神经网络遗传算法函数极值寻优

合集下载

研究生必备的人工神经网络电子书汇总(31本)

研究生必备的人工神经网络电子书汇总(31本)

研究生必备的人工神经网络电子书汇总(31本)这些都是我从淘宝和百度文库里面搜集到的电子书,需要的可以联系我QQ:415295747,或者登录我的博客/u/17236977421.神经网络在应用科学和工程中的应用——从基础原理到复杂的模式识别5 译者序6 前9 致谢10 作者简介11 目录19 第1章从数据到模型:理解生物学、生态学和自然系统的复杂性和挑战27 第2章神经网络基础和线性数据分析模型72 第3章用于非线性模式识别的神经网络105 第4章神经网对非线性模式的学习166 第5章从数据中抽取可靠模式的神经网络模型的实现205 第6章数据探测、维数约简和特征提取235 第7章使用贝叶斯统计的神经网络模型的不确定性评估276 第8章应用自组织映射的方法发现数据中的未知聚类359 第9章神经网络在时间序列预测中的应用458 附录2.MATLB 神经网络30个案例分析第1章BP神经网络的数据分类——语音特征信号分类23 第2章BP神经网络的非线性系统建模——非线性函数拟合33 第3章遗传算法优化BP神经网络——非线性函数拟合48 第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优57 第5章基于BP_Adsboost的强分类器设计——公司财务预警建模66 第6章PID神经元网络解耦控制算法——多变量系统控制77 第7章RBF网络的回归——非线性函数回归的实现85 第8章GRNN的数据预测——基于广义回归神经网络的货运量预测93 第9章离散Hopfield神经网络的联想记忆——数字识别102 第10章离散Hopfield神经网络的分类——高校科研能力评价112 第11章连续Hopfield神经网络的优化——旅行商问题优化计算124 第12章SVM的数据分类预测——意大利葡萄酒种类识别134 第13章SVM的参数优化——如何更好的提升分类器的性能145 第14章SVM的回归预测分析——上证指数开盘指数预测153 第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测165 第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测171 第17章SOM神经网络的数据分类——柴油机故障诊断182 第18章Elman神经网络的数据预测——电力负荷预测模型研究188 第19章概率神经网络的分类预测——基于PNN的变压器故障诊断195 第20章神经网络变量筛选——基于BP的神经网络变量筛选200 第21章LVQ神经网络的分类——乳腺肿瘤诊断210 第22章LVQ神经网络的预测——人脸朝向识别220 第23章小波神经网络的时间序列预测——短时交通流量预测230 第24章模糊神经网络的预测算法——嘉陵江水质评价241 第25章广义神经网络的聚类算法——网络入侵聚类248 第26章粒子群优化算法的寻优算法——非线性函数极值寻优255 第27章遗传算法优化计算——建模自变量降维270 第28章基于灰色神经网络的预测算法研究——订单需求预测280 第29章基于Kohonen网络的聚类算法——网络入侵聚类289 第30章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类2.MATLAB 神经网络仿真与应用章节信息7 目录15 第1章神经网络概述38 第2章感知神经网络64 第3章自组织竞争神经网络106 第4章BP神经网络143 第5章线性神经网络171 第6章径向基函数神经网络196 第7章反馈神经网络及MA TLAB实现228 第8章神经网络预测与控制273 第9章神经网络优化及故障诊断302 第10章图形用户界面设计334 参考文献4.混合神经网络技术7 目录11 第1章绪论26 第2章基础知识43 第3章BP神经网络70 第4章RBF神经网络84 第5章Hopfield神经网络96 第6章随机神经网络114 第7章遗传神经网络158 第8章粒子群神经网络193 第9章模糊神经网络244 第lO章混沌神经网络293 第11章小波神经网络331 第12章神经网络集成356 附录5.神经网络控制(第三版)7 目录13 第1章绪19 第2章神经网络理论基础63 第3章基于神经网络的系统辨识101 第4章神经网络控制142 第5章遗传算法与神经控制179 附录203 参考文献6.脉冲耦合神经网络与数字图像处理丛书题名:智能科学技术著作丛书主要责任者:马义德主题词:神经网络; 数字图像处理出版者:科学出版社ISBN:978-7-03-022389-0出版地:北京出版日期:200807页数:3047 《智能科学技术著作丛书》序9 前13 目录21 第1章脉冲耦合神经网络50 第2章图像滤波及脉冲噪声滤波器77 第3章脉冲耦合神经网络在图像分割中的应用142 第4章脉冲耦合神经网络与图像编码185 第5章脉冲耦合神经网络与图像增强195 第6章脉冲耦合神经网络与图像融合210 第7章脉冲耦合神经网络与形态学245 第8章脉冲耦合神经网络在特征提取中的应用278 第9章脉冲耦合神经网络与数字图像签名技术292 第10章脉冲耦合神经网络与组合决策优化306 第11章脉冲耦合神经网络和小波变换322 参考文献7.混沌系统的模糊神经网络控制理论与方法主要责任者:谭文; 王耀南主题词:混沌学; 应用; 模糊控制; 神经网络出版者:科学出版社ISBN:978-7-03-021258-0出版地:北京出版日期:200805页数:2364 内容简介5 前7 目录13 第1章绪论37 第2章模糊神经网络控制理论基础70 第3章神经网络在混沌控制中的作用83 第4章基于径向基神经网络的非线性混沌控制99 第5章超混沌系统的模糊滑模控制111 第6章不确定混沌系统的模糊自适应控制120 第7章模糊神经网络在混沌时间序列预测中的应用134 第8章混沌系统的混合遗传神经网络控制150 第9章不确定混沌系统的模糊神经网络自适应控制165 第10章基于动态神经网络的混沌系统控制200 第11章基于线性矩阵不等式方法的混沌系统模糊控制223 第12章基于递归神经网络的不确定混沌系统同步245 结束语8. 智能预测控制及其MATLB 实现(第2版)丛书题名:自动控制技术应用丛书主要责任者:李国勇主题词:人工智能; 预测控制; 计算机辅助计算; 软件包出版者:电子工业出版社ISBN:978-7-121-10147-2出版地:北京出版日期:201001页数:3364 内容简介5 前7 目录13 第一篇神经网络控制及其MA TLAB实现13 第1章神经网络控制理论87 第2章MATLAB神经网络工具箱函数160 第3章基于Simulink的神经网络控制系统175 第二篇模糊逻辑控制及其MATLAB实现175 第4章模糊逻辑控制理论208 第5章MA TLAB模糊逻辑工具箱函数237 第6章模糊神经和模糊聚类及其MA TLAB实现267 第三篇模型预测控制及其MATLAB实现267 第7章模型预测控制理论281 第8章MA TLAB预测控制工具箱函数320 第9章隐式广义预测自校正控制及其MA TLAB实现334 附录A 隐式广义预测自校正控制仿真程序清单341 附录B MA TLAB函数一览表347 附录C MA TLAB函数分类索引349 参考文献9. 基于神经网络的优化设计及应用主要责任者:孙虎儿出版者:国防工业出版社ISBN:978-7-118-06282-3出版地:北京出版日期:200905页数:111目录11 第1章绪论11 1.1 优化设计发展概况20 1.2 信号处理的主要方法22 1.3 正交设计方法25 1.4 基于神经网络的立体正交优化设计概述28 第一篇基拙理论篇28 第2章基于小波变换的信号处理28 2.1 小波变换的源起与发展概述30 2.2 小波分析基础34 2.3 小波分析的工程解释35 2.4 基于小波分析的信号处理38 第3章神经网络结构的确定38 3.1 神经网络综论42 3.2 神经网络的基本原理47 3.3 人工神经网络的建模53 3.4 前馈型神经网络57 第4章正交设计法57 4.1 正交设计法的基本内容60 4.2 正交设计法的基本内容60 4.3 有交互作用的正交设计法63 4.4 方差分析法67 第二篇创新篇67 第5章立体正交表67 5.1 建立立体正交表70 5.2 立体正交表的基本性质71 5.3 立体正交试验的误差分析75 第6章立体正交优化设计75 6.1 立体正交优化设计概述77 6.2 立体正交优化设计的建模基础78 6.3 立体正交优化设计的特点79 6.4 立体正交设计的步骤及实现85 第三篇实践篇85 第7章液压振动筛参数优化设计与试验85 7.1 振动筛基本原理89 7.2 试验台设计91 7.3 模拟试验101 7.4 液压振动筛参数的立体正交优化设计108 第8章液压激振压路机的液压振动系统优化108 8.1 液压激振压路机基本原理110 8.2 液压振动轮的模型试验117 参考文献10.神经网络稳定性理论主要责任者:钟守铭; 刘碧森; 王晓梅; 范小明主题词:人工神经网络; 运动稳定性理论; 高等学校; 教材出版者:科学出版社ISBN:978-7-03-02116-2出版地:北京出版日期:200806页数:289内容简介5 前7 目录11 第1章绪论73 第2章Hopfield型神经网络的稳定性97 第3章细胞神经网络的稳定性150 第4章二阶神经网络的稳定性212 第5章随机神经网络的稳定性243 第6章神经网络的应用291 参考文献11. 神经模糊控制理论及应用丛书题名:自动控制技术应用丛书主要责任者:李国勇主题词:神经网络; 应用; 模糊控制出版者:电子工业出版社ISBN:978-7-121-07537-7出版地:北京出版日期:200901页数:3326 目录10 第一篇神经网络理论及其MA TLAB实现12 第1章神经网络理论77 第2章MATLAB神经网络工具箱191 第3章神经网络控制系统218 第二篇模糊逻辑理论及其MATLAB实现220 第4章模糊逻辑理论258 第5章MA TLAB模糊逻辑工具箱295 第6章模糊神经和模糊聚类及其MA TLAB实现327 附录A MA TLAB程序清单334 附录B MA TLAB函数一览表340 附录C MA TLAB函数分类索引342 参考文献12.时滞递归神经网络主要责任者:王林山主题词:时滞; 递归论; 神经网络出版者:科学出版社ISBN:978-7-03-020533-9出版地:北京出版日期:200804页数:254出版说明9 前言13 目录15 第1章概述29 第2章几类递归神经网络模型44 第3章时滞局域递归神经网络的动力行为116 第4章时滞静态递归神经网络的动力行为154 第5章时滞反应扩散递归神经网络的动力行为214 第6章时滞反应扩散方程的吸引子与波动方程核截面的Hausdorff维数估计244 第7章Ляпунов定理的推广与矩阵微分方程的渐近行为研究265 索引13. 神经网络实用教程丛书题名:普通高等教育“十一五”规划教材主要责任者:张良均; 曹晶; 蒋世忠主题词:人工神经元网络; 高等学校; 教材出版者:机械工业出版社ISBN:978-7-111-23178-3出版地:北京出版日期:200802页数:1840001 7 目录0002 5 前言0003 11 第1章人工神经网络概述0004 19 第2章实用神经网络模型与学习算法0005 83 第3章神经网络优化方法0006 98 第4章nnToolKit神经网络工具包0007 135 第5章MA TLAB混合编程技术0008 175 第6章神经网络混合编程案例0009 181 附录2NDN神经网络建模仿真工具0010 194 参考文献14.细胞神经网络动力学主要责任者:黄立宏; 李雪梅主题词:神经网络; 细胞动力学; 生物数学出版者:科学出版社ISBN:978-7-03-018109-1出版地:北京出版日期:200704页数:3334 内容简介5 前7 目录9 第一章细胞神经网络的模型及基本概念30 第二章基本理论60 第三章细胞神经网络的完全稳定性118 第四章细胞神经网络的全局渐近稳定性和指数稳定性176 第五章细胞神经网络的周期解与概周期解242 第六章细胞神经网络的动力学复杂性285 第七章一维细胞神经网络的动力学性质322 参考文献15. 人工神经网络基础丛书题名:研究生用教材主要责任者:丁士圻; 郭丽华主题词:人工神经元网络出版者:哈尔滨工程大学出版社ISBN:978-7-81133-206-3出版地:哈尔滨出版日期:200803页数:2084 内容简介5 前7 目录9 第1章绪论44 第2章前向多层网络86 第3章Hopfield网络110 第4章波尔兹曼机(BM)网络简介131 第5章自组织特征映射网络(SOFM)163 第6章ART网络197 第7章人工神经网络的软件实践和仿真15.智能控制理论及应用丛书题名:国家精品课程教材主要责任者:师黎; 陈铁军; 等主题词:智能控制出版者:清华大学出版社ISBN:978-7-302-16157-8出版地:北京出版日期:200904页数:408目录17 第1章绪论30 第2章模糊控制91 第3章模糊建模和模糊辨识118 第4章神经网络控制227 第5章模糊神经网络259 第6章专家系统301 第7章遗传算法333 第8章蚁群算法351 第9章DNA计算与基于DNA的软计算389 第10章其他智能控制16. 人工神经网络及其融合应用技术∙丛书题名:智能科学技术著作丛书∙主要责任者:钟珞 ; 饶文碧 ; 邹承明∙主题词:人工神经元网络 ; 研究∙出版者:科学出版社∙ISBN:978-7-03-018325-5∙出版地:北京∙出版日期:200701∙页数:1607 目录13 第1章绪论24 第2章前馈型神经网络47 第3章反馈型神经网络58 第4章自组织型神经网络72 第5章量子神经网络81 第6章神经网络与遗传算法103 第7章神经网络与灰色系统123 第8章神经网络与专家系统139 第9章模糊神经网络159 参考文献164 附录Matlab简介17.智能技术及其应用:邵世煌教授论文集∙主要责任者:丁永生 ; 应浩 ; 等∙主题词:人工智能 ; 文集∙出版者:科学出版社∙ISBN:978-7-03-023230-4∙出版地:北京∙出版日期:200902∙页数:573目录15 治学之路,开拓之道117 解析模糊控制理论:模糊控制系统的结构和稳定性分析127 不同模糊逻辑下模糊控制器的解析结构134 一个基于“类神经元”模型的智能控制系统及其在柔性臂上的应用研究142 交通系统的模糊控制及其神经网络实现149 采用遗传算法学习的神经网络控制器164 一种采用增强式学习的模糊控制系统研究169 基因算法及其在最优搜索上的应用191 DNA计算与软计算199 采用DNA遗传算法优化设计的TS模糊控制系统206 DNA计算研究的现状与展望223 混沌系统的一种自学习模糊控制228 用遗传算法引导混沌轨道405 模糊环境的表示及机器人轨迹规划409 多变地形下机器人路径规划415 一个环境知识的自学习方法444 含有模糊和随机参数的混合机会约束规划模型469 基于规则的模糊离散事件系统建模与控制研究491 基于最优HANKEL范数近似的线性相位IIR滤波器设计507 自适应逆控制的异步电机变频调速系统研究514 带有神经网络估计器的模糊直接转矩控制551 基于移动Agent的数字水印跟踪系统的设计和实现573 采用元胞自动机机理的针织电脑编织系统591 语词计算的广义模糊约束及其传播研究598 后记18.人工神经网络原理及应用∙丛书题名:现代计算机科学技术精品教材∙主要责任者:朱大奇 ; 史慧∙主题词:人工神经元网络∙出版者:科学出版社∙ISBN:7-03-016570-5∙出版地:北京∙出版日期:200603∙页数:218目录12 第1章人工神经网络的基础知识44 第2章BP误差反传神经网络76 第3章Hopfield反馈神经网络104 第4章BAM双向联想记忆神经网络117 第5章CMAC小脑神经网络139 第6章RBF径向基函数神经网络155 第7章SOM自组织特征映射神经网络175 第8章CPN对偶传播神经网络190 第9章ART自适应谐振理论210 第10章量子神经网络19.软计算及其应用要责任者:温显斌; 张桦; 张颖等主题词:电子计算机; 计算方法出版者:科学出版社ISBN:978-7-03-023427-8出版地:北京出版日期:200902页数:189前7 目录11 第1章绪论24 第2章模拟退火算法45 第3章人工神经网络93 第4章遗传算法138 第5章支持向量机162 第6章模糊计算20计算智能与科学配方∙主要责任者:冯天瑾 ; 丁香乾∙其他责任者:杨宁 ; 马琳涛∙主题词:人工智能 ; 神经网络 ; 计算 ; 研究∙出版者:科学出版社∙ISBN:978-7-03-020603-9∙出版地:北京∙出版日期:200801∙页数:272前10 目录16 第一章绪论38 第二章产品配方与感觉品质评估65 第三章神经网络与感觉评估99 第四章知识发现与复杂相关性分析154 第五章模式识别与原料分类187 第六章支持向量机方法214 第七章进化计算配方寻优方法243 第八章计算智能的若干哲理256 第九章人机交互智能配方系统278 参考文献287 致谢21.计算智能与计算电磁学主要责任者:田雨波; 钱鉴主题词:人工智能; 神经网络; 计算; 研究出版者:科学出版社ISBN:978-7-03-021201-6出版地:北京出版日期:200804页数:2337 目录11 第1章绪论19 第2章遗传算法基本原理50 第3章遗传算法电磁应用98 第4章模糊理论基本原理122 第5章神经网络基本原理188 第6章神经网络电磁应用235 附录1 计算智能和计算电磁学相关网站236 附录2 相关程序22.脉冲耦合神经网络原理及其应用丛书题名:智能科学技术著作丛书主要责任者:马义德主题词:神经网络; 理论; 应用出版者:科学出版社ISBN:7-03-016657-4出版地:北京出版日期:200604页数:1826 内容简介9 《智能科字技术著作丛书》库11 前15 目录19 第1章神经网络图像处理技术34 第2章PCNN模型及其应用概述49 第3章PCNN在图像滤波中的应用66 第4章PCNN在图像分割中的应用120 第5章PCNN在图像编码中的应用137 第6章PCNN与图像增强152 第7章PCNN与粗集理论、形态学和小波变换182 第8章PCNN的其他应用23.人工神经网络教程主要责任者:韩力群主题词:人工神经元网络; 研究生; 教材出版者:北京邮电大学出版社ISBN:7-5635-1367-1出版地:北京出版日期:200612页数:3307 序9 目录17 第1章绪论38 第2章人工神经网络建模基础63 第3章感知器神经网络100 第4章自组织竞争神经网络143 第5章径向基函数神经网络162 第6章反馈神经网络192 第7章小脑模型神经网络201 第8章支持向量机218 第9章遗传算法与神经网络进化237 第10章神经网络系统设计与软硬件实现267 第11章人工神经系统281 附录A 常用算法的MA TLAB程序298 附录B 常用神经网络源程序340 附录C 神经网络常用术语英汉对照344 参考文献24.神经网络专家系统主要责任者:冯定主题词:人工神经元网络出版者:科学出版社ISBN:7-03-017734-7出版地:北京出版日期:200609页数:3487 目录11 第1章从专家系统到神经网络专家系统22 第2章神经网络设计75 第3章数据的前后处理94 第4章神经网络专家系统中的模糊数146 第5章基于神经网络的知识表示199 第6章机器学习218 第7章基于神经网络的推理251 参考文献254 附录神经网络源程序25.神经网络新理论与方法主要责任者:张代远主题词:人工神经元网络出版者:清华大学出版社ISBN:7-302-13938-5出版地:北京出版日期:200611页数:1259 目录11 第1章概论17 第2章基本概念24 第3章实神经网络的代数算法44 第4章全局最小值分析51 第5章复数神经网络的代数算法61 第6章样条权函数神经网络及其学习算法124 第7章神经网络的统计灵敏度分析26.人工神经网络算法研究及应用主要责任者:田景文; 高美娟主题词:人工神经元网络; 计算方法; 研究出版者:北京理工大学出版社ISBN:7-5640-0786-9出版地:北京出版日期:200607页数:2837 目录9 第1章绪论32 第2章人工神经网络49 第3章改进遗传算法的径向基函数网络方法研究及应用95 第4章小波变换及小波神经网络方法研究及应用140 第5章模糊神经网络方法研究及应用189 第6章改进的模拟退火人工神经网络方法研究及应用235 第7章支持向量机方法研究及应用278 第8章结论281 参考文献27.神经计算与生长自组织网络主要责任者:程国建主题词:人工神经元网络; 计算; 自组织系统出版者:西安交通大学出版社ISBN:978-7-5605-2979-0出版地:西安出版日期:200810页数:242内容简介5 作者简介7 前17 目录23 第1章神经计算概述37 第2章人工神经网络的基本结构及其特性56 第3章神经感知器69 第4章自适应线性元件87 第5章多层前馈神经网络105 第6章径向基函数网络118 第7章古典生长型神经网络135 第8章生长型自组织神经网络158 第9章生长神经元结构及其变种182 第10章外生长型神经元结构206 第11章多生长神经元结构230 第12章双生长神经气网络252 参考文献28.神经计算原理丛书题名:计算机科学丛书主要责任者:(美)科斯塔尼克其他责任者:叶世伟; 王海娟主题词:突然南宫神经元网络; 计算出版者:机械工业出版社ISBN:978-7-111-20637-8出版地:北京出版日期:200705页数:491出版者的话7 专家指导委员会8 译者序9 前12 致谢13 重要符号和算符17 重要缩写词20 目录25 第一部分神经计算的基本概念和部分神经网络体系结构及其学习规则25 第1章神经计算概述40 第2章神经计算的基本概念95 第3章映射网络144 第4章自组织网络168 第5章递归网络和时间前馈网络201 第二部分神经计算的应用201 第6章用神经网络解决最优化问题238 第7章用神经网络解决矩阵代数问题275 第8章使用神经网络求解线性代数方程组318 第9章使用神经网络的统计方法372 第10章使用神经网络进行辨识、控制和枯计435 附录A 神经计算的数学基础497 主题索引29. 人工神经网络与模拟进化计算主要责任者:阎平凡主题词:人工神经元网络; 计算出版者:清华大学出版社ISBN:7-302-10663-0出版地:北京出版日期:200509页数:639出版说明9 前11 第一版前15 目录27 第1章绪论37 第2章前馈网络77 第3章径向基函数网络112 第4章学习理论与网络结构选择166 第5章核方法与支持向量机210 第6章自组织系统(Ⅰ)236 第7章自组织系统(Ⅱ)271 第8章自组织系统(Ⅲ)302 第9章动态信号与系统的处理361 第10章多神经网络集成386 第11章反馈网络与联想存储器424 第12章神经网络用于优化计算441 第13章神经网络中的动力学问题463 第14章误差函数与参数优化方法487 第15章贝叶斯方法505 第16章神经网络在信号处理中的应用552 第17章进化计算概论与进化策略575 第18章遗传算法及其理论分析596 第19章遗传算法的设计与实现619 第20章遗传算法在神经网络中的应用626 第21章遗传算法在作业调度中的应用636 第22章分布估计算法660 索引30.人工神经网络与盲信号处理主要责任者:杨行竣; 郑君里主题词:人工神经元网络; 信号处理; 应用; 人工神经元网络出版者:清华大学出版社ISBN:7-302-05880-6出版地:北京出版日期:200301页数:3997 目录11 第1章绪论33 第2章前向多层神经网络与递归神经网络123 第3章自组织神经网络163 第4章Hopfield神经网络244 第5章模糊神经网络311 第6章遗传算法及其在人工神经网络中的应用337 第7章盲信号处理31.人工神经网络理论、设计及应用(第二版)主要责任者:韩力群主题词:人工神经元网络; 高等学校; 教材出版者:化学工业出版社ISBN:978-7-5025-9523-4出版地:北京出版日期:2000709页数:2437 前9 目录15 1 绪论34 2 神经网络基础知识52 3 监督学习神经网络85 4 竞争学习神经网络121 5 组合学习神经网络133 6 反馈神经网络168 7 小脑模型神经网络178 8 基于数学原理的神经网络207 9 神经网络的系统设计与软件实现220 10 神经网络研究展望223 附录1 常用神经网络C语言源程序254 附录2 神经网络常用术语英汉对照256 参考文献。

神经网络与遗传算法相结合的优化方法

神经网络与遗传算法相结合的优化方法

神经网络与遗传算法相结合的优化方法随着科技的不断发展,人工智能技术也越来越成熟,其中神经网络和遗传算法是两种比较常见的优化方法。

神经网络是一种基于人脑神经系统的计算模型,它可以通过输入和输出数据来学习并预测未知的数据。

而遗传算法则是一种基于生物进化的计算优化方法,通过模拟进化过程来寻找最优解。

在实际应用中,单独使用神经网络或遗传算法可能会存在一些问题。

例如,神经网络可能会受到噪声数据的影响,导致训练过程不够稳定;而遗传算法可能会受到局部最优解的限制,从而难以找到全局最优解。

因此,将神经网络和遗传算法相结合,可以弥补彼此的不足,提高优化效果。

神经网络和遗传算法相结合的优化方法大致可以分为两种:基于神经网络的遗传算法和基于遗传算法的神经网络优化。

基于神经网络的遗传算法是指将神经网络作为遗传算法中的染色体,通过遗传算法对神经网络的权重和偏置进行优化。

首先,将神经网络的权重和偏置随机生成,并用其计算出目标函数值作为该染色体的适应度。

然后,使用遗传算法的选择、交叉和变异操作对染色体进行进化,直到满足终止条件为止。

最后,选择适应度最高的神经网络作为最优解。

基于遗传算法的神经网络优化是指使用遗传算法来优化神经网络的拓扑结构和参数。

首先,通过遗传算法生成多个随机的神经网络拓扑结构,并计算它们的目标函数值。

然后,使用遗传算法的选择、交叉和变异操作对拓扑结构进行进化,得到新的神经网络结构。

接着,针对每个神经网络进行参数优化,即对权重和偏置进行遗传算法优化。

最后,选择适应度最高的神经网络作为最优解。

这两种方法都是神经网络和遗传算法相结合的优化方法,但具体应用时需要根据实际情况进行选择。

例如,在数据量较小的情况下,基于神经网络的遗传算法可能更加有效,因为神经网络可以更好地拟合数据;而在数据量较大且结构复杂的情况下,基于遗传算法的神经网络优化可能更加适合,因为遗传算法可以更好地处理大规模的优化问题。

综上所述,神经网络和遗传算法相结合的优化方法具有优化效果好、稳定性高等优点,在实际应用中有着广泛的应用前景。

遗传算法与神经网络

遗传算法与神经网络
在遗传算法里,优化问题的解被称为个体,它表示为一个变量序列,叫做染色体或者基 因串。染色体一般被表达为简单的字符串或数字串,不过也有其他的依赖于特殊问题的表示 方法适用,这一过程称为编码。首先,算法随机生成一定数量的个体,有时候操作者也可以 对这个随机产生过程进行干预,以提高初始种群的质量。在每一代中,每一个个体都被评价, 并通过计算适应度函数得到一个适应度数值。种群中的个体被按照适应度排序,适应度高的 在前面。这里的“高”是相对于初始的种群的低适应度来说的。
2.1 神经网络简介
人工神经网络(artificial neural network,缩写 ANN),简称神经网络(neural network, 缩写 NN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量 的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结 构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具,常用来对输入和 输出间复杂的关系进行建模,或用来探索数据的模式。
进化次数限制; (1)计算耗费的资源限制(例如计算时间、计算占用的内存等); (2)一个个体已经满足最优值的条件,即最优值已经找到; (3)适应度已经达到饱和,继续进化不会产生适应度更好的个体; (4)人为干预; (5)以及以上两种或更多种的组合。
3/9
遗传算法与神经网络
一个典型的遗传算法要求: 一个基因表示的求解域, 一个适应度函数来评价解决方案。
经过这一系列的过程(选择、交配和突变),产生的新一代个体不同于初始的一代,并 一代一代向增加整体适应度的方向发展,因为最好的个体总是更多的被选择去产生下一代, 而适应度低的个体逐渐被淘汰掉。这样的过程不断的重复:每个个体被评价,计算出适应度, 两个个体交配,然后突变,产生第三代。周而复始,直到终止条件满足为止。一般终止条件 有以下几种:

神经网络与遗传算法

神经网络与遗传算法

10.4 遗传算法
1975年美国Michigan大学J.Holland教授提出。 美国人De.Jong博士将遗传算法应用于函数优化 Goldberg成了遗传算法的框架。
10.4.1遗传算法基本原理
选择适应值高的染色体进行复制,通过 遗传算子:选择、交叉(重组)、变异,来 产生一群新的更适应环境的染色体,形成新 的种群。
遗传算法利用适应值信息,而不需要导数或其它辅助信 息。
遗传算法用适应值评估个体,用遗传算子产生更优后代 ,不需要像神经网络中用梯度公式引导。
隐含并行性:
遗传算法是对N个位串个体进行运算,它隐含 了大量的模式(用通配符#包含的个体)
遗传机器学习
10.5基于遗传算法的分类学习系统
我们研制的遗传分类学习系统GCLS是一种字符串规则 (分类器)的学习系统。
1
总和∑ 平均值 最大值
1754
1.00 4.00
4.0
439
0.25 1.00 1.0
729
0.42 1.66 2.0
选择后的交配 池(下划线部 分交叉)
11001 11011 11011 10000
交叉对象
(随机选 择)
交叉位置
(随机选择 )
新的种群
2
1
11011
1
1
11001
4
3
11000
3
遗传算法是进行群体的搜索。 它对多个个体进行群体搜索,构成一个不断进
化的群体序列,它能找到全局最优解(优于爬 山法)
遗传算法是一种随机搜索方法,三个算子都是 随机操作,利用概率转移规则。
遗传算法的处理对象是问题参变量进行编码的个体,而 不是参变量自身。
参变量编码成位串个体,通过遗传算子进行操作。不是 对参数变量进行直接操作。

毕业设计论文基于遗传算法的BP神经网络的优化问题研究.doc

毕业设计论文基于遗传算法的BP神经网络的优化问题研究.doc

编号:审定成绩:重庆邮电大学毕业设计(论文)设计(论文)题目:基于遗传算法的BP神经网络的优化问题研究学院名称:学生姓名:专业:班级:学号:指导教师:答辩组负责人:填表时间:2010年06月重庆邮电大学教务处制摘要本文的主要研究工作如下:1、介绍了遗传算法的起源、发展和应用,阐述了遗传算法的基本操作,基本原理和遗传算法的特点。

2、介绍了人工神经网络的发展,基本原理,BP神经网络的结构以及BP算法。

3、利用遗传算法全局搜索能力强的特点与人工神经网络模型学习能力强的特点,把遗传算法用于神经网络初始权重的优化,设计出混合GA-BP算法,可以在一定程度上克服神经网络模型训练中普遍存在的局部极小点问题。

4、对某型导弹测试设备故障诊断建立神经网络,用GA直接训练BP神经网络权值,然后与纯BP算法相比较。

再用改进的GA-BP算法进行神经网络训练和检验,运用Matlab软件进行仿真,结果表明,用改进的GA-BP算法优化神经网络无论从收敛速度、误差及精度都明显高于未进行优化的BP神经网络,将两者结合从而得到比现有学习算法更好的学习效果。

【关键词】神经网络BP算法遗传算法ABSTRACTThe main research work is as follows:1. Describing the origin of the genetic algorithm, development and application, explain the basic operations of genetic algorithm, the basic principles and characteristics of genetic algorithms.2. Describing the development of artificial neural network, the basic principle, BP neural network structure and BP.3. Using the genetic algorithm global search capability of the characteristics and learning ability of artificial neural network model with strong features, the genetic algorithm for neural network initial weights of the optimization, design hybrid GA-BP algorithm, to a certain extent, overcome nerves ubiquitous network model training local minimum problem.4. A missile test on the fault diagnosis of neural network, trained with the GA directly to BP neural network weights, and then compared with the pure BP algorithm. Then the improved GA-BP algorithm neural network training and testing, use of Matlab software simulation results show that the improved GA-BP algorithm to optimize neural network in terms of convergence rate, error and accuracy were significantly higher than optimized BP neural network, a combination of both to be better than existing learning algorithm learning.Key words:neural network back-propagation algorithms genetic algorithms目录第一章绪论 (1)1.1 遗传算法的起源 (1)1.2 遗传算法的发展和应用 (1)1.2.1 遗传算法的发展过程 (1)1.2.2 遗传算法的应用领域 (2)1.3 基于遗传算法的BP神经网络 (3)1.4 本章小结 (4)第二章遗传算法 (5)2.1 遗传算法基本操作 (5)2.1.1 选择(Selection) (5)2.1.2 交叉(Crossover) (6)2.1.3 变异(Mutation) (7)2.2 遗传算法基本思想 (8)2.3 遗传算法的特点 (9)2.3.1 常规的寻优算法 (9)2.3.2 遗传算法与常规寻优算法的比较 (10)2.4 本章小结 (11)第三章神经网络 (12)3.1 人工神经网络发展 (12)3.2 神经网络基本原理 (12)3.2.1 神经元模型 (12)3.2.2 神经网络结构及工作方式 (14)3.2.3 神经网络原理概要 (15)3.3 BP神经网络 (15)3.4 本章小结 (21)第四章遗传算法优化BP神经网络 (22)4.1 遗传算法优化神经网络概述 (22)4.1.1 用遗传算法优化神经网络结构 (22)4.1.2 用遗传算法优化神经网络连接权值 (22)4.2 GA-BP优化方案及算法实现 (23)4.3 GA-BP仿真实现 (24)4.3.1 用GA直接训练BP网络的权值算法 (25)4.3.2 纯BP算法 (26)4.3.3 GA训练BP网络的权值与纯BP算法的比较 (28)4.3.4 混合GA-BP算法 (28)4.4 本章小结 (31)结论 (32)致谢 (33)参考文献 (34)附录 (35)1 英文原文 (35)2 英文翻译 (42)3 源程序 (47)第一章绪论1.1 遗传算法的起源从生物学上看,生物个体是由细胞组成的,而细胞则主要由细胞膜、细胞质、和细胞核构成。

神经网络遗传算法函数极值寻优-非线性函数极值

神经网络遗传算法函数极值寻优-非线性函数极值

%% 清空环境变量clccleartic%% 训练数据预测数据提取及归一化%下载输入输出数据load data input output%从1到2000间随机排序k=rand(1,4000);[m,n]=sort(k);%找出训练数据和预测数据input_train=input(n(1:3900),:)';output_train=output(n(1:3900),:)';input_test=input(n(3901:4000),:)';output_test=output(n(3901:4000),:)';%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train); [outputn,outputps]=mapminmax(output_train);%% BP网络训练% %初始化网络结构net=newff(inputn,outputn,5);net.trainParam.epochs=100;net.trainParam.lr=0.1;net.trainParam.goal=0.0000004;%网络训练net=train(net,inputn,outputn);%% BP网络预测%预测数据归一化inputn_test=mapminmax('apply',input_test,inputps);%网络预测输出an=sim(net,inputn_test);%网络输出反归一化BPoutput=mapminmax('reverse',an,outputps);%% 结果分析figure(1)plot(BPoutput,':og')hold onplot(output_test,'-*');legend('预测输出','期望输出','fontsize',12)title('BP网络预测输出','fontsize',12)xlabel('样本','fontsize',12)ylabel('输出','fontsize',12)print -dtiff -r600 4-3%预测误差error=BPoutput-output_test;figure(2)plot(error,'-*')title('神经网络预测误差')figure(3)plot((output_test-BPoutput)./BPoutput,'-*');title('神经网络预测误差百分比')errorsum=sum(abs(error))tocsave data net inputps outputps%%Codefunction ret=Code(lenchrom,bound)%本函数将变量编码成染色体,用于随机初始化一个种群% lenchrom input : 染色体长度% bound input : 变量的取值范围% ret output: 染色体的编码值flag=0;while flag==0pick=rand(1,length(lenchrom));ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret 中flag=test(lenchrom,bound,ret); %检验染色体的可行性end%%Crossfunction ret=Cross(pcross,lenchrom,chrom,sizepop,bound)%本函数完成交叉操作% pcorss input : 交叉概率% lenchrom input : 染色体的长度% chrom input : 染色体群% sizepop input : 种群规模% ret output : 交叉后的染色体for i=1:sizepop %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)% 随机选择两个染色体进行交叉pick=rand(1,2);while prod(pick)==0pick=rand(1,2);endindex=ceil(pick.*sizepop);% 交叉概率决定是否进行交叉pick=rand;while pick==0pick=rand;endif pick>pcrosscontinue;endflag=0;while flag==0% 随机选择交叉位pick=rand;while pick==0pick=rand;endpos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同pick=rand; %交叉开始v1=chrom(index(1),pos);v2=chrom(index(2),pos);chrom(index(1),pos)=pick*v2+(1-pick)*v1;chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性if flag1*flag2==0flag=0;else flag=1;end %如果两个染色体不是都可行,则重新交叉endendret=chrom;。

遗传算法求函数极值

遗传算法求函数极值

遗传算法求函数极值遗传算法是一种基于模拟生物进化过程的优化算法,它通过模拟生物的进化过程中的遗传、交叉和变异等操作,对问题的解空间进行,并到满足最优条件的解。

它被广泛应用于求解各种复杂问题,包括函数极值问题。

在使用遗传算法求函数极值的过程中,首先需要明确问题的目标函数。

目标函数是一个将自变量映射到一个实数值的函数,它描述了问题的优化目标。

例如,我们可以考虑一个简单的目标函数f(x),其中x表示自变量,f(x)表示因变量。

遗传算法的基本流程如下:1.初始化种群:随机生成一组初始解,也就是种群。

种群中的每个个体都是一个可能的问题解,而个体中的染色体则表示了问题解的具体数值。

2.适应度评估:对于种群中的每个个体,通过计算目标函数的值,评估每个个体的适应度。

适应度越高的个体,越有可能成为下一代个体的基因。

3.选择操作:根据个体的适应度,选择一些个体作为下一代遗传操作的基因。

4.交叉操作:从选择出的个体中随机选择一对个体,进行交叉操作。

交叉操作通过交换两个个体的染色体信息,产生新的个体。

5.变异操作:对交叉操作生成的新个体进行变异操作。

变异操作通过改变个体染色体中的部分基因,引入新的解,以增加问题解的多样性。

6.新种群产生:基于交叉和变异操作,生成新的种群。

7.终止条件判断:如果满足终止条件(例如达到最大迭代次数、找到了满足要求的解等),则停止算法;否则,返回第2步。

通过以上步骤的循环迭代,遗传算法可以到问题的最优解,即函数的极值。

由于遗传算法充分利用了进化算法的生物特点,具有全局能力和自适应优化能力,因此在函数极值求解中得到了广泛的应用。

遗传算法的关键在于如何进行适应度评估、选择操作、交叉操作和变异操作。

适应度评估是指根据目标函数计算个体的适应度值,一般情况下适应度越高的个体越有可能成为下一代的基因。

选择操作可以采用轮盘赌选择、最优选择等方式,根据个体的适应度选择一定数量的个体进行交叉和变异。

交叉操作通过交换染色体信息,产生新的个体;变异操作通过改变个体染色体中的部分基因,引入新的解。

遗传算法优化BP神经网络权值和阈值的通用

遗传算法优化BP神经网络权值和阈值的通用
for i=1:S2,
B2(i,1)=x((R*S1+S1*S2+S1)+i);
end
% 计算S1与S2层的输出
A1=tansig(W1*P,B1);
A2=purelin(W2*A1,B2);
% 计算误差平方和
SE=sumsqr(T-A2);
val=1/SE; % 遗传算法的适应值
figure(2)
plot(trace(:,1),trace(:,3),'r-');
hold on
plot(trace(:,1),trace(:,2),'b-');
xlabel('Generation');
ylabel('Fittness');
%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络
net.trainParam.epochs=50;
net.trainParam.goal=0.001;
%训练网络
net=train(net,XX,YY);
程序二:适应值函数
function [sol, val] = gabpEval(sol,options)
% val - the fittness of this individual
%--------------------------------------------------------------------------
%数据归一化预处理
nntwarn off
XX=premnmx(XX);
YY=premnmx(YY);
%创建网络
net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');

遗传算法在机器学习中参数优化作用

遗传算法在机器学习中参数优化作用

遗传算法在机器学习中参数优化作用机器学习领域中,参数优化是提高模型性能和泛化能力的重要环节。

而遗传算法作为一种经典的优化算法,因其对搜索空间的全局探索和多样性维持能力,被广泛应用于机器学习中的参数优化问题。

本文将介绍遗传算法在机器学习中的参数优化作用,并探讨其应用的优势和限制。

首先,遗传算法在机器学习中的参数优化作用体现在以下几个方面:1. 全局搜索能力:遗传算法通过在参数空间进行随机搜索和迭代优化,能够有效地遍历搜索空间并找到全局最优解。

相比于其他优化算法,如梯度下降等,遗传算法更适用于非凸、高维的参数优化问题。

2. 多样性维持能力:遗传算法通过使用交叉、变异等操作来产生新的个体,从而保持种群的多样性。

这一特性可以防止陷入局部最优解,并提高整体搜索的效率。

3. 适应度评估机制:遗传算法通过适应度函数来评估每个个体的优劣,并根据适应度的大小进行选择、交叉和变异操作。

这一机制可以根据问题的需求来设计不同的适应度函数,从而实现对优化目标的灵活定义和调整。

除了以上的优势,遗传算法在机器学习中的参数优化也存在一些限制和挑战:1. 计算复杂度高:由于遗传算法需要维护一个种群并进行大量的随机搜索和迭代优化,其计算复杂度较高。

特别是当参数空间较大或需要进行大规模的并行优化时,计算负载会进一步增加。

2. 参数设置困难:遗传算法中的参数设置对最终优化结果有很大的影响。

选择合适的遗传算法参数和设置交叉、变异操作的概率等参数都需要经验和实验的支持,往往需要进行多次实验和调优。

3. 适应度函数设计:适应度函数的设计对遗传算法的性能至关重要。

合理设计适应度函数可以引导算法在搜索空间中快速找到感兴趣的区域,但如果适应度函数定义不合适,可能导致算法陷入局部最优解或过早收敛。

尽管存在一些限制和挑战,遗传算法仍然被广泛应用于机器学习中的参数优化问题,并取得了一定的成果。

下面将介绍几个实际应用的例子:1. 神经网络参数优化:神经网络作为一种强大的机器学习模型,其性能很大程度上依赖于参数的选择。

人工智能中的遗传算法与神经进化计算

人工智能中的遗传算法与神经进化计算

人工智能中的遗传算法与神经进化计算人工智能(Artificial Intelligence,AI)是指使机器能够模拟人类智能行为的学科。

近年来,人工智能在诸多领域取得了重大进展,其中遗传算法和神经进化计算是两个重要的研究方向。

遗传算法是一种通过模拟生物进化过程来解决优化问题的算法。

它的基本原理是从一个初始的个体群体中随机产生一组候选解,并利用选择、交叉、变异等操作进行迭代优化,逐渐找到更优的解。

遗传算法通过模拟自然选择、遗传交叉和基因突变等过程,将优良的个体逐代繁衍,从而得到最优解。

与遗传算法相比,神经进化计算是一种基于生物进化理论的学习方法,其中的神经网络的结构和参数也通过遗传算法进行优化。

神经进化计算的基本思想是将神经网络的结构和权重编码为个体的基因,通过选择、交叉和变异等操作进行迭代优化。

通过不断优化神经网络的结构和权重,提高网络的拟合能力和泛化能力,进而提高人工智能系统的性能。

遗传算法和神经进化计算在人工智能领域具有广泛的应用。

在机器学习和数据挖掘中,遗传算法可以用于寻找最优特征子集、参数优化等问题。

通过随机生成一组候选解并利用遗传算法进行优化,可以有效地减少搜索空间,提高学习效率。

同时,神经进化计算可用于优化神经网络结构和参数,提高模型的性能和可解释性。

通过结合遗传算法和神经进化计算,可以进一步提高人工智能系统的性能和鲁棒性。

除了在机器学习领域的应用,遗传算法和神经进化计算在智能优化、自动控制等领域也具有重要意义。

例如,在智能优化问题中,遗传算法可以用于求解复杂的函数极值、组合优化等问题。

通过模拟自然界的优化过程,遗传算法可以在搜索空间中找到合适的解。

而神经进化计算则可以应用于自动控制问题中,通过优化神经网络的结构和参数,实现系统的智能控制。

遗传算法和神经进化计算的结合还可以产生更强大的人工智能系统。

通过在进化过程中引入神经网络的结构和参数,可以使个体的表达能力增强,从而提高系统的适应性和泛化能力。

基于神经网络遗传算法高炉热风炉空燃比寻优

基于神经网络遗传算法高炉热风炉空燃比寻优

基于神经网络遗传算法高炉热风炉空燃比寻优李爱莲;孙天涵;詹万鹏【摘要】利用某钢厂高炉热风炉历史数据,提出一种基于神经网络遗传算法寻求高炉热风炉最佳空燃比的方法.文中结合热风炉操作工艺及专家经验分析了高炉热风炉空燃比、拱顶温度与热效率的关系,并通过BP神经网络建立了准确的描述拱顶温度与包括空燃比在内变量的非线性函数关系,最后利用遗传算法进行寻优计算得出最佳空燃比的参考值.仿真结果表明,该方法建立的非线性函数关系准确,通过遗传算法计算得到的空燃比能显著提高热风炉燃烧热效率.【期刊名称】《自动化与仪表》【年(卷),期】2015(030)002【总页数】5页(P9-12,37)【关键词】热风炉;空燃比;神经网络;遗传算法;极值寻优【作者】李爱莲;孙天涵;詹万鹏【作者单位】内蒙古科技大学信息工程学院,包头014000;内蒙古科技大学信息工程学院,包头014000;内蒙古科技大学信息工程学院,包头014000【正文语种】中文【中图分类】TP273热风炉是炼铁生产中重要的设备之一,它承担着将燃烧煤气所产生的热量通过热风传递到高炉的关键任务。

在热风炉燃烧过程中,助燃空气流量与高炉煤气流量的比值(简称空燃比)决定了热风炉能量损耗和燃烧的热效率。

但大多数高炉热风炉仍然采用人工经验调节空燃比的手段,不能达到燃烧过程高效利用能源,减少能耗的目的。

显然,提出高炉热风炉空燃比的寻优方法具有深远的意义。

本文欲通过高炉热风炉大量历史数据和人工智能建模寻优的方法对空燃比进行寻优,寻出可靠的空燃比参考值,为热风炉实际操作提供指导。

1 空燃比与热效率关系理论上空燃比和燃烧效率之间的关系如图1所示。

图1 空燃比与燃烧效率关系Fig.1 Relationship of air-fuel ratio and combustion efficiency由图1可知,空燃比过低,高炉煤气不完全燃烧造成高炉煤气损耗。

空燃比过高引起烟道废气带走过多热量,同样造成热量损耗。

神经网络遗传算法极值寻优

神经网络遗传算法极值寻优

神经网络遗传算法极值寻优【摘要】:阐明了遗传算法和神经网络结合的可行性和优越性,用遗传算法和神经网络结合的方法求解了非线性函数的最优解。

设计了用遗传算法训练神经网络权重的方法,实验结果表明了遗传算法快速学习网络权重的能力,并且能够摆脱局部极点的困扰。

【关键词】:遗传算法神经网络1. 引言智能包括高层次的是生物智能(BI),其次是人工智能(AI ),处于低层次的是计算智能(CI )。

在计算智能中,计算的概念是传统计算概念的拓展,计算对象不局限于数和字符,运算符号也不再局限于加减乘除等运算,在这个范畴内的加减乘除也需赋予新的含义[6]。

但一般来说,AI 偏重于逻辑推理,而CI 则偏重于数值计算。

现在,计算智能已取得一定的研究成果,其主要技术包括模糊技术、神经网络、进化计算等[ 5] 。

这几项技术各自均有了数十年的历史,但当时这些方法并未受到足够的重视,一是当时这些方法还不很成熟,二是受当时计算机软硬件的限制。

而这些方法一般需要较大的计算量,在实际应用中比较难实现[4]。

随着计算机技术的发展和普及,它们在最近这些年得到了突飞猛进的发展,引起了诸多领域专家学者的关注,成为一个跨学科的研究热点。

近年来,这些方法呈互相融合的趋势[ 3],它们之间的互补可以弥补相互之间的不足,从而获得更好的解决实际问题的能力。

如对模糊神经网络、模糊遗传算法、模糊分类器系统、用遗传算法优化模糊系统的隶属度函数及神经网络的进化设计方法等的研究都体现了这种融合的优点[ 1,2] 。

2. 问题描述对于非线性函数的极值问题,仅通过函数的输入输出数据难以准确寻找未知的非线性函数的极值。

这类问题的求解可以通过神经网络结合遗传算法来得到,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。

本文用神经网络遗传算法寻优如下非线性函数极值。

该函数的全局最小值为0,对应的坐标为(0 ,0)。

虽然从函数方程和图形中很容易找出函数极值及极值对应坐标,但是在函数方程未知的情况下函数极值及极值对应坐标很难找到。

遗传算法求解函数最大值最小值

遗传算法求解函数最大值最小值

遗传算法是一种模拟自然选择和遗传机制的优化搜索算法,它能够通过模拟生物进化的过程来寻找最优解。

在数学和计算领域,遗传算法被广泛应用于求解函数的最大值和最小值问题。

1. 遗传算法的基本原理遗传算法是一种基于裙体的优化算法,它模拟了自然界中的优胜劣汰和随机性变异的过程。

其基本原理包括遗传、变异、选择和适应度评价。

1.1 遗传:遗传算法通过模拟生物的交配过程来产生新的个体,其中将两个个体的染色体交叉并产生新的后代。

1.2 变异:遗传算法引入随机性的变异操作,以增加搜索空间的多样性,使算法不至于陷入局部最优解。

1.3 选择:个体的适应度评价后,根据一定的选择策略选择出部分个体作为下一代的种裙,通常适应度高的个体有更大的概率被选择。

1.4 适应度评价:遗传算法通过适应度函数对个体进行评价,以确定个体在种裙中的适应度。

适应度函数通常是需要优化的函数。

2. 遗传算法在求解函数最大值和最小值问题中的应用遗传算法作为一种全局搜索算法,具有寻找函数最大值和最小值的能力。

对于一个给定的函数,遗传算法能够在较短的时间内找到该函数的全局最优解。

2.1 函数最大值求解:对于函数的最大值求解问题,可以将函数的负值作为适应度函数,通过遗传算法来求解负值最小化的问题,从而达到求解函数最大值的目的。

2.2 函数最小值求解:对于函数的最小值求解问题,则可以直接将函数的值作为适应度函数,通过遗传算法来求解函数最小值问题。

3. 遗传算法在实际应用中的优势遗传算法作为一种全局搜索算法,在求解函数最大值和最小值问题中具有以下优势:3.1 并行性:遗传算法能够并行处理多个个体,从而加速搜索过程,尤其适合于复杂的高维优化问题。

3.2 全局搜索能力:遗传算法不容易陷入局部最优解,能够在较短的时间内找到函数的全局最优解。

3.3 适应性强:遗传算法能够适应不同类型的函数和问题,具有较强的通用性。

4. 遗传算法在求解函数最大值和最小值问题中的应用实例以下是一些实际应用中遗传算法在求解函数最大值和最小值问题中的应用实例:4.1 Rosenbrock函数最小值求解:Rosenbrock函数是一个经典的优化测试函数,遗传算法在求解Rosenbrock函数的最小值时具有良好的表现。

MATLAB中的神经网络与遗传算法联合优化实例分析

MATLAB中的神经网络与遗传算法联合优化实例分析

MATLAB中的神经网络与遗传算法联合优化实例分析神经网络和遗传算法是两种常用的智能优化方法,它们在不同领域的问题求解中发挥了重要作用。

而将这两种方法结合起来,可以进一步提升算法的性能和效果。

本文将介绍MATLAB中如何使用神经网络和遗传算法联合优化,并通过一个实例进行分析和验证。

首先,我们先来了解一下神经网络和遗传算法的基本原理。

神经网络是一种模拟生物神经系统的计算模型,它由多个神经元组成,通过学习调整神经元之间的连接权重,从而实现对输入数据的非线性映射和分类。

而遗传算法则是一种模拟生物进化过程的优化方法,通过不断迭代和交叉变异的方式搜索最优解。

在MATLAB中,可以使用Neural Network Toolbox和Global Optimization Toolbox分别实现神经网络和遗传算法的优化。

下面我们将以一个分类问题为例,演示如何使用这两种方法联合优化。

假设我们需要构建一个神经网络模型,对一个包含多个特征的数据集进行分类。

首先,我们可以使用Neural Network Toolbox搭建一个基本的神经网络结构。

通过设定输入层、隐层和输出层的神经元个数,以及选择合适的激活函数和损失函数,我们可以训练得到一个初步的神经网络模型。

然而,这个初步模型可能并不是最优的,它可能存在欠拟合或过拟合的问题。

为了进一步提升模型的性能,我们可以引入遗传算法进行优化。

具体做法是将神经网络的连接权重作为遗传算法的优化变量,通过遗传算法的搜索过程来调整权重,以寻找最优解。

在全局优化问题中,遗传算法能够避免陷入局部最优解,并且具有较好的鲁棒性。

在MATLAB中,Global Optimization Toolbox提供了ga函数来实现遗传算法的优化。

我们可以将神经网络的连接权重作为输入变量,定义一个适应度函数来评估神经网络模型的性能,然后通过调用ga函数进行优化求解。

在每次迭代中,遗传算法将根据适应度函数的评估结果来调整权重,直至找到最优解。

MATLAB数学建模14个范例

MATLAB数学建模14个范例

1.整数规划的蒙特卡洛解法2015-06-10 (2)2. 罚函数法 2015-06-11 (3)3. 层次分析 2015-06-12 (4)4. 粒子群优化算法的寻优算法--非线性函数极值寻优 2015-06-13 (5)5有约束函数极值APSO寻优 2015-06-14 (12)6.模拟退火算法 TSP问题2015-06-15 (17)7. 右端步连续微分方程求解2015-06-16 (19)8. 多元方差分析 2015-06-17 (22)9. 基于MIV的神经网络变量筛选 2015-06-18 (25)10. RBF网络的回归--非线性函数回归的实现 2015-06-19 (29)11. 极限学习机在回归拟合中的应用 2015-06-20 (32)12. 极限学习机在分类中的应用 2015-06-21 (34)13. 基于PSO改进策略 2015-06-22 (37)14. 神经网络遗传算法函数极值寻优 2015-06-23 (46)1.1.整数规划的蒙特卡洛解法2015-06-10 已知非线性整数规划为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤++≤++≤++++≤++++=≤≤-----++++=200520062800622400)5,....,1(9902328243max 54233216432154321543212524232221x x x x x x x x x x x x x x x x i x x x x x x x x x x x z i如果用显枚举试探,共需要计算100^5=10^10个点,其计算量非常大。

然而应用蒙特卡洛去随机模拟计算10^6个点,便可以找到满意解,那么这种方法的可信度究竟怎么样呢? 下面就分析随机采样10^6个点计算时,应用概率理论估计下可信度。

不是一般性,假设一个整数规划的最优点不是孤立的奇点。

假设目标函数落在高值区的概率分别为0.01,0.00001,则当计算10^6个点后,有任一个点落在高值区的概率分别为:1-0.99^1000000=0.99...99(100多位) 1-0.99999^1000000=0.999954602解 (1)首先编写M 文件 mengte.m 定义目标函数f 和约束向量g,程序如下:function [f,g]=mengte(x);f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-... x(4)-2*x(5); g=[sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-800 2*x(1)+x(2)+6*x(3)-200 x(3)*x(3)+x(4)+5*x(5)-200];(2)编写M 文件mainint.m 如下求问题的解: rand('state',sum(clock)); p0=0; ticfor i=1:10^5x=99*rand(5,1);x1=floor(x);%向下取整 x2=ceil(x);%向上取整 [f,g]=mengte(x1); if sum(g<=0)==4 if p0<=f x0=x1; p0=f; end end[f,g]=mengte(x2); if sum(g<=0)==4 if p0<=fx0=x2; p0=f; end end end x0,p0Matlab 求解整数规划祥见第二章(优秀教材)2.罚函数法 2015-06-11利用罚函数法,可将非线性规划问题的求解,转化为求解一系列无约束极值问题,因而也称这种方法为系列无约束最小化技术,简记为SUMT 。

基于神经网络优化的方法参数寻优技术研究

基于神经网络优化的方法参数寻优技术研究

基于神经网络优化的方法参数寻优技术研究一、绪论随着机器学习和人工智能的不断发展,神经网络作为一种重要的模型已经被广泛应用于各个领域,如图像识别、自然语言处理等。

对于神经网络的训练和应用,参数寻优是关键问题之一。

传统的参数寻优方法存在着很多问题,比如易陷入局部最优等,这限制了神经网络的发展。

针对这些问题,基于神经网络优化的方法参数寻优技术应运而生。

二、基本原理基于神经网络优化的方法参数寻优技术是利用神经网络模型来求解最优化问题。

因为神经网络具有非线性、并行等特点,能够优化目标函数,所以在参数寻优问题上具有很大的优势。

其基本原理是将待优化的参数视为神经网络中的权重和偏置,然后通过反向传播算法不断更新这些参数,使得目标函数不断逼近最优值,实现对网络的优化。

三、常见方法1. 梯度下降法梯度下降法是一种常见的优化方法,在神经网络中也得到了广泛的应用。

它利用负梯度方向来更新权重参数,使得目标函数在当前点向最优方向下降。

然而,梯度下降法容易陷入局部最优,同时梯度爆炸和梯度消失等问题也限制了其在神经网络中的应用。

2. 优化器优化器是一种广泛应用于神经网络优化的类别。

它通过动态调整学习率、正则化等参数来优化目标函数,使用起来比梯度下降法更加灵活并且准确。

常见的优化器有Adam、RMSprop等。

在实际应用中,优化器的性能也受到一些因素的影响,例如批处理的大小、学习率的初始值等。

3. 遗传算法遗传算法是一种基于自然选择和遗传规律的优化方法,其主要通过交配、变异和选择等过程来搜索最优解。

在神经网络优化中,遗传算法的主要优势在于能够避免陷入局部最优,同时具有全局寻优的能力。

四、优化技巧1. 正则化正则化是一种防止过拟合的方法,在神经网络中得到了广泛的应用。

使用正则化方法可以约束权重的大小,使得网络更加容易泛化,避免对训练数据的过度拟合。

2. DropoutDropout是一种强制信道随机丢弃的方法,它可以减少过拟合的发生。

利用遗传算法求函数的极小值

利用遗传算法求函数的极小值

1、利用遗传算法求出下面函数的极小值:z=2-exp[-(x2+y2)], x,y∈[-5,+5]对于此函数,求某一极值、或说最值时,由于x、y定义域与系数相同,x与y相对于z 来说是地位等同的,因此可以转换成求该函数极值:;继而转换成了一种单变量函数。

函数的实现:(1)ga_main脚本文件% GA main program% Edited by Bian Xuezi% n ---- 种群规模% ger ---- 迭代次数% pc ---- 交叉概率% pm ---- 变异概率% v ---- 初始种群(规模为n)% f ---- 目标函数值% fit ---- 适应度向量% vx ---- 最优适应度值向量% vmfit ---- 平均适应度值向量clear all;close all;clc;tic;n=20;ger=100;pc=0.70;pm=0.009;% 生成初始种群v=init_population(n,20);[N,L]=size(v);disp(sprintf('Number of generations:%d',ger)); disp(sprintf('Population size:%d',N));disp(sprintf('Crossover probability:%.3f',pc)); disp(sprintf('Mutation probability:%.3f',pm)); % 待优化问题xmin=-5;ymin=-5;xmax=5;ymax=5;f='-2+exp(-x.^2-y.^2)';%初始化sol=0.1;vmfit=[];it=1;vx=[];%C=[];% 计算适应度,并画出图形x=decode(v(:,1:10),xmin,xmax);y=decode(v(:,11:20),ymin,ymax);fit=eval(f);figure(1);[X,Y]=meshgrid(-5:0.1:5,-5:0.1:5);Z=-2+exp(-X.^2-Y.^2);mesh(X,Y,Z);grid on;hold on;plot3(x,y,fit,'k*');title('染色体的初始位置');xlabel('x');ylabel('y');zlabel('f(x,y)');% 开始进化while it<=ger%Reproduction(Bi-classist Selection) vtemp=roulette(v,fit);%Crossoverv=crossover(vtemp,pc);%MutationM=rand(N,L)<=pm;%M(1,:)=zeros(1,L);v=v-2.*(v.*M)+M;%Resultsx=decode(v(:,1:10),xmin,xmax);y=decode(v(:,11:20),ymin,ymax);fit=eval(f);[sol,indb]=max(fit);v(1,:)=v(indb,:);media=mean(fit);vx=[vx sol];vmfit=[vmfit media];it=it+1;end%%%% 最后的结果disp(sprintf('\n')); %空一行% 显示最优解及最优值disp(sprintf('Maximum found[x,f(x)]:[%.4f,%.4f,%.4f]',x(indb),y(indb),sol)); % 图形显示最优结果figure(2);[X,Y]=meshgrid(-5:0.1:5,-5:0.1:5);Z=-2+exp(-X.^2-Y.^2);mesh(X,Y,Z);grid on;hold on;plot3(x,y,fit,'k*');title('染色体的最终位置');xlabel('x');ylabel('y');zlabel('f(x,y)');% 图形显示最优及平均函数值变化趋势figure(3);plot(vx);%title('最优,平均函数值变化趋势'); xlabel('Generations');ylabel('f(x,y)');hold on;plot(vmfit,'r');hold off;runtime=toc(2)Crossover函数%Crossoverfunction v=crossover(vtemp,pc) [N,L]=size(vtemp);C(:,1)=rand(N,1)<=pc;I=find(C(:,1)==1);I';j=1;for i=1:2:size(I)if i>=size(I)break;endsite=fix(1+L*rand(1));temp=vtemp(I(i,1),:);vtemp(I(i,1),site:end)=vtemp(I(i+1,1),site:end); vtemp(I(i+1,1),site:end)=temp(:,site:end);%j=j+2;endv=vtemp;(3)decode函数%Decodify bitstringsfunction x=decode(v,min,max)% x ----真实值% v ----待解码的已编码的0-1串v=fliplr(v);[s,c]=size(v);aux=0:1:c-1 ;%21;aux=ones(s(1),1)*aux;x1=sum((v.*2.^aux)');x=min+(max-min)*x1./(2^c-1); % ; (4)init_population函数function v=init_population(n1,s1)v=round(rand(n1,s1));(5)roulette函数function vtemp=roulette(v,fit)N=size(v);fitmin=abs(min(fit));fit=fitmin+fit;%fitS=sum(fit);for i=1:NSI=S*rand(1);for j=1:Nif SI<=sum(fit(1:j))vtemp(i,:)=v(j,:);breakendendend。

MATLAB神经网络(4)神经网络遗传算法函数极值寻优——非线性函数极值寻优

MATLAB神经网络(4)神经网络遗传算法函数极值寻优——非线性函数极值寻优

MATLAB神经⽹络(4)神经⽹络遗传算法函数极值寻优——⾮线性函数极值寻优4.1 案例背景y = {x_1}^2 + {x_2}^24.2 模型建⽴神经⽹络训练拟合根据寻优函数的特点构建合适的BP神经⽹络,⽤⾮线性函数的输⼊输出数据训练BP神经⽹络,训练后的BP神经⽹络就可以预测函数输出。

遗传算法极值寻优把训练后的 BP 神经⽹络预测结果作为个体适应度值,通过选择、交叉和变异操作寻找函数的全局最优值及对应输⼊值。

⽹络结构:2-5-1训练数据:3900,测试数据:1004.3 编程实现%% 基于神经⽹络遗传算法的系统极值寻优%% 清空环境变量clcclearinput=2*randn(2,2000);output=sum(input.*input);[inputn,inputps]=mapminmax(input);[outputn,outputps]=mapminmax(output);%% BP⽹络训练% %初始化⽹络结构net=newff(inputn,outputn,[10,5]);% 配置⽹络参数(迭代次数,学习率,⽬标)net.trainParam.epochs=500;net.trainParam.lr=0.1;net.trainParam.goal=0.000004;%⽹络训练net=train(net,inputn,outputn);%% 初始化遗传算法参数%初始化参数maxgen=200; %进化代数,即迭代次数sizepop=20; %种群规模pcross=[0.4]; %交叉概率选择,0和1之间pmutation=[0.2]; %变异概率选择,0和1之间lenchrom=[1 1]; %每个变量的字串长度,如果是浮点变量,则长度都为1bound=[-5 5;-5 5]; %数据范围individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为⼀个结构体avgfitness=[]; %每⼀代种群的平均适应度bestfitness=[]; %每⼀代种群的最佳适应度bestchrom=[]; %适应度最好的染⾊体%% 初始化种群计算适应度值% 初始化种群for i=1:sizepop%随机产⽣⼀个种群individuals.chrom(i,:)=Code(lenchrom,bound);x=individuals.chrom(i,:);%计算适应度individuals.fitness(i)=fun(x,inputps,outputps,net); %染⾊体的适应度end%找最好的染⾊体[bestfitness bestindex]=min(individuals.fitness);bestchrom=individuals.chrom(bestindex,:); %最好的染⾊体avgfitness=sum(individuals.fitness)/sizepop; %染⾊体的平均适应度% 记录每⼀代进化中最好的适应度和平均适应度trace=[avgfitness bestfitness];%% 迭代寻优% 进化开始for i=1:maxgenif(mod(i,10)==0)iend% 选择individuals=Select(individuals,sizepop);avgfitness=sum(individuals.fitness)/sizepop;%交叉individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);% 变异individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,i,maxgen,bound); % 计算适应度for j=1:sizepopx=individuals.chrom(j,:); %解码individuals.fitness(j)=fun(x,inputps,outputps,net);end%找到最⼩和最⼤适应度的染⾊体及它们在种群中的位置[newbestfitness,newbestindex]=min(individuals.fitness);[worestfitness,worestindex]=max(individuals.fitness);% 代替上⼀次进化中最好的染⾊体if bestfitness>newbestfitnessbestfitness=newbestfitness;bestchrom=individuals.chrom(newbestindex,:);endindividuals.chrom(worestindex,:)=bestchrom;individuals.fitness(worestindex)=bestfitness;avgfitness=sum(individuals.fitness)/sizepop;trace=[trace;avgfitness bestfitness]; %记录每⼀代进化中最好的适应度和平均适应度endfunction fitness = fun(x,inputps,outputps,net)% 函数功能:计算该个体对应适应度值% x input 个体% fitness output 个体适应度值%数据归⼀化x=x';inputn_test=mapminmax('apply',x,inputps);%⽹络预测输出an=sim(net,inputn_test);%⽹络输出反归⼀化fitness=mapminmax('reverse',an,outputps);%% 结果分析[r,c]=size(trace);plot(trace(:,2),'r-');title('适应度曲线','fontsize',12);xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);axis([0,200,0,1])x=bestchrom;disp([bestfitness x]);fun([0,0],inputps,outputps,net)ans =0.0507在遗传算法中没有y = {x_1}^2 + {x_2}^2函数的原型,由于神经⽹络的误差,最后的计算值离真实值有⼀定偏差。

变压器套管电容芯子结构的优化设计

变压器套管电容芯子结构的优化设计

变压器套管电容芯子结构的优化设计曾怡;陈诚;张古月;许国君【摘要】为了提高变压器套管的绝缘能力,优化变压器套管内部的场强分布.利用有限元法建立变压器套管的计算模型,引入神经网络遗传算法进行优化计算.结果表明:随间距的增大,油、电容芯子的最大场强成非线性减小;随厚度的增大,油、电容芯子的最大场强也随着减小.通过优化计算,优化间距为2.379mm,厚度为0.220mm,变压器套管的油、电容芯子最大场强分别减小了14.68%和12.86%,使得变压器套管的电场分布更为均匀.结果可为变压器套管的参数设计提供一定的参考作用.【期刊名称】《电气开关》【年(卷),期】2015(053)004【总页数】4页(P66-68,73)【关键词】变压器套管;场强;有限元法;神经网络;遗传算法【作者】曾怡;陈诚;张古月;许国君【作者单位】三峡大学电气与新能源学院,湖北宜昌 443002;三峡大学电气与新能源学院,湖北宜昌 443002;三峡大学电气与新能源学院,湖北宜昌 443002;三峡大学电气与新能源学院,湖北宜昌 443002【正文语种】中文【中图分类】TM41电力变压器是构成电网的主要设备,在电力系统中起着电压等级变换的作用。

如今,随着我国城市现代化建设的不断推进,用电量不断上升,电力变压器也逐步向高压、大容量的方向发展。

这将对电力变压器的绝缘设计提出更高的要求,绝缘结构设计的优劣将会直接影响到变压器的安全稳定性运行和经济性[1]。

变压器套管的绝缘分为主绝缘和外绝缘,主绝缘部分由电容芯子所组成,它是为了解决中心导体与接地法兰之间电场分布不均匀问题。

合理设计电容芯子的结构参数对于改善导体与法兰之间的电场分布有着重要的作用,在一定程度上也可以改善外套和接地法兰连接处的集中电场,降低该处的电晕和闪络放电[2]。

针对电容芯子的结构设计以解析法居多:赵子玉的电容芯子大小极板设计,张恩跃的电容芯子不等电容,不等台阶,分段等厚度设计方法[3]等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 1-1 待拟合函数图形 从函数方程和图形可以看出,该函数仅有一个全局最大值为 0.9655,对应的坐标是 (0.537,0.9655)。虽然从函数方程和图形中很容易找出函数及极值对应的坐标,但是在方 程未知的条件下函数极值及极值对应的坐标就很难求到。
二、 模型建立
第|页3
神经网络遗传算法函数极值寻优
第|页2
神经网络遗传算法函数极值寻优
一、 课题背景
在研究中经常会遇到一些非常复杂的非线性系统,这些系统方程复杂,难以用数学方法 准确建模。在这种情况下,可以建立 BP 神经网络表达这些非线性系统。该方法把系统看成 是一个黑箱,首先用系统输入输出数据训练 BP 神经网络,使网络能够表达该未知函数,然 后就可以用训练好的 BP 神经网络预测系统输出。
Beijing Jiaotong University
智能控制技术报告
神经网络遗传算法函数极值寻优
学 院: 学 号: 姓 名: 指导教师: 时 间:
电子信息工程学院 2014.11.29
神经网络遗传算法函数极值寻优
目录
一、课题背景................................................................................................................................. 3 二、模型建立................................................................................................................................. 3
2.1 算法流程
神经网络遗传算法函数极值寻优主要分为 BP 神经网络训练拟合和遗传算法极值寻优两 步,算法流程如图所示:
图 2-1 算法流程图 神经网络训练拟合根据寻优函数的特点构建适合的 BP 神经网络,用非线性函数的输入 输出数据训练 BP 神经网络,训练后的神经网络就可以预测函数输出。遗传算法极值寻优把 训练后的 BP 神经网络预测结果作为个体适应度值,通过选择、交叉和变异操作寻找函数的 全局最优值及对应的值。
%数据归一化 inputn_test=mapminmax('apply',input_test,inputps);
%网络输出反归一化 BPoutput=mapminmax('reverse',an,outputps);
input_test 是预测输入数据,input_test 是归一化后的预测数据,'apply'表示根据 inputps 进行归一化;an 是网络预测结果,outputs 是训练输出数据归一化得到的结构体, BPoutput 是反归一化后的网络预测输出,'reverse'表示对数据进行反归一化。 2.2.2 BP 神经网络训练
下:
%样本输入输出数据归一化 [inputn,inputps]=mapminmax(input_trainutn,outputps]=mapminmax(output_train);
input_train、output_train 是训练输入、输出原始数据,inputn、outputn 是归一化 后的数据,inputps、outputps 为数据归一化后得到的结构体,里面包含了数据的最大值、 最小值和平均值等信息,可以用于测试数据归一化和反归一化。测试数据归一化和反归一化 程序一般如下:
用训练数据训练神经网络,使网络对非线性函数具有预测能力。MATLAB 神经网络工具 箱中自带 BP 神经网络函数,使用时只需要调用相关的子程序即可。BP 神经网络训练主要用 到 newff、sim 两个函数。
1. newff:BP 神经网络参数设置函数 函数功能:构建一个 BP 网络。 函数形式:net=newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) 2. train:BP 神经网络训练函数 函数功能:用训练数据训练 BP 神经网络。 函数形式:[net,tr]=train(NET,X,T,Pi,Ai) 2.2.3 BP 神经网络预测 用训练好的 BP 神经网络预测非线性函数输出,并通过 BP 神经网络预测输出和期望输出 分析 BP 网络的分析能力。MATLAB 神经网络工具箱提供的 BP 神经网络预测函数是 sim。 1. sim:BP 神经网络预测函数 函数功能:用训练好的 BP 神经网络预测函数输出 函数形式:y=sim(net,y) 以上三个函数的具体用法可以参考其自带的帮助,本文不作详述。 根据需要拟合的函数有 1 个输入参数、1 个输出参数,确定 BP 神经网络为 1-5-1。取函 数的 4000 组输入输出数据,从中随机选取 3900 组训练网络,100 组数据测试网络性能,网 络训练好后用于非线性函数输出。
对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。遗传算法 通过模拟自然界遗传机制和生物进化论能够进行并行随机搜索最优化,所以对非线性函数极 值寻优可以通过神经网络结合遗传算法求解。利用神经网络的非线性拟合能力和遗传算法的 非线性寻优能力寻找函数极值。
本文拟合的非线性函数为: 该函数的图形如图所示:
2.2 BP 算法实现
2.2.1 数据选择和归一化
数据归一化是神经网络训练和预测前对数据常做的一种处理方法。数据归一化处理把所
有的数据都归一化为[0,1]之间的数,其目的是取消各维数据间数量级差别,避免因为输入
输出数据数量级差别较大而造成训练失败或者预测误差较大。
数据归一化可以使用 MATLAB 自带函数 mapminmax,该函数有多种形式,常用的方法如
第|页5
神经网络遗传算法函数极值寻优
2.3 遗传算法实现
2.3.1 种群初始化 个体编码方法为实数编码,每个个体均为一个实数串,由输入层与隐含层连接权值、隐
2.1 算法流程.........................................................................................................4 2.2 BP 算法实现....................................................................................................4 2.2.1 数据选择和归一化.....................................................................................4 2.2.2 BP 神经网络训练........................................................................................5 2.2.3 BP 神经网络预测........................................................................................5 2.3 遗传算法实现.................................................................................................6 2.3.1 种群初始化.................................................................................................6 2.3.2 适应度函数.................................................................................................6 2.3.3 选择操作.....................................................................................................6 2.3.4 交叉操作.....................................................................................................6 2.3.5 变异操作.....................................................................................................6 三、编程实现................................................................................................................................. 6 3.1 数据准备.........................................................................................................6 3.2 BP 神经网络主函数........................................................................................7 3.3 编码函数.........................................................................................................8 3.4 适应度函数.....................................................................................................9 3.5 选择操作.........................................................................................................9 3.6 交叉操作.......................................................................................................10 3.7 变异操作.......................................................................................................11 3.8 遗传算法主函数...........................................................................................12 四、结果分析............................................................................................................................... 14 4.1 BP 神经网络拟合结果分析......................................................................... 14 4.2 遗传算法寻优结果分析................................................................................16
相关文档
最新文档