1,于是g ′(x )=e x -3x +3a . 由(1)及a >ln 3e=ln 3-1知,g ′(x )的最小值为g ′(ln 3)=3(1-ln 3+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln 3e =ln 3-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x>32x 2-3ax +1,故e x x >32x +1x-3a .题组训练四1.构造函数解不等式已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)【解析】 因为f (x +2)为偶函数,所以f (x +2)的图象关于x =0对称,所以f (x )的图象关于x =2对称.所以f (0)=f (4)=1.设g (x )=f (x )e x (x ∈R ),则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x .又f ′(x )<f (x ),所以g ′(x )<0(x ∈R ),所以函数g (x )在定义域上单调递减. 因为f (x )<e x ∈f (x )e x <1,而g (0)=f (0)e 0=1,所以f (x )<e x ∈g (x )<g (0),所以x >0.故选B. 【答案】 B2.构造函数证明不等式设函数f (x )=ax 2ln x +b (x -1)(x >0),曲线y =f (x )过点(e ,e 2-e +1),且在点(1,0)处的切线方程为y =0.(1)求a ,b 的值;(2)证明:当x ≥1时,f (x )≥(x -1)2;(3)若当x ≥1时,f (x )≥m (x -1)2恒成立,求实数m 的取值范围.【解】 (1)函数f (x )=ax 2ln x +b (x -1)(x >0),可得f ′(x )=2a ln x +ax +b ,因为f ′(1)=a +b =0,f (e)=a e 2+b (e -1)=a (e 2-e +1)=e 2-e +1,所以a =1,b =-1.(2)证明:f (x )=x 2ln x -x +1, 设g (x )=x 2ln x +x -x 2(x ≥1),g ′(x )=2x ln x -x +1,(g ′(x ))′=2ln x +1>0,所以g ′(x )在[0,+∞)上单调递增,所以g ′(x )≥g ′(1)=0,所以g (x )在[0,+∞)上单调递增, 所以g (x )≥g (1)=0,所以f (x )≥(x -1)2.(6分) (3)设h (x )=x 2ln x -x -m (x -1)2+1, h ′(x )=2x ln x +x -2m (x -1)-1,由(2)中知x 2ln x ≥(x -1)2+x -1=x (x -1),所以x ln x ≥x -1,所以h ′(x )≥3(x -1)-2m (x -1), ∈当3-2m ≥0即m ≤32时,h ′(x )≥0,所以h (x )在[1,+∞)单调递增,所以h (x )≥h (1)=0,成立. ∈当3-2m <0即m >32时,h ′(x )=2x ln x +(1-2m )(x -1), (h ′(x ))′=2ln x +3-2m ,令(h ′(x ))′=0,得x 0=e 2m -32>1,当x ∈[1,x 0)时,h ′(x )<h ′(1)=0,所以h (x )在[1,x 0)上单调递减,所以h (x )<h (1)=0,不成立.综上,m ≤32.3.构造函数解决数列问题设函数f (x )=x 2-ln(x +1),证明:对任意的正整数n 不等式f (1)+f ⎪⎭⎫ ⎝⎛21+f ⎪⎭⎫ ⎝⎛31+…+f ⎪⎭⎫⎝⎛n 1<1+123+133+…+1n 3成立. 【证明】 从数列的角度考虑左边的通项为f ⎪⎭⎫⎝⎛n 1,右边的通项为1n 3,若能证明⎪⎭⎫ ⎝⎛n f 1<1n3,则不等式获证,为此构造函数F (x )=f (x )-x 3=x 2-ln(x +1)-x 3, 则F ′(x )=-3x 2+2x -1x +1=-3x 3+x 2-2x +1x +1=-3x 3+(x -1)2x +1,显然当x ∈[0,+∞)时,F ′(x )<0,所以函数F (x )在[0,+∞)上是单调减函数, 又F (0)=0,所以当x ∈[0,+∞)时,恒有F (x )<F (0)=0, 即x 2-ln(x +1)<x 3恒成立. 所以x ∈[0,+∞)时,f (x )<x 3, 取x =1k,则有f ⎪⎭⎫⎝⎛k 1<1k 3,所以f (1)<1,f ⎪⎭⎫ ⎝⎛21<123,…,f ⎪⎭⎫ ⎝⎛n 1<1n 3,于是对任意的正整数n ,不等式f (1)+f ⎪⎭⎫ ⎝⎛21+f ⎪⎭⎫⎝⎛31+…+f ⎪⎭⎫⎝⎛n 1<1+123+133+…+1n 3成立. 【专题训练】1.已知函数f (x )=ax 2+2x -ln(x +1)(a 为常数). (1)当a =-1时,求函数f (x )的单调区间;(2)当x ∈[0,+∞)时,不等式f (x )≤x 恒成立,求实数的取值范围.【解析】 (1)函数的定义域为(-1,+∞),当a =-1时,f (x )=-x 2+2x -ln(x +1), ∈f ′(x )=-2x +2-1x +1=1-2x 2x +1,由f ′(x )>0得,-22<x <22, 由f ′(x )<0得,-1<x <22或x >22, ∈函数f (x )的单调增区间为⎪⎪⎭⎫ ⎝⎛-22,22,单调减区间为⎪⎪⎭⎫ ⎝⎛--22,1和⎪⎪⎭⎫ ⎝⎛+∞,22(2)当x ∈[0,+∞)时,f (x )≤x 恒成立, 令g (x )=f (x )-x =ax 2+x -ln(x +1),问题转换为x ∈[0,+∞)时,g (x )max ≤0. ∈g ′(x )=2ax +1-11+x =x [2ax +(2a +1)]x +1, ∈当a =0时,g ′(x )=xx +1≥0,∈g (x )在x ∈[0,+∞)上单调递增, 此时g (x )无最大值,故a =0不合题意.∈当a >0时,令g ′(x )=0解得,x 1=0,x 2=-(2a +1)2a<0,此时g (x )在x ∈[0,+∞)上单调递增,此时无最大值,故a >0不合题意. ∈当a <0时,令g ′(x )=0解得,x 1=0,x 2=-(2a +1)2a,当-12<a <0时,x 2=-(2a +1)2a>0,而g (x )在[0,x 2)上单调递增,在[x 2,+∞)上单调递减,∈g (x )max =g (x 2)=a -14a -ln ⎪⎭⎫⎝⎛-a 21 =a -14a+ln(-2a ),令φ(x )=x -14x +ln(-2x ),x ∈⎪⎭⎫⎝⎛-0,21,则φ′(x )=1+14x 2+1x =(2x +1)24x 2>0,∈φ(x )在x ∈⎪⎭⎫⎝⎛-0,21上单调递增, 又φ⎪⎭⎫⎝⎛-81e =-1e 8+e 34-3ln 2,当e≈2.71时,e 3≈19.9,∈φ(x )在x ∈⎪⎭⎫⎝⎛-0,21上小于或等于不恒成立,即g (x )max ≤0不恒成立, 故-12<a <0不合题意.当a ≤-12时,x 2=-(2a +1)2a ≤0,而此时g (x )在x ∈[0,+∞)上单调递减, ∈g (x )max =g (0)=0,符合题意.综上可知,实数的取值范围是⎥⎦⎤ ⎝⎛-∞-21,2.已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0, f (x )单调递减.当a >0时,f ′(x )=a (x -1)x 3⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-a x a x 22. ∈0<a <2时,2a>1, 当x ∈(0,1)或x ∈⎪⎪⎭⎫ ⎝⎛+∞,2a 时,f ′(x )>0,f (x )单调递增,当x ∈⎪⎪⎭⎫⎝⎛a 2,1时,f ′(x )<0,f (x )单调递减. ∈a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. ∈a >2时,0<2a <1,当x ∈⎪⎪⎭⎫⎝⎛a 2,0或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈⎪⎪⎭⎫⎝⎛1,2a 时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)内单调递增, 在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎪⎪⎭⎫⎝⎛a 2,1内单调递减,在⎪⎪⎭⎫ ⎝⎛+∞,2a 内单调递增;当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )在⎪⎪⎭⎫⎝⎛a 2,0内单调递增, 在⎪⎪⎭⎫⎝⎛1,2a 内单调递减,在(1,+∞)内单调递增. (2)证明:由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-⎪⎭⎫ ⎝⎛+--322211x x x=x -ln x +3x +1x 2-2x3-1,x ∈[1,2].设g (x )=x -ln x ,h (x )=3x +1x 2-2x3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x≥0,可得g (x )≥g (1)=1,当且仅当x =1时取得等号,又h ′(x )=-3x 2-2x +6x 4.设φ(x )=-3x 2-2x +6,则φ(x )在x ∈[1,2]单调递减.因为φ(1)=1,φ(2)=-10,所以∈x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号. 所以f (x )-f ′(x )>g (1)+h (2)=32.即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.3.已知函数f (x )=x +a ln x (a ∈R ).(1)若曲线y =f (x )在点(1,f (1))处与直线y =3x -2相切,求a 的值;(2)若函数g (x )=f (x )-kx 2有两个零点x 1,x 2,试判断g ′⎪⎭⎫⎝⎛+221x x 的符号,并证明. 【解析】 (1)f ′(x )=1+ax,又f ′(1)=3,所以a =2.(2)当a >0时,g ′⎪⎭⎫⎝⎛+221x x <0;当a <0时,g ′⎪⎭⎫⎝⎛+221x x >0,证明如下:函数g (x )的定义域是(0,+∞).若a =0,则g (x )=f (x )-kx 2=x -kx 2. 令g (x )=0,则x -kx 2=0.又据题设分析知,k ≠0,所以x 1=0,x 2=1k.又g (x )有两个零点,且都大于0,所以a =0不成立.据题设知⎩⎪⎨⎪⎧g (x 1)=x 1+a ln x 1-kx 21=0,g (x 2)=x 2+a ln x 2-kx 22=0.不妨设x 1>x 2,x 1x 2=t ,t >1. 所以x 1-x 2+a (ln x 1-ln x 2)=k (x 1-x 2)(x 1+x 2).XX 学校 用心用情 服务教育!金榜题名 前程似锦 21 所以1+a (ln x 1-ln x 2)x 1-x 2=k (x 1+x 2).又g ′(x )=1+a x -2kx , 所以g ′⎪⎭⎫⎝⎛+221x x =1+2a x 1+x 2-k (x 1+x 2)=1+2a x 1+x 2-1-a (ln x 1-ln x 2)x 1-x 2 =a ⎪⎪⎭⎫ ⎝⎛---+212121ln ln 2x x x x x x =a x 2⎪⎭⎫ ⎝⎛--+i t t t ln 12=a x 2·1t -1()⎥⎦⎤⎢⎣⎡-+-t t t ln 112 引入h (t )=2(t -1)t +1-ln t (t >1), 则h ′(t )=4(t +1)2-1t =-(t -1)2t (t +1)2<0. 所以h (t )在(0,+∞)上单调递减. 而h (1)=0,所以当t >1时,h (t )<0.易知x 2>0,1t -1>0,所以当a >0时,g ′⎪⎭⎫ ⎝⎛+221x x <0; 当a <0时,g ′⎪⎭⎫ ⎝⎛+221x x >0.。
高考数学复习:利用导数证明不等式
![高考数学复习:利用导数证明不等式](https://img.taocdn.com/s3/m/e1f9b156bb1aa8114431b90d6c85ec3a87c28bd6.png)
3
f(-1)=e,f(1)=e,f(2)=0,
∴函数 f(x)在区间[-1,2]的最大值为 e,最小值为 0. ....................................... 5 分
(2)证明 令
1 2
x 1 2
g(x)=f(x)-2x +x-2e=(2-x)e -2x +x-2e,则
解得x=2,当x∈(2,+∞)时,g'(x)<0;
当x∈(0,2)时,g'(x)>0,
∴g(x)在(2,+∞)内单调递减,在(0,2)内单调递增,可得g(x)max=f(2)=e2+2.
由于12>e2+2,即f(x)min>g(x)max,所以f(x)>g(x),
故当x>0时,f(x)>-x3+3x2+(3-x)ex.
3(3 -1)
=
3(-1)(2 ++1)
.
令f'(x)=0可得x=1,当x∈(1,+∞)时,f'(x)>0;当x∈(0,1)时,f'(x)<0,
∴f(x)在(1,+∞)内单调递增,在(0,1)内单调递减.
(2)证明 由(1)可得f(x)min=f(1)=12.
令g(x)=-x3+3x2+(3-x)ex,则g'(x)=-3x2+6x-ex+(3-x)ex=(2-x)(ex+3x),由g'(x)=0,
所以g(a)的单调递减区间是(1,+∞),单调递增区间是(0,1),
所以g(a)≤g(1)=0,即ln a≤a-1.
利用导数证明数列不等式(含解析)
![利用导数证明数列不等式(含解析)](https://img.taocdn.com/s3/m/5235fa5ab94ae45c3b3567ec102de2bd9605de09.png)
利用导数证明数列不等式(含解析)利用导数证明数列不等式是高考中常见的题型,可以考查学生灵活运用知识的能力。
这种题型一方面以函数为背景,让学生探究函数的性质;另一方面,体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为有具体特征的数列。
可以说,这种题型涉及到函数、导数、数列和不等式,是一题多考的巧妙结合,也是近年来高考的热门题型。
常见的题型有两种类型:一种是利用放缩通项公式解决数列求和中的不等问题,另一种是利用递推公式处理通项公式中的不等问题。
恒成立不等式的来源主要有两种:一是函数的最值,最值可以提供XXX成立的不等式;二是恒成立问题的求解,参数范围内的值均可提供恒成立不等式。
常见的恒成立不等式有lnxx+1.关于前n项和的放缩问题,求数列前n项公式往往要通过数列的通项公式来解决。
高中阶段求和的方法有倒序相加、错位相减、等比数列求和公式和裂项相消。
在处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,应优先考虑。
对于数列求和不等式,要从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式。
在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向。
放缩通项公式有可能会进行多次,要注意放缩的方向,朝着可求和的通项公式进行靠拢(等比数列,裂项相消等)。
数列不等式也可考虑利用数学归纳法进行证明。
经典例题是已知函数f(x)=kx-xlnx,求函数f(x)的单调区间、当<x≤1时,f(x)≤k恒成立的k的取值范围,以及证明ln1ln2+23+lnnn(n-1)≤n+14.1.已知函数$f(x)=\ln(ax+1)(x\geq0,a>0)$,$g(x)=x-\frac{x^3}{3}$。
1)讨论函数$y=f(x)-g(x)$的单调性;2)若不等式$f(x)\geq g(x)+1$在$x\in[0,+\infty)$时恒成立,求实数$a$的取值范围;3)当$a=1$时,证明:frac{1}{1\cdot3\cdot5\cdots(3572n+1)}+\frac{1}{2\cdot4\cd ot6\cdots(3572n+2)}+\cdots+\frac{1}{(2n-1)(2n+1)}<f^{(n)}(n)(n\in N^*),$$其中$f^{(n)}(n)$表示$f(x)$的$n$阶导数在$x=n$处的值。
高三数学二轮复习 一题多解专题三 利用导数证明不等式
![高三数学二轮复习 一题多解专题三 利用导数证明不等式](https://img.taocdn.com/s3/m/9b2c36b3bcd126fff6050b31.png)
一题多解专题三:利用导数证明不等式问题1.构造函数证明不等式的方法(1)对于(或可化为)左右两边结构相同的不等式,构造函数f(x),使原不等式成为形如 f(a)>f(b)的形式.(2)对形如f(x)>g(x),构造函数F(x)= f(x)-g(x).(3)对于(或可化为)A x x f ≥),(21的不等式,可选1x (或2x )为主元,构造函数),(2x x f (或 ),(1x x f ).2.利用导数证明不等式的基本步骤(1)作差或变形. (2)构造新的函数h(x).(3)对h(x)求导. (4)利用)(x h '判断h(x)的单调性或最值. (5)结论.例:设b a R b a b ax x x x f ,,,(1)1ln()(∈+++++=为常数),曲线)(x f y =与直线x y 23=在(0,0)点相切. (1)求b a ,的值. (2)证明:当20<<x 时,69)(+<x x x f . 【解题指南】(1)点在曲线上,则点的坐标满足曲线方程;同时据导数的几何意义可以建立 另一个方程,求出a,b;(2) 构造函数,利用导数研究单调性,借助函数单调性证明不等式【解析】方法一:(1)由b ax x x x f +++++=1)1ln()(的图象过点(0,0)得b=-1; 由b ax x x x f +++++=1)1ln()(在点(0,0)的切线斜率为23,则0013()012x x y a a x =='=+=⇒=+. (2)当0>x 时,1212111)1(2+<+⇒+=++<⋅+x x x x x , 令69)()(+-=x x x f x h ,则22)6(5412111)6(54)()(+-+++=+-'='x x x x x f x h 2322)6)(1(4)1(216)6()6(54)1(2122)6(54)1(212+++-+=+-+++<+-+++=x x x x x x x x x x . 令)1(216)6()(3+-+=x x x g ,则当20<<x 时,0216)6(3)(2<-+='x x g因此)(x g 在(0,2)内是递减函数,又0)0(=g ,则20<<x 时,0)0()(=<g x g所以20<<x 时,0)(<'x h ,即69)()(+-=x x x f x h 在(0,2)内是递减函数, 由0)0(=h ,则20<<x 时,0)0()(=<h x h ,故20<<x 时,069)()(<+-=x x x f x h ,即69)(+<x x x f . 方法二:由(1)知,11)1ln()(-+++=x x x f 由基本不等式,当0>x 时,1212111)1(2+<+⇒+=++<⋅+x x x x x (i) 令x x x k -+=)1ln()(,则0)0(=k ,01111)(<+-=-+='x x x x k 故0)(<x k ,即x x <+)1ln( (ii )由(i)、(ii )得,当0>x 时,x x f 23)(<, 记x x f x x h 9)()6()(-+=,则当20<<x 时,9)12111)(6(239)()6()()(-+++++<-'++='x x x x x f x x f x h <+-++++++=)]1(18)12)(6()1(3[)1(21x x x x x x 0)187()1(4)]1(18)23)(6()1(3[)1(21<-+=+-+++++x x x x x x x x x 因此)(x h 在(0,2)内是递减函数,又0)0(=h ,得0)(<x h , 故20<<x 时,69)(+<x x x f . 针对性练习:1.设a 为实数,函数f (x )=e x -2x +2a ,x ∈R.(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. 解析 (1)由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R.令f ′(x )=0,得x =ln 2. 于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f 处取得极小值,极小值为f (ln 2)=2(1-ln 2+a ).(2)设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R.由(1)知当a >ln 2-1时,g ′(x )的最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R 都有g ′(x )>0,所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0.即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.2. 设函数x ax xx f ln 1)(+-=在),1[+∞上是增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一题多解专题三:利用导数证明不等式问题 1.构造函数证明不等式的方法
(1)对于(或可化为)左右两边结构相同的不等式,构造函数f(x),使原不等式成为形如 f(a)>f(b)的形式.
(2)对形如f(x)>g(x),构造函数F(x)= f(x)-g(x).
(3)对于(或可化为)A x x f ≥),(21的不等式,可选1x (或2x )为主元,构造函数),(2x x f (或 ),(1x x f ).
2.利用导数证明不等式的基本步骤
(1)作差或变形. (2)构造新的函数h(x).
(3)对h(x)求导. (4)利用)(x h '判断h(x)的单调性或最值. (5)结论. 例:设b a R b a b ax x x x f ,,,(1)1ln()(∈++++
+=为常数),曲线)(x f y =与直线
x y 2
3
=
在(0,0)点相切. (1)求b a ,的值. (2)证明:当20<<x 时,6
9)(+<
x x
x f . 【解题指南】(1)点在曲线上,则点的坐标满足曲线方程;同时据导数的几何意义可以建立 另一个方程,求出a,b;
(2) 构造函数,利用导数研究单调性,借助函数单调性证明不等式 【解析】方法一:(1)由b ax x x x f +++++=1)1ln()(的图象过点(0,0)得b=-1;
由b ax x x x f +++++=1)1ln()(在点(0,0)的切线斜率为
2
3,
则0
13
(
)012
x x y a a x =='
=+=
⇒=+. (2)当0>x 时,12
12111)1(2+<
+⇒+=++<⋅+x
x x x x , 令69)()(+-
=x x x f x h ,则2
2)6(54
12111)6(54)()(+-+++=+-'='x x x x x f x h 2
322)6)(1(4)1(216)6()6(54)1(21
22)6(54)1(212+++-+=+-+++
<+-+++=x x x x x x x
x x x . 令)1(216)6()(3+-+=x x x g ,则当20<<x 时,0216)6(3)(2<-+='x x g
因此)(x g 在(0,2)内是递减函数,又0)0(=g , 则20<<x 时,0)0()(=<g x g
所以20<<x 时,0)(<'x h ,即6
9)()(+-
=x x
x f x h 在(0,2)内是递减函数, 由0)0(=h ,则20<<x 时,0)0()(=<h x h , 故20<<x 时,06
9)()(<+-
=x x x f x h ,即69)(+<
x x
x f . 方法二:由(1)知,11)1ln()(-++
+=x x x f
由基本不等式,当0>x 时,12
12111)1(2+<
+⇒+=++<⋅+x
x x x x (i) 令x x x k -+=)1ln()(,则0)0(=k ,01
111)(<+-=-+='x x x x k 故0)(<x k ,即x x <+)1ln( (ii ) 由(i)、(ii )得,当0>x 时,x x f 2
3)(<
, 记x x f x x h 9)()6()(-+=,则当20<<x 时, 9)1
2111)(6(239)()6()()(-+++++<
-'++='x x x x x f x x f x h <+-++++++=
)]1(18)12)(6()1(3[)
1(21
x x x x x x
0)187()
1(4)]1(18)23)(6()1(3[)1(21<-+=+-+++++x x x
x x x x x x
因此)(x h 在(0,2)内是递减函数,又0)0(=h ,得0)(<x h , 故20<<x 时,6
9)(+<
x x
x f . 针对性练习:
1.设a 为实数,函数f (x )=e x -2x +2a ,x ∈R.
(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. 解析 (1)由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R.令f ′(x )=0,得x =ln 2. 于是当x 变化时,f ′(x ),f (x )的变化情况如下表:
故f 处取得极小值,极小值为f (ln 2)=2(1-ln 2+a ).
(2)设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R. 由(1)知当a >ln 2-1时,g ′(x )的最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R 都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 2. 设函数x ax
x
x f ln 1)(+-=
在),1[+∞上是增函数。
(1) 求正实数a 的取值范围;
(2) 设1,0>>a b ,求证:
.ln 1b
b
a b b a b a +<+<+ 解:(1)01
)(2'
≥-=
ax ax x f 对),1[+∞∈x 恒成立, x
a 1≥∴对),1[+∞∈x 恒成立 又11
≤x 1≥∴a 为所求。
(2)取b b a x +=,1,0,1>+∴>>b
b
a b a ,
一方面,由(1)知x ax
x
x f ln 1)(+-=在),1[+∞上是增函数, 0)1()(=>+∴f b b a f ,0ln 1>+++⋅+-
∴
b b a b
b a a b b a 即b a b b a +>+1ln ; 另一方面,设函数)1(ln )(>-=x x x x G )1(0111)('
>>-=-=x x
x x x G
∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G ∴当1>x 时,0)1()(>>G x G , ∴x x ln >, 即b
b
a b b a +>+ln 综上所述,
.ln 1b
b
a b b a b a +<+<+。
3.已知函数)0(ln 2)(<+=a x a x x f ,
证明:对于任意的两个正数21,x x ,总有
)2
(2)()(2
121x x f x f x f +≥+成立;
解:由:
2
12121212ln
...)2(2)()(x x x x a x
x f x f x f +==+-+, 而:21212x x x x ≥+02ln
122
1212121≤+⇒≤+⇒
x x x x x x x x ,
又因为:,0<a 所以:02ln 2
121≥+x x x x a ,即:
)2
(2)()(2
121x x f x f x f +≥+成立。
4.设0a >,函数 2()x
e f x x a
=+.
(1)求函数 ()f x 的单调区间;
(2)当1
2
x =时,函数 ()f x 取得极值,证明:对于任意的
12
13,[,],22x x ∈12()()f x f x |-|≤ 解:(1)222222
(2)[(1)1]
'()()()x x e x a x e x a f x x a x a +--+-==
++ ①当1a ≥时,'()0f x ≥恒成立,()f x 在(,)-∞+∞上是增函数;
② 当01a <<时,令()0f x '>,即2(1)10x a -+->,解得11x x <>或
因此,函数()f x 在区间 (,1-∞内单调递增,
在区间 (1)+∞内也单调递增.
令2()0,(1)10f x x a '<-+-<即,解得11x <.
因此,函数()f x 在区间
(1内单调递减. (2)当12x =
时,函数()f x 取得极值,即 1'()0,2f =211
()2022
a ∴+-⨯=,3.4a ∴= 由(Ⅰ)()f x 在1(,)2-∞单调递增,在3
(1,)2单调递减,3(,)2+∞单调递增.
()f x 在12x =
时取得极大值1
()2
f =;()f x 在32x =时取得极小值3()2f =,
故在13[,]22上,()f x 的最大值是1
()2
f 3()2f =;
对于任意的1213,[,],22x x ∈12()()f x f x |-|≤。