第三章刚体平衡
《刚体的平衡》 讲义

《刚体的平衡》讲义一、什么是刚体在开始探讨刚体的平衡之前,咱们得先明白啥是刚体。
简单来说,刚体就是在受力作用下形状和大小都不会改变的物体。
想象一下一块坚硬的钢板,不管你怎么推它、拉它,它的尺寸和形状都不会发生变化,这就是刚体。
但要注意,刚体只是一个理想化的模型。
在现实世界中,完全不变形的物体是不存在的。
不过,在很多情况下,当物体的变形非常小,可以忽略不计时,我们就可以把它近似地看作刚体,这样能让我们的研究和计算变得简单很多。
二、刚体平衡的条件要让一个刚体处于平衡状态,需要满足两个条件:合力为零和合力矩为零。
先来说说合力为零。
这就好比一个人在水平方向上同时受到向左和向右的两个大小相等的力,这两个力就相互抵消了,合力为零。
在刚体上,如果作用在它上面的所有力在各个方向上的合力都为零,那么刚体就不会在力的作用下发生平动,也就是不会沿着直线加速移动。
再讲讲合力矩为零。
矩呢,简单理解就是力乘以力臂。
如果一个刚体受到的所有力产生的力矩之和为零,那么刚体就不会发生转动。
比如说,一个跷跷板两端坐的人的重量乘以他们到支点的距离相等,跷跷板就不会转动,处于平衡状态。
只有同时满足合力为零和合力矩为零这两个条件,刚体才能真正地处于平衡状态。
三、刚体平衡的例子生活中有很多刚体平衡的例子。
比如说,一个静止在水平地面上的桌子。
桌子受到重力,方向竖直向下,地面给它的支持力,方向竖直向上,这两个力大小相等、方向相反,合力为零。
同时,关于桌子的任意一点,重力产生的力矩和支持力产生的力矩也相互抵消,合力矩为零,所以桌子能稳稳地静止在那里。
再比如,一个悬挂着的吊灯。
吊灯受到重力,绳子对它的拉力,这两个力大小相等、方向相反,合力为零。
而且,以悬挂点为参考点,重力产生的力矩和拉力产生的力矩也相等,合力矩为零,吊灯就不会晃动,保持平衡。
四、刚体平衡在工程中的应用在工程领域,刚体平衡的知识可是非常重要的。
比如说建筑结构的设计。
一座大楼要稳稳地矗立在那里,就得保证它的各个部分所受到的力满足刚体平衡的条件。
刚体运动方程与平衡方程

刚体运动与平衡的实例分析
实例一
一个静止在地面上的杠铃,受到重力和地面的支持力作用,处于平衡状态。当有人推这 个杠铃时,推力大于杠铃的重力,杠铃开始加速向上运动,此时杠铃的运动状态发生了
改变。
实例二
一辆匀速直线行驶的汽车,受到牵引力和阻力的作用,处于平衡状态。当牵引力大于阻 力时,汽车会加速行驶;当牵引力小于阻力时,汽车会减速行驶,此时汽车的运动状态
刚体运动与平衡的转化关系
转化条件
当刚体受到的合外力为零时,即处于平衡状态,此时刚体的运动状态不会改变;反之,当刚体运动状态改变时, 其受到的合外力不为零,即不处于平衡状态。
转化关系
在一定条件下,刚体的运动状态与平衡状态可以相互转化,如静止的刚体受到外力作用后会开始运动,而匀速直 线运动的刚体受到合外力为零时会保持该运动状态。
实验结果与分析
根据实验数据,绘制刚体的位 移、速度和加速度随时间变化
的曲线图。
分析实验结果,验证刚体运动 方程与平衡方程的正确性。
探讨影响刚体运动和平衡的因 素,如质量、转动惯量、力矩 等。
比较实验结果与理论值的差异 ,分析误差来源,并提出改进 措施。
THANKS
感谢观看
平衡力
使物体处于平衡状态的力。
平衡力学
研究物体平衡状态的力学分支。
刚体动力学与平衡力学的联系与区别
联系
平衡力学是刚体动力学的一个特例,当 刚体处于静止状态时,其运动方程退化 为平衡方程。
VS
区别
刚体动力学研究刚体的运动规律,包括加 速、减速和匀速运动等;而平衡力学主要 关注静止或匀速直线运动状态的物体,研 究其平衡条件和稳定性。
刚体运动方程与平衡方程
• 刚体运动方程 • 平衡方程 • 刚体运动与平衡的关系 • 刚体动力学与平衡力学的关系 • 刚体运动与平衡的实验验证
刚体的平衡

Ai-1
Pi P6
A1 C
A6
P1 mg
例7.3 用20块质量均匀分布的相同光滑积木块, 在光滑水平面上一块叠一块地搭成单孔桥,如图 所示。已知每一积木块的长度为l,横截面是边长 为h=l/4的正方形。要求此桥具有最大跨度(即桥 孔底宽)。试计算跨度与桥孔高度的比值。
l h
H
L
解:
l x1 2
解:设任一小突起Ai对其的压力为Pi,则
Pi 2Pi(1 i=2 … 6)
P2 2P1
P3 2P2 22 P1
Bi-1
LL
P6 25 P1 32P1 考虑薄片A6B6,根据力矩平衡条件可得
P1
l 2
mg
3 4
l
P6l
0
B6
P6 32P1 代入可解得:
1 P1 42 mg
Pi-1
Ai
1.刚体平衡条件
1)物体受力的矢量和为零:
r
Fi 0
i
2)对矩心的合力矩为零
r
Mi
rri
r Fi
0
i
i
重要推论:
刚体受三个非平行力作用而平衡时,此三个力的 合力为零,而且这三个力的力线(含延长线)相 交于一点。
2.刚体平衡的稳定性
满足平衡条件的刚体,若受到扰动,便离开 平衡位置。若它会自动回到平衡位置,则称为稳 定平衡;若它会更远离平衡位置,则称为不稳定 平衡;若平衡位置的周围仍是平衡位置,则称为 随遇平衡。
x1
x2
mx1
m( x1 2m
l
/
2)
x1
l 4
x2
l 4
x1
x2
x3
m( x1
理论力学第3章 力系的平衡条件与平衡方程

10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)
刚体力学[感悟]
![刚体力学[感悟]](https://img.taocdn.com/s3/m/34c827ff988fcc22bcd126fff705cc1755275fae.png)
第三章刚体力学本章介绍刚体运动状态的描述(§3.1-§3.2)以及刚体受力与运动状态的关系(§3.3-§3.10)。
其内容包括:刚体运动学、刚体静力学和刚体动力学,重点掌握刚体运动学和刚体动力学。
刚体是指在任何情况下形状、大小都不发生变化的力学体系,它是一种理想物理模型,只要一个物体中任意两点的距离不因受力而改变,它就可以称为刚体。
§3.1 刚体运动的分析一、描述刚体位臵的独立变量刚体的特性是任意两点距离不因受力而变。
这种特性决定了确定刚体的位臵并不需要许多变量,而只要少数变量就行。
能完全确定刚体位臵的,彼此独立的变量个数叫刚体的自由度。
二、刚体运动的分类及其自由度1、平动:自由度3,可用其中任一点的坐标x、y、z描述;2、定轴转动:自由度1,用对轴的转角φ描述;3、平面平行运动:自由度3,用基点的坐标(x o,y o)及其对垂直平面过基点的轴的转角φ描述。
4、定点转动:自由度3,用描述轴的方向的θ,ψ角和轴线的转角ψ描述。
5、一般运动:自由度6,用描述质心位臵的坐标(x c,y c,z c)和通过的定点的轴的三个角(θ,φ,ψ)描述。
§3.2 角速度矢量、角速度矢量及其与刚体中任本节重点是:掌握角位移矢量一点的线位移、线速度的相互关系。
理解有限转动时角位移不是矢量,只有无限小角位移才是矢量。
一、有限转动与无限小转动1、有限转动不是矢量,不满足对易律2、无限小转动是矢量,它满足矢量对易律。
①线位移△r与无限小角位移△n的关系设转轴OM,有矢量△n,其大小等于很小的转角Δθ,方向沿转轴方向,转轴的方向与刚体转动方向成右手螺旋,则△n称为角位移矢量。
由图3.2.1很容易求得即线位移△r=角位移△n与位矢r的矢量积。
②角位移和△n满足矢量对易律利用两次位移的可交换性,可证得该式表明:微小转动的合成遵循平行四边形加法的对易律,从而无限小角位移△n是一个矢量。
工程力学力系平衡

D
FC
l
A B
l
FP
D
第 三 种 情 形
l
C FA A l FCy l B l FP D
FCx
C
FA A
l
B
l
FP
D
第 三 种 情 形
FCy
FCx C
E
MA ( F ) = 0 : FCx l -FP 2l = 0 MC ( F ) = 0 : -FA l - FP 2l = 0 ME ( F ) = 0 : -FCy 2l -FA l = 0
A
F =0
x
l -FQ -FW x FTB lsin=0 2 l FP x+FQ 2 = 2 FW x F FTB= Q lsin l
F =0
y
FAx FTB cos=0 FQ 2 FW x FQl FW FAx= x cos30 = 3 l 2 l FAy-FQ-FP+FTB sin=0
例题
均质方板由六根杆支 撑于水平位臵,直杆 两端各用球铰链与扳 和地面连接。板重为 P,在A 处作用一水 平 力 F , 且 F=2P , 不计杆重。求各杆的 内力。
简单的刚体系统平衡问题
前面实际上已经遇到过一些简单刚体系统 的问题,只不过由于其约束与受力都比较简单, 比较容易分析和处理。 分析刚体系统平衡问题的基本原则与处理 单个刚体的平衡问题是一致的,但有其特点, 其中很重要的是要正确判断刚体系统的静定性 质,并选择合适的研究对象
平衡方程
根据平衡的充要条件
F1 M1 O
z
F2
M2
y Mn
FR =0 , MO=0
刚体的平衡条件

刚体的平衡条件刚体是指物体内部各点之间相对位置保持不变的物体。
在物理学中,平衡是指物体处于静止状态或匀速直线运动状态,没有受到任何净外力或净外力矩的作用。
刚体的平衡条件是判断刚体是否处于平衡状态的基本依据。
一、1. 力的平衡条件当一个刚体处于力的平衡状态时,即刚体上所有力的合力等于零。
根据牛顿第二定律,力的合力等于物体质量乘以加速度,而刚体处于平衡状态时,加速度为零,则合力也必须为零。
2. 转矩的平衡条件除了要求刚体上所有力的合力为零外,还要求刚体上所有力对一个点的转矩(力矩)的合为零,即刚体在绕该点转动时,总的转动效果为零。
转矩是由作用在刚体上的力产生的,在计算转矩时,需要考虑力的大小和施力点到转动中心的距离,转矩的方向可以通过右手定则来确定。
二、刚体平衡条件的应用1. 平衡力分析在实际问题中,可以通过平衡力分析来判断刚体是否处于平衡状态。
平衡力分析是指将所有作用在刚体上的力进行分解和合成,然后判断分解后的力的合力是否为零。
如果合力为零,则刚体处于力的平衡状态。
2. 平衡力矩分析除了分析力的平衡外,还需要分析刚体受力点产生的转矩是否平衡。
对于一个绕平衡点旋转的刚体,可以通过平衡力矩分析来判断刚体是否处于平衡状态。
平衡力矩分析是指将所有作用在刚体上的力分别计算其对平衡点的转矩,然后判断所有转矩的和是否为零。
如果转矩的和为零,则刚体处于平衡状态。
三、刚体平衡条件的应用实例1. 杠杆平衡杠杆是一种应用刚体平衡条件的典型例子。
在杠杆中,一个物体可以通过在不同位置施加力来达到平衡状态。
根据刚体平衡条件,可以根据物体的质量、距离和施力的大小来计算平衡条件。
2. 悬挂物体平衡悬挂物体平衡是指将物体悬挂于绳子或悬挂物上,使其处于平衡状态。
在此过程中,要求物体的重力和拉力达到平衡。
根据刚体平衡条件,可以通过调整悬挂物体的位置或增加绳子的张力来实现平衡。
3. 斜面平衡斜面平衡是指物体静止或匀速滑动于斜面上时的平衡状态。
理论力学周衍柏第三章

(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )
刚体平衡的条件与原理

刚体平衡的条件与原理刚体平衡是物理学中一个重要的概念,它在我们日常生活中起着重要的作用。
本文将探讨刚体平衡的条件与原理。
一. 刚体平衡的条件在静力学中,刚体平衡有三个基本条件,分别是:力的平衡、力矩的平衡和物体自身的刚体平衡。
1. 力的平衡:刚体平衡的第一个条件是力的平衡。
力的平衡指的是合力等于零,即F=0。
合力是指作用在物体上的所有力的矢量和,当合力等于零时,物体所受的合力为零,即物体不会发生线性运动。
2. 力矩的平衡:刚体平衡的第二个条件是力矩的平衡。
力矩是力对绕某一轴旋转的作用效果,它是力乘以力臂的乘积。
力矩的平衡指的是物体对某一轴的力矩之和等于零,即ΣM=0。
力矩的平衡条件保证了物体不会发生旋转。
3. 物体自身的刚体平衡:刚体平衡的第三个条件是物体自身的刚体平衡。
物体自身的刚体平衡指的是物体内部各个点的重力矩之和等于零,即ΣMg=0。
这个条件使得整个物体能够保持平衡状态,不会发生倾斜或倒塌。
二. 刚体平衡的原理刚体平衡的原理可以通过牛顿第一定律来解释。
牛顿第一定律也被称为惯性定律,它说明了一个物体如果不受外力作用,将保持静止或匀速直线运动的状态。
根据牛顿第一定律,当物体处于平衡状态时,合外力和合外力矩均为零,即物体没有受到外界的推动或扭矩作用。
刚体平衡的原理还可以通过刚体的受力分析来解释。
在刚体平衡的情况下,作用在刚体上的所有力矢量的矢量和等于零,即ΣF=0。
根据受力分析,可以确定刚体平衡的条件,并通过力的平衡和力矩的平衡来解决相关问题。
总结:刚体平衡的条件与原理是物理学中的重要概念,它们帮助我们理解物体在平衡状态下的行为。
力的平衡、力矩的平衡和物体自身的刚体平衡是刚体平衡的基本条件。
这些条件保证了物体不会发生线性运动、旋转以及倾斜倒塌等现象。
牛顿第一定律和刚体的受力分析是解释刚体平衡原理的重要工具。
通过理解刚体平衡的条件与原理,我们能够更好地理解和应用力学原理,解决相关问题。
刚体系统的平衡

FA
13 4
FBy
A
2
D5
B FBx
P
2m
2m
二、截面法
用假想的截面把桁架切开,取其中一部分为研究对象, 通过其平衡条件求出某些杆件内力的方法。 解题步骤: 1. 以整体为研究对象求桁架外约束反力 2. 用假想截面把桁架切开,取一部分为研究对象求杆件内力
注意事项: 1. 截面应截过待求内力的杆,且外力、约束反力为已知。 2. 截面切及的未知内力的杆件一般不超过三根。 3. 被切杆件的内力统一假设受拉伸作用。
解刚体系统问题的一般方法: 由整体 局部(常用),由局部
整体(用较少)
解题步骤
解题技巧
①选研究对象
① 选坐标轴最好是未知力 垂直 投影轴;
②画受力图(受力分析) ② 取矩点最好选在未知力的交叉点上;
③平衡方程。
③ 充分发挥二力杆的直观性;
④ 解方程求出未知数 注意问题
④ 灵活使用合力矩定理。
力偶在坐标轴上的投影不存在;
50 6
8.33(kN)
YC
4m
③
E
再 研
YA X A 0 B
Q
P
究
F 1m C G
整
A
1m
YB
体
3m
3m
6m
D
YD
D YD
mA 0,YB 3 YD 12 P 10 Q 6 0 YB 100(kN)
Y 0,YA YB YD Q P 0 YA 48.33(kN)
XO -SA sin 0
Y 0
y
YO XO
M
x
SA
P
《建筑力学》第3章 刚体平衡

3. 结果
Rax=10kN,Ray=19.2kN,Rby=18.1KN
第3章 刚体平衡
上周内容回顾: 一、刚体平衡条件 二、支座反力计算
12/34
一、刚体平衡条件
∑Fx=0 水平合力为零 ∑Fy=0 竖向合力为零 ∑Mo=0 力对任一点O的力距之和为0
13/34
二、支座反力计算
Rax
q=4KN/m
A
B
L=4m
解题步骤(3步): 1. 受力图 2. 方程 3. 结果
新内容:线均布荷载
【解】
A
1. 受力图
2. 方程
∑FY=0 ∑MA=0 3. 结果
Ray Ray+Rby-qL=0 Rby×4m-qL ×L/2=0
Ray=8KN , Rby=8KN
q=4KN/m B
L=4m
Rby
【例题5】求如图所示梁支座B、D处的支座反力。
Ray
Ray+Rby-F=0 Rby×4m-F ×3m =0
Ray=5KN , Rby=15KN
F=20KN
C
B
3m
1m
Rby
【例题2】求如图所示梁支座A、B处的支座反力。
F2=10KN
F1=10KN
D
A
C
B
2m
2m
2m
【解】
F2=10KN
F1=10KN
1. 受力图
D
A
C
B
2m
2m
2m
2. 方程
1. 受力图 2. 方程 3. 结果
【解】 1. 受力图
Rax
A
F1=20KN
F2=20KN 600 B
2m
3m
刚体平衡刚体在平衡状态下的力学条件

刚体平衡刚体在平衡状态下的力学条件刚体平衡及其力学条件刚体平衡是力学中的重要概念,指的是刚体处于不发生任何平动或转动的静止状态。
在刚体平衡的情况下,存在一系列力学条件。
本文将详细介绍刚体平衡的力学条件。
一、平衡定义在力学中,平衡指物体处于静止状态或匀速直线运动状态下,若外力对物体的合力等于零,则称物体处于平衡状态。
二、刚体平衡条件在刚体平衡的情况下,需要满足以下条件:1. 力矩平衡条件刚体平衡的一个重要条件是力矩平衡,即刚体所受外力的合力矩等于零。
力矩是力作用在刚体上产生的转动效果,用向量表示为M=rxF,其中r为力到转轴的距离,F为力的大小。
在刚体平衡的情况下,力矩的代数和为零。
2. 力平衡条件力平衡指刚体所受外力的合力等于零。
在刚体平衡的状态下,所有作用在刚体上的外力矢量的代数和为零,即ΣF=0。
3. 质心条件刚体平衡的另一个条件是质心条件。
刚体的质心是指刚体所有质点质量乘以各自位置矢量的代数和除以总质量。
在刚体平衡的情况下,质心在不受力的作用下保持静止或匀速直线运动。
三、刚体平衡实例以下是几个常见的刚体平衡实例,用于帮助理解力学条件:1. 杆的平衡考虑一个平衡在水平地面上的杆,支点在一个端点。
要使杆保持平衡,支点需要施加一个反作用力,使得另一端的力矩和受力的合力为零。
2. 平板的平衡当一个平板平衡在平面上时,平衡条件要求所受合力和合力矩都为零。
其中合力矩的计算需要考虑平板上各个点的力矩大小和方向。
3. 悬挂物体的平衡考虑一个静止的悬挂物体,例如一个吊钩。
要使其保持平衡,需要使得悬挂点所受合力和合力矩为零。
四、刚体平衡的应用刚体平衡的概念和力学条件在生活和工程中有广泛的应用。
例如:1. 建筑物的稳定性分析在建筑物的设计和构建过程中,需要考虑其结构的稳定性。
通过分析各个部分的受力和力矩平衡情况,可以确保建筑物在负载和地震等外力作用下保持平衡和稳定。
2. 机械结构的设计机械系统中的各个部件也需要满足力学条件,以保证整个系统的平衡和运行。
工程力学 第3章 力系的平衡

6
解 :1. 受力分析, 确定平衡对象 圆弧杆两端 A 、 B 均为铰链,中间无外力作用,因此圆弧杆为二力杆。 A 、 B 二处的 约束力 FA 和 FB 大小相等、 方向相反并且作用线与 AB 连线重合。 其受力图如图 3-6b 所示。 若 以圆弧杆作为平衡对象,不能确定未知力的数值。所以,只能以折杆 BCD 作为平衡对象。 ' 折杆 BCD , 在 B 处的约束力 FB 与圆弧杆上 B 处的约束力 FB 互为作用与反作用力, 故 二者方向相反; C 处为固定铰支座,本有一个方向待定的约束力,但由于作用在折杆上的 ' 只有一个外加力偶,因此,为保持折杆平衡,约束力 FC 和 FB 必须组成一力偶,与外加力 偶平衡。于是折杆的受力如图 3-6c 所示。 2.应用平衡方程确定约束力 根据平面力偶系平衡方程(3-10) ,对于折杆有 M + M BC = 0 (a) 其中 M BC 为力偶( FB , FC )的力偶矩代数值
图 3-8 例 3-3 图
解 :1. 选择平衡对象 本例中只有平面刚架 ABCD 一个刚体(折杆) ,因而是唯一的平衡对象。 2 受力分析 刚架 A 处为固定端约束, 又因为是平面受力, 故有 3 个同处于刚架平面内的约束力 FAx、 FAy 和 MA 。 刚架的隔离体受力图如图 3-8b 所示。 其中作用在 CD 部分的均布荷载已简化为一集中 力 ql 作用在 CD 杆的中点。 3. 建立平衡方程求解未
习 题
本章正文 返回总目录
2
第 3 章 力系的平衡
§3-1 平衡与平衡条件
3-1-1 平衡的概念
物体静止或作等速直线运动,这种状态称为平衡。平衡是运动的一种特殊情形。
平衡是相对于确定的参考系而言的。例如,地球上平衡的物体是相对于地球上固定参 考系的, 相对于太阳系的参考系则是不平衡的。 本章所讨论的平衡问题都是以地球作为固定 参考系的。 工程静力学所讨论的平衡问题,可以是单个刚体,也可能是由若干个刚体组成的系统, 这种系统称为刚体系统。 刚体或刚体系统的平衡与否,取决于作用在其上的力系。
刚体平衡实验的操作指南

刚体平衡实验的操作指南引言:刚体平衡实验是物理学中的经典实验之一,通过该实验可以研究物体的平衡条件和力的作用规律。
下面将为大家介绍刚体平衡实验的操作指南,希望对大家掌握实验技巧和科学原理有所帮助。
一、实验准备在进行刚体平衡实验之前,需要做好一些准备工作。
首先,选择一个稳定平整的实验台面,确保实验台面无扰动;同时,清洁实验仪器,确保其表面平整无污垢,以免对实验结果产生干扰。
二、测量刚体的质量在进行刚体平衡实验之前,首先要测量刚体的质量。
使用天平将刚体放置在平衡盘上,注意天平的准确度,保持天平平稳,避免外界干扰。
记录下刚体的质量,作为后续实验计算所需的数据。
三、悬挂刚体接下来,需要将刚体悬挂起来。
选择一个合适的位置,在实验台的某一边缘固定住一根细绳子,然后将刚体绑在绳子的另一端。
注意绳子的长度应该足够长,以确保刚体完全悬挂且不与实验台面接触。
四、调整刚体位置调整刚体的位置是实验中非常重要的一步,它直接影响到后续实验的精确度和准确度。
通过移动实验台或者调整悬挂绳子的位置,使得刚体处于平衡状态,即不受任何额外力的作用。
在调整刚体位置的同时,观察刚体是否在平衡状态下保持静止,以此来判断刚体是否完全平衡。
五、测量刚体的长度和角度测量刚体的长度和角度是刚体平衡实验中的重点。
使用合适的测量工具(如卡尺、量角器等),测量刚体的长度和相对于实验台面的角度。
记录下这些测量值,以备后续实验数据的分析和计算。
六、应用力学原理分析数据通过上述的实验操作,我们已经获得了刚体平衡实验所需的数据。
现在,我们可以将这些数据应用到力学原理中,进一步分析实验结果。
根据刚体平衡的条件,我们可以得出平衡时刚体所受力的平衡方程式,从而求解未知量,检验实验结果的准确性。
七、误差分析与讨论在进行刚体平衡实验时,由于实际操作中的各种因素,如测量误差、悬挂绳的不完全理想性等,都可能对实验结果产生一定的影响。
因此,在实验结束后,进行误差分析与讨论是非常重要的。
刚体的受力分析及其平衡规律

可合性
F3 A Fn
AR
Fn
平面汇交力系
平面共点力系
合力
结论:平面汇交力系合成的结果为一合力,合
力的作用线通过力系的汇交点,合力的大小和
方向等于力系中各力的矢量和。即
n
R Fi i 1
平面汇交力系平衡的充要条件是力系的合力
为零,即
n
R Fi 0 i 1
几何条件为力多边形自行封闭。
平面汇交力系平衡的几何条件
(上例中整个梯)。 平面汇交力系--各力作用线汇交于一点的平面力
系。 平面共点力系--各力作用于一点的平面力系。 平面一般力系--各力作用线任意分布的平面力系
(上例中半梯受)。
一、平面汇交力系的简化
1、概述
力系的简化—求一力与一力系等效。即求力系 的合力。
F2 F1
A
F3
F2
F1
可传性原理
X
力F的从投原影点为画代出数时量所。在象限由X、Y正、负号判断。
3、合力投影定理
设平面共点力系 F1 、F2 、F3(与某汇交力系等效)
作用在刚体上的A点,由图可知:
ag=ab+be-eg=ab+ac-ad,即RX=X1+X2+X3
R1 F1 F2 , R R1 F3 F1 F2 F3
力的表示法:
(1)黑体字母,如:R、F 等。相应的普通体字 母R、F 表示其大小。
(2)有向线段:
A
F
B
说明:以解析法计算力的大小时,线段
AB长度可不按比例画出。
力通过物体直接接触或通过物体和场(重力场、 电磁场等)的相互作用而产生。力的作用点即 力的作用位置 一般并非一个点。如两物体直接 接触时的压力为面分布力,重力为体积分布力。 若分布面积很小或研究力对物体的外效应时可 将其简化为作用于接触面中心或重心的集中力。
高中物理刚体平衡教案

高中物理刚体平衡教案主题:刚体的平衡目标:1. 了解刚体的定义和性质;2. 掌握刚体的平衡条件;3. 能够应用刚体平衡条件解决相关问题。
一、引入1. 引导学生回想一下什么是刚体,并让他们说出刚体的性质。
2. 提出一个问题:在日常生活中有哪些例子符合刚体的定义?二、概念讲解1. 介绍刚体的定义:不发生形变的物体。
2. 解释刚体的平衡条件:外界合力为零,外界合力矩为零。
3. 引导学生通过实例理解刚体平衡条件的实际应用。
三、练习与讨论1. 给学生提供几个简单的刚体平衡问题,并让他们分组解答。
2. 鼓励学生展示解题思路,并进行讨论。
四、实例分析1. 给学生讲解一个实际应用场景中刚体平衡问题的解决过程。
2. 引导学生独立分析解决类似问题的方法。
五、综合练习1. 提供一些综合性的刚体平衡问题,让学生独立解答。
2. 鼓励学生将所学知识运用到解决实际问题中。
六、总结与拓展1. 回顾本节课所学内容,总结刚体平衡的关键要点。
2. 引导学生思考如何将刚体平衡理论应用到更复杂的情景中。
七、作业布置1. 布置相关练习题目,巩固所学知识。
2. 提出探究问题,引导学生进一步思考。
八、课堂反馈1. 通过课堂随堂测验或口头提问的形式,检验学生对刚体平衡的掌握程度。
2. 对学生的表现进行评价和反馈。
【教学反思】本节课主要通过讲解、练习和分析等多种教学活动,帮助学生全面理解刚体平衡的概念和关键条件,并培养学生解决实际问题的能力。
通过课堂反馈,及时发现学生存在的问题,帮助他们进一步提高。
第3章 静力学平衡问题

第3章 静力学平衡问题 §3.1 平衡与平衡条件一、平衡的概念物体的平衡,在工程上是指物体相对于地面保持静止或作匀速直线运动的状态。
平衡是相对于确定的参考系而言的。
静力学所讨论的平衡问题可以是单个刚体,也可以是由若干个刚体组成的刚体系统。
刚体或刚体系统是否平衡取决于作用在其上的力系。
二、平衡条件要使物体保持平衡状态,作用在其上的力必须满足一定的条件,这种条件我们称为力的平衡条件。
从效应上看,物体保持平衡应是既不移动,又不转动。
因此,力系的平衡条件是,力系的主矢和力系对任一点的主矩等于零。
其解析表达式称为平衡方程。
§3.2 平面力系的平衡方程一、平面力系的平衡方程1)基本形式⎪⎩⎪⎨⎧=∑=∑=∑0)(000F M Y X2)二矩式⎪⎩⎪⎨⎧=∑=∑=∑0)(0)(0F F B A M M X 附加条件为:A 、B 两点连线不垂直于x 轴3)三矩式⎪⎩⎪⎨⎧=∑=∑=∑0)(0)(0)(F F F C B A M M M 附加条件为:A 、B 、C 三点不共线特殊力系的平衡方程 1)共线力系:=∑i F2)平面汇交力系:⎩⎨⎧=∑=∑00Y X3)平面力偶系: 0i m =∑4)平面平行力系: )//( 0)(0轴y M Y i o F F ⎩⎨⎧=∑=∑§3.3 空间力系的平衡方程一、空间力系的平衡方程其基本形式的平衡方程为:ΣX=0 ΣM x(F)=0ΣY=0 ΣM y(F)=0ΣZ=0 ΣM z(F)=0必须指出,空间一般力系有六个独立的平衡方程可以求解六个未知量。
具体应用时,不一定使3个投影轴或矩轴互相垂直,也没有必要使矩轴和投影轴重合,而可以选取适宜轴线为投影轴或矩轴,使每一个平衡方程中所含未知量最少,以简化计算。
此外,还可以将投影方程用适当的力矩方程取代,得到四矩式、五矩式以至六矩式的平衡方程。
使计算更为简便。
几种特殊力系的平衡方程1)空间汇交力系ΣX=0ΣY=0ΣZ=02)空间力偶系ΣM x(F)=0ΣM y(F)=0ΣM z(F)=03)空间平行力系(若各力//z轴)ΣZ=0ΣM x(F)=0ΣM y(F)=04)平面任意力系(若力系在Oxy平面内)∑X==∑YM(=∑F)z§3.4 平衡方程的应用一、一般应用举例例3-1,例3-3,例3-4,例3-5(改求起重机不翻平衡块的重量就应是多少?),例3-6,例3-7 补充:已知:带轮D :D1=400 mm ,FT=2000 N ,Ft=1000 N ;齿轮C :D2=200 mm ,a=20° 求:齿轮C 的啮合力Fn ,轴承A 、B 的约束力FA 、FB轴承A 、B 的约束力FA 、FB 就是圆轴受支座中圆孔的约束力,圆孔销钉就是固定铰链两个分力 为说明两分力方向,建立空间直角坐标系Oxyz ?y 轮轴线,z 轴铅直,Oxy 是水平面,三轴垂直 轴承支座表示方法(下图),其约束两分力为xz 方向,用F Ax 、F Az 和F Bx 、F Bz ,或X A 、Z A 和X B 、Z B 侧视图(将轮轴及其受力投影到Oxz 平面上)受力图,没有画轴承A 、B 的约束力,因为没有解除这两个轴承约束=B M ∑02cos 2221t 1T =⨯⨯⨯D F D F D F n a --2000×200-1000×200-Fncos20°×100=0 Fn=2130 N主视图(将轮轴及其受力投影到Oyz 平面上)受力图,其中Fnz=Fncos20°=2130×0.9396=2000 N因主动力Fnz=2000 N 作用点到A 、B 两个支座距离相同,方向向上显然,与之平衡的两支座约束力大小相等,实际方向向下,和受力图所画的方向相反,所以N10002N 20002-====--nzB A F Z Z俯视图(将轮轴及其受力投影到Oxy 平面上) 受力图,其中Fnx=Fnsin20°=2130×0.3420=729 NΣMA=0 -(FT+Ft)×0.15+Fnx ×0.25-XB ×0.5=0 -(2000+1000)×0.15+729×0.25-XB ×0.5=0 XB=-536 NΣFx=0 -FT-Ft+XA-Fnx+XB=0 -2000-1000+XA-729+(-536)=0 XA=4265 N 结论:Fn=2130 NXA=4265 N ; XB=-536 N ZA=-1000 N ; ZB=-1000 N 小结:①轮轴类部件平面解法:1.侧视图求未知主动力 2.主视图求铅直向约束力 3.俯视图求水平向约束力在每一视图上,使用平面力系力的投影方程和力矩平衡方程求解未知力 ②皮带拉力,无论倾斜与否,总是和轮缘相切,对轮轴的力矩等于拉力乘以半径齿轮啮合力一定和其分度圆不相切,对轮轴的力矩=啮合力×cosa ×半径(啮合力×cosa=圆周方向分力)③侧视图上没有画轴承A 、B 的约束力,因为没有解除两个轴承约束(若画有XA 、ZA 和XB 、ZB 四力) 不能用ΣFx=0,-FT-Ft-Fnsina=0求Fn ,因为在x 方向,实际上还有XA 、XB 两力的投影 二、重心1、物体的重心物体的重量(力):物体每一微小部分地球引力的合力。
第三章 刚体平衡

力偶系:作用在物体上的若干个力偶
简化
力偶系
合成
合力偶
合力偶的力偶矩 = 力偶系中各力偶的力偶矩的代数和
M M1 M 2 M n M
平面力偶系的平衡条件: 所有力偶的力偶矩的代数和等于零
M M1 M 2 M n 0
F
q
B FBx F’Bx B F’By
q
C
FAx
A FAy
D
FD
FBy
FC
梁ADB段的受力图
梁BC段的受力图
14
第一节 静力学基本概念及原理
F
q
C
FAx
A FAy
D
FD
B
FC
整体受力图
15
第一节 静力学基本概念及原理
例3-5 不计三铰拱桥的自重与 摩擦,画出左、右拱AB,CB 的受力图与结构整体受力图。
M O M1 M 2 M n M O ( F1 ) M O ( F2 ) M O ( Fn ) M O ( Fi )
33
第三节 平面一般力系
平面一般力系向作用面内任一点 O 简化,可得一个力和一个 力偶,这个力等于该力系的主矢,作用线通过简化中心; 这个力偶 的力偶矩等于力系对于简化中心O点的主矩。
一、力线平移定理
力线平移定理: 作用于刚体上的力,可以平移到同一刚体 的任意指定点,但必须同时附加一力偶, 其力偶矩等于原来的力对该指定点的矩。
F′
F B d A F′′ M F′
=
B A
力线平移定理 是力系简化的 理论依据
M=±F. d=MB(F)
32
刚体平衡的条件与分析方法

刚体平衡的条件与分析方法刚体平衡是物理学中的一个重要概念,用来描述物体在静止状态下所处的平衡条件。
刚体指的是质量分布均匀、形状保持不变的物体,不会发生形变。
在这篇文章中,我们将介绍刚体平衡的条件和分析方法。
一、刚体平衡的条件要使一个刚体处于平衡状态,需要满足以下两个条件:1. 力矩平衡条件:当刚体处于平衡状态时,对于刚体上的任意一点,合外力矩以及合内力矩都必须为零。
这意味着刚体受到的力矩总和必须等于零。
合外力矩是指作用在刚体上的来自于外部的力矩,而合内力矩是指刚体内部的各部分之间相互作用产生的力矩。
力矩的计算可以通过力矩公式:力矩 = 力的大小 ×力臂,其中力臂是力矩的杠杆长度。
2. 力平衡条件:当刚体处于平衡状态时,对刚体上的任意一点,合外力以及合内力的合力必须为零。
合外力是指作用在刚体上的来自于外部的力,而合内力是指刚体内部的各部分之间相互作用产生的力。
力的合力可以通过求解所有力的矢量和来计算,如果合力为零,则刚体在力方向上达到平衡。
二、刚体平衡的分析方法在分析刚体平衡时,我们通常采用以下方法:1. 绘制自由体图:首先,我们需要绘制刚体的自由体图,即将刚体从整个系统中剥离,将作用在刚体上的力与力矩标出来。
自由体图能够帮助我们清楚地了解刚体所受力的方向和大小。
2. 选取合适的坐标系:为了简化问题,我们需要选取合适的坐标系来进行计算。
通常情况下,选择刚体上某一个点作为原点,并选择与平衡有关的方向为正方向。
3. 列写力矩平衡方程:通过自由体图,我们可以根据力矩平衡条件列写方程。
按照力矩方程,对于刚体上所有的力矩,我们可以将其与压力乘以杠杆的长度相加,并将合外力矩与合内力矩相等于零。
4. 列写力平衡方程:同样地,我们可以根据力平衡条件列写方程。
根据力平衡方程,对于刚体上所有的力,我们将其在 x 和 y 方向上的合力相加,并将合外力与合内力相等于零。
5. 求解方程:根据力矩平衡方程和力平衡方程,我们可以得到一组方程,通过求解这组方程,我们可以确定刚体平衡时的各个未知量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 平面汇交力系和平面力偶系
3. 平面力偶系的简化与平衡
力偶系:作用在物体上的若干个力偶
简化
力偶系
合成
合力偶
合力偶的力偶矩 = 力偶系中各力偶的力偶矩的代数和
M M1 M2 Mn M
平面力偶系的平衡条件: 所有力偶的力偶矩的代数和等于零
M M1 M2 Mn 0
解: 取球为研究对象
画出球的简图
画主动力
W
画约束反力
FRA
FRB
10
第一节 静力学基本概念及原理
例3-2 水平匀质梁AB重为P1,电动机重为P2,不计杆CD的自 重,试画出杆CD和梁AB的受力图。 解: CD杆为二力杆,其受力图
如图(b)所示 则AB梁受力图如图(c)所示
11
第一节 静力学基本概念及原理
i 1
i 1
i 1
i 1
n
n
FRx Fix Fx FRy Fiy Fy
i 1
i 1
合力在某轴上的投影 = 力系中各力在该轴上投影的代数
和,合力的大小及方向余弦分别为:
FR FRx2 FRy2
cos FRx
Fx
FR
FRx 2 FRy 2
二力构件 二力杆
3
第一节 静力学基本概念及原理
2. 平行四边形法则
作用于物体上同一点的两个力,可以合成为作用于该点的一个 合力,它的大小和方向由这两个力的矢量为邻边所构成的平行四边 形的对角线来表示。
同一点两个 力的合力是
矢量和
FR F1 F2
F1
FR
A
F2
F1
F2 FR
A
也可用力三角形法则求得合力矢 此公理表明了最简单力系的简化规律,是复杂力系简化的基础
30
第三节 平面一般力系
平面力系中,各力的作用线既不全部汇交于一点,也不 全部互相平行,这样的力系称为平面一般力系,简称平面力 系。(也有教材称为平面任意力系)
力线平移定理 平面一般力系
平面汇交力系 平面力偶系
合成 FR=Fi 平衡 Fx=0
Fy =0 合成 M=Mi 平衡 Mi =0
31
F Fx2 Fy2
b2
B
Fy
Fy
F
cos Fx
F
cos Fy
F
a2
A
Fx
x
o
a1 Fx b1
22
第二节 平面汇交力系和平面力偶系
3)合力投影定理
FR FRxi FRy j
n
n
n
n
合力 FR Fi (Fixi Fiy j) Fixi Fiy j
第三节 平面一般力系
一、力线平移定理
力线平移定理: 作用于刚体上的力,可以平移到同一刚体 的任意指定点,但必须同时附加一力偶, 其力偶矩等于原来的力对该指定点的矩。
F′
F′
F
M
BdΒιβλιοθήκη =BA F′′
M=±F. d=MB(F)
力线平移定理 是力系简化的
理论依据
A
32
第三节 平面一般力系
二、平面一般力系向一点的简化·主矢和主矩
下几种情况′ :
(1) F 'R 0 , MO 0 (2) F 'R 0 , MO 0 (3) F 'R 0 , MO 0
称该力系平衡 该力系等效一个合力偶 该力系等效一个合力
(4) F 'R 0 , MO 0 仍然可以继续简化为一个合力
35
第三节 平面一般力系
(4) F 'R 0 , MO 0 仍然可以继续简化为一个合力
F 'R
O
MO
O
F ''R
F 'R
d FR
O’
O
FR
d
O’
只要满足:
F 'R FR ,
d MO MO F 'R FR
FR
原力系的合力
36
第三节 平面一般力系
F 'R
O
MO
F 'R
FR
O
d FR
Od
O’
O’
F ''R
MO (FR ) FRd MO MO (Fi ) 即: MO (FR ) MO (Fi )
梁ADB段的受力图
q
F’Bx B
C
F’By
FC
梁BC段的受力图
14
第一节 静力学基本概念及原理
F
q
FAx A FAy
D
B
FD
C
FC
整体受力图
15
第一节 静力学基本概念及原理
例3-5 不计三铰拱桥的自重与 摩擦,画出左、右拱AB,CB 的受力图与结构整体受力图。 解: 右拱CB为二力构件,其受力图 如图(b)所示
刚体(受压平衡)
变形体(不能平衡)
8
第一节 静力学基本概念及原理
三、物体的受力分析与受力图
受力分析: 明确构件受哪些力作用,其中哪些力已知,哪些力未知 受力图: 分离研究对象,解除约束,单独画出研究对象的图形,并 画出作用在它上面的主动力和约束反力
受力图是分离体图
9
第一节 静力学基本概念及原理
例3-1 已知球重为W,各接触面均光滑, 试画出球的受力图。
CD杆的受力图能否画为如 若这样画,则AB梁受力图
图(d)所示?
为如图(e)所示
12
第一节 静力学基本概念及原理
例3-3 简支梁AB两端分别固定 在铰支座与滚轴支座上。在C
A
F
C
B
处作用一集中力F,梁的自重
不计。试画出此梁的受力图。
解:取梁AB为研究对象
FAx A
F
C
B
FA A
F
C
B
FAy
FB
力偶矩 M
d
F
F’
MO (F, F ') MO (F ) MO (F ') Fd
+
-
单位:N·m,kN·m 等
26
第二节 平面汇交力系和平面力偶系
2. 力偶与力偶矩的性质 1)力偶在任意坐标轴上的投影等于零
27
第二节 平面汇交力系和平面力偶系
2)力偶对任意点取矩都等于力偶矩,与矩心的位置无关
FR
F '2 Rx
F '2 Ry
( Fxi )2 ( Fyi )2
cos Fx , cos Fy
FR
FR
主矢与简化点O位置无关
n
M O M O (Fi ) i 1
主矩与简化点O位置有关
34
第三节 平面一般力系
三、平面一般力系向一点简化结果分析
平面力系总可以简化为一个主矢和一个主矩,可能有以
16
第一节 静力学基本概念及原理
取左拱AC,其受力图如图 (c)所示
系统整体受力图如图 (d)所示
17
第一节 静力学基本概念及原理
考虑到左拱AC三个力作用下 平衡,也可按三力平衡汇交定 理画出左拱AC的受力图,如 图(e)所示
此时整体受力图如图(f) 所示
18
第一节 静力学基本概念及原理
讨论:若左、右两拱都考虑自重, 如何画出各受力图?
平面汇交力系平衡的必要和充分条件是:各力在 两个坐标轴上投影的代数和等于零。
24
第二节 平面汇交力系和平面力偶系
二、力对点之矩
力臂
MO (F ) Fh
+
-
MO (F ) 2SABO
A
F
h
B
O
说明: 单位:N·m,kN·m 等
矩心
1) 平面内力对点之矩是代数量,其大小与力的大小及矩心位置有关; 其正负号取决于力使物体绕矩心转动的方向:逆正顺负;
如图 (g)(h) (i)
19
第二节 平面汇交力系和平面力偶系
平面汇交力系: 平面力系中各力的作用线相交于同一点
一、平面汇交力系的合成与平衡
1. 几何法(力多边形法)
平面汇交力系合成的结果是一个合力,合力等于已知力 系各力的矢量和,其作用线通过力系的汇交点
n
FR F1 F2 Fn Fi i 1
M
O
F
,
F
M
O
F
M
O
F
1
1
1
F d x1 F x1 Fd
M
O
F
,
F
F
d
x2
F
x2
2
F 'd Fd
28
第二节 平面汇交力系和平面力偶系
3)只要保持力偶矩不变,力偶可在其作用面内任意移动, 而不改变对刚体的作用效果 4)只要保持力偶矩不变,可以同时改变力偶中力的大小与 力偶臂的长短,而不改变对刚体的作用效果 5)力偶没有合力,力偶只能由力偶来平衡
2) 力对点之矩不因力沿作用线移动而改变;
3) 力臂和力中任一个为零时,力对点之矩为零;
4) 互成平衡的两个力对同一点之矩的代数和为零。
25
第二节 平面汇交力系和平面力偶系
三、力偶和力偶矩
1. 基本概念
力偶
由大小相等,方向相反且不共线的两力组成的力系
记作:( F , F ')