四川省成都七中2021届高三上学期入学考试 数学理

合集下载

成都七中上学期高三阶段考试数学(理)

成都七中上学期高三阶段考试数学(理)

成都七中上学期高三阶段考试数学(理)姓名: _______________指导: _________________日期: _______________第1页共13页成都七中2020〜2021学年度上期2021届高三阶段性测试数学试卷(理科)考试时HJ: 120分钟总分:150分选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求•把答案涂在答題卷上・)1.复数2=(1÷∕)2的虚部为《)A. 21B・2 C・-2/ D・一22.d}, ^={A-∣Λ2+∕=2}> 则PΓ∖Q=()尸=PA=A. [-√2.√2]B. {(1.1).(-1.1)}C. {θ.√2∣D・[0,√2]3."α>2o足“函数/(H = (x-α0在(0,十8)上有极值”的( )人充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若如图所示的程序框图输出的S是126,则条件①可为()Λ. n≤5? B. n≤6? C・ n <7? D∙ n≤8?5.某几何体的三视RI如上国(右)所示•则该几何体的体积为( )3 1 IΛ. —B・1 C・—D・—2 2 36.关丁函数「(x)二4sinj2x十月(XWR)有如下角题.其中匸确的个数有( (Dy = f(x)的农达式可改爲为f(x)= 4cos; 2x-^I(XeR)®y - f (χ)是以加为故小正周期的周期函数;®y = f(x)的图象关于;对称;试卷第1臾,总4页弟2贝开13贝15. 已切集合{α.⅛c}≡{0.h2∣・冇下列三个关系(Da≠2:②/>二2:③0・若三个关系中冇且只仃…个正确的.則α÷2Λ+3c= ____________ ・16. 己HJ 函数 f (x )≈2∖nx -ax 2 *5.若W 在实故加・刀"1. 5 )iA⅛π-m≥2时./(〃” = /(〃)成立.刚实ft αffj⅛i 大位为三、解劄8(共70分・22与23題二选一,各10分.其余大题均为12分)17. (本⅛812 分)已Jffl∣⅛lft∕⅛=(sin J,sinZ?), IT=(COSe 9cos4), ∕w∙∕J = sin2C, f B∙ C 分别为4忧的0边次b.。

2021-2022学年四川省成都七中高三(上)入学数学试卷(理科)(解析版)

2021-2022学年四川省成都七中高三(上)入学数学试卷(理科)(解析版)

2021-2022学年四川省成都七中高三(上)入学数学试卷(理科)一、选择题(共12小题,每小题5分,共60分).1.设集合U=R,集合A={x|x2﹣1>0},B={x|0<x≤2},则集合(∁U A)∩B=()A.(﹣1,1)B.[﹣1,1]C.(0,1]D.[﹣1,2]2.已知i是虚数单位,设,则复数+2对应的点位于复平面()A.第一象限B.第二象限C.第三象限D.第四象限3.将A,B,C,D,E排成一列,要求A,C,E在排列中顺序为“A,C,E”或“E,C,A”(可以不相邻),则这样的排列数有()A.24种B.40种C.60种D.80种4.已知点P是△ABC所在平面内一点,且++=,则()A.=﹣+B.=+C.=﹣﹣D.=﹣5.已知数列{a n}的前n项和为S n,且a n+2+a n﹣2a n+1=0(n∈N*),若a16+a18+a20=24,则S35=()A.140B.280C.70D.4206.已知命题p:存在a∈R,曲线x2+ay2=1为双曲线;命题q:≤0的解集是{x|1<x<2}.给出下列结论中正确的有()①命题“p且q”是真命题;②命题“p且(¬q)”是真命题;③命题“(¬p)或q”为真命题;④命题“(¬p)或(¬q)”是真命题.A.1个B.2个C.3个D.4个7.公元263年左右,我国数学有刘徽发现当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值 3.14,这就是著名的“徽率”.某同学利用刘徽的“割圆术”思想设计了一个计算圆周率的近似值的程序框图如图,则输出S的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.2.598B.3.106C.3.132D.3.1428.下列说法正确的是()A.若函数f(x)对于任意x∈R都有f(x)=f(4﹣x)成立,则f(x+2)是偶函数B.若函数f(x)=a log3x+b log2x+1,f(2016)=3,则f()=﹣3C.对于函数f(x)=lnx,其定义域内任意x1≠x2都满足f()≤D.函数f(x)=a x(a>0,a≠1)满足对定义域内任意实数a,b都有f(a+b)=f(a)•f(b),且f(x)为增函数9.设函数,则y=f(x)()A.在单调递增,且其图象关于直线对称B.在单调递增,且其图象关于直线对称C.在单调递减,且其图象关于直线对称D.在单调递减,且其图象关于直线对称10.如图,圆O:x2+y2=π2内的正弦曲线y=sin x与x轴围成的区域记为M(图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是()A.B.C.D.11.在三棱锥P﹣ABC中,已知PA=AB=AC=2,∠PAB=,∠BAC=,D是线段BC上的点,BD=2DC,AD⊥PB.若三棱锥P﹣ABC的各顶点都在球O的球面上,则球O的半径为()A.1B.C.D.12.已知F是椭圆+y2=1(a>1)的左焦点,A是该椭圆的右顶点,过点F的直线l(不与x轴重合)与该椭圆相交于点M,N.记∠MAN=α,设该椭圆的离心率为e,下列结论正确的是()A.当0<e<1时,α<B.当0<e<时,α>C.当<e<时,α>D.当<e<1时,α>二、填空题(每小题5分,共20分)13.函数f(x)=sin2x(x∈R)的最小正周期T=.14.已知(1+)(2x﹣)5的展开式中各项系数的和为2,则该展开式中常数项为.15.若实数x,y满足,则对任意实数m,由不等式组确定的可行域的面积是.16.已知函数f(x)=若关于x的不等式f(x)<π的解集为(﹣∞,),则实数a的取值范围是.三、解答题(17-21每题12分,22题10分,共70分)17.设△ABC的内角A,B,C的对边分别为a,b,c,满足2a sin A=(2b﹣c)sin B+(2c﹣b)sin C.(Ⅰ)求角A的大小;(Ⅱ)若a=2,b=2,求△ABC的面积.18.根据国际疫情形势以及传染病防控的经验,加快新冠病毒疫苗接种是当前有力的防控手段,我国正在安全、有序加快推进疫苗接种工作,某乡村采取通知公告、微信推送、广播播放、条幅宣传等形式,积极开展疫苗接种社会宣传工作,消除群众疑虑,提高新冠疫苗接种率,让群众充分地认识到了疫苗接种的重要作用,自宣传开始后村干部统计了本村200名居民(未接种)的一个样本,5天内每天新接种疫苗的情况,如下统计表:第x天12345新接种人数y1015192328(1)建立y关于x的线性回归方程;(2)假设全村共计2000名居民(均未接种过疫苗),用样本估计总体来预测该村80%居民接种新冠疫苗需要几天?参考公式:回归方程=x+中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.如图,在三棱台ABC﹣DEF中,BC=2EF,G,H分别为AC,BC上的点,平面GHF ∥平面ABED,CF⊥BC,AB⊥BC.(1)证明:平面BCFE⊥平面EGH;(2)若AB⊥CF,AB=BC=2CF=2,求二面角B﹣AD﹣CC的大小.20.设椭圆C:+=1(a>b>0)的左焦点为F,过F且垂直于x轴的直线与椭圆的一个交点为(﹣1,).(1)求椭圆C的方程;(2)若过点F的直线l交椭圆C于A,B两点,线段AB的中点为M,过M且与l垂直的直线与x轴和y轴分别交于N、P两点,记△FMN和△OPN的面积分别为S1、S2,若=10.求直线l的方程.21.已知函数f(x)=x2﹣ax+1,g(x)=lnx+a(a∈R).(1)若a=1,求函数h(x)=f(x)﹣g(x)在区间[,t](其中<t<e,e是自然对数的底数)上的最小值;(2)若存在与函数f(x),g(x)的图象都相切的直线,求实数a的取值范围.22.在平面直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,点A在曲线C1:ρ2﹣8ρcosθ+12=0上运动,点B为线段OA的中点.(1)求动点B的运动轨迹C2的参数方程;(2)若直线l与C2的公共点分别为M,N,当=3时,求a的值.参考答案一、选择题(共12小题,每小题5分,共60分).1.设集合U=R,集合A={x|x2﹣1>0},B={x|0<x≤2},则集合(∁U A)∩B=()A.(﹣1,1)B.[﹣1,1]C.(0,1]D.[﹣1,2]解:A={x|x<﹣1,或x>1};∴∁U A={x|﹣1≤x≤1};∴(∁U A)∩B=(0,1].故选:C.2.已知i是虚数单位,设,则复数+2对应的点位于复平面()A.第一象限B.第二象限C.第三象限D.第四象限解:==﹣i,则复数+2=i+2∴+2对应的点(2,1)位于复平面的第一象限.故选:A.3.将A,B,C,D,E排成一列,要求A,C,E在排列中顺序为“A,C,E”或“E,C,A”(可以不相邻),则这样的排列数有()A.24种B.40种C.60种D.80种解:根据题意,分3步进行分析:①先排好A,C,E,要求A,C,E在排列中顺序为“A,C,E”或“E,C,A”,有2种情况,②排好后有4个空位,在其中任选1个安排B,有4种情况,③排好后有5个空位,在其中任选1个安排D,有4种情况,则有2×4×5=40种安排方法;故选:B.4.已知点P是△ABC所在平面内一点,且++=,则()A.=﹣+B.=+C.=﹣﹣D.=﹣解:因为++=,所以点P为△ABC的重心,延长PA交BC于点M,所以,又,所以.故选:D.5.已知数列{a n}的前n项和为S n,且a n+2+a n﹣2a n+1=0(n∈N*),若a16+a18+a20=24,则S35=()A.140B.280C.70D.420解:数列{a n}的前n项和为S n,且a n+2+a n﹣2a n+1=0(n∈N*),可得a n+2﹣a n+1=a n+1﹣a n=…=a2﹣a1,即有数列{a n}为等差数列,即有2a18=a16+a20,a16+a18+a20=24,可得3a18=24,即a18=8,则S35=(a1+a35)•35=35a18=35×8=280.故选:B.6.已知命题p:存在a∈R,曲线x2+ay2=1为双曲线;命题q:≤0的解集是{x|1<x<2}.给出下列结论中正确的有()①命题“p且q”是真命题;②命题“p且(¬q)”是真命题;③命题“(¬p)或q”为真命题;④命题“(¬p)或(¬q)”是真命题.A.1个B.2个C.3个D.4个解:当a<0时,曲线x2+ay2=1为双曲线,故命题p:“存在a∈R,曲线x2+ay2=1为双曲线”为真命题;≤0的解集是{x|1≤x<2}故命题q:“≤0的解集是{x|1<x<2}”为假命题;命题“p且q”是假命题,即①错误;命题“p且(¬q)”是真命题,即②正确;命题“(¬p)或q”为假命题,即③错误;命题“(¬p)或(¬q)”是真命题,即④正确.故选:B.7.公元263年左右,我国数学有刘徽发现当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值 3.14,这就是著名的“徽率”.某同学利用刘徽的“割圆术”思想设计了一个计算圆周率的近似值的程序框图如图,则输出S的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.2.598B.3.106C.3.132D.3.142解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件n>24,n=12,S=6×sin30°=3,不满足条件n>24,n=24,S=12×sin15°=12×0.2588=3.1056,不满足条件n>24,n=48,S=24×sin7.5°=24×0.1305=3.132,满足条件n>24,退出循环,输出S的值为3.132.故选:C.8.下列说法正确的是()A.若函数f(x)对于任意x∈R都有f(x)=f(4﹣x)成立,则f(x+2)是偶函数B.若函数f(x)=a log3x+b log2x+1,f(2016)=3,则f()=﹣3C.对于函数f(x)=lnx,其定义域内任意x1≠x2都满足f()≤D.函数f(x)=a x(a>0,a≠1)满足对定义域内任意实数a,b都有f(a+b)=f(a)•f(b),且f(x)为增函数解:A选项:因为f(x)=f(4﹣x),所以f(x+2)=f[4﹣(x+2)]=f(﹣x+2),所以f(x+2)是偶函数,正确.B选项:f(2016)=a log32016+b log22016+1=3,所以a log32016+b log22016=2.所以f()==﹣(a log32016+b log22016)+1=﹣2+1=﹣1,错误.C选项:因为,所以,即f()>,错误.D选项:当0<a<1时,f(x)为减函数,错误.故选:A.9.设函数,则y=f(x)()A.在单调递增,且其图象关于直线对称B.在单调递增,且其图象关于直线对称C.在单调递减,且其图象关于直线对称D.在单调递减,且其图象关于直线对称解:函数=2[sin(+)+cos(+)]=2sin(++)=2sin(+),在(0,)上,+∈(,),f(x)=2sin(+)单调递增,当x=时,f(x)=2,为最大值,故其图象关于直线对称,故A、C错误.在(0,)上,+∈(,),f(x)=2sin(+)单调递增,故选:B.10.如图,圆O:x2+y2=π2内的正弦曲线y=sin x与x轴围成的区域记为M(图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是()A.B.C.D.解:构成试验的全部区域为圆内的区域,面积为π3正弦曲线y=sin x与x轴围成的区域记为M,根据图形的对称性得:面积为S=2∫0πsin xdx=﹣2cos x|0π=4,由几何概率的计算公式可得,随机往圆O内投一个点A,则点A落在区域M内的概率P =故选:B.11.在三棱锥P﹣ABC中,已知PA=AB=AC=2,∠PAB=,∠BAC=,D是线段BC上的点,BD=2DC,AD⊥PB.若三棱锥P﹣ABC的各顶点都在球O的球面上,则球O的半径为()A.1B.C.D.解:如图,在△ABC中,由AB=AC=2,∠BAC=,得=4+4﹣2×2×2×()=12,则BC=2,∵BD=2DC,∴BD=,在△ABD中,AB=2,BD=,,可得=×2××=.∴,即AB⊥AD,又AD⊥PB,PB∩AB=B,∴AD⊥平面PAB,得AD⊥PA,而PA⊥AB,AB∩AD=A,∴PA⊥平面ABC.设△ABC外接圆的半径为r,则2r=,即r=2.三棱锥P﹣ABC的外接球的球心O到底面外心的距离等于PA=1,∴球O的半径为.故选:D.12.已知F是椭圆+y2=1(a>1)的左焦点,A是该椭圆的右顶点,过点F的直线l(不与x轴重合)与该椭圆相交于点M,N.记∠MAN=α,设该椭圆的离心率为e,下列结论正确的是()A.当0<e<1时,α<B.当0<e<时,α>C.当<e<时,α>D.当<e<1时,α>解:设F为(﹣c,0),则a2﹣c2=1,易知直线MN的斜率不为0,设直线MN的方程为x=ty﹣c,与椭圆方程联立可得,(t2+a2)y2﹣2tcy﹣1=0,设M(x1,y1),N(x2,y2),则由韦达定理有,,又,∴==,∵a>1,∴a4>1,∴a4+2a3c+a2c2﹣1>0,∴,又不平行,故为锐角,即对任意e∈(0,1),均有.故选:A.二、填空题(每小题5分,共20分)13.函数f(x)=sin2x(x∈R)的最小正周期T=π.解:f(x)=sin2x=(1﹣cos2x)=﹣cos2x+最小正周期T==π故答案为:π14.已知(1+)(2x﹣)5的展开式中各项系数的和为2,则该展开式中常数项为80.解:令x=1,可得(1+)(2x﹣)5的展开式中各项系数的和为(1+a)•(2﹣1)5=2,∴a=1.故(1+)(2x﹣)5=(1+)(2x﹣)5=(1+)(32x5﹣80x3+80x﹣40•+10•﹣),故该展开式中常数项为1×80=80,故答案为:80.15.若实数x,y满足,则对任意实数m,由不等式组确定的可行域的面积是.解:∵两直线x﹣2y=1﹣2m与2x+y=2+m互相垂直,且均过圆(x﹣1)2+(y﹣m)2=1,∴可行域的面积与m值无关,不妨取m=0,原不等式组化为,表示的平面区域如图,可知可行域为个圆,其面积为.故答案为:.16.已知函数f(x)=若关于x的不等式f(x)<π的解集为(﹣∞,),则实数a的取值范围是a>﹣2.解:由x≥0时,f(x)=2x+cos x的导数为f′(x)=2﹣sin x>0,即f(x)在x>0递增,可得f(x)>f(0)=1,若关于x的不等式f(x)<π的解集为(﹣∞,),则当x<0时,f(x)=x(a﹣x)<π恒成立,即a>在x<0时恒成立,令g(x)=,则当x=﹣时,g(x)取最大值﹣2,故a>﹣2,故答案为:a>﹣2三、解答题(17-21每题12分,22题10分,共70分)17.设△ABC的内角A,B,C的对边分别为a,b,c,满足2a sin A=(2b﹣c)sin B+(2c ﹣b)sin C.(Ⅰ)求角A的大小;(Ⅱ)若a=2,b=2,求△ABC的面积.解:(Ⅰ)由已知及正弦定理可得,整理得,所以.又A∈(0,π),故.(Ⅱ)由正弦定理可知,又a=2,,,所以.又,故或.若,则,于是;若,则,于是.18.根据国际疫情形势以及传染病防控的经验,加快新冠病毒疫苗接种是当前有力的防控手段,我国正在安全、有序加快推进疫苗接种工作,某乡村采取通知公告、微信推送、广播播放、条幅宣传等形式,积极开展疫苗接种社会宣传工作,消除群众疑虑,提高新冠疫苗接种率,让群众充分地认识到了疫苗接种的重要作用,自宣传开始后村干部统计了本村200名居民(未接种)的一个样本,5天内每天新接种疫苗的情况,如下统计表:第x天12345新接种人数y1015192328(1)建立y关于x的线性回归方程;(2)假设全村共计2000名居民(均未接种过疫苗),用样本估计总体来预测该村80%居民接种新冠疫苗需要几天?参考公式:回归方程=x+中斜率和截距的最小二乘估计公式分别为:=,=﹣.解:(1)由题意可知,,,所以==,则,所以y关于x的线性回归方程为;(2)设,数列{a n}的前n项和为S n,又数列{a n}为等差数列,所以,因为S6=127.2,S7=163.8,所以10S6=1272,10S7=1638,2000×80%=1600人,所以预测该村80%居民接种新冠疫苗需要7天.19.如图,在三棱台ABC﹣DEF中,BC=2EF,G,H分别为AC,BC上的点,平面GHF ∥平面ABED,CF⊥BC,AB⊥BC.(1)证明:平面BCFE⊥平面EGH;(2)若AB⊥CF,AB=BC=2CF=2,求二面角B﹣AD﹣CC的大小.解:(1)因为平面平面GHF∥平面ABED,平面BCFE∩平面ABED=DE,平面BCFE∩平面GHF=HF.所以BE∥HF.因为CB∥EF,所以四边形BHFE为平行四边形所以BH=EF,因为BC=2EF.所以BC=2BH,H为BC的中点.同理G为AC的中点,所以GH∥AB.因为AB⊥BC,所以GH⊥BC又HC∥EF且HC=EF,所以四边形EFCH是平行四边形,所以CF∥HE,又CF⊥BC,所以HE⊥BC.又HE,HG⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH,又BC⊂平面BCFE,所以平面BCFE⊥平面EGH.(2)由(1)知,HE⊥HB,HG⊥HB,因为AB⊥CF,CF∥HE,GH∥AB,所以HE∥HG.分别以HG,HB,HE所在的直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系H ﹣xyz,则A(2,1,0),B(0,1,0),D(1,0,1),C(0,﹣1,0).设平面ABD的一个法向量为,因为,.则,取y1=1,得.设平面ADC的一个法向量为,因为,.则,取x2=1,得.所以cos<=﹣,则二面角B﹣AD﹣C的大小为.20.设椭圆C:+=1(a>b>0)的左焦点为F,过F且垂直于x轴的直线与椭圆的一个交点为(﹣1,).(1)求椭圆C的方程;(2)若过点F的直线l交椭圆C于A,B两点,线段AB的中点为M,过M且与l垂直的直线与x轴和y轴分别交于N、P两点,记△FMN和△OPN的面积分别为S1、S2,若=10.求直线l的方程.解:(1)由题意可得:,解得,故椭圆方程为.(2)由题意知,斜率不为0,故设直线AB方程为x=my﹣1.设A(x1,y1),B(x2,y2),联立椭圆方程可得(3m2+4)y2−6my−9=0,∴,,∴,,同理,所以直线方程为:y=±3(x+1).21.已知函数f(x)=x2﹣ax+1,g(x)=lnx+a(a∈R).(1)若a=1,求函数h(x)=f(x)﹣g(x)在区间[,t](其中<t<e,e是自然对数的底数)上的最小值;(2)若存在与函数f(x),g(x)的图象都相切的直线,求实数a的取值范围.解:(1)由题意,可得h(x)=f(x)﹣g(x)=x2﹣x﹣lnx,h′(x)=2x﹣1﹣=,令h′(x)=0,得x=1.①当<t≤1时,h(x)在[,t]上单调递减,∴h(x)min=h(t)=t2﹣t﹣lnt;②当t>1时,h(x)在[,1]上单调递减,在[1,t]上单调递增,∴h(x)min=h(1)=0.综上,当<t≤1时,h(x)min=t2﹣t﹣lnt;当t>1时,h(x)min=0.(2)设函数f(x)在点(x1,f(x1))处与函数g(x)在点(x2,g(x2))处有相同的切线,则f′(x1)=g′(x2)=,∴2x1﹣a==,∴x1=+,代入=x12﹣ax1+1﹣lnx2﹣a,得++lnx2++a﹣2=0.∴问题转化为:关于x的方程++lnx++a﹣2=0有解,设F(x)=++lnx++a﹣2(x>0),则函数F(x)有零点,∵F(x)=(+a)2+lnx+a﹣2,当x=e2﹣a时,lnx+a﹣2=0,∴F(e2﹣a)>0.∴问题转化为:F(x)的最小值小于或等于0.F′(x)=﹣﹣+=,设2x02﹣ax0﹣1=0(x0>0),则当0<x<x0时,F′(x)<0,当x>x0时,F′(x)>0.∴F(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,∴F(x)的最小值为F(x0)=++lnx0++a﹣2.由2x02﹣ax0﹣1=0知a=2x0﹣,故F(x0)=x02+2x0﹣+lnx0﹣2.设φ(x)=x2+2x﹣+lnx﹣2(x>0),则φ′(x)=2x+2++>0,故φ(x)在(0,+∞)上单调递增,∵φ(1)=0,∴当x∈(0,1]时,φ(x)≤0,∴F(x)的最小值F(x0)≤0等价于0<x0≤1.又∵函数y=2x﹣在(0,1]上单调递增,∴a=2x0﹣∈(﹣∞,1].22.在平面直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,点A在曲线C1:ρ2﹣8ρcosθ+12=0上运动,点B为线段OA的中点.(1)求动点B的运动轨迹C2的参数方程;(2)若直线l与C2的公共点分别为M,N,当=3时,求a的值.解:(1)点A在曲线C1:ρ2﹣8ρcosθ+12=0上运动,点B为线段OA的中点.设A(2ρ,θ),B(ρ,θ),由于,转换为点B的直角坐标方程为(x﹣2)2+y2=1;转换为参数方程为(θ为参数);(2)直线l:(t为参数),转换为普通方程为y=ax,极坐标方程为a=tanθ,设M(ρ1,θ),N(ρ2,θ),由于,所以:ρ1=3ρ2,代入ρ2﹣4ρcosθ+3=0所以,整理得:,解得:,所以,解得tanθ=0,故θ=0.即a=0.。

四川省成都七中2021届高三上学期入学考试数学理试题及答案

四川省成都七中2021届高三上学期入学考试数学理试题及答案

成都七中2020~2021学年度上期2021届高三入学考试数学试卷(理科)考试时间:120分钟 总分:150分一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求.把答案涂在答题卷上.)1.已知集合(){},21A x y y x ==-,(){}2,B x y y x ==,则AB =( )A .∅B .{}1C .(){}1,1D .(){}1,1-2.复数z = )A .1BC .2D3.已知命题():,0p x ∃∈-∞,23x x <;命题:0,2q x π⎛⎫∀∈ ⎪⎝⎭,sin x x <,则下列命题为真命题的是( ) A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()p q ∧⌝4.抛物线2:4C y x =的焦点为F ,点A 在抛物线上,且点A 到直线3x =-的距离是线段AF 长度的2倍,则线段AF 的长度为( ) A .1B .2C .3D .45.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( ) A .55.2,3.6 B .55.2,56.4C .64.8,63.6D .64.8,3.66.设2323a ⎛⎫=⎪⎝⎭,2313b ⎛⎫= ⎪⎝⎭,1313c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c a b >>D .b c a >>7.一空间几何体的三视图如图,则该几何体的体积可能为( )A .12π+B .22π+C .1π+D .2π+8.若α,β为锐角,且满足4cos 5α=,()5cos 13αβ+=,则sin β的值为( ) A .1665-B .3365C .5665D .63659.已知数列{}n a 满足132n n a -=⨯,*n ∈N ,现将该数列按下图规律排成蛇形数阵(第i 行有i 个数,*i ∈N ),从左至右第i 行第j 个数记为(),i j a (i ,*j ∈N 且j i ≤),则()21,20a =( ).A .23132⨯B .21232⨯C .23032⨯D .21132⨯10.已知函数()()sin f x x ωϕ=+,其中0ω>,0ϕπ<<,()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间0,4π⎛⎫⎪⎝⎭上恰有两个零点,则ω的取值范围是( ) A .()6,10B .()6,8C .()8,10D .()6,1211.正方体1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为( )A .椭圆的一部分B .线段C .抛物线的一部分D .圆弧12.己知函数()212ln x f x x -=的定义域为10,e ⎛⎤ ⎥⎝⎦,若对任意的1x ,210,x e ⎛⎤∈ ⎥⎝⎦,()()()1212221212f x f x m x x x x x x -+>-恒成立,则实数m的取值范围为( )A .(],3-∞B .(],4-∞C .(],5-∞D .(],6-∞二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.)13.在空间直角坐标系O xyz -中,记点()1,2,3A 在xOz 平面内的正投影为点B ,则OB =________.14.已知x ,y 满足22x y x x y ≤⎧⎪≤⎨⎪+≥⎩,则2z x y =-+的最大值为________.15.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,且cos cos 2B bC a c=-+,若b =4a c +=,则a 的值为________.16.已知椭圆2222:1x y a b Γ+=与双曲线2222:1x y m nΩ-=共焦点,1F 、2F 分别为左、右焦点,曲线Γ与Ω在第一象限交点为P ,且离心率之积为1.若1212sin 2sin F PF PF F ∠=∠,则该双曲线的离心率为________. 三、解答题(共70分,22与23题二选一,各10分,其余大题均为12分)17.(本题12分)设数列{}n a 的前n 项和为n S ,且1a =,121n n a S +=+,数列{}n b 满足11a b =,点()1,n n P b b +在直线20x y -+=上,*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)设nn nb c a =,求数列{}n c 的前n 项和n T . 18.(本题12分)某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()g y 与尺寸()mm x 之间近似满足关系式by c x =⋅(b ,c 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间(0.302,0.388)内时为优等品现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率; (2)根据测得数据作了初步处理,得相关统计量的值如下表:根据所给统计量,求y 关于x 的回归方程. 附:对于样本()(),1,2,,6i i v u i =,其回归直线u b v a =⋅+的斜率和截距的最小二乘法估计公式分别为:()()()1122211nniii i i i nniii i vv u u v u nvub v v vnv====---==--∑∑∑∑,a u bv =-, 2.7183e ≈.19.(本题12分)如图,在以P ,底面圆的直径AB 长为2,O 为圆心.C 是圆O 所在平面上一点,且AC 与圆O 相切.连接BC 交圆于点D ,连接PD ,PC ,E 是PC 的中点,连接OE ,ED .(1)求证:平面PBC ⊥平面PAC ; (2)若二面角B PO D --的大小为23π,求平面PAC 与平面DOE 所成锐二面角的余弦值. 20.(本题12分)已知抛物线24x y =,F 为其焦点,椭圆()222210x y a b a b+=>>,1F ,2F 为其左右焦点,离心率12e =,过F 作x 轴的平行线交椭圆于P ,Q 两点,PQ =(1)求椭圆的标准方程;(2)过抛物线上一点A 作切线l 交椭圆于B ,C 两点,设l 与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴为K ,KED △,FOD △的面积分别记为1S ,2S ,若121849S S =,且点A 在第一象限.求点A 的坐标.21.(本题12分)已知函数()()1xf x x e =-,()lng x a x =+,其中e 是自然对数的底数.(1)若曲线()y f x =在1x =处的切线与曲线()y g x =也相切.求实数a 的值; (2)设()()()h x bf x g x a =-+,求证:当10b e<<时,()h x 恰好有2个零点. (22题与23题为选做题,二选一)22.(本题10分)在直角坐标系xOy 中,曲线C 的参数方程为22114x t ty t t ⎧=+⎪⎪⎨⎪=+-⎪⎩(t 为参数).(1)求曲线C 的普通方程;(2)以O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为6πθ=,()ρ∈R ,直线l与曲线C 交于A ,B 两点,求线段AB 的长度AB . 23.(本题10分)已知函数()1144f x x x =-++,M 为不等式()2f x ≤的解集. (1)求M ;(2)证明:当a ,b M ∈时,a b ≥-.成都七中2020-2021学年度上期2021届高三入学考试数学试卷(理科)答案1-5:CBCBD 6-10:BBBDA 11-12:DB 1314.1- 15.1或3 16.1217.【答案】(Ⅰ)1321n n n a b n -==- (Ⅱ)1133n n n T -+=-【解析】(1)由121n n a S +=+可得()1212n n a S n -=+≥, 两式相减得()112,32n n n n n a a a a a n ++-==≥.又21213a S =+=,所以213a a =.故{}n a 是首项为1,公比为3的等比数列.所以13n n a -=.由点()1,n n P b b +在直线20x y -+=上,所以12n n b b +-=.则数列{}n b 是首项为1,公差为2的等差数列.则()11221n b n n =+-⋅=-. (Ⅱ)因为1213n n n n b n c a --==,所以0121135213333n n n T --=++++. 则12311352133333n nn T -=++++, 两式相减得:21222221133333n n n n T --=++++-11113321121313n nn -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦=+⨯--1121233n nn --⎛⎫=--⎪⎝⎭∴21112113323233n n n n n n T ----+=--=-⋅⋅ 18.【答案】(1)15; (2)0.5y ex =.【解析】(1)由已知,优等品的质量与尺寸的比()0.302,0.388yx∈ 则随机抽取的6件合格产品中,有3件为优等品,有3件为非优等品,所求概率为232631155C P C ===.(2)对by c x =⋅两边取自然对数得ln ln ln y c b x =+ 令ln i i v x =,ln i i u y =,则u b v a =⋅+,且ln a c = 由所给统计量及最小二乘估计公式有:11222175.324.618.360.271101.424.660.542ni i nii v u nuvb vnv==--⨯÷====-÷-∑∑118.324.6216a u bv ⎛⎫-⨯ ⎪⎝⎭=-==,由ln a c =得c e =,所以y 关于x 的回归方程为0.5y ex =.19.【解析】(1)证明:AB 是底面圆的直径,AC 与圆切于点A , 所以AC AB ⊥,又PO ⊥底面,则PO AC ⊥,PO AB O =,所以:AC ⊥面PAB AC PB ⇒⊥,又因为,在三角形PAB 中,2PA PB AB PA PB ==⇒⊥ PA AC A =,所以PB ⊥面PAC ,∵PB ⊂面PBC所以:平面PBC ⊥平面PAC ; (2)因为OB PO ⊥,OD PO ⊥, ∴BOD ∠为二面角B PO D --的平面角, ∴23BOD π∠=,如图建立坐标系,易知1OB =,则()0,1,0A -,()0,1,0B ,1,022D ⎛⎫-⎪ ⎪⎝⎭,,1,03C ⎛⎫- ⎪ ⎪⎝⎭,()0,0,1P ,11,322E ⎛⎫- ⎪ ⎪⎝⎭, 由(1)知()0,1,1BP =-为平面PAC 的一个法向量, 设平面ODE 的法向量为(),,n x y z =,31111,,0322322OE x y z ⎛⎫=-⇒-+= ⎪ ⎪⎝⎭,311,002222OD x y ⎛⎫=-⇒-= ⎪ ⎪⎝⎭, 解得:()3,3,1n =,26cos 13n BP n BPθ⋅==. 20.【答案】(1)22143x y +=. (2)()2,1 【解析】(1)不妨设P 在第一象限,由题可知,13P ⎛⎫⎪ ⎪⎝⎭,∴228113a b +=, 又∵12e =,∴22811123c c +=,可得1c =,椭圆的方程为22143x y +=. (2)设200,4x A x ⎛⎫ ⎪⎝⎭则切线l 的方程为20024x x y x =-代入椭圆方程得:()4223031204x x x x x +-+-=, 设()11,B x y ,()22,C x y ,()33,E x y ,则()3012320223x x x x x +==+,()22000332032443x x x y x x =-=-+, KE 的方程为()()230022000324323x x y x x x x ⎡⎤⎢⎥+=--++⎢⎥⎣⎦, 即()20200243x y x x x =-++,令0y =得()302083K x x x =+, 在直线l 方程中令0y =得02D x x =,222004124x x FD +⎛⎫=+= ⎪⎝⎭()()()23000022003428383x x x x DK x x +=-=++,02FD k x =-,02BC xk =,∴1FD BC k k ⋅=-,FD BC ⊥,∴~DEK FOD △△,∴()()22200122220941849163x x S DK S FD x +===+. 化简得()()2200177240x x+-=,∴02x =(02x =-舍去)∴A 的坐标为()1,1,()4223031204x x x x x +-+-=, ()()462420000431234814404x x x x x ⎛⎫∆=-+-=---≥ ⎪⎝⎭,因为2008x ≤≤+21.【解析】(1)由()()1x f x x e =-得()xf x xe '=,所以切线的斜率()1k f e '==.因为切点坐标为()1,0,所以切线的方程为()1y e x =-. 设曲线()y g x =的切点坐标为()11,x y . 由()ln g x a x =+得()1g x x '=,所以()111g x e x '==,得11x e=. 所以切点坐标为1,1a e ⎛⎫- ⎪⎝⎭.因为对1,1a e⎛⎫- ⎪⎝⎭也在直线()1y e x =-上.所以2a e =-.(2)由()()1ln xh x b x e x =--,得()211x xbx e h x bxe x x-'=-=.令()21xm x bx e =-,0x >,当10b e<<时,()()220x m x bx bx e '=+>, 故()m x 在()0,+∞上单调递增.又因为()110m be =-<,且221111ln ln 1ln 10m b b b b b ⎛⎫⎛⎫⎛⎫=⋅-=-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以()0m x =在()0,+∞上有唯一解,从而()0h x '=在()0,+∞上有唯一解. 不妨设为0x ,则011ln x b<<. 当()00,x x ∈时,()()()00m x m x h x x x '=<=,所以()h x 在()00,x 上单调递减; 当()0,x x ∈+∞时,()()()00m x m x h x x x'=>=,所以()h x 在()0,x +∞上单调递增.故0x 是()h x 的唯一极值点.令()ln 1t x x x =-+,则当1x >时,()110t x x'=-<,所以()t x 在()1,+∞上单调递减, 从而当1x >时,()()10t x t <=,即ln 1x x <-,所以1ln 111ln ln 1ln ln b h b e b b b ⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111ln 1ln ln ln 0t b b b ⎛⎫⎛⎫=--=-> ⎪ ⎪⎝⎭⎝⎭,又因为()()010h x h <=,所以()h x 在()0,x +∞上有唯一零点. 又因为()h x 在()00,x 上有唯一零点,为1, 所以()h x 在()0,+∞上恰好有2个零点.另解:∵02011x x e e b =>>,∴0111x b <<+,再证明11111ln 10b h e b b +⎛⎫⎛⎫+=-+> ⎪ ⎪⎝⎭⎝⎭.22.【答案】(1)26y x =-(2x ≤-或2x ≥);(2. 【解析】(1)曲线C 的参数方程为221,14, x t ty t t ⎧=+⎪⎪⎨⎪=+-⎪⎩①②(t 为参数),将①式两边平方,得22212x t t =++③, ③-②,得26x y -=,即26y x =-,因为112x t t t t =+=+≥=,当且仅当1t t =,即1t =±时取“=”,所以2x ≥,即2x ≤-或2x ≥, 所以曲线C 的普通方程为26y x =-(2x ≤-或2x ≥). (2)把cos sin x y ρθρθ=⎧⎨=⎩代入曲线C 得:22sin cos 6ρθρθ=-,()cos 2ρθ≥,则曲线C 的极坐标方程为22sin cos 6ρθρθ=-,()cos 2ρθ≥设A ,B 的极坐标分别为1,6A πρ⎛⎫⎪⎝⎭,2,6B πρ⎛⎫⎪⎝⎭,由226sin cos 6πθρθρθ⎧=⎪⎨⎪=-⎩11得22sin cos 666ππρρ=-,即232240ρρ--=,且3ρ≥ 因为44324473∆=+⨯⨯=⨯,∴ρ=ρ=,满足ρ≥,不妨设1ρ=2ρ=所以12AB ρρ=-=注:没考虑ρ≥要酌情扣分 23.【解析】(1)()12,,411111,,4424412,4x x f x x x x x x ⎧-≤-⎪⎪⎪=-++=-<<⎨⎪⎪≥⎪⎩所以不等式的解集为[]1,1M =-.(2)要证a b -,只需证a b ≥-,即证()241ab a b -≥-,只需证22442ab a ab b -≥-+,即2242a ab b ≥++, 即证()24a b ≥+,只需证2a b ≥+因为a ,b M ∈,所以2a b +≤,所以所证不等式成立.。

四川省成都市第七中学2022-2023学年高三上学期入学考试数学(理)试题

四川省成都市第七中学2022-2023学年高三上学期入学考试数学(理)试题

四川省成都市第七中学2022-2023学年高三上学期入学考试数学(理)试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.4B.57.莫高窟坐落在甘肃的敦煌,它是世界上现存规模最大每年都会吸引来自世界各地的游客参观旅游个开放洞窟,在这8个洞窟中莫高窟九层楼号窟被誉为最值得参观的洞窟.根据疫情防控的需要,莫高窟改为极速参观模式,游客需从套票包含的开放洞窟中随机选择观洞窟的概率是()A.47B.128.设,,l m n表示直线,,αβ表示平面,使A.αβ⊥,//lβC.//l n,nα⊥9.等比数列{}a的前n项和为S,若二、填空题中,15.在ABC的面积,则若S为ABC16.已知抛物线过,A B两点分别作四边形PMFN的面积为三、解答题17.已知公差d(1)求数列{}n a的通项公式;b=(2)若数列2n18.如图所示,在四棱锥BC=,又SD=1(1)证明://CF 平面SAB ;(2)求平面SAD 与平面SAB 所成的锐二面角的余弦值19.《中国统计年鉴2021》数据显示,截止到千万辆.下图是2011年至2020图.(注:年份代码1-10分别对应年份(1)由折线图能够看出,可以用线性回归模型拟合(2)建立y 关于t 的线性回归方程(系数精确到量.参考数据:15.5y =,(101i i t =∑25550.5159.8≈,25690.5参考公式:相关系数n r =∑。

成都七中21届高三上期理科数学第五周小测及答案

成都七中21届高三上期理科数学第五周小测及答案

A.1
B. 1
C. 2
D. 2
3.如图,在直三棱柱 ABC A1B1C1 中,AB AC AA1 2 ,BC 2 ,点 D 为 BC
的中点,则异面直线AD 与A1C 所成的角为( )
A. π 2
B. π 3
C. π 4
D. π 6
4.在数列an 中,已知a1 1 ,且对于任意的 m ,n 22 3
6.如图,网格纸上小正方形的边长为 1,粗线画出的是某多面体的三视图,则该多面体的表面积为( )
A.8 4 2
B.2 2 2 4 3
C.2 6 3
D.2 4 2 2 3
7.已知在菱形 ABCD 中,BCD 60 ,曲线 C1 是以 A ,C 为焦点,通过 B ,
成都七中 2021 届高三上期第五次周考数学(理科)
考试时间:60 分钟 满分:100 分 一 、 选择题:本大题共 7 小 题,每小题 7 分 ,共 49 分 .
1.已知
是第三象限角,且cos
π 2
3 5
,则sin 2


A. 24 25
B. 24 25
C. 7 25
D. 7 25
2.已知向量a ,b 满足 a 2 , b 2 ,且a a 2b ,则b 在a 方向上的投影为( )
则数列an 的通项公式为( )
A. an n
B.an n 1
C. an
nn 1
2
D.
an
nn 1
2
5.
过双曲线
x2 a2
y2 b2
1a
0,b 0 的右焦点且与对称轴垂直的直线与双曲线交于 A ,
B 两点,△OAB

面积为 13bc ,则双曲线的离心率为( ) 3

21届高三理科数学上期入学考试试卷

21届高三理科数学上期入学考试试卷

A.55.2,3.6
B.55.2学,5使6.4
C.64.8,63.6
D.64.8,3.6

6.设
a
(
2 3
)
2 3

b
(平1)昌23 , 市3
c
(1
)
1 3
3
,则
a,b,c
的大小关系是(


A.a>b>c 巴 B.a>c>b
C.c>a>b
D.b>c>a

7.一空间川几何体的三视图如图,则该几何体的体积可能为 ( )
15.在
ABC
中,a
,b
,c
分别是角
A
,B
,C
的对边,且
cos B cos C
b 2a
c
,若b
13 ,
a c 4 ,则 a 的值为__________.
16.已知椭圆
:x a
2 2
y2 b2
1与双曲线 :mx22
y2 n2
1共焦点,F1、F2 分别为左、右焦点,
曲线 与 在第一象限交点为 P ,且离心率之积为 1.若sin F1PF2 2sin PF1F2 ,则该
(2)设
h(
x)
bf
(x)
学 g(x中) a 昌
,求证:当
0
b
1 e
时,
h(x)
恰好有
2
个零点.









试卷第 5 页,总 6 页
(22 题与 23 题为选做题,二选一)
22.(本题 10
分)在直角坐标系 xOy
中,曲线 C

2021届四川省成都市第七中学高三上学期入学考试数学(理)试题Word版含解析

2021届四川省成都市第七中学高三上学期入学考试数学(理)试题Word版含解析

2021届四川省成都市第七中学高三上学期入学考试数学(理)试题一、选择题1.已知i 是虚数单位,若172ia bi i+=+-(a , b R ∈),则ab =( ) A. 15- B. 3 C. 15 D. 3- 【答案】D【解析】()()()()172172147132225i i i i i i a bi i i i +++++-===-+=+--+, 1,3a b =-=, 3ab =-,选D.2.某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程,其中,,据此模型预测广告费用为9万元时,广告费用(万元) 2 3 4 5 6 销售轿车(台数) 3461012A. 17B. 18C. 19D. 20 【答案】C 【解析】由题意,故选C.3.如下程序框图的功能是:给出以下十个数:5,9,80,43,95,73,28,17,60,36,把大于60的数找出来,则框图中的①②应分别填入的是()A. 60?1x i i >=+,B. 60?1x i i <=+,C. 60?1x i i >=-,D. 60?1x i i <=-, 【答案】A【解析】把大于60的数找出来,根据流程图可知当满足条件时输出x,故判断框中应填x>60?, i 的功能是用于技术,故处理框应填i=i+1. 本题选择A 选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.4.圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线2213y x -=3,则圆C 的方程为()A. ()2211x y +-= B. (2233x y +=C. 2231x y ⎛+-= ⎝⎭ D. ()2224x y +-= 【答案】A【解析】设圆C 的方程为x 2+(y −a)2=a 2(a>0),圆心坐标为(0,a),∵双曲线2213y x -=的渐近线方程为3y x =3 ∴22232a a ⎛⎫+= ⎪⎝⎭⎝⎭, ∴a=1,∴圆C 的方程为x 2+(y −1)2=1. 本题选择A 选项.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.⊥成立的一个充分条件是()5.已知直线,m n和平面,αβ,使mαA. ,//⊥⊂ D. //,mββα⊥m n nα⊥ B. //,m n nαm n nα⊥ C. ,【答案】B【解析】逐一考查所给的选项:⊥成立的一个既不充分也不必要条件条件;A. ,//m n nα⊥是mα⊥成立的一个充分条件;B. //,m n nα⊥是mα⊥成立的一个既不充分也不必要条件条件;C. ,⊥⊂是mαm n nα⊥成立的一个必要条件.D. //,⊥是mαmββα本题选择B选项.6..某几何体的三视图如图所示,该几何体的体积为,则其正视图中x的值为A. 5B. 4C. 3D. 2【答案】C【解析】根据三视图恢复成原几何体,原几何体为上边是正四棱锥下边为圆柱的组合体,圆柱的底面半径为2,高为,体积为,正四棱锥的底面边长为,高为,体积为,组合体的体积为: ,,选C.7.将函数()()sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象向左平移3π个单位长度后,所得函数()g x 的图象关于原点对称,则函数()f x 在0,2π⎡⎤⎢⎥⎣⎦的最大值为()A. 0B. 12C. 3D. 1【答案】D【解析】将函数()()sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象向左平移3π个单位长度后,可得函数()2sin 23g x x πϕ⎛⎫=++ ⎪⎝⎭的图象,根据所得图象关于原点对称, 可得()2,,sin 2333f x x πππϕπϕ⎛⎫+=∴==+ ⎪⎝⎭. 在0,2π⎡⎤⎢⎥⎣⎦上, 42,333x πππ⎡⎤+∈⎢⎥⎣⎦ ,故当232x ππ+=时,f(x)取得最大值为1,本题选择D 选项. 8.二项式的展开式的第二项的系数为,则的值为( )A. B. 3 C. 3或 D. 3或【答案】B【解析】试题分析:由题意得,令,则,所以.故正确答案为B.【考点】1.二项式定理;2.微积分定理.9.某个家庭有2个孩子,其中有一个孩子为女孩,则另一个孩子也为女孩的概率为( )A 、13B 、23C 、14D 、12【答案】A【解析】解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.记事件A 为“其中一个是女孩”,事件B 为“另一个也是女孩”,则A={(男,女),(女,男),(女,女)},B={(男,女),(女,男),(女,女)},AB={(女,女)}.于是可知 P(A)= 34,P(AB)= 14.问题是求在事件A 发生的情况下,事件B 发生的概率,即求P (B|A ),由条件概率公式,得P (B|A )=14÷ 34 =13.故选A .10.在ABC ∆中, 5,,BC G O =分别为ABC ∆的重心和外心,且5OG BC ⋅=,则ABC ∆的形状是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 上述三种情况都有可能 【答案】B【解析】在△ABC 中,G,O 分别为△ABC 的重心和外心,取BC 的中点D ,连结AD,OD,GD ,如图所示:则1,3OD BC GD AD ⊥=, 结合()1,,52OG OD DG AD AB AC OG BC =+=+⋅=,则:()()156OD DG BC DG BC AB AC BC +⋅=⋅=-+⋅=,即()()2215,306AB AC AC AB AC AB -+⋅-=∴-=-,又BC=5,则: 2222265AB AC BC AC BC =+>+,结合余弦定理有cos 0,2C C ππ<∴<<,△ABC 是钝角三角形. 本题选择B 选项.11.对正整数n ,有抛物线()2221y n x =-,过()2,0P n 任作直线l 交抛物线于n A ,n B 两点,设数列{}n a 中,14a =-,且()n 1,1n nn OA OB a n N n =>∈-其中,则数列{}n a 的前n 项和n T =( ) A .4n B .4n - C .()21n n + D .()21n n -+ 【答案】D【解析】试题分析:设直线方程为2x ty n =+,代入抛物线方程得()()22214210y n ty n n ----=, 设()()1122,,,n n n n n A x y B x y ,则()2212121212(1)24n n n n n n n n n n OA OB x x y y t y y nt y y n ⋅=+=++++①, 由根与系数的关系得()12221n n y y n t +=-,()12421n n y y n n =--, 代入①式得()22224(21)14(21)444n n OA OB n n t n n t n n n ⋅=--++-+=-, 故41n n OA OB n n ⋅=--(1,n n N >∈),故数列1n n OA OB n ⎧⎫⋅⎪⎪⎨⎬-⎪⎪⎩⎭的前n 项和2(1)n n -+.【考点】1、直线的方程;2、方程的根与系数的关系;3、平面向量的数量积.二、填空题12.若以曲线()y f x =上任意一点()11,M x y 为切点作切线1l ,曲线上总存在异于M 的点()22,N x y ,以点N 为切点作切线2l ,且12//l l ,则称曲线()y f x =具有“可平行性”,现有下列命题:①函数()22ln y x x =-+的图象具有“可平行性”;②定义在()(),00,-∞⋃+∞的奇函数()y f x =的图象都具有“可平行性”;③三次函数()32f x x x ax b =-++具有“可平行性”,且对应的两切点()11,M x y , ()22,N x y 的横坐标满足1223x x +=; ④要使得分段函数()()()1{10xx m x f x x e x +<=-<的图象具有“可平行性”,当且仅当1m =. 其中的真命题个数有()A. 1B. 2C. 3D. 4 【答案】B【解析】由“可平行性”的定义,可得曲线y=f(x)具有“可平行性”,则方程y ′=a(a 是导数值)至少有两个根。

成都七中21届高三上期理科数学第三周小测及答案

成都七中21届高三上期理科数学第三周小测及答案

60 ,
且以 PF1 、 PF2 为邻边的平行四边形的两对角线长度分别为 2c 、4b ,则双曲线的离心率为( )
A. 3+1
B. 5
C. 2
D. 1+ 3 2
6.如图所示是某多面体的三视图,左上为主视图,右上为左视图,左下为俯视图,
且图中小方格单位长度为 1,则该多面体的体积为( )
2
A.
3
B. 1 2
PR 2 PQ ,设点 P 的轨迹为 C . (1)求 C 的轨迹方程; (2)设直线 y x n 与曲线 C 相交与 A 、 B 两点,试探究曲线 C 上是否存在点 M ,使得四边形 MAOB 为平行 四边形,若存在,求出点 M 的坐标;若不存在,请说明理由
试卷第 4 页,总 4 页
1.C
2.A 3.C
参考答案 4.D 5.C 6.A 7.B 8.B
9.60 10.2
11.②④
12. 12 25
13.(1)直线l 的普通方程为 3x 2 y 8 0 ,曲线 C 的普通方程为 x2 y2 1;(2)最大值为2 13 ;最小值为 4
6 13 . 13
【详解】
(1)直线

的参数方程为
x
y
2t 3t
2 1

t
为参数),
故可得其普通方程为: 3x 2y 8 0 ;
曲线
C
的极坐标方程为
2
1
4 3cos2
,故可得
x2
y2
3x2
4

整理可得曲线 C 的直角坐标方程为: x2 y2 1 . 4
(2)根据(1)中所求,不妨设点 P 坐标为cos , 2sin ,

21届高三理科数学上期入学考试试卷答案

21届高三理科数学上期入学考试试卷答案


8 3a
2
1 b2
1,

e
1 2
,128c2
1 3c2
1 ,可得 c 1,椭圆的方程为
x2 4
y2 3
1.

使
(2)设
A
x0 ,
x02 4
学 则切线昌中l 的方程为

y
x0 2
x
x02 4

代入椭圆方程得巴:中 3 x02 省
x2
x03 x
x04 4
12
0,
设 B x1四, y川1 ,C x2, y2 , E x3, y3 ,
两式相减得 an1 an 2an, an1 3an n 2 .
又 a2 2S1 1 3 ,所以 a2 3a1 .
故 an 是首项为 1,公比为 3 的等比数列.所以 an 3n1 . 由点 P bn ,bn1 在直线 x y 2 0 上,所以 bn1 bn 2 . 则数列bn是首项为 1,公差为 2 的等差数列.则 bn 1 n 1 2 2n 1.
2n 1 3n

3


四 仅Tn供 3
1 2 3n2
2n 1 2 3n1
3
n 1 3n 1
18.【答案】(1) 1 ;(2) yˆ ex0.5 . 5
【解析】(1)由已知,优等品的质量与尺寸的比 y (0.302, 0.388) x
则随机抽取的 6 件合格产品中,有 3 件为优等品,有 3 件为非优等品,
3 x02
x04 4
12
3x04 48x02 144
0,
因为 0 x02 8 4 7 ,故此解符合题意.
21. 【解析】(1)由 f (x) (x 1)ex 得 f (x) xex ,所以切线的斜率 k f (1) e .

四川省成都市第七中学2021-2022学年高三上学期数学(理科)测试卷(6)及答案

四川省成都市第七中学2021-2022学年高三上学期数学(理科)测试卷(6)及答案

成都七中高2022届数学(理)测试(六)本卷满分150分考试时间:110分钟;一、选择题(每小题仅有一个正确选项,选对得5分,共60分)1.若集合{}230M x x x =->,{}lg(1)0N x x =-≤,则M N = ()A .(]0,2B .(]1,2C .()0,3D .(),0-∞2.函数)2π2cos(23sin )(2-+=x x x f 的最小正周期是()A .4πB .2πC .πD .π23.如图是某种商品的标志,三角形是圆的内接正三角形,若在圆内随机取一点,则此点取自三角形部分的概率为()A .43B .π43C .π43D .π4334.陀螺,它的起源因年代久远并无详细记载,但是在新石器时代的遗址中出土过陀螺,如江苏常州出土的新石器马家窑文化木陀螺及山西龙山文化遗址中出土陶陀螺。

以下是某木质陀螺的三视图(单位cm ),此木质陀螺的密度为3/5.0cm g ,则其质量(单位:g)为()A .32B .34C .π34D .π325.已知函数()223lg ,0()lg 2,0x mx x f x n x x x ⎧->⎪=⎨-+<⎪⎩为偶函数,则m n -=().A .5B .5-C .1D .1-6.()5212+-x x 的展开式中,4x 的系数为().A .210B .210-C .110D .110-7.已知数列{}n a 的前n 项和为n S ,则“{}n a 是等差数列”是“n S n ⎧⎫⎨⎬⎩⎭是等差数列”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知2F 是双曲线22:193x y C -=的右焦点,动点A 在双曲线左支上,点B 为圆22:(2)1E x y ++=上一点,则2AB AF +的最小值为().A .155-B .54C .10D .99.在ABC △中,角,,A B C 的对边分别为,,a b c ,若22sin cos 1A B +=,则c b a -的取值范围为().A .)13,2(+B .)3,1(C .),(32D .)(4,310.已知函数()1ln f x x x x=-+,给出下列四个结论:①曲线()y f x =在1x =处的切线方程为10x y +-=;为推动经济建设,某科技企业加大了对产品A 的研发投入,已知产品A 的研发费用x (百万元)和销量y (万台)的统计数据如表:研发费用x (百万元)2356891013销量y (万台)122 2.5 3.5445(1)根据数据用最小二乘法求出y 与x 的线性回归方程ˆˆy bx a =+(系数用分数表示);(2)该产品A 的两种不同的类型1A ,2A ,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,两种类型1A ,2A 合格的概率分别为12,34,第二次检测时,两种类型1A ,2A 合格的概率分别为45,23.两次检测过程相互独立,设经过两次检测后1A ,2A 合格的种类数为X ,求X 的分布列与数学期望.附:121ˆˆˆ,n i i i n ii x y nx yb a y bx xnx ==-⋅==--∑∑20.(本小题满分12分)已知B A 、是椭圆:C 22184x y +=上,x 轴上方不同两点,椭圆C 的左、右焦点分别为1F 、2F ,且满足B F A F 21λ=.(1)若3=λ,求直线A F 1的斜率;(2)若直线A F 1与抛物线x y =2无交点,求四边形BA F F 21面积的取值范围.已知函数()tan f x x x =-.(1)试讨论函数()f x 的单调性;(2)当02x π<<时,不等式()(sin )f x n x x >-恒成立,求正整数n 的最大值.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为3cos (sin x y θθθ=⎧⎨=⎩为参数,[0θ∈,2))π,曲线2C 的参数方程为,2()1,2x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数.(1)求曲线1C 和2C 的普通方程;(2)若曲线1C 上一点P 到曲线2C的距离的最大值为,求a .23.(本小题满分10分)选修4-5:不等式选讲已知函数()+2+1f x x x =-.(1)解不等式()4f x ≤;(2)若不等式+1()193a a f x +≤-有解,求实数a 的取值范围.成都七中高2022届数学(理科答案)测试(六)一、选择题1.B2.C3.D4.D5.B6.A7.C8.D解析:双曲线22193x y-=中3a=,b=,c==1(F-,圆E半径为1r=,(0,2)E-,∴21126AF AF a AF=+=+,1AB AE BE AE≥-=-(当且仅当,,A E B共线且B在,A E间时取等号.∴2AB AF+11615AF AE AF AE≥++-=++1559EF≥+==,当且仅当A是线段1EF与双曲线的交点时取等号.∴2AB AF+的最小值是9.9.C解析:在ABC△中,因为22sin cos1A B+=,所以cos cos2B A=,所以2B A=.由正弦定理及题设得()sinsin sin cos2cos sin2sin sin sin sin sin2sinA Bc C A A A Ab a B A B A A A++====----()22sin2cos12sin cos2sin cos sinA A A AA A A-+=-24cos12cos12cos1A AA-=+-,由02π,0π3πB AC A=⎧⎨=-⎩<<<<得π3A<<,故1cos12A<<,所以cb a-的取值范围为()2,3.10.B.解析:依题意,()f x的定义域为()(),00,-∞+∞.当0x>时,()2221111x xf xx x x-+-'=--=,所以()11f'=-,可知曲线在点()1,0处的切线方程为()01y x-=--,即10x y+-=,所以①正确;因为0x>时,()2213240xf xx⎛⎫---⎪⎝⎭'=<,所以()f x区间()0,+∞上单调递减.同理可求()f x在区间(),0-∞上单调递减.所以③错误;又()()10,10f f-==,所以②正确;对于④,若12x x>0,>,由()()12f x f x+=,得()()122221lnf x f x x xx⎛⎫=-=--+=⎪⎝⎭21lnx+2221111fx xx⎛⎫-= ⎪⎝⎭,即()121f x fx⎛⎫= ⎪⎝⎭.因为()f x在()0,+∞上为减函数,所以121xx=,即121x x=.同理可证当120,0x x<<时,命题也成立.故④正确.综上,故选B.11.A.法一、放到正方体中建系;法二、在正方体里作辅助线求12.A.解析:由题,'()(2),xf x e x=-设切点为00(,),x y得切线方程为00000(2)()(3),x xy e x x x e x=--+-∵点),0(a在切线上,∴000200000(2)(0)(3)(33)x x xa e x x e x e x x=--+-=-+-,设2()(33)xg x e x x=-+-,∵过点),0(a可作函数)(xf图象的三条(2)解:OF//BE,BE^平面ABC,∴OF^平面ABC.AB=AC,∴OA^BC,故以点O为坐标原点,,,OA OB OF所在直线分别为x,y,z轴建立如图所示的空间直角坐标系Oxyz.在Rt D ACD中,AD=.在Rt D ABE中,AE=在Rt D ADE中,DE=EH^CD,垂足为点H.在Rt D DEH中,DH=2,BC EH ∴==,3,OF OA OC∴===.A∴,C(0,,F(0,0,3),G2222⎛⎝⎫⎭⎪.22,,322FG⎛⎫∴=-⎪⎝⎭,3)FA=-,CF=.分)8(设平面AFG的法向量为m=x1,y1,z1(),得1113z==.令1z=,得m=.设平面CFG的法向量为n=x2,y2,z2(),得2=9z2,2=-3z2,⎧⎨⎪⎩⎪令z2=得n=(9,-.设二面角A FG C--的大小为θ,由图可知,二面角A FG C--为锐角,则cos23θ==.所以二面角A FG C--的余弦值为23.分)12(19.解:(1)由题可得817,3,26101528364065202i iix y x y====+++++++=∑8214925366481100169350iix==+++++++=∑488,故812218820ˆ=38i iiiix y x ybx x==-⋅=-∑∑.48257481734817498488378202=⨯-=⋅-==⨯-⨯⨯-∧∧xbya,即y与x的线性回归方程.48254817+=xy.分)6((2)记事件A:产品1A第一次检测合格;事件B:产品1A第二次检测合格事件C:产品2A第一次检测合格;事件D:产品2A第二次检测合格事件M :产品1A 检测合格;事件N :产品2A 检测合格则1432(),(),()()2543P A P B P C P D ====,由题,,,A B C D 独立8 分故,21()()()(),()()()()52P M P AB P A P B P N P CD P C P D ======则经过两次检测后1A ,2A 合格的种类数X 的可能值为0,1,2,313(0)()()()5210P X P M N P M P N =====.31211(1)()()()52522P X P M N M N P MN P M N ==⋃=+=⨯+⨯=.211(2)()()()525P X P MN P M P N =====.分)12( 故其分布列为:X 012P 3101215所以,数学期望3119()012102510E X =⨯+⨯+⨯=.20.解(1)设1F A 直线交椭圆于另一点'B ,2F B 直线交椭圆于另一点A',由12F A F B λ=,故12//F A F B ,由椭圆对称性,2112',A'BF B F AF F ==,且四边形''ABA B 为平行四边形.由题意直线'AB 的斜率不为0,设直线'AB :2x ty =-,由22228x ty x y =-⎧⎨+=⎩,消去x 整理得()222440t y ty +--=,设()11,A x y ,()22',B x y ,则12242t y y t +=+,12242y y t =-+,由12111233'3F A F B F A F B y y =⇒=-⇒=- (*)带入上式,解得:122262,22t t y y t t -==++故2222124,0(),1(2)2t t t t t -=->∴=++由图Q ,故1F A 的斜率为1..............6分(2)由22x ty y x=-⎧⎨=⎩,消去x 整理得220y ty -+=,由()280t D =--<得28t <.所以12'AB y =-=)2212t t +=+,'AB 与'BA 间的距离d=2F 到'AB 的距离),故1212AF F B AB A B S S ''==)221122t t +⋅+22t =+,[)1,3s =∈,则1222AF F B S t =+211s s s==++1225⎛∈ ⎝,所以四边形12AF F B的面积的取值范围为5⎛ ⎝..............12分21.解:(1)由题,2'222cos cos (sin sin )sin ()1tan 0cos cos x x x x x f x x x x ⋅--⋅=-==≥()(,)()22f x k k k Z ππππ-++∈函数在单调递增分)4( (2)解法一:由题设,取4x π=,则tan 443sin 44n ππππ-<=<-,分)7( 取正整数2n =,记()tan 2sin 3,(0,2F x x x x x π=+-∈,则32'2212cos 3cos 1()2cos 3=cos cos x x F x x x x-+=+-令cos (0,1),t x =∈则32'2231()t t F t t -+=,再令32()231,h t t t =-+则'2()666(1)0,h t t t t t =-=-<(0,1)t ∈∴当(0,1)()()(1)0t h t h t h ∈>=时,单调递减,即,∴'()0,F x >故()F x 在2π(0,)上单调递增,()(0)0F x F >=成立,∴tan 2(sin )2x x x x x π->-<<,(0,即2符合题目要求,∴正整数n 的最大值为2.分)12( 解法二:由解法一知3<n ,取正整数2n =,记()tan 2sin 3,(0,2F x x x x x π=+-∈,则'21()cos cos 330cos F x x x x =++->=(此处等号不成立),∴()F x 在2π(0,)上单调递增,∴()(0)0F x F >=成立,∴tan 2(sin )2x x x x x π->-<<,(0,即2符合题目要求,∴正整数n 的最大值为2.分)12( 22.解:(1)由题,曲线1C 的参数方程为3cos (sin x y θθθ=⎧⎨=⎩为参数,[0θ∈,2))π,得:普通方程为2219x y +=;曲线2C的普通方程为:0x a -=.分)5( (2)设曲线1C 上一点为(3cos ,sin )[0,2)P θθθπ∈,,则点P 到曲线2C 的距离为d=当0a>时,sin(1,3πθ-=-即11=12θπ,解得a=;当0a<时,sin(1,3πθ-=即5=6θπ时,距离有最大值a=-综上,a=或-.分)10(23.解:(1)由题,+2+14x x-≤2211(2)(1)4(2)(1)4(2)(1)4x x xx x x x x x≤--<<≥⎧⎧⎧⇔⎨⎨⎨-+--≤+--≤++-≤⎩⎩⎩或或53221122x x x⇔-≤≤--<<≤≤或或解集为53{|}22x x-≤≤.分)5((2)由题,+2+1(2)(1)3x x x x-≥+--=故不等式+1()193a af x+≤-有解+1+1min()193493a a a af x⇔+≤-⇔≤-(34)(31)03134a a a a-+≥⇔≤-≥或即3log4.a≥分)10(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中2021届高三上期入学考试理科数学考试时间:120分钟总分:150分一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求.把答案涂在答题卷上.)1.已知集合(){},21A x y y x ==-,(){}2,B x y y x ==,则AB =()A .∅B .{}1C .(){}1,1D .(){}1,1-2.复数z =的模是()A .1BC .2D3.已知命题():,0p x ∃∈-∞,23x x<;命题:0,2q x π⎛⎫∀∈ ⎪⎝⎭,sin x x <,则下列命题为真命题的是()A .p q∧B .()p q ∨⌝C .()p q ⌝∧D .()p q ∧⌝4.抛物线2:4C y x =的焦点为F ,点A 在抛物线上,且点A 到直线3x =-的距离是线段AF 长度的2倍,则线段AF 的长度为()A .1B .2C .3D .45.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是()A .55.2,3.6B .55.2,56.4C .64.8,63.6D .64.8,3.66.设2323a ⎛⎫=⎪⎝⎭,2313b ⎛⎫= ⎪⎝⎭,1313c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是()A .a b c>>B .a c b>>C .c a b>>D .b c a>>7.一空间几何体的三视图如图,则该几何体的体积可能为()A .12π+B .22π+C .1π+D .2π+8.若α,β为锐角,且满足4cos 5α=,()5cos 13αβ+=,则sin β的值为()A .1665-B .3365C .5665D .63659.已知数列{}n a 满足132n n a -=⨯,*n ∈N ,现将该数列按下图规律排成蛇形数阵(第i 行有i 个数,*i ∈N ),从左至右第i 行第j 个数记为(),i j a (i ,*j ∈N 且j i ≤),则()21,20a =().A .23132⨯B .21232⨯C .23032⨯D .21132⨯10.已知函数()()sin f x x ωϕ=+,其中0ω>,0ϕπ<<,()4f x f π⎛⎫≤⎪⎝⎭恒成立,且()f x 在区间0,4π⎛⎫⎪⎝⎭上恰有两个零点,则ω的取值范围是()A .()6,10B .()6,8C .()8,10D .()6,1211.正方体1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为()A .椭圆的一部分B .线段C .抛物线的一部分D .圆弧12.己知函数()212ln x f x x -=的定义域为10,e ⎛⎤ ⎥⎝⎦,若对任意的1x ,210,x e ⎛⎤∈ ⎥⎝⎦,()()()1212221212f x f x m x x x x x x -+>-恒成立,则实数m 的取值范围为()A .(],3-∞B .(],4-∞C .(],5-∞D .(],6-∞二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.)13.在空间直角坐标系O xyz -中,记点()1,2,3A 在xOz 平面内的正投影为点B ,则OB =________.14.已知x ,y 满足22x y x x y ≤⎧⎪≤⎨⎪+≥⎩,则2z x y =-+的最大值为________.15.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,且cos cos 2B bC a c=-+,若b =,4a c +=,则a 的值为________.16.已知椭圆2222:1x y a b Γ+=与双曲线2222:1x y m nΩ-=共焦点,1F 、2F 分别为左、右焦点,曲线Γ与Ω在第一象限交点为P ,且离心率之积为1.若1212sin 2sin F PF PF F ∠=∠,则该双曲线的离心率为________.三、解答题(共70分,22与23题二选一,各10分,其余大题均为12分)17.(本题12分)设数列{}n a 的前n 项和为n S ,且1a =,121n n a S +=+,数列{}n b 满足11a b =,点()1,n n P b b +在直线20x y -+=上,*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)设nn nb c a =,求数列{}n c 的前n 项和n T .18.(本题12分)某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()g y 与尺寸()mm x 之间近似满足关系式b y c x =⋅(b ,c 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间(0.302,0.388)内时为优等品现随机抽取6件合格产品,测得数据如下:尺寸()mm x 384858687888质量()g y 16.818.820.722.42425.5质量与尺寸的比yx0.4420.3920.3570.3290.3080.290(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率;(2)根据测得数据作了初步处理,得相关统计量的值如下表:()61ln ln i i i x y =⋅∑()61ln i i x =∑()61ln i i y =∑()621ln i i x =∑75.324.618.3101.4根据所给统计量,求y 关于x 的回归方程.附:对于样本()(),1,2,,6i i v u i =,其回归直线u b v a =⋅+的斜率和截距的最小二乘法估计公式分别为:()()()1122211nniii i i i nniii i v v u u v u nvub v v vnv====---==--∑∑∑∑,a u bv =-, 2.7183e ≈.19.(本题12分)如图,在以P ,底面圆的直径AB 长为2,O 为圆心.C 是圆O 所在平面上一点,且AC 与圆O 相切.连接BC 交圆于点D ,连接PD ,PC ,E 是PC 的中点,连接OE ,ED .(1)求证:平面PBC ⊥平面PAC ;(2)若二面角B PO D --的大小为23π,求平面PAC 与平面DOE 所成锐二面角的余弦值.20.(本题12分)已知抛物线24x y =,F 为其焦点,椭圆()222210x y a b a b+=>>,1F ,2F 为其左右焦点,离心率12e =,过F 作x 轴的平行线交椭圆于P ,Q两点,3PQ =.(1)求椭圆的标准方程;(2)过抛物线上一点A 作切线l 交椭圆于B ,C 两点,设l 与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴为K ,KED △,FOD △的面积分别记为1S ,2S ,若121849S S =,且点A 在第一象限.求点A 的坐标.21.(本题12分)已知函数()()1xf x x e =-,()lng x a x =+,其中e 是自然对数的底数.(1)若曲线()y f x =在1x =处的切线与曲线()y g x =也相切.求实数a 的值;(2)设()()()h x bf x g x a =-+,求证:当10b e<<时,()h x 恰好有2个零点.(22题与23题为选做题,二选一)22.(本题10分)在直角坐标系xOy 中,曲线C 的参数方程为22114x t ty t t ⎧=+⎪⎪⎨⎪=+-⎪⎩(t 为参数).(1)求曲线C 的普通方程;(2)以O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为6πθ=,()ρ∈R ,直线l 与曲线C 交于A ,B 两点,求线段AB 的长度AB .23.(本题10分)已知函数()1144f x x x =-++,M 为不等式()2f x ≤的解集.(1)求M ;(2)证明:当a ,b M ∈时,a b ≥-.成都七中2020-2021学年度上期2021届高三入学考试数学试卷(理科)答案1-5:CBCBD 6-10:BBBDA 11-12:DB1314.1-15.1或316.512+17.【答案】(Ⅰ)1321n n n a b n -==-(Ⅱ)1133n n n T -+=-【解析】(1)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥.又21213a S =+=,所以213a a =.故{}n a 是首项为1,公比为3的等比数列.所以13n n a -=.由点()1,n n P b b +在直线20x y -+=上,所以12n n b b +-=.则数列{}n b 是首项为1,公差为2的等差数列.则()11221n b n n =+-⋅=-.(Ⅱ)因为1213n n n n b n c a --==,所以0121135213333n n n T --=++++.则12311352133333n nn T -=++++,两式相减得:21222221133333n n n n T --=++++-11113321121313n nn -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦=+⨯--1121233n nn --⎛⎫=--⎪⎝⎭∴21112113323233n n n n n n T ----+=--=-⋅⋅18.【答案】(1)15;(2)0.5y ex =.【解析】(1)由已知,优等品的质量与尺寸的比()0.302,0.388yx∈则随机抽取的6件合格产品中,有3件为优等品,有3件为非优等品,所求概率为232631155C P C ===.(2)对by c x =⋅两边取自然对数得ln ln ln y c b x =+令ln i i v x =,ln i i u y =,则u b v a =⋅+,且ln a c =由所给统计量及最小二乘估计公式有:11222175.324.618.360.271101.424.660.542nii n i i v unuvb v nv==--⨯÷====-÷-∑∑118.324.6216a u bv ⎛⎫-⨯ ⎪⎝⎭=-==,由ln a c =得c e =,所以y 关于x 的回归方程为0.5y ex=.19.【解析】(1)证明:AB 是底面圆的直径,AC 与圆切于点A ,所以AC AB ⊥,又PO ⊥底面,则PO AC ⊥,PO AB O =,所以:AC ⊥面PAB AC PB ⇒⊥,又因为,在三角形PAB 中,2PA PB AB PA PB ==⇒⊥PA AC A =,所以PB ⊥面PAC ,∵PB ⊂面PBC所以:平面PBC ⊥平面PAC ;(2)因为OB PO ⊥,OD PO ⊥,∴BOD ∠为二面角B PO D --的平面角,∴23BOD π∠=,如图建立坐标系,易知1OB =,则()0,1,0A -,()0,1,0B ,1,,022D ⎛⎫- ⎪ ⎪⎝⎭,,1,03C ⎛⎫- ⎪ ⎪⎝⎭,()0,0,1P ,11,,322E ⎛⎫- ⎪ ⎪⎝⎭,由(1)知()0,1,1BP =-为平面PAC 的一个法向量,设平面ODE 的法向量为(),,n x y z =,311311,,0322322OE x y z ⎛⎫=-⇒-+= ⎪ ⎪⎝⎭,11,,002222OD x y ⎛⎫=-⇒-= ⎪ ⎪⎝⎭,解得:()3,3,1n =,26cos 13n BP n BPθ⋅==.20.【答案】(1)22143x y +=.(2)()2,1【解析】(1)不妨设P 在第一象限,由题可知26,13P ⎛⎫⎪ ⎪⎝⎭,∴228113a b +=,又∵12e =,∴22811123c c +=,可得1c =,椭圆的方程为22143x y +=.(2)设200,4x A x ⎛⎫ ⎪⎝⎭则切线l 的方程为20024x x y x =-代入椭圆方程得:()4223031204x x x x x +-+-=,设()11,B x y ,()22,C x y ,()33,E x y ,则()3012320223x x x x x +==+,()22000332032443x x x y x x =-=-+,KE 的方程为()()230022000324323x x y x x x x ⎡⎤⎢⎥+=--++⎢⎥⎣⎦,即()20200243x y x x x =-++,令0y =得()302083K x x x =+,在直线l 方程中令0y =得02D x x =,222004124x x FD +⎛⎫=+=⎪⎝⎭()()()23000022003428383x x x x DK x x +=-=++,02FD k x =-,02BC x k =,∴1FD BC k k ⋅=-,FD BC ⊥,∴~DEK FOD △△,∴()()22200122220941849163x x S DK S FD x +===+.化简得()()2200177240x x+-=,∴02x =(02x =-舍去)∴A 的坐标为()1,1,()4223031204x x x x x +-+-=,()()462420000431234814404x x x x x ⎛⎫∆=-+-=---≥ ⎪⎝⎭,因为2008x ≤≤+,故此解符合题意.21.【解析】(1)由()()1xf x x e =-得()xf x xe '=,所以切线的斜率()1k f e '==.因为切点坐标为()1,0,所以切线的方程为()1y e x =-.设曲线()y g x =的切点坐标为()11,x y .由()ln g x a x =+得()1g x x '=,所以()111g x e x '==,得11x e =.所以切点坐标为1,1a e⎛⎫- ⎪⎝⎭.因为对1,1a e⎛⎫- ⎪⎝⎭也在直线()1y e x =-上.所以2a e =-.(2)由()()1ln xh x b x e x =--,得()211x xbx e h x bxe x x-'=-=.令()21xm x bx e =-,0x >,当10b e<<时,()()220x m x bx bx e '=+>,故()m x 在()0,+∞上单调递增.又因为()110m be =-<,且221111ln ln 1ln 10m b b b b b ⎛⎫⎛⎫⎛⎫=⋅-=-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以()0m x =在()0,+∞上有唯一解,从而()0h x '=在()0,+∞上有唯一解.不妨设为0x ,则011lnx b <<.当()00,x x ∈时,()()()00m x m x h x x x'=<=,所以()h x 在()00,x 上单调递减;当()0,x x ∈+∞时,()()()00m x m x h x x x'=>=,所以()h x 在()0,x +∞上单调递增.故0x 是()h x 的唯一极值点.令()ln 1t x x x =-+,则当1x >时,()110t x x'=-<,所以()t x 在()1,+∞上单调递减,从而当1x >时,()()10t x t <=,即ln 1x x <-,所以1ln 111ln ln 1ln ln b h b e b b b ⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111ln 1ln ln ln 0t b b b ⎛⎫⎛⎫=--=-> ⎪ ⎪⎝⎭⎝⎭,又因为()()010h x h <=,所以()h x 在()0,x +∞上有唯一零点.又因为()h x 在()00,x 上有唯一零点,为1,所以()h x 在()0,+∞上恰好有2个零点.另解:∵02011x x e e b =>>,∴0111x b <<+,再证明11111ln 10b h e b b +⎛⎫⎛⎫+=-+> ⎪ ⎪⎝⎭⎝⎭.22.【答案】(1)26y x =-(2x ≤-或2x ≥);(2.【解析】(1)曲线C 的参数方程为221,14, x t t y t t ⎧=+⎪⎪⎨⎪=+-⎪⎩①②(t 为参数),将①式两边平方,得22212x t t =++③,③②,得26x y -=,即26y x =-,因为112x t t t t =+=+≥,当且仅当1t t =,即1t =±时取“=”,所以2x ≥,即2x ≤-或2x ≥,所以曲线C 的普通方程为26y x =-(2x ≤-或2x ≥).(2)把cos sin x y ρθρθ=⎧⎨=⎩代入曲线C 得:22sin cos 6ρθρθ=-,()cos 2ρθ≥,则曲线C 的极坐标方程为22sin cos 6ρθρθ=-,()cos 2ρθ≥设A ,B 的极坐标分别为1,6A πρ⎛⎫ ⎪⎝⎭,2,6B πρ⎛⎫ ⎪⎝⎭,由226sin cos 6πθρθρθ⎧=⎪⎨⎪=-⎩得22sin cos 666ππρρ=-,即232240ρρ--=,且3ρ≥因为44324473∆=+⨯⨯=⨯,∴1733ρ-=或1733ρ=,满足433ρ≥,不妨设11733ρ-=,21733ρ+=所以12AB ρρ=-=注:没考虑433ρ≥要酌情扣分23.【解析】(1)()12,,411111,,4424412,4x x f x x x x x x ⎧-≤-⎪⎪⎪=-++=-<<⎨⎪⎪≥⎪⎩所以不等式的解集为[]1,1M =-.(2)要证a b ≥-,只需证a b ≥-,即证()241ab a b -≥-,只需证22442ab a ab b -≥-+,即2242a ab b ≥++,即证()24a b ≥+,只需证2a b≥+因为a ,b M ∈,所以2a b +≤,所以所证不等式成立.。

相关文档
最新文档