基因毒性杂质(genotoxic
【医药】如何控制基因毒性杂质
01、何为基因毒性杂质基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity,GTI)是指能直接或间接损害DNA,引起DNA突变、染色体断裂、DNA重组及DNA 复制过程中共价键结合或插入,导致基因突变或癌症的物质(如卤代烷烃、烷基磺酸酯类等)。
潜在基因毒性杂质(Potential Genotoxic Impurity ,PGI)结构中含有与基因毒性杂质反应活性相似的基团(如肼类、环氧化合物、N-亚硝胺类等),通常也作为基因毒性杂质来评估。
基因毒性杂质主要来源于原料药合成过程中的起始物料、中间体、试剂和反应副产物。
此外,药物在合成、储存或者制剂过程中也可能会降解产生基因毒性杂质。
除此之外,有些药物通过激活正常细胞而产生基因毒性物质导致突变,如化疗药物顺铂等。
02、何为基因毒性杂质“警示结构”由于杂质结构的多样性,一般很难进行归类,因此,在缺乏安全性数据支持的情况下,法规和指导原则采用“警示结构”用来区分普通杂质和基因毒性杂质。
所谓“警示结构”,是指杂质中的特殊基团可能与遗传物质发生化学反应,诱导基因突变或者染色体断裂,因此具有潜在的致癌风险。
对于含有警示结构的杂质,应当进行(Q)SAR预测和体内外遗传毒性和致癌性研究,或者将杂质水平控制在毒理学关注阈值(TTC)之下。
但是含有警示结构并不能说明该杂质一定具有遗传毒性,而确认有遗传毒性的物质也不一定会产生致癌作用。
杂质自身性质和结构特点会对其毒性产生抑制或调节作用。
警示结构的重要性在于它提示了可能存在的遗传毒性和致癌性,为进一步的杂质安全性评价与控制指明方向。
(关于基因毒杂质警示结构的详细信息可参考欧盟发布的警示结构《Development ofstructure alerts for the in vivo micronucleus assay in rodents》)。
03、基因毒性杂质严格控制的必要性基因毒性杂质最主要的特点是在极低浓度时即可造成人体遗传物质的损伤,导致基因突变并促使肿瘤发生。
基因毒性杂质全面信息资料
No or unknow
Yes
Not tested
Class3:AlertUnrelated to parent
Class5:No Alerts
Class4:AlertRelated to parent
Impurity Genotoxic?1
该杂质是否有 基因毒性?
No
API Genotoxic2
该原料是否有 基因毒性?
No
(Staged)TTC (see Table 1)
PDE(e.g.ICH Q3 appendix 2 reference
整理ppt
Control as an ordinary impurity
20
Step 3:
TTC=1.5微克/天
表1:短期用药推荐容许日摄入量
TTC值
疑似基因毒素 的日摄入量
号,作用部位,TTC值等等一系列信息。 近30年的关于基因毒性方面研究的出版物
(PDF版) 用不同分类方法统计的致癌物质列表。
Standard limits for impurities in APIs API中杂质的标准限度
Maximun
Reporting Identification
Daily Dose1 Threshold2,3 Threshold*
每日最大剂量 报告限度
鉴定限度
≤2g /天
0.05%
0.10%或者每天 摄入量1.0mg
整理ppt
1
1
背景知识介绍
2
杂质与杂质限度
3
确定毒性阈值的步骤
4
最大限度地控制杂质
整理ppt
2
1
背景知识介绍
2
原料药国际注册中基因毒性杂质的法规解读
原料药国际注册中基因毒性杂质的法规解读摘要遗传毒素是一类极富挑战性的杂质,并已被证明即便在低浓度条件下依然具有毒性。
因此美国和欧盟的药品监管机构以及人用药品注册技术要求国际协调会(ICH)都特别指定了它们在原料药和成品药中的限量。
通过解析原料药在美国和欧盟注册中涉及到的关于基因毒性杂质控制的法规,为中国制药企业提供相关技术指导以推动中国药品出口事业的增长。
1、1. 药品中的杂质的定义及分类药品中的杂质定义为无任何疗效、且可能引起副作用的物质。
因此,必须控制杂质水平,以确保药品的安全性达到人用要求。
杂质会影响药品的安全性和研发时间,例如,药物开发中,如果必须采用多种手段进行杂质表征,并将其去除至可接受水平,所需时间将会显著增加。
根据人用药品注册技术要求国际协调会(ICH)指南,原料药相关的杂质可分为三个主要类别:有机杂质、无机(元素)杂质以及残留溶剂。
在这三类中,遗传毒性杂质是一种特例,既便在低浓度条件下也有着重大的安全风险。
这是因为它们可能具有致突变性,可能导致DNA 损伤,从而增加罹患癌症的风险。
原料药中的杂质来源包括以下几个方面:①原料及其污染物;②试剂和催化剂;③溶剂;④中间体;⑤降解产物;为保护患者,需要将药物的杂质水平降到可接受的安全限度内,因此各国都已相继制定了杂质控制指南,这些指南都专注于利用规定限度控制药品中的杂质含量,其中由ICH 与美国食品药品监督管理局(FDA)制定的指南较权威且影响大。
例如,ICH Q3A 通过制定杂质的报告、鉴定和认证阈值以监管新原料药中的杂质。
ICH Q3B 是其同等的新药杂质指南。
ICH Q3C 和 ICHQ3D 分别控制残留溶剂与重金属元素杂质的限量。
已经正式生效的ICH M7 是ICH 专家工作组制定的一本关于药物中DNA 反应性杂质的指南[5],包括如何根据结构活性分析来评估药品中杂质的潜在基因毒性,如何确定关键毒性阈值(毒性关注阈值TTC)。
基因毒性杂质分析方法和前处理技术的研究进展
药物分析杂志
药物分析杂志
药物分析杂志
药物分析杂志
药物分析杂志
药物分析杂志
药物分析杂志
药物分析杂志
Journal of Pharmaceutical Analysis
cn
药物分析杂志
Chinese 《药物分析杂志》编辑部声明
本刊采用在线投稿系统,作者稿件一经本刊审核通过,确定录用,可优先数字出版,同时被中国
学术期刊网络出版总库等数据库收录,进入因特网提供信息服务,并通过本刊在线系统等实现全文查询。
本刊所付稿酬包含刊物内容上网服务报酬,不再另付。
本刊未委托其他任何机构或个人代理征收稿件,所有稿件须登录本刊网站( )在线投稿,并须提交加盖公章的单位介绍信。
本刊未委托其他任何机构或个人代收任何费用,所有收费按本刊缴费通知办理。
gti控制策略
gti控制策略
GTI控制策略主要是指对药物中基因毒性杂质(Genotoxic Impurities,GTI)的控制策略。
这是为了确保药物的安全性和有效性,避免基因毒性杂质对人类健康产生不良影响。
以下是主要的GTI控制策略:
1.早期介入:在药物研发的早期阶段,就需要开始关注GTI的问题,并在药物合成、生产和储存等过程中采取措施降低GTI的产生和残留。
2.警示结构区分:根据法规和指导原则,采用警示结构来区分普通杂质和GTI。
例如,具有代表性的基因毒性杂质或结构警示可以作为区分普通杂质和GTI的标志。
3.风险评估:在药物研发、生产和储存过程中,需要对各个环节进行风险评估,识别可能的基因毒性杂质,并采取相应的措施降低其产生和残留。
4.质量标准制定:在药物研发过程中,需要制定严格的质量标准,包括对GTI的检测和限量要求。
同时,需要选择合适的分析方法进行检测,并确保方法的准确性和可靠性。
5.持续监控和检测:在药物生产和储存过程中,需要持续对GTI 进行监控和检测,确保其符合质量标准。
同时,也需要对监控和检测数据进行趋势分析和风险评估,以便及时采取措施降低潜在的风险。
6.变更控制:在药物生产和储存过程中,任何可能影响GTI的因素发生变更时,都需要进行严格控制和评估,确保变更不会增加GTI
的风险。
7.培训和知识分享:对药物生产和质量控制人员进行GTI控制策略的培训和知识分享,确保他们了解并遵循相关法规和指导原则,掌握正确的GTI控制方法和技能。
这些策略需要在整个药物研发、生产和储存过程中得到贯彻执行,以确保药物的安全性和有效性。
盐酸舍曲林潜在基因毒性杂质的研究
盐酸舍曲林潜在基因毒性杂质的研究摘要:基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity,GTI)直接或间接损伤细胞DNA,产生基因突变或体内诱变,具有致癌可能或者倾向。
盐酸舍曲林作为抗抗抑郁药,对其原料药中潜在的基因毒性杂质进行全面研究具有重要的实际意义。
通过对盐酸舍曲林工艺及所用原料的研究,确定盐酸舍曲林原料药中可能存在的基因毒性杂质,根据国内外法规要求制定这些基因毒性杂质合理的限度。
并根据各杂质特性和工艺特点,采用合适的检测仪器和测定条件等对其残留量检测进行合规的方法学验证。
一、.概述根据现相应法规要求,对盐酸舍曲林合成中涉及到的原料,溶剂,中间体,成品、工艺杂质、降解杂质等进行诱变性的评估。
并依据ICH M7 诱变性杂质的控制策略进行控制。
二、盐酸舍曲林及起始物料合成工艺1、盐酸舍曲林工艺1.1、合成路线以舍曲酮为起始原料,经柳卡尔特反应、碱水解反应、成盐等步骤得顺式-盐酸舍曲林,以顺式-盐酸舍曲林母液为原料,经浓缩、游离、消旋得消旋-顺式盐酸舍曲林,顺式-盐酸舍曲林与消旋-顺式盐酸舍曲林再经游离、拆分精制等步骤得盐酸舍曲林成品。
1.2、工艺中使用的溶剂/试剂:工艺溶剂:N-甲基甲酰胺、正丁醇、甲苯、饮用水、食用酒精、无水乙醇、氯化氢乙醇、乙酸乙酯;试剂:甲酸、氢氧化钾、精制盐酸、液碱、氢氧化钠、D-扁桃酸、二甲基亚砜、浓硫酸;2、起始原料舍曲酮工艺2.1、合成路线:2. 2工艺中使用的溶剂/试剂:甲醇。
三、评估软件1.1评估软件ICH M7指南中指出,可采用(Q)SAR方法对所有物质进行毒性评估,根据预测的结果,制定相应的控制策略。
预测时,要使用2个相互互补的(Q)SAR预测方法对物质进行评估,一个方法应是依据专家规则(Expert rule based),另一个方法则应该是基于统计方式(Statistical-based)的方法。
1.2软件信息根据ICH M7中要求,选取了2款软件对盐酸舍曲林合成过程中涉及的物质进行评估,软件信息如下:1)Toxtree V2.6.1(基于专家和统计学的软件)评估方法:决策树A:通过鉴别分析和结构规律预测其致癌性和致突变性的可能性(Predicts the possibility of carcinogenicity and mutagenicity by discriminant analysis and structural rules.)决策树B:ISS数据库-体外诱变毒性警示(Ames试验)(Toxic by in vitro mutagenicity(Ames test) alert by ISS)2)VEGA(基于统计学的评估软件)诱变模型:Mutagenicity(Ames test) model CARSAR V.2.1.13;Mutagenicity (Ames test) model SarPy/IRFMN V.1.0.7;Mutagenicity(Ames test) ISS V.1.0.2;Mutagenicity(Ames test) KNN/Read-cross V.1.0.0.综上:使用两种软件对盐酸舍曲林合成路线中涉及的物质进行评估,根据评估结构,制定相应的控制策略。
基因毒性杂质(genotoxic
某些病毒和细菌会对基因产生直接或间接的毒 性作用。
辐射
包括电离辐射和非电离辐射等。
遗传突变
遗传突变本身就是一种基因毒性。
基因毒性杂质的危害和风险
危害
• 导致突变和基因突变累积 • 引发癌症和其他疾病 • 影响生殖健康 • 干扰正常的细胞功能
风险
• 与暴露水平和时间的累积有关 • 取决于个人基因型和应对能力 • 可能造成个人和群体的不同程度的受影响
健康生活方式
保持健康的生活习惯,如均衡饮 食、戒烟和进行适当的运动,以 减少基因毒性杂质的负面影响。
职业安全
制定和执行严格的职业安全措施, 减少工作环境中基因毒性杂质的 暴露。
结论和建议
基因毒性杂质对我们的基因健康构成潜在风险,但我们可以通过加强监测、 预防和减少暴露来保护我们自己和环境的基因。
基因毒性杂质(genotoxic)
通过深入了解基因毒性杂质,我们可以了解到基因健康的因素,不同类型的 基因毒性杂质,它们的危害和风险,以及检测和预防的方法。
定义
基因毒性杂质是指那些对基因结构和功能造成损害的化学物质或物理因素。 它们可以通过改变细胞的遗传物质,如DNA,从而导致遗传信息的变异。
影响基因健康的
体外检测
使用细胞培养、DNA修复实验和突变频率检测等方法来评估物质的基因毒性。
2
动物试验
通过暴露动物模型于潜在基因毒性杂质,观察其致突变和致癌能力。
3
流行病学研究
收集大量人类暴露与基因毒性杂质相关的数据,评估其与疾病发生的相关性。
预防和减少基因毒性杂质的措施
环境管理
加强对污染物排放的管控和环境 监测,降低环境中基因毒性杂质 的暴露风险。
1 环境因素
基因毒性杂质(genotoxic..
可接受风险的摄入量
对于那些可以与DNA进行反应的化合物,由于在 较低剂量时机体自身保护机制可以有效的运行, 按照摄入量由高到低所造成的影响进行线性推断 是很困难的。目前,对于一个给定诱变剂,很难 从实验方面证实它的基因毒性存在一个阈值。 特别是对于某些化合物,它们可与非DNA靶点进 行反应,或一些潜在的突变剂,在与关键靶点结 合之前就失去了毒性。由于缺乏支持基因毒性阈 值存在的有力证据,而使得我们很难界定一个安 全的服用量。
毒理学研究
为一个不存在阀值的基因毒性致癌物定义一个安 全的摄入量水平(零风险观点)是不可能的,并 且从活性药物成分中完全的除去基因毒性杂质经 常是很难做到。这样就要求我们建立一个可接受 的风险水平,例如对一个低于可忽略风险的每日 摄入量进行评价。 但是这些方法都需要有足够的长期致癌性研究数 据。
EMA对基因毒性杂质分类
EMA对基因毒性杂质的指导原则适用于上市申请 和临床研究。 一、有足够实验数据的阈值
对于有足够的(实验性的)数据来支持阈值界定 的基因毒性杂质:可参考“Q3C Note for guidance on impurities: Residual Solvents” 中2级溶剂的规定,计算出了一个“允许的日摄入 量(PDE—permitted daily exposure)”
二、无足够实验依据的阈值 没有足够的(实验性的)证据来支持阈值界定的 基因毒性杂质的可接受剂量评价应该包括药学和 毒理学的评价。一般来说,如果不可能避免毒性, 那么药学的评价措施应该以尽可能低的控制水平 为指导。
药学研究
应根据现有处方和生产技术,提供生产方法的合 理性。申请人应该指明涉及到的所有具有基因毒 性或有致癌性的化学物质,如所用试剂、中间体、 副产品等。实际生产中应尽量避免使用该类物质。
【心邀生物】基因毒性杂质研究 完整解决方案
【心邀生物】基因毒性杂质研究完整解决方案毒性亦称生物有害性,一般是指外源性化学物质与生命机体接触或进入生命活性体体内后,能引起直接或间接损害作用的相对能力。
基因毒性(genotoxicity),是指污染物能直接或间接损伤细胞DNA,产生致突变和致癌作用的程度,例如烷化剂和一些致癌物质如苯和肼。
其次,起始原料,中间体,API以及副产物和杂质都有可能含有基因毒性危险结构,这些都需要做相应的研究。
近年FDA、EMEA、ICH、USP、CFDA等众多权威机构相继发布了相关的指导原则,明确规定了基因毒性杂质的限度,要求对原料药及制剂生产过程中所产生的基因毒性杂质进行分析和控制。
基因毒性杂质的控制与检测是越来越多的医药企业在药物研发过程中关注的重点,以此满足药物注册申报的要求。
心邀生物针对基因毒性杂质研究项目,评估具体化合物的危险度,首先会通过查找美国国家医药图书馆的Toxline或欧盟OECD的SIDS等数据库来确定目标化合物的毒性数据,如:NOEL、LOEL、LD50等。
对于没有毒性研究数据的化合物,可以选择适宜的毒性试验,根据毒性试验结果计算NOEL 和PDE,再按照相应制剂的每日最大服用量计算限度。
总之,我们结合ICH的要求,1)通过符合ICHM7指导原则的软件进行基因毒性预测;2)检索已有基因毒性杂质数据库;3)根据相关数据制定合理的限度。
我们的服务内容:可提供各种相关法规要求下的基因毒性杂质研究,专注为药物生产过程中可能产生的基因毒性杂质提供评估报告、方法开发、验证及样品检测等一系列完整的解决方案,涵盖起始物料、中间体、原料药、制剂等。
我们的核心优势:-- 强大的技术和管理团队①团队核心拥有多年药企研发与管理的经验②数据合规:实验室运行全面遵循cGMP管理体系要求-- 专业一体化的服务平台①两大平台:具有化学合成及药物分析领域的丰富经验②项目经验:为药企提供基因毒杂质研究、药学质量研究等服务方案,熟练掌握原料药与制剂中有关物质、基因毒性杂质检测的方法-- 杂质谱分析数据库①软件评估:实行基毒评估软件预测②数据库:已建立公司内部杂质谱分析数据库,用于基因毒性杂质的研究与分析心邀生物优势■获权威认可:拥有国际国内“CMA”和“CNAS”双重权威认可。
基因毒性杂质(genotoxic
风险:(体内)基因毒性物质在任何摄入量水平上对DNA 新当药被合 磺成酸、酯原或料相纯关化物、质储所存污运染输了(的与磺包酸装作物为接起触始)物等料过用程于都药可物能活产性生成基分因时毒,性是杂否质能保证药物活性成分中潜在基因毒性杂质不超过其 都有潜在的破坏性,这种破坏可能导致肿瘤的产生。但不 TTC值?应当要考虑各种烷基或芳基取代磺酸酯杂质的累加风险。
氨基糖甙类抗生素:大剂量、长期使用会引起耳毒性;
尽管无数据表明这些酯对人的毒性影响,然后依然有上述基因毒性物质以杂质的形式存在于含磺酸酯类药物活性成分的药品中的潜在
风2如-险在[[(。 药2物-氰活1基性因联、成苯分毒基P生)G-产性4的-L基最的]s甲后基一杂(]步p氧合质基o成-t3步)e-硝骤n基用t苯到i甲了a酸磺l乙酸ly酯衍生g物e,n应将o其t纳o入x风i险c分i析m。 purities有潜在基
用药时间与毒性杂质限度
含有多个基因毒性杂质的评估
EMA: 结构不同的,单个杂质的限度应小于1.5ug/day. 结构相似的,总的基因杂质限度定为1.5ug/day.
FDA(和EMA类似): 单个杂质造成的癌症风险机率应该小于100000分 之一; 有相同作用机制的结构相似的杂质,其含量总和 应该参考TTC值进行评估。
1、PGLs (potentially genotoxic impurities有潜在基因毒性的杂质)
azoxy(氧化能偶氮说基) “不存在明显的阀值,或是任何的摄入水平都具有致 癌的风险”。 基因毒性杂质磺酸盐的风险评估
有相同作用机制的结构相似的杂质,其含量总和应该参考TTC值进行评估。 如果无structural alert是否可足够说明该杂质不存在基因毒性?
基因(遗传)毒性杂质资料PPT课件PPT课件
主要内容
1
背景知识介绍
2
杂质与杂质限度
3
确定毒性阈值的步骤
4
最大限度地控制杂质
Step 1:
依据化学结构,将杂质分为五类;
Step 2:
按照分类,确定验证的策略 (参见决策路线图 );
Step 3:
按照日剂量,确定原料药中杂质的限度 (参见表1:短期用药推荐容许日摄入量)。
Step
1: 分类
Class1:Genotoxic Carcinogens
O
O NH2 A Carbamates 氨基甲酸类
AA NN
AR Hydrazines and azo Compounds 肼和偶氮化合物
EWG
Michale-reactive Acceptors 迈克尔加成反应受体
O P
OR
O S
OR
Alkyl Esetrs of Phosphonates or Sulfonates 膦酸酯或者磺酸酯
该杂质是否有 基因毒性?
API Genotoxic2
该原料是否有
基因毒性?
Y
N
es
o
N o
PDE(e.g.ICH Q3
Control as an
(see Table 1)
w
appendix 2 reference
ordinary impurity
Class5:No Alerts
Step 3:
TTC=1.5微克/天
Class2:Genotoxic Carc unknow
Class3:Alert-Unrelated
to parent
第1类:已知的、具有基 因毒性(突变性)和致癌 性第的2类杂:质已知的、具有基 因毒性(突变性),但致 癌第性3类未:知具的有杂警质示结构、 与API无关、基因毒性(
基因毒性杂质介绍及检测方法
基因毒性杂质介绍及检测⽅法1什么是基因毒性杂质基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity ,GTI)是指化合物本⾝直接或间接损伤细胞DNA,产⽣基因突变或体内诱变,具有致癌可能或者倾向。
潜在基因毒性的杂质(Potential Genotoxic Impurity ,PGI)从结构上看类似基因毒性杂质,有警⽰性,但未经实验证明的黄曲霉素类、亚硝胺化合物、甲基磺酸酯等化合物均为常见的基因毒性杂质,许多化疗药物也具有⼀定的基因毒性,它们的不良反应是由化疗药物对正常细胞的基因毒性所致,如顺铂、卡铂、氟尿嘧啶等。
2为何着重研究基因毒性杂质基因毒性物质特点是在很低浓度时即可造成⼈体遗传物质的损伤,进⽽导致基因突变并可能促使肿瘤发⽣。
因其毒性较强,对⽤药的安全性产⽣了强烈的威胁,近年来也越来越多的出现因为在已上市药品中发现痕量的基因毒性杂质残留⽽发⽣⼤范围的医疗事故,被FDA强⾏召回的案例,给药⼚造成了巨⼤的经济损失。
例如某知名国际制药巨头在欧洲市场推出的HIV蛋⽩酶抑制剂维拉赛特锭(Viracept, mesylate),2007 年7⽉,EMA暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸⼄酯超标,甲基磺酸⼄酯是⼀种经典的基因毒性杂质,该企业为此付出了巨⼤的代价,先内部调查残留超标的原因,因在仪器设备清洗时⼄醇未被完全清除⽽残留下来,与甲基磺酸反应形成甲基磺酸⼄酯。
在被要求解决污染问题后还被要求做毒性研究,以更好的评估对患者的风险。
同时有多达25000 名患者暴露于这个已知的遗传毒性。
直到解决了这所有问题后 EMA才恢复了它在欧洲的市场授权。
近年来各国的法规机构如ICH、FDA、EMA等都对基因毒性杂质有了更明确的要求,越来越多的药企在新药研发过程中就着重关注基因毒性杂质的控制和检测。
3哪些化合物是基因毒性杂质杂质的结构多种多样,对于绝⼤多数的杂质⽽⾔,往往没有充分的毒性或致癌研究数据,因⽽难以对其进⾏归类。
遗传毒性杂质控制指导原则
遗传毒性杂质控制指导原则遗传毒性杂质控制指导原则用于指导药物遗传毒性杂质的危害评估、分类、定性和限值制定,以控制药物中遗传毒性杂质潜在的致癌风险。
为药品标准制修订,上市药品安全性再评价提供参考。
一、总则遗传毒性(Genotoxcity)是指遗传物质中任何有害变化引起的毒性,而不考虑诱发该变化的机制,又称为基因毒性。
遗传毒性杂质(Genotoxic Impurities,GTIs)是指能引起遗传毒性的杂质,包括致突变性杂质和其它类型的无致突变性杂质。
其主要来源于原料药的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。
致突变性杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致DNA突变,从而可能引发癌症的遗传毒性杂质。
本指导原则主要关注致突变机制的遗传毒性杂质,非致突变机制的遗传毒性杂质在杂质水平的剂量下,一般可忽略其致癌风险。
药品生产、药品标准提高及上市药品再评价过程中发现杂质后,可按本指导原则进行风险评估,确定其是否为遗传毒性杂质,尤其是致突变性杂质。
如果一个杂质被鉴定为具有潜在的致癌风险,应制定相应的限值。
在制订可忽略致癌风险的杂质限值时,应进一步分析生产工艺,兼顾安全性和质量风险管理成本两方面的因素,综合考虑制定合适的限值。
本指导原则包括危害评估方法、可接受摄入量计算方法和限值制定方法。
本指导原则中描述的对杂质潜在致突变性的评估方法不适用于以下类型的原料药和制剂:生物/生物技术制品、肽类、寡核苷酸、放射性药物、发酵产品、中药和动物或植物来源的粗制品。
也不适用于已上市药物中使用的辅料、调味剂、着色剂和香料,以及与药物包材相关的可浸出物。
本指导原则中对杂质潜在致突变性的评估方法不适用于用于晚期癌症适应症的原料药和制剂,以及用于其它适应症但本身在治疗剂量下就具有遗传毒性,且预计可能与癌症风险增加有关的原料药。
在这些情况下,致突变性杂质不会显著增加原料药的致癌风险。
基因毒杂质控制策略案例
基因毒杂质控制策略案例基因毒杂质(Genotoxic Impurities)控制策略是药物开发和制造过程中的重要环节,旨在确保药物产品中基因毒性杂质的控制和限制。
以下是一个基因毒杂质控制策略的案例示例:
1. 风险评估:首先,对药物候选化合物进行综合的基因毒性风险评估。
评估包括利用体外基因毒性测试(如Ames 试验)和计算毒性预测模型,对化合物进行筛选和分类。
2. 导入限值:基于风险评估结果,制定适当的基因毒杂质导入限值。
此限值应与国际指南(如ICH M7指南)和适用的监管要求相一致。
3. 合成和纯化策略:在药物合成和纯化过程中,采取特定的操作条件和工艺控制,包括选择合成路线、溶剂使用、温度控制、反应时间和条件等,以最小化基因毒杂质的产生和残留。
4. 检测和分析:开发和验证适当的分析方法,用于检测和定量基因毒杂质的存在。
常见的分析技术包括高效液相色谱(HPLC)、质谱法(如LC-MS/MS)、核磁共振(NMR)
等。
5. 清洁验证:使用适当的清洁验证方法和程序,确保生产设备和工艺的清洁性,在不同批次之间避免交叉污染和残留。
6. 临床监控:在临床阶段,对药物进行基因毒杂质的监控和评估,以确保在实际使用中的毒性风险得到控制。
这只是一个基本的基因毒杂质控制策略案例,具体策略会因药物特性、制造过程和监管要求等因素而有所不同。
在实际应用中,需要根据具体情况制定并执行适合的控制策略,并与相关的监管机构保持合作与沟通。
基因毒性杂质
基因毒性杂质什么是基因毒性杂质对于基因毒性杂质的定义主要是指:在以DNA反应物质为主要研究对象的体内/体外试验中,如果发现它们对DNA有潜在的破坏性,那可称之为基因毒性。
对没有进行体内实验的情况下,也可以根据关联系做一些相关的体外实验去评估该物质在体内的毒性。
如果没有关联评估的,体外基因毒性物质经常被考虑为假定的体内诱变剂和致癌剂。
GUIDELINE ON THE LIMITS OF GENOTOXIC IMPURITIES (EMEA/CHMP/QWP/251344/2006)基因毒性杂质的风险按照目前的法规来说,(体内)基因毒性物质在任何摄入量水平上对DNA都有潜在的破坏性,这种破坏可能导致肿瘤的产生。
因此,对于基因毒性致癌物,不能说“不存在明显的阀值,或是任何的摄入水平都具有致癌的风险”。
可接受风险的摄入量对于那些可以与DNA进行反应的化合物,由于在较低的剂量时机体保护机制可以有效的运行,按照摄入量由高到低所造成的影响进行线性推断是很困难的。
目前,对于一个给定诱变剂,我们很难从实验方面证明它的基因毒性存在一个阀值。
特别是对某些化合物,它们可以与非DNA靶点进行反应,或一些潜在的突变剂,在与关键靶位结合之前就迅速失去了毒性。
由于缺乏支持基因毒性阀值存在的有力证据,而使得我们很难界定一个安全的服用量。
所以有必要采取一个新观点:确定一个可接受其风险的摄入量。
可接受其风险的摄入量即毒理学阈值一般通用的被定义为Threshold of Toxicological Concern(TTC) 。
具体含义为:一个“1.5ug/day”的TTC值,即相当于每天摄入1.5ug的基因毒性杂质,被认为对于大多数药品来说是可以接受的风险(一生中致癌的风险小于100000分之1)。
按照这个阀值,可以根据预期的每日摄入量计算出活性药物中可接受的杂质水平。
在特定的条件下一些基因毒性杂质也可以有较高的阈值。
如接触时间比较短等,这个需要根据实际情况再进行推算。
基因毒性杂质
什么是基因毒性杂质对于基因毒性杂质的定义主要是指:在以DNA 反应物质为主要研究对象的体内/ 体外试验中,如果发现它们对DNA 有潜在的破坏性,那可称之为基因毒性。
对没有进行体内实验的情况下,也可以根据关联系做一些相关的体外实验去评估该物质在体内的毒性。
如果没有关联评估的,体外基因毒性物质经常被考虑为假定的体内诱变剂和致癌剂。
GUIDELINE ON THE LIMITS OF GENOTOXIC IMPURITIES ( EMEA/CHMP/QWP/251344/2006 )基因毒性杂质的风险按照目前的法规来说,(体内)基因毒性物质在任何摄入量水平上对DNA 都有潜在的破坏性,这种破坏可能导致肿瘤的产生。
因此,对于基因毒性致癌物,不能说“不存在明显的阀值,或是任何的摄入水平都具有致癌的风险”。
可接受风险的摄入量对于那些可以与DNA 进行反应的化合物,由于在较低的剂量时机体保护机制可以有效的运行,按照摄入量由高到低所造成的影响进行线性推断是很困难的。
目前,对于一个给定诱变剂,我们很难从实验方面证明它的基因毒性存在一个阀值。
特别是对某些化合物,它们可以与非DNA 靶点进行反应,或一些潜在的突变剂,在与关键靶位结合之前就迅速失去了毒性。
由于缺乏支持基因毒性阀值存在的有力证据,而使得我们很难界定一个安全的服用量。
所以有必要采取一个新观点:确定一个可接受其风险的摄入量。
可接受其风险的摄入量即毒理学阈值一般通用的被定义为Threshold of Toxicological Concern (TTC)。
具体含义为:一个“ 1.5ug/day ”的TTC 值,即相当于每天摄入1.5ug 的基因毒性杂质,被认为对于大多数药品来说是可以接受的风险(一生中致癌的风险小于100000 分之1 )。
按照这个阀值,可以根据预期的每日摄入量计算出活性药物中可接受的杂质水平。
在特定的条件下一些基因毒性杂质也可以有较高的阈值。
基因毒性杂质控制
② 降解杂质
实际检出杂质:长期稳定性及制剂过程中检出的报告限度以上杂质(ICH Q3A/B );
潜在杂质:加速试验及光照试验检出的鉴定限以上杂质,长期未确认。
三、基因毒性杂质的鉴别--警示结构
A为烷烃基、芳香基或H;EWG为吸电子取代基,如氰基、羰基或酯基等。 基因毒性的警示结构不只限于以上所列,进一步了解可参见: 马磊,马玉楠等.遗传毒性杂质的警示结构 .中国新药杂志 ,2014,23(18) :2106~11
理化性质如反应活性,溶解性、挥发性,电离度等分析。
三、基因毒性杂质的控制
方法3:案例1(M7 第24页 case1)
a、中间体X距原料药尚有2步反应,标准定入杂质A,杂质A化学性质稳定; b、将杂质A以不同浓度加入中间体X进行加标试验,达1%水平能持续从原
料药中去除至限度的30%以下; c、中试规模多批次成品杂质A结果低于基于TTC限度的30%以下;
杂质的检测水平及拟定限度不超过参比制剂的测得水平;
(2) The impurity is a significant metabolite of the drug substance. 杂质为原料药的重要代谢物;
(3) The observed level and the proposed acceptance criterion for the impurity are adequately justified by the scientific literature.
三、基因毒性杂质的分类
3、举例如下:
例1:瑞戈非尼(Regorafenib)
加拿大审评报告中,一个中间体Ames结果阳性,大鼠肝慧星致突变试验确立NOEL(无反应剂量 水平),提示每日最大摄入该杂质为0.0027mg/kg,如果体重按50kg计,则摄入量为 0.0027×50=0.135mg;瑞戈非尼日最大用量为160mg,故可推测其标准中该杂质限度为 0.0027×50kg/160=0.084%,即840ppm。(显著大于基于TTC水平的约9ppm限度)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TTC用于计算未做研究的化学物质的接触量,这些 化学物质不会有明显的致癌性或者其他毒性。
ConcentrationLimit ( ppm) TTC (ug / day) dose(g / day)
TTC理论不可以应用于那些毒性数据(长期研究) 充分的致癌物质,也不可以做高风险毒性物质的风 险评价。
TTC是一个风险管理工具,它使用的是概率方法。所以 TTC不能被理解为绝对无风险的保障。
TTC
意思是:假如有一个基因毒性杂质,并且我们对 它的毒性大小不了解,如果它的每日摄入量低于 TTC值,那么,该基因毒性杂质的致癌风险将不 会高于100000分之一的概率。
某些特定情况,TTC值高于1.5μg/day也是可以 接受的。比如药物的短期接触,即治疗某些声明 预期在5年以下的某些严重疾病,或者这种杂质是 一种已知物质,人类在其他方式上对它的摄入量 会更高(比如在食品上)。这个需要根据实际情 况再进行推算。
应该有合理的分析方法去检测和量化这些杂质的 残留量。
毒理学研究
为一个不存在阀值的基因毒性致癌物定义一个安 全的摄入量水平(零风险观点)是不可能的,并 且从活性药物成分中完全的除去基因毒性杂质经 常是很难做到。这样就要求我们建立一个可接受 的风险水平,例如对一个低于可忽略风险的每日 摄入量进行评价。
判断是否为基因毒性杂质
通过Carcinogenic potency database (CPDB) 数据库查询,数据库中现有1574种致癌物质的列 表。链接 /chemnamein dex.html ,还可查询到关于基因毒性方面研究 的出版物。
基因毒性杂质卤代烃的风险评估
有数据表明氯乙烷、氯甲烷为基因毒性杂质,因 此有理由怀疑其他低分子卤代烃类也有类似的作 用。在生产中应该对其进行相应的控制。
在氨基物盐酸盐使用醇类溶剂精制的时候,基本 都会产生卤代烃。
产生的条件和温度、水分、浓度、时间等有关系。
对于控制低级卤代烃的方法可以参考控制甲磺酸 酯的相关建议。
氨基糖甙类抗生素:大剂量、长期使用会引起耳毒性;特 别敏感患者,仅使用一次或短期使用,就出现了听力受损。 研究表明,这些患者的一个基因上有一点(mtl555G) 与别人不同,这使他们对氨基糖甙类药物耳毒性的易感性 大大增加。
目录
基因毒性杂质定义及风险 可接受风险的摄入量(TTC阈值) EMA对基因毒性杂质的指导要求 判断是否为基因毒性杂质 决策树 Q&A
用药时间与毒性杂质限度
含有多个基因毒性杂质的评估
EMA: 结构不同的,单个杂质的限度应小于1.5ug/day. 结构相似的,总的基因杂质限度定为1.5ug/day.
FDA(和EMA类似): 单个杂质造成的癌症风险机率应该小于100000分 之一; 有相同作用机制的结构相似的杂质,其含量总和 应该参考TTC值进行评估。
基因毒性杂质 (Genotoxic Impurity)
欧盟公布的药品评估十大缺陷中,Top 4为基因毒性杂质。 要求对杂质的潜在基因毒性杂质进行具体的讨论,并作为 总体杂质讨论的一部分。
常见的基因毒性物质:
苯并芘、黄曲霉素、亚硝胺
化疗药物的不良反应是由化疗药物对正常细胞的基因毒性 所致,如顺铂、卡铂、氟尿嘧啶等
判断是否为基因毒性杂质
高基因毒性致癌物:
N-nitroso (亚硝基) R azoxy(氧化偶氮基)
NO
aflatoxin-like compound(黄曲霉素类)
它们不能用TTC值的方法来进行评价。对这些种类的物质 进行风险评价需要特殊的compound-specific 毒性数据。
参考法规
EMA:2006年率先颁布《基因毒性杂质限度指南》,于 2007年1月1日证实实施。该指南为限制活性物质中的基 因毒性杂质提供了解决问题的框架和具体做法
ICH:2006年,Q3A(R2)step4 vision“新原料药中的杂 质”
FDA:2008年12月,Guidance for industryGenotoxic and carcinogenic impurities in Drug substances and products: Recommended approaches.介绍了欧盟和ICH的控制方法。原料药和制 剂中的基因毒性杂质生成的预防办法;上市申请和临床研 究申请的可接受限度。
特别是对于某些化合物,它们可与非DNA靶点进 行反应,或一些潜在的突变剂,在与关键靶点结 合之前就失去了毒性。由于缺乏支持基因毒性阈 值存在的有力证据,而使得我们很难界定一个安 全的服用量。
可接受风险的摄入量
是否可以做 个这样的试 验:剂量从 低到高,对 基因毒性杂 质影响性进 行线性推断?
生物系统的纠错功 能使试验不具备可 行性。
是否检查了起始物料,如甲磺酸盐(苯磺酸盐, 对甲苯磺酸盐,羟乙基磺酸),中的烷基磺酸酯 或芳基磺酸酯杂质(如甲磺酸中的EMS 和MMS) 及相应的酰氯?是否有这些杂质的适宜标准和验 证过的方法?
当被磺酸酯或相关物质所污染了的磺酸作为起始 物料用于药物活性成分时,是否能保证药物活性 成分中潜在基因毒性杂质不超过其TTC值?应当 要考虑各种烷基或芳基取代磺酸酯杂质的累加风 险。
杂质限度
15ppm 7.5ppm 7.5ppm 7.5ppm 7.5ppm 10ppm 10ppm 15ppm 3.4ppm
4ppm 25ppm 25ppm 25ppm 25ppm 30ppm 30ppm 30ppm
产品名称
氯沙坦钾 托拉塞米 托拉塞米 托拉塞米 托拉塞米 坎地沙坦酯
缬沙坦 氯吡格雷氢溴酸盐
引入一个 新观点: 确定一个 可接受其 风险的摄 入量
TTC
可接受其风险的摄入量一般被定义为Threshold of Toxicological Concern (TTC)。
具体含义为:1.5μg/天的TTC值。 相当于人每天摄入1.5μg的基因毒性杂质,被认为对于大
多数药品来说是可以接受的风险(使人一生的致癌风险小 于100000分之一,现实生活中人一生得癌症的概率四分 之一)。按照这个阈值,可以根据预期的每日摄入量计算 出活性药物中可接受的杂质水平。
① 在没有实验数据的情况下,提供某个化学药物 潜在的毒性信息;
② 建立最值得关注的潜在有毒物质;
③ 提供降低药物毒性的化学修饰方法
④ 提供毒性预测依据
基因毒性杂质磺酸盐的风险评估
EMEA/44714/2008 临床研究发现甲磺酸酯的DNA 烷基化作用会导致
诱变效应 ,其中甲磺酸甲酯和甲磺酸乙酯已有这 方面报导,因此有理由怀疑其它低分子量磺酸 (如对甲苯磺酸)的烷基酯可能也存在着类似的 毒性影响。尽管无数据表明这些酯对人的毒性影 响,然后依然有上述基因毒性物质以杂质的形式 存在于含磺酸酯类药物活性成分的药品中的潜在 风险。
缬沙坦 缬沙坦 西酞普兰氢溴酸盐 西酞普兰氢溴酸盐 西酞普兰氢溴酸盐 西酞普兰氢溴酸盐 盐酸吡格列酮 盐酸吡格列酮 盐酸吡格列酮
甲磺酸烷基酯,如甲磺酸甲酯(MMS)和甲磺酸 乙酯(EMS),是甲磺酸与甲醇,乙醇,或其它 低级醇形成的酯。特别是在以甲磺酸盐或甲磺酸 酯形式存在的药物活性成分中或其合成过程中用 到了甲磺酸的药物活性成分中,甲磺酸烷基酯会 被视为潜在杂质。
在以羟乙基磺酸盐,苯磺酸盐和对甲苯磺酸盐形 式存在的药物活性成分中也会发现类似的磺酸烷 基酯或芳基酯污染。需说明出现这些污染的风险。
如在药物活性成分生产的最后一步合成步骤用到了磺 酸衍生物,应将其纳入风险分析。 是否对回收溶剂中磺酸酯类杂质的富集和残留进行了 控制? 是否能排除以甲磺酸盐,羟乙基磺酸盐,对甲苯磺酸 盐或苯磺酸盐形式存在的药物的活性成分,或其相关制剂, 在储存过程中形成烷基或芳基磺酸酯? 是否能排除以甲磺酸盐,羟乙基磺酸盐,对甲苯磺酸 盐或苯磺酸盐形式存在的药物活性成分在制成最终制剂的 过程中形成烷基或芳基磺酸酯,如在制粒过程中使用了醇? 是否有足够灵敏的的方法可以检测到制剂中的(处于TTC 水平的)这些杂质?
判断是否为基因毒性杂质
可通过文献、计算机毒理学进行评价; 常通过MDL-QSAR, MC4PC, Derek for
Windows软件来评价是否具有structural alert,FDA、EMEA等官方机构也采取此 类软件用来判断。
Derek for Windows数据库:可以预算某个化 学药物对人类(或其他哺乳动物)是否具有毒性, 在世界范围内已被许多制药公司,化学公司和学 术研究机构所采用。可提供以下4种信息。
如果在合成路线、起始物料方面没有更好选择, 则需要提供一个正当的理由。即物质中能引起基 因毒性和致癌性的结构部分在化学合成路线上是 不么应 该采取技术手段尽可能的减少基因毒性杂质在产 品中的含量,使其符合安全的需要或使其降低到 一个合理的水平。对于活性中间体、反应物、以 及其它化合物的化学稳定性都应进行评估。
药物活性成分的生产是否涉及到在甲磺酸(或羟乙基磺 酸,苯磺酸,对甲苯磺酸)或相应的酰氯存在的情况下, 使用了低级脂肪酯,如甲醇,乙醇,正丙醇或异丙醇的情 况?如果是这种情况的话,甲磺酸烷基酯或类似苯磺酯烷 基酯和对甲苯磺酸烷基酯的形成可能性是否已被降至最低? 是否存在有效的精制步骤? 设备(特别是接触到磺酸试剂的设备)的清洗程序是 否涉及到低级脂肪醇的使用? 是否有适宜的质量标准和已验证的分析方法可以证实 药物活性成分中的磺酸烷酯或磺酸芳基酯杂质处于TTC以 下?
EMA对基因毒性杂质分类
EMA对基因毒性杂质的指导原则适用于上市申请 和临床研究。
一、有足够实验数据的阈值
对于有足够的(实验性的)数据来支持阈值界定 的基因毒性杂质:可参考“Q3C Note for guidance on impurities: Residual Solvents” 中2级溶剂的规定,计算出了一个“允许的日摄入 量(PDE—permitted daily exposure)”