金属储氢材料研究进展
储氢材料研究进展

储氢材料研究进展储氢材料是一种能够吸附、存储和释放氢气的材料。
由于氢气是一种清洁、高能量密度的能源源,因此研究和开发高效、安全、可靠的储氢材料对于实现氢能源经济至关重要。
以下是储氢材料研究的一些最新进展。
一种被广泛研究的储氢材料是金属-有机骨架材料(MOFs)。
MOFs是由金属离子(或金属团簇)与有机配体构成的晶状材料。
它们具有大的表面积和可调、高度可控的孔隙结构,这使得它们能够有效地吸附和储存氢气。
近年来,研究人员发现通过改变MOFs的化学组成和结构,可以进一步提高其储氢性能。
例如,将不同的金属离子引入MOFs,并调整配体的取代基,可以改变材料的吸附容量和吸附条件。
此外,研究人员还尝试利用功能化MOFs,如在其表面引入催化剂,以提高氢气的解吸速度和反应活性。
除了MOFs,碳基材料也是另一个研究热点。
碳基材料具有优良的导电性、热稳定性和化学稳定性,使其成为理想的储氢材料。
碳纳米管、石墨烯和活性炭等碳基材料都已被广泛研究用于储氢。
石墨烯具有高表面积和高导电性,可以增加吸附氢气的能力,并提高储氢速度。
碳纳米管则可以通过改变结构和直径来调节其吸附容量。
此外,不同的活性炭材料具有不同的微孔结构和吸附能力,可以根据需要进行选择和优化。
还有一类被广泛研究的储氢材料是金属氢化物。
金属氢化物具有较高的密度和储氢容量,是一种高效的储氢材料。
然而,金属氢化物的储氢速率通常较低,且吸附和解吸氢气需要较高的温度和压力。
为解决这一问题,研究人员已经开始将金属氢化物与其他材料进行复合。
例如,金属氢化物与MOFs或碳纳米管复合可以提高储氢速率和降低操作温度和压力。
此外,添加催化剂如铂、钯或镍等也可以增加金属氢化物与氢气之间的反应速率。
除了上述材料,还有一些其他新颖的储氢材料被研究出来。
例如,储氢容量较高的两性离子材料和金属有机骨架材料,以及结合常规材料如钠、镁和铝等金属的储氢合金材料。
这些新颖材料的研究为高效、可持续、低成本的储氢技术的发展提供了新方向。
新型储氢合金的研究进展

新型储氢合金的研究进展近年来,氢气已经成为了人们越来越关注的一个话题。
作为一种绿色和清洁的能源,氢气因其高能量密度、无污染、可再生等优势,成为了未来可持续发展方向的重要候选。
然而,氢气能的应用受到氢气的储存技术的制约,而新型储氢合金的研究成果让科学家们看到了曙光。
储氢合金是指一个能够在一定压力和温度下形成储存氢气的合金。
储氢合金的主要特点是能量密度高、吸附无污染、储氢周期长、可重复使用等。
因此,储氢合金已成为氢气储存技术研究的热点之一。
新型储氢合金是相对于传统的纯种储氢金属而言的。
传统的储氢合金采用的是单一的金属材料储氢,如钛合金、镁合金等,其储氢量和吸附效率都不尽如人意。
通过对材料结构和成分的研究,科学家们发现将多种金属元素混合起来可以形成新型的储氢合金,这些新型储氢合金的储氢量和吸附性能都远远超过了传统储氢合金的水平。
其中,最具代表性的新型储氢合金之一就是LaNi5基合金。
LaNi5合金是由镧(La)、镍(Ni)以及其他金属元素组成的一种储氢材料,其在低于冰点℃的温度下,能够将氢气吸附并储存超过四十倍的自身体积,这意味着相同容积大小的储氢车辆能够装载更多的氢气。
除了LaNi5储氢合金,还有许多其他的新型储氢合金也在不断被探索和研发。
比如,近年来,研究人员发现通过在金属合金中引入纳米材料,不仅可以有效提高储氢量,而且可以增强合金的稳定性和耐腐蚀性。
此外,还有研究者利用多孔材料和杂化材料的复合结构来制备新型储氢合金。
虽然新型储氢合金已经取得了一定的研究进展,但是还存在许多待解决的问题。
首先,新型储氢合金的制备工艺需要进一步的优化和改进,以提高其生产效率和降低成本。
其次,储氢合金在储存氢气的过程中会受到氢气的影响,而影响是否会对合金的长期使用带来不良的影响,需要进一步的研究和测试。
另外,新型储氢合金的储氢量和吸附性能虽然有了大幅提高,但依然存在着进一步提高其储氢容量和提高吸附效率的问题。
总之,新型储氢合金是氢气储存技术发展的一个重要方向。
储氢材料的研究进展

储氢材料的研究进展一、本文概述随着全球能源结构的转型和可持续发展目标的日益紧迫,氢能作为一种清洁、高效的能源形式,正受到越来越多的关注。
而储氢材料作为氢能利用的关键环节,其性能的提升和技术的突破对于氢能的大规模应用具有决定性的影响。
本文旨在全面综述储氢材料的研究进展,通过对不同类型储氢材料的性能特点、应用领域以及发展趋势进行深入探讨,以期为氢能领域的科研人员和技术人员提供有益的参考和启示。
本文将首先介绍储氢材料的研究背景和重要意义,然后从物理储氢材料、化学储氢材料和复合储氢材料三个方面,分别阐述各类储氢材料的最新研究成果和进展。
在此基础上,本文将重点分析储氢材料的性能评价指标,如储氢密度、吸放氢动力学、循环稳定性等,并探讨影响这些性能指标的关键因素。
本文将展望储氢材料的发展趋势和未来研究方向,以期为推动氢能领域的技术创新和产业发展贡献一份力量。
二、储氢材料的分类储氢材料,作为能量储存和转换的重要媒介,在氢能源的应用中扮演着关键角色。
根据其储氢机制和材料特性,储氢材料大致可分为物理吸附储氢材料、化学氢化物储氢材料、金属有机骨架储氢材料以及纳米储氢材料等几大类。
物理吸附储氢材料:这类材料主要通过物理吸附作用储存氢气,如活性炭、碳纳米管、石墨烯等。
这些材料具有高的比表面积和良好的吸附性能,能够有效地吸附并储存氢气。
然而,其储氢密度相对较低,且受温度和压力影响较大。
化学氢化物储氢材料:这类材料通过化学反应将氢气转化为氢化物来储存氢,如金属氢化物(如NaAlHMgH2等)和氨硼烷等。
这类材料具有较高的储氢密度,但储氢和释氢过程通常需要较高的温度和压力,且可能伴随有副反应的发生。
金属有机骨架储氢材料:金属有机骨架(MOFs)是一种新型的多孔材料,具有高的比表面积和孔体积,以及可调的孔径和化学性质。
MOFs材料通过物理吸附或化学吸附的方式储存氢气,具有较高的储氢密度和良好的可逆性。
纳米储氢材料:纳米储氢材料主要包括纳米金属颗粒、纳米碳材料等。
储氢材料的研究进展

储氢材料的研究进展储氢材料是指能够有效地吸附和存储氢气的材料,是实现氢能源经济利用的关键技术之一、目前,储氢材料的研究进展日益迅速,主要集中在金属氢化物、碳基材料和有机多孔材料等几个方向上。
金属氢化物是当前最常用的储氢材料,其具有高储氢容量和可逆性的优点。
研究者们将重点放在改善金属氢化物的储氢动力学性能方面,包括催化剂的引入、微观结构和晶体形态的调控等。
另外,也有一些新型金属氢化物相如LiBH4、NaAlH4等被发现具有更高的储氢容量和较低的吸附解吸温度,为进一步提高金属氢化物的储氢性能提供了新的思路。
碳基材料是近年来备受关注的储氢材料。
石墨烯是一种具有单层碳原子构成的二维材料,具有大的比表面积和孔隙结构,能够容纳较多的氢气。
同时,碳纳米管、石墨烯氮化物和多壁碳纳米管等碳基材料也被广泛研究。
通过纳米材料的合成和结构调控,可以提高材料的储氢性能。
此外,研究者们还利用功能化改性碳基材料,如使用过渡金属氧化物、转金属等对其进行改性,提高其储氢性能。
有机多孔材料也是一种研究热点。
有机多孔材料具有大的比表面积和丰富的孔结构,可以通过吸附作用容纳大量的氢气。
目前,金属有机框架材料(MOF)和共轭有机多孔聚合物(CMP)是研究的主要方向。
MOF具有多元功能,通过合理选择金属和有机配体可以控制其孔隙结构和氢气吸附性能。
CMP是一种由共轭聚合物构成的大分子材料,通过调节共轭长度和交替共轭单元的数量可以改变其储氢性能。
除了上述主要的研究方向,还有一些其他新兴的储氢材料备受关注,如复合材料、离子交换树脂和化学氮化物等。
复合材料的结构多样性和优异的储氢性能使其成为研究热点。
离子交换树脂具有大的孔隙结构和高度大孔度表面积,能够吸附大量的氢气。
化学氮化物是一类新型储氢材料,具有高的储氢容量和可逆性,但需要进一步研究其可控合成和储氢动力学性能。
总之,储氢材料的研究进展日益迅速,包括金属氢化物、碳基材料和有机多孔材料等多个方向。
储氢材料的研究进展

氢的储存技术是开发利用氢能的关键性技术,如何有效地对氢进行储存,并且在使用时能够方便地释放出来,是该项技术研究的焦点。以上介绍的每一种储氢材料都有或多或少的缺点,制约其长足的发展。比如说,储氢合金虽是主要应用的储氢材料,但大多数储氢合金的自重大,寿命也是个问题,自重低的镁合金很难常温储放氢,大规模应用仍然有困难。碳纳米管储氢材料受到广泛关注,但基础研究不够,能否实用化还是个问题,目前的研究重点是提高室温、常压下氢的吸附量,在吸附机理、吸附剂的合成和吸附剂的净化等方面取得突破性进展。另一思路是制备新型的复合储氢材料,大部分储氢材料的性能都有加合的特点,而单一的储氢材料的性质也较多地为人们所认识。所以,复合储氢材料是未来储氢材料制备的一个走向。
有机物储氢的特点是:(1)储氢量大,苯和甲苯的理论储氢质量分数分别为7.19 %和6.18 %,比传统的金属氢化物、高压压缩的储氢量大得多;(2)储氢剂和氢载体的性质与汽油相似,储存、运输、维护保养安全方便,特别是储存设施的简便是传统储氢技术难以比拟的;(3)可多次循环使用,寿命长达20年;(4)加氢反应放出大量热可供利用。Touzani和Klvana等[16,17]系统地研究了MCH的脱氢反应,并对偶联于氢燃机上的脱氢反应进行了数值模拟。瑞士在研究随车脱氢,为汽车提供燃料的技术方面开展了一系列研发工作[35,36]。Parmaliana等[18]利用商品化的载Pt蜂窝状催化剂研究了苯/环己烷的加氢和脱氢反应,250℃~350℃,常压下,加氢效果最好。Cacciola等[19]论证了用环己烷和甲基环己烷作氢载体的储氢和输氢的可行性。我国的有机液体氢化物储氢技术,1994年石油大学进富[20]对利用Ni - Al2O3催化剂的甲苯气相加氢反应及其动力学进行了研究,取得了一定的进展。2003年,顾仁敖等[21]用共焦拉曼光谱研究了苯在光滑铂电极表面的电化学还原行为,表明苯可直接还原生成环己烷。
MOFs储氢

金属-有机框架物(MOFs)储氢材料研究进展摘要:介绍了一种新型储氢材料—金属-有机框架物(Metal-organic framework,MoFs)。
该材料具有许多优异的性能,如密度小、比表面积大、气孔率高等,并可通过组装来控制框架物的结构和孔径的大小,是一种具有发展前景的新型储氢材料。
在总结、评述MOFs储氢材料的储氢性能及其影响因素等基础上提出了今后的发展方向。
关键词:多孔材料;金属-有机框架物;储氢1 引言近年来,由于化石燃料及自然资源的大量消耗,对于发展新型洁净高效的能源材料来取代传统化石燃料的要求越来越迫切,亟需寻找一种可再生,洁净且含量丰富的新型能源材料。
氢是宇宙中含量最丰富的元素,有着成为将来主要能量载体的潜在优势。
最重要的是,氢与氧气反应的唯一产物是对环境无污染的水,这是当前所用石油等燃料所不能超越的优点。
然而,由于氢的体积能量密度低,如何储存大量的氢,成为氢能源时代到来所要解决的一个关键问题。
在氢气制备、传输、储存和使用过程中,如何使氢气能安全有效地储存是当前最大的障碍。
如果储存的问题解决了,必定激励氢气其他问题的解决。
因此,研究、开发氢气的储存材料与安全储氢技术是当前国际研究的前沿和热点。
2 MOFs储氢材料MOFs材料一般是由离散的金属氧化物团簇(Metal ionconnector)通过刚性有机链(Organic linker),如芳香族多元羧酸或多元胺等相互连接并自组装形成的晶态材料。
在连接过程中会形成多种有趣的拓扑结构,这些结构的形成与基于苯环的多功能分子的链接方式的差异性、金属-氧或金属-氮核(四面体配位或八面体配位)的点对称性有关。
MOFs的制备方法简单、产率高,而且可以通过设计构建单元,自组装获得不同结构的目标产物,且所得产物具有稳定的规则多孔结构。
大量研究表明,通过变换金属离子中心和有机链可以改变MOFs的孔洞尺寸和结构,进而改变储氢性能。
作为一类新型的储氢材料,MOFs具有许多优点:密度小,例如MoF-177(Zn4O(BTB)2,BTB为1,3,5-苯三安息香酸盐)的晶体密度为0.429/cm3,是目前所报道的储氢材料中最轻的;表面积大,文献报道的MOFs大多具有大于1000m2/g的表面积,比沸石还要高,尤其是MOF-177,N2吸附等温线显示它在77K下有至今所报道的最大的吸附量,其单层吸附表面积达到4500m2/g;特有的立方微孔,具有规则的大小和形状,气体吸附机理是物理吸附,可以在室温、安全压力(小于2MPa)下快速可逆地吸收氢气。
储氢材料的原理解析与研究进展

氢是一种清洁的可再生能源。
储氢材料作为一种可逆的氢元素存储材料,在现代及未来的应用十分广泛。
对于储氢材料性质的研究,将会更好地推动我国相关研究领域的进步。
随着近年来我国经济的不断发展,能源消耗也在大幅度增加,化石能源储量减少,并产生一系列的环境问题,所以寻找一种安全可靠的绿色清洁能源是必然趋势,而氢元素一直是能源系列中的“宠儿”。
由于氢能是一种可循环利用的清洁能源,将在我国能源转换中扮演重要角色。
近年来,氢能产业从行业圈内逐渐走向大众视野,被认为是具有发展潜力的新型产业。
目前唯一存在的应用问题是氢能源的存储技术问题,为了解决这一问题,储氢材料正式问世,利用金属络合物储存氢能,其质量百分密度较高且具有一定的可逆性,实现了储氢材料的正式应用,而此类材料的具体应用也可以更好地推动相关领域的发展。
氢能的储存方式分析氢能是目前发现的能源体系中储量丰富且无公害的清洁能源,是理想化石燃料替代品,而且氢能在燃烧后的生成物只有水,对我国实现“碳达峰”“碳中和”等目标具有重要意义。
在氢能的应用体系中,氢能的存储制约了氢能走向实用化和规模化。
为了解决这一问题,诞生了储氢材料理念。
目前,有3种主要的储氢方式,分别为高压气态储氢、低温液态储氢和固态储氢。
1高压气态储氢高压气态储氢是目前应用广泛、相对成熟的储氢技术,即通过压力将氢气液化至气瓶中加以储存。
该技术的优点在于,其充装释放氢气速度快,技术成熟及成本低。
而其缺点在于:一是对储氢压力容器的耐高压要求较高,商用气瓶设计压力达到20 MPa,一般充压力至15 MPa;二是其体积储氢密度不高,其体积储氢密度一般在18~40 g/L;三是在氢气压缩过程中能耗较大,且存在氢气泄漏和容器爆破等安全隐患问题。
2低温液体储氢为了解决高压气体储氢体积储氢密度低的问题,人们提出了液态储氢的概念,低温液态储氢将氢气冷却至-253℃,液化储存于低温绝热液氢罐中,储氢密度可达70.6 kg/m3,体积密度为气态时的845倍。
储氢材料的研究进展1

储氢材料的研究进展1储氢材料的研究进展1储氢材料是指能够吸附或储存大量氢气的物质,它在氢能技术的应用中起着关键作用。
目前,储氢材料的研究进展如下:1.金属氢化物:金属氢化物是一种包括氢原子的金属结构。
这类材料具有高储氢密度和相对较低的温度要求,因此在储氢领域具有重要的潜力。
最常见的金属氢化物是锂氢化物和镁氢化物。
近年来,研究人员通过改变材料的微观结构和添加催化剂等方法,成功地提高了金属氢化物的储氢性能。
2.有机储氢材料:有机储氢材料是一类由碳、氢和其他元素组成的有机化合物,它们通过化学反应吸附和储存氢气。
这类材料的优势在于其相对较低的工作温度要求和较高的储氢容量。
研究人员通过设计新型的有机储氢材料和调节其结构,有效地提高了其吸附和释放氢气的性能。
3.多孔材料:多孔材料是一类具有微孔或介孔结构的材料,其具有较大的表面积和空隙,可用于吸附和储存氢气。
常见的多孔材料包括金属有机骨架材料(MOFs)、多孔有机聚合物(POPs)、金属氧化物和碳纳米管等。
近年来,研究人员通过调节多孔材料的结构和化学组成,成功地提高了其储氢性能。
4.硼氮化物:硼氮化物是一类由硼和氮组成的化合物,其具有非常高的储氢密度和热稳定性。
硼氮化物的挑战在于其吸附和释放氢气的动力学过程较慢。
近年来,研究人员通过合成纳米材料、引入催化剂和调节硼氮化物的结构等方法,成功提高了其储氢性能。
5.复合材料:复合材料是利用不同种类的材料组合而成的材料,其吸附和储存氢气的性能可以通过调节不同组分的比例和结构来改善。
常见的复合材料包括金属-有机骨架材料的混合物、碳材料的复合体等。
研究人员通过设计和合成新型的复合材料,成功提高了其储氢性能。
总结起来,储氢材料的研究进展主要包括金属氢化物、有机储氢材料、多孔材料、硼氮化物和复合材料等。
这些材料在储氢技术中具有重要的应用潜力,研究人员通过调节其结构、应用新型催化剂和合成方法等手段,不断提高其储氢性能,推动氢能技术的发展。
高密度固态储氢材料技术研究进展

高密度固态储氢材料技术研究进展高密度固态储氢材料主要包括金属氢化物、碳材料和复合材料等。
其中,金属氢化物是最常用的固态储氢材料之一、金属氢化物可以在一定的温度和压力下吸收和释放氢气,并且具有较高的储氢容量。
目前研究中主要关注的金属氢化物材料包括镁、钛、锆等金属氢化物。
研究表明,通过纳米化处理和复合材料的制备,可以进一步提高金属氢化物的储氢性能。
另外,碳材料也是一种常用的高密度固态储氢材料。
碳材料具有较高的表面积和丰富的孔隙结构,可以提供更多的吸附位点和储氢空间。
研究表明,通过调控碳材料的结构和制备方法,可以达到更高的储氢容量和吸附能力。
除了金属氢化物和碳材料,近年来复合材料也成为了高密度固态储氢材料的研究热点。
复合材料可以结合不同的材料优点,提高储氢性能。
常见的复合材料包括金属氢化物/碳材料复合材料、金属氢化物/金属氢化物复合材料等。
这些复合材料可以在一定的条件下吸附和释放氢气,具有较高的储氢容量和动力学性能。
除了材料本身的研究,高密度固态储氢材料技术还包括储氢反应动力学和材料结构设计等方面的研究。
储氢反应动力学研究可以提高储氢速率,减少吸附和释放氢气所需的时间。
材料结构设计可以进一步优化储氢容量和动力学性能,实现更高效的储氢。
总之,高密度固态储氢材料技术在过去的几年里取得了许多重要的研究进展。
不论是金属氢化物、碳材料还是复合材料等,都在不断地提高储氢容量和动力学性能。
未来,我们可以期待高密度固态储氢材料技术在氢能源储存和传输领域的广泛应用。
储氢材料研究进展

储氢材料研究进展储氢是一种将氢气存储起来以便在需要时释放的技术。
储氢材料是指能够吸附、吸收或反应氢气的材料。
目前,储氢材料的研究已经取得了一些进展,下面将对其进行具体介绍。
第一种储氢材料是吸附剂。
吸附剂是指能通过物理吸附将氢气吸附到其表面的材料。
目前研究表明,金属有机框架材料(MOFs)在储氢方面具有很大的潜力。
MOFs具有高度可调性,表面积大,孔径大小可调,能够提供更好的吸附效果。
此外,碳材料,如活性炭、石墨烯等,也是一种常见的吸附剂。
通过改变碳材料的结构和表面性质,可以提高其吸附氢气的能力。
第二种储氢材料是吸收剂。
吸收剂是指能够将氢气通过化学反应吸收到其内部结构中的材料。
一种典型的吸收剂是金属氢化物。
金属氢化物可以将氢气转化为金属氢化物,并在需要时释放出氢气。
近年来,一种新型的金属氢化物材料,即主族金属氢化物(如LiH、MgH2等),显示出了较高的储氢能力。
此外,还有其他吸收剂,如复合材料和拓扑结构材料,也显示出潜在的储氢性能。
第三种储氢材料是反应剂。
反应剂是指能够通过与氢气发生化学反应来储存氢气的材料。
一种常见的反应剂是金属合金。
金属合金通常由两种或多种金属的混合物组成,能够与氢气发生反应,并在需要时释放出氢气。
例如,氢化镁镍合金是一种常用的储氢材料,具有较高的储氢能力。
此外,还有其他一些金属合金和复合材料被研究作为储氢材料。
总的来说,储氢材料的研究取得了一些进展,但仍然存在一些挑战。
首先,储氢能力仍然有待提高。
目前已有的储氢材料在储存密度和放氢速率方面仍然存在限制。
其次,储氢材料的稳定性和循环寿命也需要进一步改进。
一些储氢材料在反复循环后会失去其储氢性能。
此外,储氢材料的成本也是一个重要的考虑因素,需要寻找更便宜和可大规模生产的材料。
总之,储氢材料的研究进展为氢能源的开发和应用提供了基础。
通过进一步的研究和创新,相信储氢材料的储氢能力和性能将得到进一步的提高,为实现低碳经济和可持续发展做出贡献。
储氢材料的研究进展

储氢材料的研究进展储氢材料是一种能够吸附和释放氢气的材料,广泛应用于氢能源领域。
目前,研究人员正在不断寻找新型的储氢材料,以提高氢气的吸附能力和储存密度,并且减少储氢过程中的能量损失。
以下是当前储氢材料研究领域的一些进展。
一、金属有机骨架材料(MOF)金属有机骨架材料是一种由金属离子和有机配体组成的晶体结构。
这种材料具有高度可控的孔隙结构,能够提供大量的吸附空间。
研究者已经成功开发出一系列储氢性能优良的MOF材料。
例如,Mg-MOF-74材料具有高达7.5 wt%的氢气存储密度,在77 K、20 bar的条件下可以实现高达6.0 wt%的氢气吸附。
二、共价有机框架材料(COF)共价有机框架材料是一种新型的多孔有机材料,由于其特殊的共价键连接方式,其结构稳定性和储氢性能较好。
例如,研究者在实验中发现,COF-5可以在77 K、物理吸附模式下实现高达7.2 wt%的氢气储存密度。
三、纳米多孔材料纳米多孔材料是一种具有高度可控孔隙结构和较大比表面积的材料。
这些材料具有丰富的储氢位点,并且能够实现快速的吸附和释放过程。
例如,一些石墨烯基的纳米多孔材料已经成功应用于氢能源领域。
研究者发现,这些纳米多孔材料能够实现高达5 wt%的氢气吸附。
四、氧化物材料氧化物材料是一种常见的储氢材料,具有较好的储氢性能。
例如,氧化镁和氧化钛等材料具有良好的氢气吸附能力。
此外,一些研究者还研究了稀土氧化物的储氢性能,并发现它们可以在相对较低的温度和压力下实现高储氢密度。
综上所述,储氢材料的研究进展十分迅速。
金属有机骨架材料、共价有机框架材料、纳米多孔材料和氧化物材料等新型储氢材料的开发,为增加氢气的储存密度以及减少储氢过程中的能量损失提供了新的思路和方法。
随着进一步研究和开发,相信未来储氢材料的性能将不断提高,并为氢能源的广泛应用提供有力支持。
金属有机框架材料的储氢性能研究

金属有机框架材料的储氢性能研究金属有机框架材料(MOFs)是一种由金属离子与有机连接配体构成的晶态材料,具有高度可调性和多功能性。
由于其具有高表面积和空腔结构,金属有机框架材料被广泛研究,尤其是在储氢领域。
本文将探讨金属有机框架材料在储氢性能方面的研究进展,并讨论其在氢能源存储和利用中的潜在应用。
一、金属有机框架材料的储氢机制金属有机框架材料作为储氢材料,其储氢机制主要包括物理吸附和化学吸附。
物理吸附是指氢分子在材料表面的吸附,而化学吸附是指氢与框架材料之间的化学键形成。
研究表明,金属有机框架材料通常以化学吸附为主,因为其具有较高的表面能和多孔结构。
二、金属有机框架材料的储氢性能评估方法评估金属有机框架材料的储氢性能是研究的重要一环。
常用的评估方法包括氢吸附等温线、氢吸附容量、热重分析和原位X射线衍射。
通过这些方法可以确定金属有机框架材料的孔隙度、表面积和储氢容量,从而评估其在储氢领域的应用潜力。
三、金属有机框架材料的改性和优化为了提高金属有机框架材料的储氢性能,研究人员进行了一系列改性和优化措施。
首先,可以通过选择合适的金属离子和有机连接配体来调控框架结构和孔隙大小。
其次,引入功能基团和掺杂剂可以增强储氢材料的储氢能力。
此外,利用合金化和合成复合材料的方法也可以改善金属有机框架材料的储氢性能。
四、金属有机框架材料的潜在应用金属有机框架材料在氢能源存储和利用方面具有广阔的应用前景。
首先,金属有机框架材料可以用作高效的氢气储存材料,从而实现氢能源的储存和运输。
其次,金属有机框架材料也可以作为催化剂载体,提高氢能源的转化效率。
此外,金属有机框架材料还可以用于氢气传感器和氢燃料电池等领域。
结论金属有机框架材料在储氢领域具有巨大的潜力。
通过探索其储氢机制、评估其储氢性能,并进行改性和优化,金属有机框架材料可以为氢能源的存储和利用提供新的解决方案。
未来的研究应当注重进一步提升金属有机框架材料的储氢容量和循环稳定性,以满足氢能源的实际应用需求。
储氢材料的研究进展

储氢材料的研究进展储氢材料是指能够安全、高效地储存氢气的材料。
储氢技术是氢能源的关键技术之一,能够实现氢能源的大规模应用。
目前,储氢材料的研究进展主要集中在氢吸附材料、化学储氢材料和物理储氢材料三个方面。
氢吸附材料是利用物理吸附的方式将氢气吸附储存于材料中。
常见的氢吸附材料包括金属有机骨架材料(MOFs)、大孔材料、以及碳基材料等。
MOFs是由有机配体和过渡金属离子组成的晶态多孔材料。
由于其具有高比表面积和可调节的孔径大小,使其成为理想的氢储存材料。
大孔材料如金属有机配合物和多孔晶体材料,具有较大的孔径和孔容,能够提供更高的氢吸附容量。
碳基材料具有优异的热稳定性和化学稳定性,是一类常见的功底途材料,如碳纳米管和活性炭等。
化学储氢材料是将氢气通过化学反应储存在材料中。
该类材料包括金属氢化物、金属化合物和有机化合物等。
金属氢化物具有高储氢密度和可逆的吸放氢性能,但其储氢温度较高,不利于应用。
为此,研究者针对金属氢化物进行了一系列的改性,如添加催化剂、改变晶体结构和尺度效应等,以提高其储氢性能。
金属化合物如过渡金属硼化物、过渡金属卡宾化物等也具有较高的储氢容量和反应活性。
有机化合物如酰胺、石蜡和脂肪酸等也被研究用作化学储氢材料,其具有储氢容量大、反应温度低等优点,但其稳定性较差,需要进行改性以提高其循环寿命。
物理储氢材料是利用吸附、吸气和共存(吸气和吸附的结合)三种方式将氢气储存于材料中。
常见的物理储氢材料主要有活性炭、多壁碳纳米管等。
活性炭是一种多孔材料,具有高比表面积和可调节的孔径大小,能够通过物理吸附将氢气吸附储存于其表面或孔道中。
多壁碳纳米管是一种碳基纳米材料,具有极小的孔径和大的比表面积,能够通过吸附、蓄存和自发释放的方式储存氢气。
总结来说,目前储氢材料的研究进展主要集中在氢吸附材料、化学储氢材料和物理储氢材料三个方面。
随着科学技术的不断发展,研究者们正在不断寻求新的储氢材料,以提高储氢容量、降低温度和压力等方面的要求,为氢能源的应用提供更多的选择和可能性。
储氢材料的制备及其性能研究

储氢材料的制备及其性能研究储氢材料是一种能够吸附、储存和释放氢气的材料,被广泛应用于氢能源技术中。
由于氢气具有高能量密度和零排放的特点,储氢材料的制备及其性能研究成为了当前氢能源研究的热点之一、本文将探讨储氢材料的制备方法以及其性能研究进展。
储氢材料的制备方法可以分为物理吸附法、化学吸附法和合金化法。
物理吸附法是利用储氢材料表面的孔隙结构吸附氢气分子,常用的物理吸附材料包括活性炭、金属有机骨架材料(MOFs)和多孔硅等。
化学吸附法是通过化学反应使储氢材料与氢气发生化学反应,形成化合物储存氢气。
常用的化学吸附材料包括金属氢化物和硼氢化物等。
合金化法是将氢与金属形成氢化物,储存在金属的晶格中。
合金化材料能够在较低的温度和压力下吸附和释放氢气。
储氢材料的性能研究主要包括储氢容量、吸附/解吸速率和循环稳定性等方面。
储氢容量是评价储氢材料的重要指标之一,表示单位质量或单位体积储氢材料能够吸附的氢气量。
吸附/解吸速率则衡量了储氢材料吸附和释放氢气的速度,对于储氢材料的实际应用具有重要意义。
循环稳定性是指储氢材料在多次吸附和释放氢气的循环过程中能否保持其储氢性能的稳定性。
近年来,研究人员通过改变储氢材料的结构和组成,改善了储氢材料的性能。
例如,通过改变活性炭的孔隙结构和表面化学性质,可调控其吸附和解吸氢气的能力。
MOFs具有高度可调性,可以通过选择不同的金属和配体来调控其储氢性能。
金属氢化物和硼氢化物储氢容量大,但循环稳定性较差,研究人员通过合金化和表面改性等方法来提高其循环稳定性。
此外,还有一些新型储氢材料的研究,如金纳米颗粒、过渡金属硅材料等,这些材料在储氢容量和储氢动力学等方面表现出优越性能。
总之,储氢材料的制备及其性能研究是氢能源技术发展的重要内容。
通过改进储氢材料的制备工艺和结构设计,以及加大对储氢材料性能的研究力度,将有助于提高储氢材料的储氢容量、吸附/解吸速率和循环稳定性等性能,推动氢能源技术的发展。
金属氢化物储氢材料的研究与发展

金属氢化物储氢材料的研究与发展近年来,随着环保和能源危机的加剧,储氢技术正在成为人们关注的焦点。
因为储氢技术可以有效地储存能源,为未来能源的可持续发展提供了一条新的出路。
而金属氢化物储氢材料就是储氢技术中的重要组成部分之一。
一、金属氢化物储氢材料金属氢化物储氢材料是指通过与氢气反应,形成氢化物的金属材料。
储氢时,氢气吸附在储氢材料的表面或者内部空隙,从而形成氢化物储氢材料。
这种材料不仅能够吸氢,而且还可以释放出氢气,从而满足能源的需求。
目前,金属氢化物储氢材料主要分为两种类型,分别是轻金属氢化物和过渡金属氢化物。
轻金属氢化物主要包括镁、钠和铝等轻金属。
这种材料的优点是比较轻便、价格低廉,但其吸附氢气的能力较差。
过渡金属氢化物主要包括钛、锆、镍和铁等过渡金属。
这种材料的优点是吸附氢气的能力比较强,但价格相对较高。
二、金属氢化物储氢材料的研究进展随着科技的发展,金属氢化物储氢材料的研究也取得了一定的进展。
以过渡金属氢化物为例,钛系和锆系储氢材料是目前研究比较活跃的两个方向。
其中,锆系储氢材料具有高储氢容量、较低的反应活化度和较好的热稳定性等特点。
研究表明,锆系储氢材料的理论存氢量可以达到2.0wt%,但其反应活化度较低,需要高温才能进行储氢反应。
因此,如何提高锆系储氢材料的反应活化度,是当前研究的热点之一。
而钛系储氢材料则具有较高的反应活化度和储氢速率,但其储氢容量较低,只有1.5wt%左右。
因此,钛系储氢材料的研究主要集中在如何提高其储氢容量和维持其高活性的方向上。
目前,许多研究团队通过改变钛系储氢材料的组成和微观结构,以期望提高其储氢性能。
除此之外,还有一些新型金属氢化物储氢材料也正在被研究。
比如,基于金属有机骨架的储氢材料和基于金属-氧化物的复合储氢材料等,这些新型材料具有较高的储氢容量和热稳定性,但其制备工艺和成本也更加复杂和昂贵。
三、金属氢化物储氢材料的应用前景金属氢化物储氢材料因其高存氢能力、易于操控和储氢稳定性等优点,被广泛应用于氢能、新能源汽车、储能等领域。
(完整版)镁基储氢材料发展进展

hydride(MgH
) synthesized by controlled reactivemechanical
Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved
sorption in nanocrystalline Mgbased materials. Journal of Alloys and
Deepa等
在环己烯中,通过反应球磨法制备了无烟煤-镁复合材料,
1273 K时析氢量为0.6%,由程序控制温度脱附仪联合质谱仪(TPD-MS)
认为其是由环己烯在球磨过程中脱除的。对球磨制得材料放氢后
结果表明,吸氢过程是可逆的,在室温和常压下快速吸收0.3%~
的氢气,球磨后结构没有完全饱和。卢国俭等[18]利用无烟煤制备微晶碳并
Kwon S, Baek S, Mumm D R. Enhancement of the hydrogen storge
of Mg by reactive mechanical grinding with Ni, Fe and Ti.
Varin R A, Czujko T, Wasmund E B, et al. Catalytic effects of various forms of
基储氢材料的进展
能量高,干净无污染的二次能源已经引起了人们的
,随着“氢经济”(以氢为能源而驱动的政治和经济)时代即将来临,
其中储存问题是制约整个氢能系统应用的关键步骤,在已经探明的储
金属氢化物储氢具有储氢体积密度大、安全性好的优势,比较容易操
运行成本较低,因此,金属氢化物技术的开发与研究近年来在世界各国掀起
储氢合金的制备方法与研究进展

整个体系处于非 平衡化(存在大量 缺陷或非晶结构)
MA材料制备工艺过程
处理 过程
粉末+添加剂(PCA)
特征 细粉末(5~160μm)
高能球磨(HEBM)
高能球磨合金粉末
除气
已除气粉末
动态再结晶超细化晶粒 0.05μm 弥散化 晶粒生长~0.1μm 亚结构的形成 细小晶粒 ~0.1μm
热压
已成型粉末
粉碎靠球落 下时的冲击 作用和球与 球间的摩擦
离心力>重 力,球与筒 体一起转动 无研磨效果
球和物料随球磨筒转速不同的三种状态
颗粒挤压 冷焊→破碎
团聚
团聚颗粒释放
球间中心线
不同元素的新鲜表面不断 暴露,在压力下相互冷焊,
形成层间有一定原子结合
力的多层结构复合粒子
挤压(严重塑变) →冷焊→破碎→再挤压
储氢方式 基本原理 特性比较
采用压缩、冷冻、吸附等 ① 储氢量小(15MPa,氢气重 气态储氢 方式,将压缩氢气储存于钢 量尚不到钢瓶重量的1/100); 瓶中。 ② 使用不方便; ③ 有一定的危险性。 将氢气液化后储存。 ① 深冷液化能耗高(液化1kg氢 气约需耗电4~10kW· h); ② 须有极好的绝热保护; 液态储氢 ③ 绝热层的体积和重量往往与 储箱相当。 金属或合金与氢反应生成 ① 氢以原子态储存于金属中, 金属氢化物,实现储氢;金 储氢密度大; 属氢化物加热后分解释放出 ② 不易爆炸,安全性强; 氢化物储氢 氢气,实现放氢。 ③ 储存、运输和使用方便; ④ 可多次循环使用。
Company
LOGO
储氢合金的制备方法与研究进展
3105100531~35
储氢合晶的制备方法与研究进展
引言 原理(34.王洲)
金属储氢的密度研究

金属储氢的密度研究金属储氢是一种新兴的能源储存技术,其通过将氢气吸附或嵌入到金属中的晶格中来实现氢气的储存。
随着全球能源需求不断增长和对可再生能源的需求增加,金属储氢技术被认为是一种具有巨大潜力的解决方案。
本文将深入探讨金属储氢的密度研究,以及其在能源领域的应用和未来发展。
1. 金属储氢的基本原理金属储氢是利用金属材料的晶格结构,将氢气原子吸附或嵌入到晶格中,以实现氢气的高密度储存。
在吸附储氢中,金属表面具有高比表面积,能够吸附氢气分子,形成金属-氢化物。
而在嵌入储氢中,氢气原子则嵌入到金属的晶格空隙中,形成金属-氢化物。
金属储氢的密度研究旨在寻找能够实现高储氢密度和高容量的金属材料。
2. 金属储氢的密度研究方法在金属储氢的密度研究中,常用的方法包括气相吸附法、计算模拟法和实验测量法等。
气相吸附法通过测量氢气在金属表面或晶体表面的吸附量来评估金属储氢的密度。
计算模拟法则通过计算模拟金属-氢化物体系的结构和能量,预测其储氢容量和密度。
实验测量法则是在实验室中利用各种仪器设备,如气体吸附仪、电子显微镜等,对金属-氢化物样品进行直接测量。
3. 金属储氢的密度研究进展随着对可再生能源的需求与日俱增,金属储氢技术的研究也取得了长足的进展。
已有很多金属被发现具有储氢能力,如钯(Pd)、钛(Ti)、镁(Mg)等。
这些金属储氢材料通过改变晶格结构或掺杂其他元素,可实现更高的储氢密度和容量。
研究人员还利用纳米技术和合金化技术等手段,进一步提高金属储氢材料的性能。
4. 金属储氢在能源领域的应用金属储氢技术在能源领域有着广泛的应用前景。
金属储氢可以作为储氢材料,用于储存和运输氢气燃料。
与传统的高压气体储氢相比,金属储氢具有更高的储氢密度和储氢容量,能够实现更高效、更安全的氢气储存。
金属储氢还可应用于氢能源转换和储能系统中,以提供清洁、可持续的能源解决方案。
5. 金属储氢的未来发展金属储氢技术尚处于研究和开发阶段,仍面临着一些挑战。
镍氢电池负极贮氢合金的研究进展

镍氢电池负极贮氢合金的研究进展镍氢电池是一种重要的二次电池,具有高能量密度、长循环寿命和环保等优点。
负极是决定电池性能的重要组成部分,而负极中的储氢合金则是决定电池储氢性能的关键。
储氢合金是一种具有储氢能力的材料,主要由氢化物、氢化物插层化合物和金属基底组成。
负极中的储氢合金会在充放电过程中吸收和释放氢气,从而实现电能和氢能的转换。
目前,钴基和钛基镍氢储氢合金是常用的镍氢电池负极材料。
钴基合金具有较高的储氢容量和循环寿命,但价格较高;钛基合金则具有较低的成本和较高的储氢速率,但储氢容量和循环寿命相对较低。
研究者们致力于寻找新的储氢合金材料,以提高镍氢电池的性能。
近年来,有关镍基、镍铁基和镍钛基合金的研究受到了广泛关注。
这些合金具有较高的储氢容量、较长的循环寿命和较低的成本。
镍基合金可以通过合金化改善其储氢性能,如通过添加稀土元素、过渡金属元素和其他合金元素来调节合金结构和电子结构。
镍铁基合金具有较高的储氢容量和较长的循环寿命,可以通过改变合金成分和微观结构来优化其性能。
镍钛基合金则具有较高的储氢速率和循环稳定性,可以通过合金化改善其结构和储氢性能。
还有一些新型储氢合金材料在镍氢电池中的应用逐渐被研究。
纳米合金材料、过渡金属化合物和碳基材料等,它们具有较高的储氢容量、较好的循环稳定性和较低的成本。
研究者们通过改变材料的合成方法、结构设计和储氢机制等方面的研究,不断优化这些材料的性能。
镍氢电池负极贮氢合金的研究进展取得了较大的突破,新型储氢合金材料的应用为提高镍氢电池的性能提供了新的途径。
今后,研究者们将继续深入研究负极材料,进一步提高镍氢电池的储氢性能和循环寿命,以满足不断增长的能源需求。
金属有机骨架化合物作为储氢材料的研究进展

金属有机骨架化合物作为储氢材料的研究进展一、本文概述随着全球能源需求的持续增长和环境保护意识的日益增强,清洁、高效的能源存储技术成为了当前科技研究的热点。
其中,氢能源因其高能量密度、零污染排放和可再生性等优点,被认为是最具潜力的未来能源之一。
然而,氢气的安全存储和高效运输是实现其广泛应用的关键。
金属有机骨架化合物(Metal-Organic Frameworks,简称MOFs)作为一种新型的多孔材料,因其高比表面积、可调孔径和丰富的功能基团等特性,在储氢材料领域展现出巨大的应用潜力。
本文旨在综述MOFs作为储氢材料的研究进展,从MOFs的结构特点、储氢性能、影响因素以及未来发展方向等方面进行深入探讨,以期为氢能源的安全高效存储提供理论支持和技术指导。
二、金属有机骨架化合物概述金属有机骨架化合物(Metal-Organic Frameworks,简称MOFs)是一类由金属离子或金属团簇与有机配体通过配位键自组装形成的具有高度有序多孔结构的晶体材料。
由于其独特的结构和性质,MOFs 在储氢、催化、分离、传感、药物输送等多个领域展现出巨大的应用潜力。
MOFs的结构多样性是其最突出的特点之一。
通过选择不同的金属离子、有机配体以及合成条件,可以制备出具有不同孔径、形状和功能的MOFs。
这种高度的可设计性和可调性使得MOFs能够针对特定的应用需求进行定制合成。
在储氢领域,MOFs因其高比表面积、低密度和可调的孔结构而备受关注。
其开放的金属位点和可功能化的有机配体为氢气的吸附和存储提供了有利条件。
MOFs还可以通过合成后修饰等方法引入特定的官能团,进一步提高其对氢气的吸附能力和选择性。
然而,MOFs作为储氢材料在实际应用中也面临一些挑战,如稳定性、循环性能以及成本等问题。
因此,如何在保持MOFs高储氢性能的同时提高其稳定性和降低成本是当前研究的热点和难点。
总体而言,金属有机骨架化合物作为一种新型的储氢材料,其独特的结构和性质使其在储氢领域具有广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chemical Propellants & Polymeric Materials2010年第8卷第2期· 15 ·金属储氢材料研究进展范士锋(海军驻西安地区军事代表局,陕西西安 710065)摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。
关键词:金属储氢材料;研究进展;发展趋势中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05收稿日期:2009-09-09作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。
电子信箱:jizhenli@126.com作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍),是理想的高能清洁燃料之一[1-2]。
目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。
利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。
因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。
储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。
从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。
文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。
1 金属储氢原理及储氢研究现状传统的氢气存储方式中,气态储氢方式简单方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。
金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。
氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。
在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示:其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。
储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。
其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。
考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性(与氧化Chemical Propellants & Polymeric Materials2010年第8卷第2期· 16 ·剂反应活性相关)也是衡量储氢材料性能的重要参数。
不同储氢方式的储氢密度数据见表1和表2。
表1 不同储氢方式的体积储氢密度及质量储氢密度Tab.1 Volume hydrogen storage density and mass hydro-gen storage density by different hydrogen storage modes状态体积储氢密度(以氢原子质量储氢个数计)/(个.cm-3)密度/%气态(标准状态下的气态氢)5.4×10100液态(20K下的液态氢)4.2×1022100固态(4K下的固态氢)5.8×1022100MgH26.6×107.66 金属储氢TiH29.1×10224.04(金属氢化物)LaNi5H6.77.6×10221.58TiFeH1.955.7×10221.84表2 储存等量(7m3)氢气所需材料(或容器)质量和体积Tab.2 Mass and volume of materials(or containers)required for storing equivalent hydrogen gas(7m3)状态质量/kg体积/L气态氢(标准状态)0.6(55kg气瓶)7000液态氢0.69MgH2 85.5TiH2164.2LaNi5H6.7414.8TiFeH1.95346.6从表1和表2可看出,金属或合金氢化物的储氢密度是气体氢(标准状态下)的1000倍,即与1000个大气压下储氢量相当,某些金属材料(如TiH2等)的储氢量可达液态储氢量的2倍左右。
2 金属储氢材料的制备研究进展金属储氢材料可分为2大类:一类是合金氢化物材料,另一类是金属配位氢化物材料。
迄今为止,趋于成熟和具备实用价值的金属储氢材料主要有镁系、稀土系、Laves相系、钛系、金属配位氢化物等几大系列。
2.1 镁系储氢材料镁系储氢材料以其储氢量高(镁的理论储氢质量分数为7.6%)、资源丰富、成本低廉等特点被公认为是最有前景的储氢材料之一[5-6]。
镁镍合金[7-8]是镁系储氢材料中最主要的一种,Mg2Ni 合金由美国 Brookhaven 国家实验室首先研制成功,这类合金的储氢质量分数可达3.8%、密度小、解吸等温线平坦、滞后小,是移动装置上理想的储氢合金;但该储氢材料仍存在着脱氢温度高(解吸压力为105Pa时解吸温度为287℃)、吸氢速度较低、热焓增量大等缺点。
A. Zaluska[9]研究了氢气气氛下进行球磨的单质镁的储氢性能,结果发现,粒径30nm的镁粉在1.0MPa氢压下300℃时20min内储氢质量分数即可达4.0%,该纳米晶镁甚至不经活化,一次吸氢即展示出相当好的吸氢能力,而多晶镁在300℃时基本不吸氢。
J. Huot等人[10]将质量分数5% V与MgH2球磨后,在1.0MPa氢压下150℃时20s内吸氢质量分数即达4.6%,100s内达到最大吸氢量;在0.015MPa氢压下200℃时200s内放氢完全,其吸放氢温度明显降低。
通过添加Ca、Cu、Al和稀土金属可提高其吸放氢的速度,从而形成了适合不同用途的Mg2Cu、Mg2Ca、Mg1.92Al0.08Ni等镁系储氢合金,大大改善了合金的储氢性能。
Suda等人[11]应用氟处理技术改善 Mg 基合金的表面特性,处理过的合金在比较温和的条件下即表现出良好的吸氢性能,部分氟处理后合金在40℃下就可吸氢。
2.2 稀土系储氢材料以 LaNi5为代表的稀土系储氢合金被认为是所有储氢合金中应用性能最好的一类。
1969年,荷兰Philips实验室首次报道了LaNi5合金具有很高的储氢能力,从此储氢合金的研究与利用均得到了较大的发展。
金属间化合物 LaNi5具有六方结构[12-13],其中有许多间隙位置,可以固溶大量的氢。
晶体结构研究结果表明,LaNi5晶胞是由3个十二面体、9个八面体、6个六面体和36个四方四面体组成,其中十二面体、八面体和六面体的晶格间隙半径均大于氢原子半径,理论上可储存氢原子,而四方四面体晶格间隙较小则不能储存氢原子。
因此,每个LaNi5晶胞内理论可以储存18个氢原子,即最大储氢质量分数为1.379%(研究发现,其实测储氢质量分数约为1.35% ̄1.38%)。
LaNi5初期氢化容易,反应速度快,20℃时的氢分解压较低(仅几个大气压),吸放氢性能优良。
但是,储氢合金存在原材料(La)价格高、循环退化严重、易于粉化、密度过大等缺点。
王启东等人[14]研制的含铈量较少的富镧混合稀土储氢合金 MlNi5(Ml 是富镧混合稀土),在室温下一次加氢,100 ̄400MPa即能活化,吸氢质量分数可达1.5% ̄1.6%(吸氢平衡时间<6min),放氢质量分数约95% ̄97%(放氢平衡时间<20min),且其平台压力低,吸放氢滞后压差<20MPa,动力学性能良好。
MlNi5的成本比 LaNi5范士锋等 · 金属储氢材料研究进展· 17 ·低2.5倍,易熔炼,抗中毒性好,再生容易。
蔡学章等人[15]采用Al、Mn、Si、Sn、Fe等置换Ni以克服合金的粉化,对其储氢性能的改善技术开展了系列研究,现已取得了初步的研究进展。
2.3 Laves相系储氢材料Laves相系合金材料是一类非常具有潜在研究价值的储氢材料,已发现的Laves相系(AB2型)储氢材料有3种晶相结构:立方晶相C15(MgZn2)、六方晶相C14(MgCu2)和双六方晶相C36(NiMg2)。
相结构的稳定性主要取决于构成材料的元素原子的几何半径比、电负性和各原子的化合价等。
与以LaNi5为代表的稀土系储氢材料相比,Laves相系合金材料(ZrV2H5.3、ZrMn2H3.6、ZrCr2H3.4)具有较高的存储容量、更高的动力学效率、更长的使用寿命和相对较低的成本等特点[16],然而此类材料的氢化物在室温时过于稳定,不易脱氢。
目前开展的更深入的研究侧重于多组分元素取代后形成的Laves相系合金材料,如 Zr1-xTx(Mn、Cr)2-yMy(T为Ti、Y、Hf、Sc、Nb,M为V、Mo、Mn、Cr、Fe、Co、Ni、Cu、Al、Si、Ge)。
2.4 钛系储氢材料1969年,美国Brookhaven国立实验室首次合成具有CsCl结构的FeTi合金,其储氢质量分数为1.8%。
FeTi合金[17]储氢能力较好,略高于LaNi5,其作为储氢材料的优越性在于以下2点:①FeTi合金活化后,能可逆地吸放大量的氢,且氢化物的分解压强仅为几个大气压,接近工业应用;②Fe、Ti元素在自然界中含量丰富,价格便宜,适合在工业中大规模应用。