磁场中的临界和极值问题

合集下载

带电粒子在磁场中运动之临界与极值问题

带电粒子在磁场中运动之临界与极值问题

考点4.6 临界与极值问题考点4.6.1“放缩圆”方法解决极值问题1、圆的“放缩”当带电粒子射入磁场的方向确定,但射入时的速度v 大小或磁场的强弱B 变化时,粒子做圆周运动的轨道半径r 随之变化.在确定粒子运动的临界情景时,可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件.如图所示,粒子进入长方形边界OABC 形成的临界情景为②和④.1.(多选)如图所示,左、右边界分别为PP ′、QQ ′的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电荷量为q的微观粒子,沿图示方向以速度v 0垂直射入磁场.欲使粒子不能从边界QQ ′射出,粒子入射速度v 0的最大值可能是()A.Bqd mB.(2+2)BqdmC.(2-2)BqdmD.2Bqd2m2.(2016·全国卷Ⅲ,18)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。

一带电粒子的质量为m,电荷量为q (q >0)。

粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。

已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场。

不计重力。

粒子离开磁场的出射点到两平面交线O 的距离为()A.mv 2qBB.3mvqBC.2mv qBD.4mvqB3.(多选)长为L 的水平极板间,有垂直纸面向内的匀强磁场,如下图所示,磁感应强度为B ,板间距离也为L ,板不带电,现有质量为m ,电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A 、使粒子的速度v <BqL 4m B 、使粒子的速度v >5BqL4mC 、使粒子的速度v >BqL mD、使粒子速度BqL 4m <v <5BqL4m4.如图所示,边长为L的正方形ABCD区域内存在磁感应强度方向垂直于纸面向里、大小为B的匀强磁场,一质量为m、带电荷量为-q的粒子从AB边的中点处垂直于磁感应强度方向射入磁场,速度方向与AB边的夹角为30°.若要求该粒子不从AD边射出磁场,则其速度大小应满足( )A.v≤2qBLmB.v≥2qBLmC.v≤qBLmD.v≥qBLm5.如图所示,条形区域AA′、BB′中存在方向垂直于纸面向外的匀强磁场,磁感应强度为B,AA′、BB′为磁场边界,它们相互平行,条形区域的长度足够长,宽度为d.一束带正电的某种粒子从AA′上的O点以大小不同的速度沿着AA′成60°角方向射入磁场,当粒子的速度小于某一值v0时,粒子在磁场区域内的运动时间为定值t0;当粒子速度为v1时,刚好垂直边界BB′射出磁场.不计粒子所受重力.求:(1)粒子的比荷q m;(2)带电粒子的速度v0和v1.6.如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m,带电荷量为q,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?7.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C 的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值U m;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.8.如图所示,OP曲线的方程为:y=1-0.4 6.25-x(x,y单位均为m),在OPM区域存在水平向右的匀强电场,场强大小E1=200N/C(设为I区),PQ右边存在范围足够大的垂直纸面向内的匀强磁场,磁感应强度为B=0.1T(设为Ⅱ区),与x轴平行的刚上方(包括PN存在竖直向上的匀强电场,场强大小E2=100N/C(设为Ⅲ区),PN的上方h=3.125m处有一足够长的紧靠y轴水平放置的荧光屏AB,OM的长度为a=6.25m。

磁场中的临界极值问题

磁场中的临界极值问题

带电粒子在磁场中运动的极值问题1.解决此类问题的关键是:找准临界点.2.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R 和速度v (或磁场B )之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v 变化时,圆周角大的,运动时间越长.1 如图7所示, 匀强磁场 的磁感应强度为B,宽度为d,边界为CD和EF.一电子从CD 边界外侧以速率v0垂直匀强磁场射入,入射方向与CD 边界间夹角为θ.已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF 射 出,求电子的速率v 0至少多大?2、如图所示,环状匀强磁场围成的中空区域内具有自由运动的带电粒子,但由于环状磁场的束缚,只要速度不很大,都不会穿出磁场的外边缘,设环状磁场的内半径R 1=0.5m ,外半径R 2=1.0m ,磁场的磁感应强度B=1.0T ,若被束缚的带电粒子的荷质比为 mq 4×107C/kg ,中空区域中带电粒子具有各个方向的速度。

试计算: (1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度;(2)所有粒子不能穿越磁场的最大速度。

4、如图所示一足够长的矩形区域abcd 内充满磁感应强度为B ,垂直纸面向里的匀强磁场,现从矩形区域ad 边的中点O 处,垂直磁场射入一速度方向与ad 边夹角30°,大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为l ,重力影响不计。

(1)试求粒子能从ab 边上射出磁场的v 0的大小范围。

(2)粒子在磁场中运动的最长时间是多少?5如图甲所示,建立Oxy 坐标系,两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极板长度和板间距均为l ,第一四象限有磁场,方向垂直于Oxy 平面向里。

专题八 带电粒子在有界磁场中的临界极值问题讲解

专题八 带电粒子在有界磁场中的临界极值问题讲解
答案:ACD
方法二 旋转圆法
粒子速度大小不变,方向改变,则 r=mqBv大小不变,但轨迹 的圆心位置变化,相当于圆心在绕着入射点滚动(如图所示).
例 2 (2015·四川理综)(多选)如图所示,S 处有一电子源,可
向纸面内任意方向发射电子,平板 MN 垂直于纸面,在纸面内的 长度 L=9.1 cm,中点 O 与 S 间的距离 d=4.55 cm,MN 与直线 SO 的夹角为 θ,板所在平面有电子源的一侧区域有方向垂直于 纸面向外的匀强磁场,磁感应强度 B=2.0×10-4T.电子质量 m= 9.1×10-31 kg,电荷量 e=-1.6×10-19C,不计电子重力.电子 源发射速度 v=1.6×106 m/s 的一个电子,该电子打在板上可能 位置的区域的长度为 l,则( )
B.从 ac 边中点射出的粒子,在磁场中的运动时间为 2πm 3qB
C.从 ac 边射出的粒子的最大速度值为23qmBL D.bc 边界上只有长度为 L 的区域可能有粒 子射出
[解析] 带电粒子在磁场中运动的时间是看圆心角的大小, 而不是看弧的长短,A 项错误;作出带电粒子在磁场中偏转的示 意图,从 ac 边上射出的粒子,所对的圆心角都是 120°,所以在 磁场中运动的时间为 t=13T=23πqmB,B 项正确;从 ac 边射出的最 大速度粒子的弧线与 bc 相切,如图所示,半径为 L,由 R=mqBv⇒ v=qBmR=qmBL,C 项错误;如图所示,在 bc 边上只有 Db=L 长 度区域内有粒子射出,D 项正确,选 B、D 项.
例1 (多选)如图所示,在直角三角形 abc 中,有垂直纸面的匀强
磁场,磁感应强度为 B.在 a 点有一个粒子发射源,可以沿 ab 方向源 源不断地发出速率不同,电荷量为q(q>0)、质量为 m 的同种粒子.已 知∠a=60°,ab=L,不计粒子的重力,下列说法正确的是( )

带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题突破有界磁场中临界问题的处理方法考向1 “放缩法”解决有界磁场中的临界问题1.适用条件(1)速度方向一定,大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化(2)轨迹圆圆心一一共线如图所示(图中只画出粒子带正电的情景),速度V。

越大,运动半径也越大可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP,上.2.方法界定以入射点P为定点,圆心位于PP,直线上,将半径放缩作轨迹,从而探索出临界条件,这种方法称为“放缩法”.[典例1]如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd 边的中点.一个带正电的粒子仅在洛伦兹力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t。

刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°的方向,以大小不同的速率射入正方形内,粒子重力不计.那么下列说法中正确的是()A.若该带电粒子从ab边射出,它经历的时间可能为t。

5tB.若该带电粒子从bc边射出,它经历的时间可能为十3C.若该带电粒子从cd边射出,它经历的时间号2tD.若该带电粒子从ad边射出,它经历的时间可能为43[解析]作出从ab边射出的轨迹①、从bc边射出的轨迹②、从cd边射出的轨迹③和从ad边射出的轨迹④.由带正电的粒子从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t o刚好从c点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t o.由图可知,从ab边射出经历的时间一定不大片;从bc边射出经历的时间一定不大于不从cd边射...... . 5t t出经历的时间一定是丁;从ad边射出经历的时间一定不大于可,C正确.3 3[答案]C考向2 “旋转法”解决有界磁场中的临界问题1.适用条件(1)速度大小一定,方向不同带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为一.一一、 ,.一.一 mv __ _____v,则圆周运动半径为区=”0.如图所示.o qB(2)轨迹圆圆心一一共圆mv 带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=京的圆上. qB2.方法界定mv将一半径为R=氤的圆绕着入射点旋转,从而探索出临界条件,这种方法称为“旋转法”.qB[典例2]如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T.磁场内有一块平面感光板ab,板面与磁场方向平行.在距ab为l = 16 cm处,有一个点状的a粒子放射源S,它向各个方向发射a粒子,a...................... . .. ....... q . .. ...... . . 粒子的速度都是v=3.0X106 m/s.已知a 粒子的比何m=5.0X107 C/kg,现只考虑在纸面内 运动的a 粒子,求ab 板上被a 粒子打中区域的长度.[解题指导]过S 点作ab 的垂线,根据左侧最值相切和右侧最值相交计算即可.[解析]a 粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨迹半径, 4 c V 2有 qvB=mR由此得R 瑞代入数值得R=10 cm,可见2R>l>R因朝不同方向发射的a 粒子的圆轨迹都过S,由此可知,某一圆轨迹在下图中N 左侧与 ab 相切,则此切点、就是a 粒子能打中的左侧最远点为确定、点的位置,可作平行于ab 的直线cd, cd 到ab 的距离为R,以S 为圆心,R 为半径,作圆弧交cd 于Q 点,过Q 作ab 的 垂线,它与ab 的交点即为,即:NP=R 2—(1—R) 2 = 8 cm再考虑N 的右侧.任何a 粒子在运动中离S 的距离不可能超过2R,在N 点右侧取一点P 2, 取SP=20 cm,此即右侧能打到的最远点由图中几何关系得NP 2=M (2R) 2 — 12=12 cm所求长度为P 1P 2=NP 1+NP 2代入数值得P 1P 2 = 20 cm.[答案]20 cm考向1带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度的条件 下,正、负粒子在磁场中运动轨迹不同,导致形成多解.[典例3]如图所示,宽度为d 的有界匀强磁场,磁感应强度为B, MM,和NN’是磁场左 右的两条边界线.现有一质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子 不能从右边界NN,射出,求粒子入射速率的最大值为多少?突破 带电粒子在磁场中运动的多解问题fl 兄 乂尹। x x J V X y K P 2 x b[解题指导]由于粒子电性不确定,所以分成正、负粒子讨论,不从NN,射出的临界条 件是轨迹与NN,相切.[解析]题目中只给出粒子”电荷量为q”,未说明是带哪种电荷,所以分情况讨论. 若q 为正电荷,轨迹是如图所示的上方与NN,相切的(圆弧,则轨道半径R \12 (2+ 2) Bqd ............... 一 一 一一 一 ......3 一 ........... 若q 为负电荷,轨迹是如图所示的下方与NN,相切的工圆弧,则轨道半径又—全解得『=(2-'⑵刎 m…… (2+ 2) Bqd (2— 2) Bqd,[答案] --- 玄 ---- (q 为正电何)或 -- m ----- (q 为负电何)考向2磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考 虑磁感应强度方向不确定而形成的多解.[典例4](多选)一质量为m 、电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固mvBq又d=R 解得v=R,mv' Bq M N।■乂 ।1 ।*[典例5](多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强 度为B,板间距离也为1,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从 左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是()定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在 负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是(不计重 力)() A. R 瘦 D. m 2qB C .— m D. qB m[解析]根据题目中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且 这两种可能方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力 的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知 _ V2 _ 4BqR v 4Bq4Bqv=m 万,得v= ,此种情况下,负电何运动的角速度为3=5=-;;当负电何所受的R m R m 洛伦兹力与电场力方向相反时,有2B qv=m V2, 丫=等,此种情况下,负电荷运动的角速度v 2Bq为3=R=/",应选A 、C.[答案]AC考向3临界状态不唯一形成多解如图所示,带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状, 因此,它可能直接穿过去了,也可能转过180°从入射界面反向飞出,于是形成了多解.如图 m所示.A.使粒子的速度v<Bq15BalB.使粒子的速度v>*C.使粒子的速度丫>平D.使粒子的速度v满足Bq^vV51a1[解析]带电粒子刚好打在极板右边缘,有r2 = (r-1)+12,又因r =%,解得v =誓;i V 12 i Bq i 4m粒子刚好打在极板左边缘,有r=l=M2,解得丫=整,故A、B正确. 2 4 Bq 2 4m[答案]AB考向4带电粒子运动的往复性形成多解空间中部分是电场,部分是磁场,带电粒子在空间运动时,运动往往具有往复性,因而形成多解.[典例6]如图所示,在x轴上方有一匀强磁场,磁感应强度为B;x轴下方有一匀强电场,电场强度为E.屏MN与y轴平行且相距L. 一质量m、电荷量为e的电子,在y轴上某点A 自静止释放,如果要使电子垂直打在屏MN上,那么:(1)电子释放位置与原点O的距离s需满足什么条件?(2)电子从出发点到垂直打在屏上需要多长时间?[解题指导]解答本题可分“两步走”:(1)定性画出粒子运动轨迹示意图.(2)应用归纳法得出粒子做圆周运动的半径r和L的关系.[解析](1)在电场中,电子从A-O,动能增加eEs=1mv0在磁场中,电子偏转,半径为mv r = o r eB据题意,有(2n+1)r=L一eL2B2 . .所以S=2Em (2n+1)2(n=0,1,2,3,”)⑵在电场中匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子总的2s T T , Ee 2nm运动时间 t=(2n+1)、: w+z+nj,其中 a=%, T=—B-■. । a 乙ui e一— .一 BL , 、nm, 、整理后得 t=^+(2n+1)族("=。

(超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题-课件

(超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题-课件
高考调研
高三物理(新课标版)
第4节 带电粒子在有界 磁场中运动的临界极值问题和多解问题
第八章 第4节
高考调研
高三物理(新课标版)
一、带电粒子在有界磁场中运动的临界极值问题 1.刚好穿出磁场边界的条件是带电粒子在磁场中运 动的轨迹与边界①__相__切____. 2.当速度 v 一定时,弧长(或弦长)越长,圆周角越大, 则带电粒子在有界磁场中运动的时间②___越__长___.
高考调研
高三物理(新课标版)
例 1 如图所示,S 为一个电子源,它可以在纸面内 360°范围内发射速率相同的质量为 m、电量为 e 的电子, MN 是一块足够大的挡板,与 S 的距离 OS=L,挡板在 靠近电子源一侧有垂直纸面向里的匀强磁场,磁感应强 度为 B,问:
(1)若使电子源发射的电子能到达挡 板,则发射速度最小为多大?
第八章 第4节
高考调研
高三物理(新课标版)
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”.
(2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
圆心在
过入射
点跟速
d
c 度方向
垂直的
直线上
B
θv
a
b
①速度较小时粒子做部分圆周运动
后从原边界飞出;②速度在某一范
围内从上侧面边界飞;③速度较大
时粒子做部分圆周运动从右侧面边

带电粒子在匀强磁场中运动的临界极值问题(解析版)

带电粒子在匀强磁场中运动的临界极值问题(解析版)

带电粒子在匀强磁场中运动的临界极值问题由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.1.临界条件的挖掘(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。

(2)当速率v一定时,弧长(或弦长)越长,圆心角越大(前提条件是劣弧),则带电粒子在有界磁场中运动的时间越长。

(3)当速率v变化时,轨迹圆心角越大,运动时间越长。

(4)当运动轨迹圆半径大于圆形磁场半径时,则以磁场直径的两端点为入射点和出射点的轨迹对应的偏转角最大。

2.不同边界磁场中临界条件的分析(1)平行边界:常见的临界情景和几何关系如图所示。

(2)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。

(3)三角形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。

粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。

3. 审题技巧许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.【典例1】如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点。

一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场。

现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,下列说法中正确的是( )A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场B .若该带电粒子在磁场中经历的时间是23t 0,则它一定从ad 边射出磁场C .若该带电粒子在磁场中经历的时间是54t 0,则它一定从bc 边射出磁场D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 【答案】 AC 【解析】 如图所示,【典例2】放置在坐标原点O 的粒子源,可以向第二象限内放射出质量为m 、电荷量为q 的带正电粒子,带电粒子的速率均为v ,方向均在纸面内,如图8-2-14所示.若在某区域内存在垂直于xOy 平面的匀强磁场(垂直纸面向外),磁感应强度大小为B ,则这些粒子都能在穿过磁场区后垂直射到垂直于x 轴放置的挡板PQ 上,求:(1)挡板PQ 的最小长度; (2)磁场区域的最小面积. 【答案】 (1)mv Bq (2)⎝⎛⎭⎫π2+1m 2v 2q 2B2【解析】 (1)设粒子在磁场中运动的半径为R ,由牛顿第二定律得qvB =mv 2R ,即R =mvBq【跟踪短训】1. 在xOy 平面上以O 为圆心、半径为r 的圆形区域内,存在磁感应强度为B 的匀强磁场,磁场方向垂直于xOy 平面.一个质量为m 、电荷量为q 的带电粒子,从原点O 以初速度v 沿y 轴正方向开始运动,经时间t 后经过x 轴上的P 点,此时速度与x 轴正方向成θ角,如图8-2-24所示.不计重力的影响,则下列关系一定成立的是( ).A .若r <2mv qB ,则0°<θ<90° B .若r ≥2mv qB ,则t ≥πmqBC .若t =πm qB ,则r =2mv qBD .若r =2mv qB ,则t =πmqB【答案】 AD【解析】 带电粒子在磁场中从O 点沿y 轴正方向开始运动,圆心一定在垂直于速度的方向上,即在x 轴上,轨道半径R =mv qB .当r ≥2mvqB 时,P 点在磁场内,粒子不能射出磁场区,所以垂直于x 轴过P 点,θ最大且为90°,运动时间为半个周期,即t =πm qB ;当r <2mvqB 时,粒子在到达P 点之前射出圆形磁场区,速度偏转角φ在大于0°、小于180°范围内,如图所示,能过x 轴的粒子的速度偏转角φ>90°,所以过x 轴时0°<θ<90°,A 对、B 错;同理,若t =πmqB ,则r ≥2mv qB ,若r =2mv qB ,则t 等于πm qB,C 错、D 对. 2. 如图所示,磁感应强度大小为B =0.15 T 、方向垂直纸面向里的匀强磁场分布在半径为R =0.10 m 的圆形区域内,圆的左端跟y 轴相切于直角坐标系原点O ,右端跟很大的荧光屏MN 相切于x 轴上的A 点。

物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。

1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。

2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。

(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。

(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。

(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。

【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。

一带电粒子的质量为m,电荷量为q(q>0)。

粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。

已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。

不计重力。

粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。

则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。

带电粒子在有界磁场中运动的临界问题极值问题和多解问题

带电粒子在有界磁场中运动的临界问题极值问题和多解问题
③设轨道与 cd 相切的粒子,其轨道半径为 R1,由几 何关系可得
R1sin30°+2l =R1
解得 R1=l,由公式 qvB=mv2/R,得该轨道上粒子 速度为 v01=qmBl.
④对于从 ab 射出的、速度最小的粒子,其轨道应与 ab 相切,设切点为 N,圆心为 O2,半径为 R2,则 R2+ R2cos60°=12l,解得 R2=13l,由 qvB=mv2/R 可得 v02=q3Bml.
由几何关系知
OA= AS2-OS2 AS=2r′ OS=r′ OC=r′ 解得 OA= 3L,OC=L 故被电子打中的区域长度为
AC=OA+OC=(1+ 3)L.
【答案】
BeL (1) 2m
(2)(1+ 3)L
题后反思 (1)审题应首先抓住“速率相等”⇒即轨迹圆半径相 等,其次“各个方向发射”⇒轨迹不同.然后作出一系 列轨迹圆. (2)注意粒子在磁场中总沿顺时针方向做圆周运动, 所以粒子打在左边和右边最远点的情形不同.
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”.
(2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
例 1 如图所示,S 为一个电子源,它可以在纸面内 360°范围内发射速率相同的质量为 m、电量为 e 的电子, MN 是一块足够大的挡板,与 S 的距离 OS=L,挡板在 靠近电子源一侧有垂直纸面向里的匀强磁场,磁感应强 度为 B,问:

3、临界、极值问题

3、临界、极值问题
O V0
d
c
◆带电粒子在三角形磁场区域中的运动
例6.如图所示,在边长为2a的等边三角形△ABC内存 在垂直纸面向里磁感应强度为B的匀强磁场,有一带电 量为q、质量为m的粒子从距A点 3a 的D点垂直于AB方 向进入磁场。若粒子能从AC间离开磁场,求粒子速率 应满足什么条件及粒子从AC间什么范围内射出?
d
缩放圆:变化1:在上题中若电子的电量e,质量 m,磁感应强度B及宽度d已知,若要求电子不从 右边界穿出,则初速度V0有什么要求?
e B v0
d
B
变化2:若初速度向下与边界成 α = 60 0,则初速度有什么要求?
变化3:若初速度向上与边界成 α = 60 0,则初速度有什么要求?
变式、在真空中宽d的区域内有匀强磁场B,质量为 m,电量为e,速率为v的电子从边界CD外侧垂直 射入磁场,入射方向与CD夹角θ,为了使电子能从 磁场的另一侧边界EF射出,v应满足的条件是:B A.v>eBd/m(1+sinθ) C E B.v>eBd/m(1+cosθ) v C.v> eBd/msinθ θ O D.v< eBd/mcosθ
例题、如图所示.长为L的水平极板间,有垂直纸面向 内的匀强磁场,磁感强度为B,板间距离也为L,板不带 电,现有质量为m,电量为q的带正电粒子(不计重力), 从左边极板间中点处垂直磁感线以速度 v水平射入磁场, 欲使粒子不打在极板上,可采用的办法是: AB A.使粒子的速度v<BqL/4m; O2 B.使粒子的速度v>5BqL/4m; r2 C.使粒子的速度v>BqL/m; v D.使粒子速度BqL/4m<v<5BqL/4m。 r2
2R
M
2R
O
R

超全带电粒子在有界磁场中运动的临界问题极值问题和多解问题

超全带电粒子在有界磁场中运动的临界问题极值问题和多解问题

二.带电粒子在平行直线边界磁场中的运动
QP
P
QPQ
B
S 圆心在磁场
原边界上
S
圆心在过入射点跟 边界垂直的直线上
S
圆心在过入射点跟跟速 度方向垂直的直线上
①速度较小时,作半圆 运动后从原边界飞出; ②速度增加为某临界值 时,粒子作部分圆周运 动其轨迹与另一边界相 切;③速度较大时粒子 作部分圆周运动后从另 一边界飞出
பைடு நூலகம்
后从原边界飞出;②速度在某一范
围内从上侧面边界飞;③速度较大
时粒子做部分圆周运动从右侧面边
界飞出;④速度更大时粒子做部分
圆周运动从下侧面边界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
(1)若使电子源发射的电子能到达挡 板,则发射速度最小为多大?
(2)如果电子源S发射电子的速度为 第(1)问中的2倍,则挡扳上被电子击中 的区域范围有多大?
(2)要使正离子从O′孔垂直于N 板射出磁场,正离子射入磁场时的速 度v0的可能值.
量变积累到一定程度发生质变,出现临界状态
三.带电粒子在矩形边界磁场中的运动
B
o
圆心在磁场原边界上
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。
圆心在
过入射
点跟速
d
c 度方向
垂直的
直线上 B
θ
a
b
①速度较小时粒子做部分圆周运动
①速度较小时,作圆 周运动通过射入点; ②速度增加为某临界 值时,粒子作圆周运 动其轨迹与另一边界 相切;③速度较大时 粒子作部分圆周运动 后从另一边界飞出

带电粒子在匀强磁场中的运动(临界值和极值问题)

带电粒子在匀强磁场中的运动(临界值和极值问题)

∴ θ =30° 0 2 60 最大偏向角为
最长时间为
t
R 2 v0
6.0 10 2 1.2 10 6
2

6 s 5.2 10 8 s
(2)因
' mv0 R 1.5 10 2 m r qB
所以粒子在磁场中出现的区 域为图所示(以ao为直径的 半圆和以a为圆心oa为半径的 圆与磁场相交的部分)。 比荷相同的带电粒子在同一磁场中运动时,由 T 2m qB 和 t T 知,粒子在磁场中运动的时间由粒子 2 转过的圆心角决定。圆心角越大,时间越长。 若速率也相同(R同),轨迹越长或对应的弦越长, 运动的时间越长。
a
6cm
b
返回
解:(1)设轨迹半径为R
R 6.0 10 2 m
因R>r,所以要使粒子在磁场中运动的 时间最长,则粒子在磁场中运动的圆 a 弧所对应的圆心角应最大,即沿以直 径ab为弦R为半径的圆弧运动所用的时 间最长,此时的偏向角也最大。 由图知,
6cm θ
b
sin
r R

1 2
S
Байду номын сангаас v
解:α 粒子带正电,故在磁场中沿 逆时针方向做匀速圆周运动,用R表 v2 示轨道半径,有 qvB m
R
由此得
代入数值得R=10cm
可见,2R>l >R.因朝不同方向发射的α粒子的圆轨迹都过S,由 此可知,某一圆轨迹在图中N左侧与ab相切,则此切点P1就是粒 子能打中的左侧最远点.为定出P1点的位置,可作平行于ab的直 线cd,cd到ab的距离为R,以S为圆心,R为半径,作弧交cd于 Q点,过Q作ab的垂线,它与ab的交点即为P1. 再考虑N的右侧。任何粒子在运动中离S的距离不可能超过2R, 以2R为半径、S为圆心作圆,交ab于N右侧的P2点,此即右侧能 所求长度为 打到的最远点.由图中几何关系得 代入数值得 P1P2=20cm

带电粒子在磁场中的临界极值问题

带电粒子在磁场中的临界极值问题

带电粒子在磁场运动的临界与极值问题【考点解读】解决此类问题的关键是:找准临界点.找临界点的方法是:以题目中的“恰好” “最大”“最高”“至少”等词语为突破□,借助半径和速度讽或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度。

一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长・(3)当速率。

变化时,圆周角越大,运动时间越长.【典例剖析】1 •磁感应强度的极值问题例1如图所示,一带正电的质子以速度%从0点垂直射入,两个板间存在垂直纸而向里的匀强磁场.已知两板之间距离为d,板长为厶o点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为◎质量为加).2.偏角的极值问题例2在真空中,半径r=3X10-2 m的圆形区域内有匀强磁场,方向如图所示,磁感应强度B=0・2T, —个带正电的粒子以初速度%= 1X1O6 ni/s从磁场边界上直径ah的一端“射入磁场,已知该粒子的比荷^=ixio«c/kg,不计粒子重力.XXX(1)求粒子在磁场中做匀速圆周运动的半径:(2)若要使粒子飞离磁场时有最大偏转角,求入射时%与肪的夹角&及粒子的最大偏转角.3・时间的极值问题例3如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值•静止的带电粒子带电荷量为+山质量为加(不计重力),从点P经电场加速后,从小孔0进入N板右侧的匀强磁场区域.磁感应强度大小为方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为0=45。

,孔0到板的下端C的距离为乙当M、N两板间电压取最大值时,粒子恰垂宜打在CD板上,求:(1)两板间电压的最大值卩曲(2)CD板上可能被粒子打中的区域的长度A;(3)粒子在磁场中运动的最长时间仏4.面积的极值问题例4如图12所示,一带电质点,质虽:为加电量为6以平行于&轴的速度y从y轴上的a点射入图中第一象限所示的区域。

带电粒子在有界磁场中临界极值问题

带电粒子在有界磁场中临界极值问题

例3、从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间 t0刚好从c点射出磁场. 现从O点沿纸面以与Od成30°角的方向,以大小不同的速率 射入正方形内: ( ) 5 A.若时间是 3 t ,则它一定从ab边射出
0
B.若时间是
2 t0 3 ,则它一定从ad边射出
5 C.若时间是 4 t 0
Bed m(1 cos )
规律总结
1. 关键是:找准临界点. 2. 方法是: 借助半径R和速度v(或磁场B)之间的约束关系进行 动态运动轨迹分析,确定轨迹圆和边界的关系,找出临 界点,然后利用数学方法求解极值,常用结论如下: (1)刚好穿出磁场边界的条件是带电粒子在磁场中运 动的轨迹与边界相切. (2)当速度v一定时,弧长(或弦长)越长,圆周角越 大,则带电粒子在有界磁场中运动的时间越长. (3)当速率v变化时,圆周角大的,运动时间越长.
带电粒子在磁场中运动的 临界极值问题
1.“恰好”“最大”“最高”“至少”“最 2.“动态圆”
【例1】
如图所示, 匀强磁场
的磁感应强度为B,宽度为d,边界
为CD和EF.一电子从CD边界外
侧以速率v0垂直匀强磁场射入, 入射方向与CD边间夹角为θ .
已知电子的质量为m,电荷量为e,
为使电子能从磁场的另一侧EF射 出,求电子的速率v0至少多大?
y/cm
O
2
x/cm
y/cm
O
2
x/cm
y/cm
O
2
x/cm
2、 如图所示,磁感应强度大小B=0.15T、方向垂直纸面向里 的匀强磁场分布在半径R=0.10m的圆形区域内,圆的左端跟y 轴相切于直角坐标系原点O,右端跟荧光屏MN相切于x轴上的 A点。置于原点的粒子源可沿x轴正方向射出速度 V0=3.0×106m/s的带正电的粒子流,粒子的重力不计,荷质比 q/m=1.0×108C/kg。现以过O点并垂直于纸面的直线为轴,将 圆形磁场逆时针缓慢旋转90°,求此过程中粒子打在荧光屏上 离A的最远距离?

磁场精讲精练带电粒子在磁场中运动的临界、极值问题

磁场精讲精练带电粒子在磁场中运动的临界、极值问题

一带电粒子在磁场中运动的临界、极值问题临界状态是指物体从一种运动状态(或物理现象)转变为另一种运动状态(或物理现象)的转折状态,它既具有前一种运动状态(或物理现象)的特点,又具有后一种运动状态(或物理现象)的特点,起着承前启后的转折作用.由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,常常出现临界和极值问题.1.临界问题的分析思路临界问题的分析对象是临界状态,临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点,此转折点即为临界状态点.与临界状态相关的物理条件则称为临界条件,临界条件是解决临界问题的突破点.临界问题的一般解题模式:(1)找出临界状态及临界条件;(2)总结临界点的规律;(3)解出临界量;(4)分析临界量列出公式.2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:一是根据题给条件列出函数关系式进行分析、讨论;二是借助于几何图形进行直观分析.例题1.平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30°角.已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O的距离为()A.mv2qB B.错误!C。

错误! D.错误!解析:选D.如图所示,粒子在磁场中运动的轨道半径为R=错误!.设入射点为A,出射点为B,圆弧与ON的交点为P.由粒子运动的对称性及粒子的入射方向知,AB=R。

由几何图形知,AP=错误!R,则AO=错误!AP=3R,所以OB=4R=错误!。

故选项D正确.例题2.(多选)如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的任意值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=30°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,则( )A.两板间电压的最大值U m=错误!B.CD板上可能被粒子打中区域的长度x=错误!LC.粒子在磁场中运动的最长时间t m=错误!D.能打在N板上的粒子的最大动能为错误!解析:选BCD.M、N两板间电压取最大值时,粒子恰垂直打在CD板上,所以其轨迹圆心在C点,CH=QC=L,故半径R1=L,又因Bqv1=m错误!,qU m=错误!mv错误!,可得U m=错误!,所以A错误.设轨迹与CD板相切于K点,半径为R2,在△AKC中sin 30°=错误!=错误!,可得R2=错误!,CK长为错误!R2=错误!L,则CD板上可能被粒子打中的区域即为HK的长度,x=HK=L-CK=错误!L,故B正确.打在QE间的粒子在磁场中运动的时间最长,周期T=错误!,所以t m=错误!,C正确.能打到N板上的粒子的临界条件是轨迹与CD 相切,由B选项知,r m=R2=错误!,可得v m=错误!,动能E km=错误!,故D正确.例题3.如图甲所示,在空间中存在垂直纸面向里的磁感应强度为B的匀强磁场,其边界AB、CD相距为d,在左边界的Q点处有一质量为m、带电量为q的负粒子沿与左边界成30°的方向射入磁场,粒子重力不计.求:(1)带电粒子能从AB边界飞出的最大速度;(2)若带电粒子能垂直CD边界飞出磁场,穿过小孔进入如图乙所示的匀强电场中减速至零且不碰到负极板,则极板间电压U应满足什么条件?整个过程粒子在磁场中运动的时间是多少?(3)若带电粒子的速度是(2)中的3倍,并可以从Q点沿纸面各个方向射入磁场,则粒子能打到CD边界的距离大小?解析:(1)带电粒子在磁场中做匀速圆周运动,设半径为R1,运动速度为v0.粒子能从左边界射出,临界情况如图甲所示,由几何条件知R1+R1cos 30°=d又qv0B=错误!解得v0=错误!=错误!所以粒子能从左边界射出时的最大速度为v m=v0=错误!(2)带电粒子能从右边界垂直射出,如图乙所示.由几何关系知R2=错误!由洛伦兹力提供向心力得Bqv2=m错误!由动能定理得-qU=0-错误!mv错误!解得U=错误!=错误!所加电压满足的条件U≥错误!。

课件 1.3.3 带电粒子在匀强磁场运动的临界、极值问题-高中物理选择性必修2(新教材同步课件)

课件 1.3.3 带电粒子在匀强磁场运动的临界、极值问题-高中物理选择性必修2(新教材同步课件)

应用探究
例. 一磁场宽度为L,磁感应强度为B,如图所示,一电荷质量为m,带电荷量为-q, 不计重力,以一速度v (方向如图所示)射入磁场。若要粒子不能从磁场右边界飞出,则电荷 的速度应为多大?
解析:若要粒子不从右边界飞出,当以最大速度运动时的轨迹如图所示
由几何知识可求得半径 r,即 r+rcosθ=L ,解得 r = L 1 + cosθ
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。 (2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动 的时间越长。 (3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况 和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。 (4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出 射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
知识海洋
临界、极值问题
3. 解决带电粒子在磁场中偏转问题的常用方法
(2)动态放缩法:当带电粒子射入磁场的方向确定,但射入时的速度v大小 或磁场的强弱B变化时,粒子做圆周运动的轨迹半径R随之变化。在确定粒子运动 的临界情景时,可以以入射点为定点,将轨迹半径放缩,作出一系列的轨迹,从 而探索出临界条件。如图所示,粒子进入长方形边界OABC从BC边射出的临界情 景为②和④。
又 Bqv = mv2 r
,所以
v
=
Bqr m
=
BqL
m 1 cosθ
即电荷的速度
v
m
BqL
1 ห้องสมุดไป่ตู้osθ
应用探究
例. 如图所示,在边长为2a的正三角形区域内存在方向垂直于纸面向里的匀强磁场。一个质 量为m、电荷量为-q的带电粒子(重力不计)从AB边的中心O以速度v进入磁场,粒子进入磁场时 的速度方向垂直于磁场且与AB边的夹角为60°,若要使粒子能从AC边穿出磁场,则匀强磁场的

带电粒子在磁场中地临界极值问题

带电粒子在磁场中地临界极值问题

带电粒子在磁场运动的临界与极值问题考点解读解决此类问题的关键是:找准临界点. 找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R 和速度v (或磁场B )之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v 变化时,圆周角越大,运动时间越长.典例剖析1.磁感应强度的极值问题例1 如图所示,一带正电的质子以速度v 0从O 点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d ,板长为d ,O 点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e ,质量为m ).2.偏角的极值问题例2 在真空中,半径r =3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B =0.2 T ,一个带正电的粒子以初速度v 0=1×106 m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷q m=1×108C/kg ,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径; (2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0与ab 的夹角θ及粒子的最大偏转角.3.时间的极值问题例3 如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值Um;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.4.面积的极值问题例4 如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
qvB m v2 r
得 v qBd
m(1 sin )
y
o

y
x o
一束带电的粒子以初速度v进入匀强磁场,若初速度 大小 相 同,方向 不同,则所有粒子运动的轨道半径 相同 ,但不同粒子的圆
心位置不同。其共同规律是:
所有粒子的圆心都在 以射入点为圆心、半径等于入射 粒子轨迹半径 的圆上。 我们将这样的一组圆称为“转动圆”。
带电粒子在有界匀强磁场中 运动的临界和极值问题
1.带电粒子在匀强磁场中做匀速圆周运动的半径公式
r mv qB
2.带电粒子在匀强磁场中做匀速圆周运动的周期公式
T 2 m
qB
3.求带电粒子在匀强磁场中做匀速圆周运动时间的公式
t T m 2 qB
带电粒子在有界磁场中运动的几种常见情形 (1)直线边界(进出磁场具有对称性,如图所示)
2、转动圆 速度 大小不变,速度方向 发生变化,圆的大小 不 变,绕 射入点转动。
如图,磁感应强度为B的匀强磁场垂直于 纸面向里,PQ
为该磁场的右边界线,磁场中有一点O到PQ的距离为r。
现从点O以同一速率将相同的带负电粒子向纸面内各个不
同的方向射出,它们均做半径为r的匀速圆周运动,求带
电粒子打在边界PQ上的范围(粒子的重力不计)。
y
v0
O
x
解1: 电子由O点射入第Ⅰ象限做匀速
y
圆周运动
ev0
B
m
v02 r
r= mv0 eB
所有电子的轨迹圆半径相等,且均过 v0
O点。这些轨迹圆的圆心都在以O为圆 O 心,半径为r的且位于第Ⅳ象限的四分 之一圆周上,如图所示。
O1
x
O2
O3
由图可知,a、b、c、d 等点就是各电
O5O4
子离开磁场的出射点,均应满足方程
分析:从O点向各个方向发射的粒子在磁场中做匀速圆周运动的
4
1 2
r2)
(
2
1)( mv0 eB
)2
磁聚焦概括: 迁移与逆向、对称的物理思想!
一点发散成平行
R r
R r
平行会聚于一点
区域半径 R 与运动半径 r 相等 出射方向和入射点的位置有关
课堂总结
动态圆的两种模型: 1、放缩圆 速度方向 不变,速度大小 发生变化,轨迹半径不同,圆 心始终在与速度方向垂直的同一直线上。所有圆内切。
On
x2 + (y-r)2=r2。
即所有出射点均在以坐标(0,r)为圆心的圆弧abO上,显然,
磁场分布的最小面积应是实线1和圆弧abO所围的面积,由几何
关系得
Smin
2(1 r2
4
1 2
r2)
(
2
1)( mv0 eB
)2
解2: 磁场上边界如图线1所示。
y
设P(x,y)为磁场下边界上的一 点,经过该点的电子初速度与x轴

qB
当 a / 2 R a 时,在磁场中运动时间最长的粒子,其轨迹是圆心为C的圆弧,
圆弧与磁场的上边界相切,如图所示。设该粒子在磁场运动的时间为t,
依题意 t T / 4 ,得 OCA

2
设最后离开磁场的粒子的发射方向与y轴正方向的夹角为,由几何关系可得
R sin R a

2
Rsin a R cos a
我们将这一组圆叫做 “放缩圆”。
例1.若磁感应强度为B的匀强磁场仅存在于第一象限,一
带负电的粒子(质量为m,带电荷量为q)从距原点O为d的
A点与Y轴正方向夹角为θ射入。若粒子射入的方向不变,
要使粒子不能从x轴射出,则粒子的速度不能超过多少?
(重力y不计)
y
( (
θv
A
θv
A
θ
r rO1
O
xO
x
由 r r sin d
场中做圆周运动的半径介于a/2到a之间,从发射粒子
到粒子全部离开磁场经历的时间恰好为粒子在磁场中
做圆周运动周期的四分之一。求最后离开磁场的粒子 从粒子源射出时的(1)速度的大小;(2)速度方向与y轴 正方向夹角的正弦值。
(2010全国新课标1卷,25)如图所示,在0≤x≤a、o≤y≤a/2范围内有垂直于xoy平面向外的匀 强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电 荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xoy平面内,与y轴正方向的夹角 分布在0~900 范围内。己知粒子在磁场中做圆周运动的半径介于a/2到a之间,从发射粒子到
夹角为 ,则由图可知: x = rsin, y = r-rcos ,
1
v0 Oθ
P (x,y)
r
x
得: x2 + (y-r)2 = r2。
r
O
所以磁场区域的下边界也是半径为r,圆心为(0,r)的
圆弧应是磁场区域的下边界。
两边界之间图形的面积即为所求。图中的阴影区域面 积,即为磁场区域面积:
Smin
2(1 r2
(2)圆形边界(沿径向射入必沿径向射出,如图所示)
θ A vvv213θθθ(((
v2>v1
一束完全相同的粒子,以方向相同、大小 不同的初速
度从边界某点进入匀强磁场时,所有粒子运动轨迹的圆心 都在与 入射速度垂直的同一条 直线上。速度增大,轨迹 半径增大。所有粒子的轨迹均通过 入射 点,且组成一组 动态的 内切 圆。(填写圆的位置关系)
(2010全国新课标1卷,25)如图所示,在0≤x≤a、 o≤y≤a/2范围内有垂直于xoy平面向外的匀强磁场,磁 感应强度大小为B。坐标原点O处有一个粒子源,在 某时刻发射大量质量为m、电荷量为q的带正电粒子, 它们的速度大小相同,速度方向均在xoy平面内,与y
轴正方向的夹角分布在0~900 范围内。己知粒子在磁
粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。求最后离开 磁场的粒子从粒子源射出时的(1)速度的大小;(2)速度方向与y轴正方向夹角的正弦。
解:(1)设粒子的发射速度为,粒子做圆周运动的轨道半径为R,
由牛顿第二定律和洛仑兹力公式,得 qvB m v2

R
由①式得
R mv

sin2 a cos2 a 1

由④⑤⑥式得 由②⑦式得
R (2 6 )a 2
v (2 6 ) aqB 2m
(2) 由④⑦式得
sin a 6 6 10
⑦ ⑧

在xoy平面内有很多质量为m,电量为e的电子,从 坐标原点O不断以相同速率V0沿不同方向射入第一 象限,如图所示.现加一垂直于xOy平面向里、磁 感强度为B的匀强磁场,要求这些入射电子穿过磁 场都能平行于x轴且沿x轴正向运动,试问符合该条 件的磁场的最小面积为多大?(不考虑电子间的相 互作用)
相关文档
最新文档