建筑物的地震荷载及抗震设计(翻译)

合集下载

荷载的名词解释

荷载的名词解释

荷载的名词解释荷载(Load)是一个广泛应用于工程学和科学领域的概念,指的是对物体施加的外部力或负荷。

荷载可以由各种因素引起,如重力、风压、振动、温度变化等。

在不同的领域中,荷载的概念和计算方法可能存在一些差异。

本文将解释荷载的一般概念,以及在工程学和结构设计中的应用。

1.荷载的定义和分类荷载是指施加在物体上的外部力或负荷,可以是静态的或动态的,作用时间可以是短暂的或长期的。

荷载可以分为几种不同的分类,常见的有以下几种:1.1 死荷载(Dead Load):也被称为永久荷载,是指物体本身的重力或其他固定在物体上的重量。

例如建筑物的自重、固定设施的重量等都属于死荷载。

1.2 活荷载(Live Load):也被称为可变荷载,是指施加在物体上的可变力或负荷,通常由人、车辆、设备等因素引起。

例如桥梁上行驶的车辆、人群在建筑物上的活动等都属于活荷载。

1.3 风荷载(Wind Load):是指由风对物体施加的力量,风的速度和方向会对结构物产生不同的荷载。

风荷载在建筑物、桥梁以及高大结构物的设计中十分重要。

1.4 地震荷载(Seismic Load):是指地震引起的力量,地震荷载的大小取决于地震的震级、距离和土地条件等因素。

地震荷载在抗震设计中必须被考虑。

2.荷载在工程设计中的应用荷载在工程设计中起着至关重要的作用,工程师需要根据不同的荷载情况来设计和计算结构的强度和稳定性。

以下是一些应用示例:2.1 建筑结构设计:在建筑设计中,工程师需要考虑到各种荷载,如死荷载、活荷载、风荷载等。

通过计算这些荷载对建筑物的影响,工程师能够确定建筑物的结构材料和尺寸,确保其在正常使用和极端情况下的安全性和稳定性。

2.2 桥梁设计:桥梁是承载车辆和行人的重要交通设施,因此桥梁设计中的荷载计算尤为重要。

工程师需要考虑到车辆荷载、行人荷载、风荷载等因素,并根据不同的设计要求和标准进行合理的荷载分析,以确保桥梁的稳定性和耐久性。

2.3 机械设计:在机械工程领域,荷载的计算和应用对于机械设备的设计和性能评估有重要影响。

建筑抗震设计手册

建筑抗震设计手册

建筑抗震设计手册1. 简介建筑抗震设计是指在建筑物设计、建造以及使用过程中,采取一系列措施来提高建筑物的抗震能力,以抵御地震的破坏。

本手册将介绍建筑抗震设计的基本原理、方法和注意事项。

2. 地震基础知识地震是指地球内部因板块运动而产生的地壳震动现象。

了解地震的基本原理和特点对于建筑抗震设计至关重要。

本章将介绍地震的概念、地震波传播原理以及地震烈度等基础知识。

3. 抗震设计原则抗震设计的基本原则是通过合理的结构设置和设计方案来提高建筑物的抗震能力。

本章将介绍一些常用的抗震设计原则,包括刚度与弯矩分布的控制、结构的重心和质量分布、抗震支撑系统的选择等。

4. 结构材料选择建筑抗震设计中,选择合适的结构材料对于建筑物的抗震性能至关重要。

本章将介绍一些常用的结构材料,并分析它们在抗震设计中的适用性和特点。

5. 结构分析方法结构分析是建筑抗震设计的关键步骤之一,通过分析建筑物在地震荷载下的响应情况,可以评估建筑物的抗震能力。

本章将介绍常用的结构分析方法,如静力分析、动力分析等,并比较它们的优缺点。

6. 建筑抗震设计规范为保证建筑物的抗震能力,各国都制定了相应的建筑抗震设计规范。

本章将介绍一些国际上常用的建筑抗震设计规范,如美国的IBC规范、中国的GB 50011规范等,并分析其主要内容和应用范围。

7. 抗震设防等级根据地震烈度和建筑物的重要性,可以制定不同的抗震设防等级来要求建筑物达到不同的抗震性能。

本章将介绍常见的抗震设防等级,并对不同等级的要求进行解读。

8. 抗震设计案例分析通过实际的抗震设计案例分析,可以更好地理解抗震设计的过程和原理。

本章将介绍一些典型的抗震设计案例,并分析其设计思路和取得的效果。

9. 抗震设计的新技术和新方法随着科技的不断进步,建筑抗震设计也在不断发展。

本章将介绍一些新技术和新方法在抗震设计中的应用,如基础隔震、减震装置等,并探讨其未来的发展方向。

10. 结论建筑抗震设计是保障建筑物安全的重要环节。

高层建筑结构设计荷载和地震作用

高层建筑结构设计荷载和地震作用
多重抗震措施
为了提高高层建筑的抗震性能,可以采取多重抗震措施, 如设置抗震隔离层、采用隔震支座、安装消能器等。
抗震加固
对于已经建成的老旧高层建筑,如果其抗震性能不足,需 要进行抗震加固。常用的抗震加固方法包括增大截面法、 粘贴钢板法、碳纤维加固法等。
04
结构设计实例
上海中心大厦结构设计
建筑高度
上海中心大厦高度达 632米,是中国第一高
结构反应
02
结构反应是指高层建筑在地震作用下的变形和内力分布情况。
结构抗震性能评估
03
通过对结构反应的分析,评估高层建筑的抗震性能,确定是否
需要进行抗震加固或采取其他措施。
抗震设计方法
基于性能的抗震设计
基于性能的抗震设计是一种以结构性能目标为导向的抗震 设计方法,通过对不同性能目标下的结构反应进行分析和 评估,选择最优的抗震设计方案。
高层建筑未来发展方向
超高层建筑
随着技术的不断进步,未来高层建筑的高度将不断增加,超高层建筑将成为一种新的发展 趋势。
绿色化建筑
未来高层建筑将更加注重绿色环保,采用更多的可再生能源和环保材料,降低能耗和环境 影响。
智能化建筑
未来高层建筑将更加注重智能化设计和管理,利用先进的计算机技术和物联网技术,提高 建筑的智能化水平和运营效率。
结构设计的优化建议
精细化设计
高层建筑的结构设计需要更加精细化,考虑更多的因素,如风荷载 、地震作用、材料性能等,以确保结构的安全性和稳定性。
智能化设计
利用计算机技术和数值模拟方法,进行高层建筑的结构设计和优化 ,提高设计效率和准确性。
创新性设计
鼓励采用新的结构形式和材料,以及新的施工方法和技术,提高高层 建筑的结构性能和经济效益。

设计方案英文翻译

设计方案英文翻译

设计方案英文翻译篇一:建筑设计方案、初设及施工图深度(带英文翻译)2 方案设计2 Project Design/Concept Design2.1 一般要求2.1 General Requirements2.1.1 方案设计文件2.1.1 Project design documents1 设计说明书,包括各专业设计说明以及投资估算等内容;1 The design specifications include various professional design specifications and investment estimation; for those professions involved with building energy-effective design, the design specification shall include the special content related to the building energy-efficiency;2 总平面图以及建筑设计图纸(若为城市区域供热或区域煤气调压站,应提供热能动力专业的设计图纸,具体见2.3.3条);2 The general layout and the building design drawings (forthe urban district heating or regional gas pressure-regulating station,professional thermal power design drawings shall be provided,details are shown in Article 2.3.3);3 设计委托或设计合同中规定的透视图、鸟瞰图、模型等。

3 The scenograph, bird's-eye view and model specified in the design commission or design contract2.1.2 方案设计文件的编排顺序2.1.2 Editing sequence of the project design document1 封面:写明项目名称、编制单位、编制年月;1 Cover: project name, preparation units and preparation date2 扉页:写明编制单位法定代表人、技术总负责人、项目总负责人的姓名,并经上述人员签署或授权盖章;2 Title page: the name of the legal representative, generaltechnical superintendent and the general project superintendent of the preparation unit, and signed by the above person or authorized with stamp;3 设计文件目录;3 design document directory;4 设计说明书;4 design specifications;5 设计图纸。

土木工程专业英语课文原文及对照翻译

土木工程专业英语课文原文及对照翻译

土木工程专业英语课文原文及对照翻译Civil EngineeringCivil engineering, the oldest of the engineering specialties, is the planning, design, construction, and management of the built environment. This environment includes all structures built according to scientific principles, from irrigation and drainage systems to rocket-launching facilities.土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。

此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。

Civil engineers build roads, bridges, tunnels, dams, harbors, power plants, water and sewage systems, hospitals, schools, mass transit, and other public facilities essential to modern society and large population concentrations. They also build privately owned facilities such as airports, railroads, pipelines, skyscrapers, and other large structures designed for industrial, commercial, or residential use. In addition, civil engineers plan, design, and build complete cities and towns, and more recently have been planning and designing space platforms to house self-contained communities.土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。

抗震设计方法概述

抗震设计方法概述

抗震设计方法概述抗震设计是指在建筑物设计过程中,通过采用合理的构造形式、结构材料和施工工艺,使建筑物在地震荷载作用下能够保持结构安全、整体稳定的设计方法。

抗震设计旨在提高建筑物的抗震能力,减少地震灾害对建筑物的破坏程度,保护人们的生命安全和财产安全。

1.地震动参数分析:通过收集和分析地震波数据,确定地震动参数,包括地震波的频率、加速度、速度、位移等,以及地震波的周期、震中距等指标。

这些参数是进行抗震设计的基础数据。

2.结构动力计算:结构动力计算是根据地震动参数对建筑物的结构进行计算和分析,包括确定结构的固有周期、峰值加速度、峰值速度、峰值位移等参数。

根据结构的分布情况和性能目标,选择合适的结构计算方法,如静力、模态超静定、动力等方法。

3.结构抗震设计原则:结构抗震设计的原则包括减震、隔震、增加结构的延性、加强节点和连接部位等。

减震和隔震是通过在结构中引入减震器和隔震装置,降低地震动对结构的影响,减小地震反应力。

增加结构的延性是指通过合理的结构形式和材料选择,使结构在地震作用下具有较大的变形能力,吸收地震能量。

加强节点和连接部位是指在结构中对连接部位和节点进行合理的设计和加固,使之能够承受地震作用带来的巨大力。

4.结构材料和构造形式选择:结构材料和构造形式的选择是抗震设计中的重要环节。

抗震设计要选择抗震性能良好的材料,如高强度混凝土、耐震钢筋等。

同时,结构的构造形式也要考虑满足抗震要求,如采用框架结构、剪力墙结构、筒状结构等。

5.结构安全评价和改进:通过对结构进行安全性评价,分析结构的抗震性能和强度耗能能力,发现可能存在的弱点,然后提出改进措施和加强设计,以提高结构的抗震性能。

6.地基加固与基础设计:对于软弱地基,需要采取相应的加固措施,如挖槽加宽,加强土体的固结和增加夯实度等。

对于基础设计,要合理确定基础形式和尺寸,采用适当的承载能力设计参数。

地震的英语作文带翻译

地震的英语作文带翻译

地震的英语作文带翻译Earthquake – A Natural Disaster。

地震——一场自然灾害。

Earthquake is one of the most devastating natural disasters that can occur on our planet. It is caused by the sudden release of energy from the Earth's crust, resulting in seismic waves that can cause significant damage to buildings, infrastructure, and even human life. Thisarticle will explore the causes, effects, and measures to mitigate the impact of earthquakes.地震是我们星球上最具破坏力的自然灾害之一。

它是由地壳突然释放能量引起的,导致地震波对建筑物、基础设施甚至人类生命造成重大破坏。

本文将探讨地震的原因、影响以及减轻地震影响的措施。

Causes of Earthquakes。

地震的原因。

Earthquakes are caused by the movement of tectonic plates, which are large pieces of the Earth's crust that float on the molten mantle. When these plates move against each other, they create friction, which builds up pressure over time. When the pressure becomes too great, the plates suddenly shift, causing an earthquake.地震是由构造板块的运动引起的,构造板块是浮在熔融地幔上的大块地壳。

地震对建筑物的抗震设计要求

地震对建筑物的抗震设计要求

地震对建筑物的抗震设计要求地震是一种破坏性极大的自然灾害,对建筑物的破坏程度有着重要的影响。

为了保障人们的生命安全和财产安全,建筑物的抗震设计成为了至关重要的环节。

本文将探讨地震对建筑物抗震设计的要求,包括结构强度、刚度和稳定性等方面。

一、结构强度的要求地震作为一种巨大的地表运动,对建筑物的结构系统提出了较高的强度要求。

首先,建筑物的结构系统需要保证足够的抗震强度,以承受地震引起的水平和垂直荷载。

其次,建筑物的构件应具备足够的抗剪、抗弯和抗压能力,以抵御地震引起的各种力的作用。

此外,建筑物的地基和基础也需要具备一定的强度,在地震中稳定地承受建筑物的重力和地震力。

二、结构刚度的要求地震引起的地面振动是建筑物受到地震作用的主要方式之一。

为了减小地震对建筑物的冲击力,建筑物需要具备足够的刚度。

首先,建筑物的主体结构需要具备足够的抗弯刚度和扭转刚度,以保持建筑物的整体稳定性。

其次,建筑物的墙体、柱子和地板等构件也需要具备一定的刚度,以均匀地分担地震荷载并减小结构的挠度。

此外,建筑物的连接节点也需要具备一定的刚度,在地震中保证结构系统的完整性。

三、结构稳定性的要求地震对建筑物的稳定性和完整性提出了极高的要求。

在地震中,建筑物受到水平力和垂直力的作用,容易产生剪切变形和扭转变形。

为了保证结构的稳定性,建筑物需要具备足够的抗倾覆和抗滑移能力。

此外,建筑物的结构系统也需要具备良好的整体性,以保证结构在地震中不发生破坏和崩塌的现象。

四、其他要求除了结构强度、刚度和稳定性的要求,地震对建筑物的抗震设计还有一些其他要求。

首先,建筑物的重要设备和附属设施也需要具备一定的抗震性能,以保证在地震中的安全运行。

其次,建筑物的材料选择和外墙装饰也需要考虑到地震的影响,选择适合的材料并采取合理的装饰措施。

此外,建筑物的消防安全系统也需要符合地震需求,以保障在地震中的人员疏散和安全救援。

综上所述,地震对建筑物的抗震设计提出了结构强度、刚度、稳定性和其他方面的要求。

建筑工程中的名词解释有哪些

建筑工程中的名词解释有哪些

建筑工程中的名词解释有哪些建筑工程是一个庞大而复杂的领域,涉及各种专业术语和名词。

这些名词解释对于建筑师、工程师和各种建筑从业人员来说是非常重要的。

在本文中,我们将探讨一些常见的建筑工程名词的解释,并深入了解它们在实际工程中的应用。

一、基础设施基础设施是指建筑物或工程项目中提供支撑和支持的基本结构。

它通常包括道路、桥梁、给水系统、排水系统、电力设施等。

基础设施的建设是任何一个城市或地区的发展和运行的基础。

二、结构建筑结构是建筑物的骨架,承担着分散和传递荷载的重要功能。

它包括框架结构、悬挑结构、拱结构等。

在结构设计中,工程师会考虑各种因素,如重力荷载、风荷载、地震荷载等,以确保建筑物的安全性和稳定性。

三、土力学土力学是研究土壤力学性质及其应用的科学领域。

土力学考虑了土壤的力学行为,如承载力、变形特性、渗透性等。

在建筑工程中,土力学对于土壤基础的设计和地基处理是至关重要的。

四、抗震设计抗震设计是为了提高建筑物在地震中的抗震性能而进行的设计工作。

它包括对建筑物结构和材料的选择,以及地震荷载的分析和计算。

抗震设计旨在减少建筑物在地震中的破坏程度,确保人员的生命安全。

五、施工工艺施工工艺是指在建筑工程中实施建造和安装的具体方法和程序。

它包括施工方案、施工流程、施工机械和设备的选择与调配等。

施工工艺的合理性和高效性对于项目的顺利进行至关重要。

六、建筑材料建筑材料是指用于建筑、装修和维护建筑物的材料。

常见的建筑材料包括水泥、钢筋、砖石、混凝土等。

在建筑工程中,选择合适的建筑材料可以确保建筑物的质量和持久性。

七、质量控制质量控制是为了确保建筑工程的质量符合规定标准而进行的管理过程。

它包括质量检验、质量监控和质量评估等。

质量控制的目标是通过合理的管理和监督措施,减少缺陷和错误,提高工程的质量水平。

八、可持续建筑可持续建筑是指在设计、施工和运营中以最大限度地减少对环境的影响,并提高资源利用效率的建筑。

它通常采用节能、水资源管理、可再生能源利用等措施。

外文翻译---高层建筑及结构设计

外文翻译---高层建筑及结构设计

外文翻译---高层建筑及结构设计High-rise XXX to define。

Generally。

a low-rise building is considered to be een 1 to 2 stories。

while a medium-rise building ranges from 3 or 4 stories up to 10 or 20 stories or more。

While the basic principles of vertical and horizontal subsystem design remain the same for low-。

medium-。

or high-rise buildings。

the vertical subsystems XXX high-XXX requiring larger columns。

walls。

XXX。

XXX.The design of high-rise buildings must take into account the unique XXX by their height and the need to withstand lateral forces such as wind and earthquakes。

One important aspect of high-rise design is the framework shear system。

XXX。

braced frames。

or XXX the appropriate system depends on the specific building characteristics and the seismicity of the n in which it is located.Another key n in high-rise design is the seismic system。

建筑英文翻译

建筑英文翻译

建筑结构中英文翻译(相当于词典)Aacceptable quality:合格质量acceptance lot:验收批量aciera:钢材admixture:外加剂against slip coefficient between friction surface of high-strength bolted connection:高强度螺栓摩擦面抗滑移系数aggregate:骨料air content:含气量air-dried timber:气干材allowable ratio of height to sectional thickness of masonry wall or column:砌体墙、柱允许高厚比allowable slenderness ratio of steel member:钢构件允许长细比allowable slenderness ratio of timber compression member:受压木构件允许长细比allowable stress range of fatigue:疲劳允许应力幅allowable ultimate tensile strain of reinforcement:钢筋拉应变限值allowable value of crack width:裂痕宽度允许值allowable value of deflection of structural member:构件挠度允许值allowable value of deflection of timber bending member:受弯木构件挠度允许值allowable value of deformation of steel member:钢构件变形允许值allowable value of deformation of structural member:构件变形允许值allowable value of drift angle of earthquake resistant structure:抗震结构层间位移角限值amplified coefficient of eccentricity:偏心距增大系数anchorage:锚具anchorage length of steel bar:钢筋锚固长度approval analysis during construction stage:施工阶段验算arch:拱arch with tie rod:拉捍拱arch—shaped roof truss:拱形屋架area of shear plane:剪面面积area of transformed section:换算截面面积aseismic design:建筑抗震设计assembled monolithic concrete structure:装配整体式混凝土结构automatic welding:自动焊接auxiliary steel bar:架立钢筋Bbackfilling plate:垫板balanced depth of compression zone:界限受压区高度balanced eccentricity:界限偏心距bar splice:钢筋接头bark pocket:夹皮batten plate:缀板beam:次梁bearing plane of notch:齿承压面(67)bearing plate:支承板(52)bearing stiffener:支承加劲肋(52)bent-up steel bar:弯起钢筋(35)block:砌块(43)block masonry:砌块砌体(44)block masonry structure:砌块砌体结构(41)blow hole:气孔(62)board:板材(65)bolt:螺栓(54)bolted connection:(钢结构)螺栓连接(59)bolted joint:(木结构)螺栓连接(69)bolted steel structure:螺栓连接钢结构(50)bonded prestressed concrete structure:有粘结预应力混凝土结构(24) bow:顺弯(71)brake member:制动构件(7)breadth of wall between windows:窗间墙宽度(46)brick masonry:砖砌体(44)brick masonry column:砖砌体柱(42)brick masonry structure:砖砌体结构(41)brick masonry wall:砖砌体墙(42)broad—leaved wood:阔叶树材(65)building structural materials:建筑结构材料(17)building structural unit:建筑结构单元(building structure:建筑结构(2built—up steel column:格构式钢柱(51bundled tube structure:成束筒结构(3burn—through:烧穿(62butt connection:对接(59butt joint:对接(70)butt weld:对接焊缝(60)Ccalculating area of compression member:受压构件计算面积(67)calculating overturning point:计算倾覆点(46)calculation of load-carrying capacity of member:构件承载能力计算(10) camber of structural member:结构构件起拱(22)cantilever beam :挑梁(42)cap of reinforced concrete column:钢筋混凝土柱帽(27)carbonation of concrete:混凝土碳化(30)cast-in—situ concrete slab column structure :现浇板柱结构cast-in—situ concrete structure:现浇混凝土结构(25)cavitation:孔洞(39)cavity wall:空斗墙(42)cement:水泥(27)cement content:水泥含量(38)cement mortar:水泥砂浆(43)characteriseic value of live load on floor or roof:楼面、屋面活荷载标准值(14)characteristi cvalue o fwindload:风荷载标准值(16)characteristic value of concrete compressive strength:混凝土轴心抗压强度标准值(30)characteristic value of concrete tensile strength:混凝土轴心抗拉标准值(30)characteristic value of cubic concrete compressive strength:混凝土立方体抗压强度标准值(29)characteristic value of earthquake action:地震作用标准值(16)characteristic value of horizontal crane load:吊车水平荷载标准值(15)characteristic value of masonry strength:砌体强度标准值(44)characteristic value of permanent action·:永久作用标准值(14)characteristic value of snowload:雪荷载标准值(15)characteristic value of strength of steel:钢材强度标准值(55)characteristic value of strength of steel bar:钢筋强度标准值(31)characteristic value of uniformly distributed live load:均布活标载标准值(14)characteristic value of variable action:可变作用标准值(14)characteristic value of vertical crane load:吊车竖向荷载标准值(15)charaeteristic value of material strength:材料强度标准值(18)checking section of log structural member·,:原木构件计算截面(67)chimney:烟囱(3)circular double—layer suspended cable:圆形双层悬索(6)circular single—layer suspended cable:圆形单层悬索(6)circumferential weld:环形焊缝(60)classfication for earthquake—resistance of buildings·:建筑结构抗震设防类别(9)clear height:净高(21)clincher:扒钉(?0)coefficient of equivalent bending moment of eccentrically loaded steel memher(beam-column) :钢压弯构件等效弯矩系数(58)cold bend inspection of steelbar:冷弯实验(39)cold drawn bar:冷拉钢筋(28)cold drawn wire:冷拉钢丝(29)cold—formed thin—walled sectionsteel:冷弯薄壁型钢(53)cold-formed thin-walled steel structure·‘:冷弯薄壁型钢结构(50) cold—rolled deformed bar:冷轧带肋钢筋(28)column bracing:柱间支撑(7)combination value of live load on floor or roof:楼面、屋面活荷载组合值(15) compaction:密实度(37)compliance control:合格控制(23)composite brick masonry member:组合砖砌体构件(42)composite floor system:组合楼盖(8)composite floor with profiled steel sheet:压型钢板楼板(8)composite mortar:混合砂浆(43)composite roof truss:组合屋架(8)compostle member:组合构件(8)compound stirrup:复合箍筋(36)compression member with large eccentricity·:大偏心受压构件(32) compression member with small eccentricity·:小偏心受压构件(32) compressive strength at an angle with slope of grain:斜纹承压强度(66) compressive strength perpendicular to grain:横纹承压强度(66) concentration of plastic deformation:塑性变形集中(9)conceptual earthquake—resistant design:建筑抗震概念设计(9) concrete:混凝土(17)concrete column:混凝土柱(26)concrete consistence:混凝土稠度(37)concrete floded—plate structure:混凝土折板结构(26)concrete foundation:混凝土基础(27)concrete mix ratio:混凝土配合比(38)concrete wall:混凝土墙(27)concrete-filled steel tubular member:钢管混凝土构件(8)conifer:针叶树材(65)coniferous wood:针叶树材(65)connecting plate:连接板(52)connection:连接(21)connections of steel structure:钢结构连接(59)connections of timber structure:木结构连接(68)consistency of mortar:砂浆稠度(48)constant cross—section column:等截面柱(7)construction and examination concentrated load:施工和检修集中荷载(15) continuous weld:持续焊缝(60)core area of section:截面核芯面积(33)core tube supported structure:核心筒悬挂结构(3)corrosion of steel bar:钢筋锈蚀(39)coupled wall:连肢墙(12)coupler:连接器(37)coupling wall—beam :连梁(12)coupling wall—column...:墙肢(12)coursing degree of mortar:砂浆分层度(48)cover plate:盖板(52)covered electrode:焊条(54)crack:裂痕(?0)crack resistance:抗裂度(31)crack width:裂痕宽度(31)crane girder:吊车梁(?)crane load:吊车荷载(15)creep of concrete:混凝土徐变(30)crook:横弯(71)cross beam:井字梁(6)cup:翘弯curved support:弧形支座(51)cylindrical brick arch:砖筒拱(43)Ddecay:腐朽(71)decay prevention of timber structure:木结构防腐(70)defect in timber:木材缺点(70)deformation analysis:变形验算(10)degree of gravity vertical for structure or structural member·:结构构件垂直度(40) degree of gravity vertical forwall surface:墙面垂直度(49)degree of plainness for structural memer:构件平整度(40)degree of plainness for wall surface:墙面平整度(49)depth of compression zone:受压区高度(32)depth of neutral axis:中和轴高度(32)depth of notch:齿深(67)design of building structures:建筑结构设计(8)design value of earthquake-resistant strength of materials:材料抗震强度设计值(1 design value of load—carrying capacity of members·:构件承载能力设计值(1 designations 0f steel:钢材牌号(53designvalue of material strength:材料强度设计值(1destructive test:破损实验(40detailing reintorcement:构造配筋(35detailing requirements:构造要求(22diamonding:菱形变形(71)diaphragm:横隔板(52dimensional errors:尺寸误差(39)distribution factor of snow pressure:屋面积雪散布系数dogspike:扒钉(70)double component concrete column:双肢柱(26)dowelled joint:销连接(69)down-stayed composite beam:下撑式组合粱(8)ductile frame:延性框架(2)dynamic design:动态设计(8)Eearthquake-resistant design:抗震设计(9:earthquake-resistant detailing requirements:抗震构造要求(22)effective area of fillet weld:角焊缝有效面积(57)effective depth of section:截面有效高度(33)effective diameter of bolt or high-strength bolt·:螺栓(或高强度螺栓)有效直径(57) effective height:计算高度(21)effective length:计算长度(21)effective length of fillet weld:角焊缝有效计算长度(48)effective length of nail:钉有效长度(56)effective span:计算跨度(21)effective supporting length at end of beam:梁端有效支承长度(46)effective thickness of fillet weld:角焊缝有效厚度(48)elastic analysis scheme:弹性方案(46)elastic foundation beam:弹性地基梁(11)elastic foundation plate:弹性地基板(12)elastically supported continuous girder·:弹性支座持续梁(u)elasticity modulus of materials:材料弹性模量(18)elongation rate:伸长率(15)embeded parts:预埋件(30)enhanced coefficient of local bearing strength of materials·:局部抗压强度提高系数(14) entrapped air:含气量(38)equilibrium moisture content:平衡含水率(66)equivalent slenderness ratio:换算长细比(57)equivalent uniformly distributed live load·:等效均布活荷载(14)etlectlve cross—section area of high-strength bolt·:高强度螺栓的有效截面积(58) ettectlve cross—section area of bolt:螺栓有效截面面积(57)euler’s critical load:欧拉临界力(56)euler’s critical stress:欧拉临界应力(56) excessive penetration:塌陷(62)Ffiber concrete:纤维混凝仁(28)filler plate:填板门2)fillet weld:角焊缝(61)final setting time:终凝时刻()finger joint:指接(69)fired common brick:烧结普通砖(43)fish eye:白点(62)fish—belly beam:角腹式梁(7)fissure:裂痕(?0)flexible connection:柔性连接(22)flexural rigidity of section:截面弯曲刚度(19) flexural stiffness of member:构件抗弯刚度(20) floor plate:楼板(6)floor system:楼盖(6)four sides(edges)supported plate:四边支承板(12) frame structure:框架结构(2)frame tube structure:单框筒结构(3)frame tube structure:框架—简体结构(2) frame with sidesway:有侧移框架(12)frame without sidesway:无侧移框架(12) frange plate:翼缘板(52)friction coefficient of masonry:砌体摩擦系数(44) full degree of mortar at bed joint:砂浆饱满度(48) function of acceptance:验收函数(23)Ggang nail plate joint:钉板连接()glue used for structural timberg:木结构用胶glued joint:胶合接头glued laminated timber:层板胶合木(¨)glued laminated timber structure:层板胶合结构‘61)grider:主梁((㈠grip:夹具grith weld:环形焊缝(6÷))groove:坡口gusset plate:节点板(52)Hhanger:吊环hanging steel bar:吊筋heartwood :心材heat tempering bar:热处置钢筋(28)height variation factor of wind pressure:风压高度转变系数(16)heliral weld:螺旋形僻缝high—strength bolt:高强度螺栓high—strength bolt with large hexagon bea:大六角头高强度螺栓high—strength bolted bearing type join:承压型高强度螺栓连接,high—strength bolted connection:高强度螺栓连接high—strength bolted friction—type joint:摩擦型高强度螺栓连接high—strength holted steel slsteel structure:高强螺栓连接钢结构hinge support:铰轴支座(51)hinged connection:铰接(21)hlngeless arch:无铰拱(12)hollow brick:空心砖(43)hollow ratio of masonry unit:块体空心率(46)honeycomb:蜂窝(39)hook:弯钩(37)hoop:箍筋(36)hot—rolled deformed bar:热轧带肋钢筋(28)hot—rolled plain bar:热轧光圆钢筋(28)hot-rolled section steel:热轧型钢(53)hunched beam:加腋梁(?)Iimpact toughness:冲击韧性(18)impermeability:抗渗性(38)inclined section:斜截面(33)inclined stirrup:斜向箍筋(36)incomplete penetration:未焊透(61)incomplete tusion:未溶合(61)incompletely filled groove:未焊满(61)indented wire:刻痕钢丝(29)influence coefficient for load—bearing capacity of compression member:受压构件承载能力影响系数(46)influence coefficient for spacial action :空间性能影响系数(46)initial control:初步控制(22)insect prevention of timber structure:木结构防虫(?o)inspection for properties of glue used in structural member:结构用胶性能查验(71)inspection for properties of masnory units:块体性能查验(48)inspection for properties of mortar:砂浆性能查验(48)inspection for properties of steelbar:钢筋性能查验(39)integral prefabricated prestressed concrete slab—column structure:整体预应力板柱结构(25) intermediate stiffener:中间加劲肋(53)intermittent weld:断续焊缝(60)Jjoint of reinforcement:钢筋接头(35)Kkey joint:键连接(69)kinetic design:动态设计(8)knot:节子(木节)(70)Llaced of battened compression member:格构式钢柱(51)lacing and batten elements:缀材(缀件)(51)lacing bar:缀条(51)lamellar tearing:层状撕裂(62)lap connectlon:叠接(搭接)(59)lapped length of steel bar:钢筋搭接长度(36)large pannel concrete structure:混凝土大板结构(25)large-form cocrete structure:大模板结构(26)lateral bending:侧向弯曲(40)lateral displacement stiffness of storey:楼层侧移刚度(20)lateral displacement stiffness of structure·:结构侧移刚度(20)lateral force resistant wallstructure:抗侧力墙体结构(12)leg size of fillet weld:角焊缝焊脚尺寸(57)length of shear plane:剪面长度(67)lift—slab structure:升板结构(25)light weight aggregate concrete:轻骨料混凝土(28)limit of acceptance:验收界限(23)limitimg value for local dimension of masonry structure·:砌体结构局部尺寸限值(47) limiting value for sectional dimension:截面尺寸限值(47)limiting value for supporting length:支承长度限值(47)limiting value for total height of masonry structure·:砌体结构总高度限值(47) linear expansion coeffcient:线膨胀系数(18)lintel:过梁(7)load bearing wall:承重墙(7)load-carrying capacity per bolt:单个普通螺栓承载能力(56)load—carrying capacity per high—strength holt:单个高强螺桂承载能力(56) load—carrying capacity per rivet:单个铆钉承载能力(55)log:原木(65)log timberstructure:原木结构(64)long term rigidity of member:构件长期刚度(32)longitude horizontal bracing:纵向水平支撑(5)longitudinal steel bar:纵向钢筋(35)longitudinal stiffener:纵向加劲肋(53)longitudinal weld:纵向焊缝(60)losses of prestress:‘预应力损失(33)lump material:块体(42)Mmain axis:强轴(56)main beam·:主梁(6)major axis:强轴(56)manual welding:手工焊接(59)manufacture control:生产控制(22)map cracking:龟裂(39)masonry:砌体(17)masonry lintel:砖过梁(43)masonry member:无筋砌体构件(41)masonry units:块体(43)masonry—concrete structure:砖混结构(¨)masonry—timber structure:砖木结构(11)mechanical properties of materials·:材料力学性能(17)melt—thru:烧穿(62)method of sampling:抽样方式(23)minimum strength class of masonry:砌体材料最低强度品级(47)minor axls·:弱轴(56)mix ratio of mortar:砂浆配合比(48)mixing water:拌合水(27)modified coefficient for allowable ratio of height to sectionalthickness of masonry wall :砌体墙允许高厚比修正系数(47)modified coefficient of flexural strength for timber curved mem—:弧形木构件抗弯强度修正系数(68)modulus of elasticity of concrete:混凝土弹性模量(30)modulus of elasticity parellel to grain:顺纹弹性模量(66)moisture content:含水率(66)moment modified factor:弯矩调幅系数monitor frame:天窗架mortar:砂浆multi—defence system of earthquake—resistant building·:多道设防抗震建筑multi—tube supported suspended structure:多筒悬挂结构Nnailed joint:钉连接,net height:净高lnet span:净跨度net water/cementratio:净水灰比non-destructive inspection of weld:焊缝无损查验non-destructive test:非破损查验non-load—bearingwall:非承重墙non—uniform cross—section beam:变截面粱non—uniformly distributed strain coefficient of longitudinal tensile reinforcement:纵向受拉钢筋应变不均匀系数normal concrete:普通混凝土normal section:正截面notch and tooth joint:齿连接number of sampling:抽样数量Oobligue section:斜截面oblique—angle fillet weld:斜角角焊缝one—way reinforced(or prestressed)concrete slab‘‘:单向板open web roof truss:空肚屋架,ordinary concrete:普通混凝土(28)ordinary steel bar:普通钢筋(29)orthogonal fillet weld:直角角焊缝(61)outstanding width of flange:翼缘板外伸宽度(57)outstanding width of stiffener:加劲肋外伸宽度(57)over-all stability reduction coefficient of steel beam·:钢梁整体稳固系数(58) overlap:焊瘤(62)overturning or slip resistance analysis :抗倾覆、滑移验算(10)Ppadding plate:垫板(52)partial penetrated butt weld:不焊透对接焊缝(61)partition:非承重墙(7)penetrated butt weld:透焊对接焊缝(60)percentage of reinforcement:配筋率(34)perforated brick:多孔砖(43)pilastered wall:带壁柱墙(42)pit·:凹坑(62)pith:髓心(?o)plain concrete structure:素混凝土结构(24)plane hypothesis:平截面假定(32)plane structure:平面结构(11)plane trussed lattice grids:平面桁架系网架(5)plank:板材(65)plastic adaption coefficient of cross—section:截面塑性进展系数(58)plastic design of steel structure:钢结构塑性设计(56)plastic hinge·:塑性铰(13)plastlcity coefficient of reinforced concrete member in tensile zone:受拉区混凝土塑性影响系数(34)plate—like space frame:干板型网架(5)plate—like space truss:平板型网架(5)plug weld:塞焊缝(60)plywood:胶合板(65)plywood structure:胶合板结构(64)pockmark:麻面(39)polygonal top-chord roof truss:多边形屋架(4)post—tensioned prestressed concrete structure:后张法预应力混凝土结构(24)precast reinforced concrete member:预制混凝土构件(26)prefabricated concrete structure:装配式混凝土结构(25)presetting time:初凝时刻(38)prestressed concrete structure:预应力混凝土结构(24)prestressed steel structure:预应力钢结构(50)prestressed tendon:预应力筋<29)pre—tensioned prestressed concrete structure·:先张法预应力混凝土结构(24)primary control:初步控制(22)production control:生产控制(22)properties of fresh concrete:可塑混凝土性能(37)properties of hardened concrete:硬化混凝土性能(38)property of building structural materials:建筑结构材料性能(17)purlin“—””—:檩条(4)Qqlue timber structurer:胶合木结构(㈠)quality grade of structural timber:木材质量品级(?0)quality grade of weld:焊缝质量级别(61)quality inspection of bolted connection:螺栓连接质量查验(63)quality inspection of masonry:砌体质量查验(48)quality inspection of riveted connection:铆钉连接质量查验(63)quasi—permanent value of live load on floor or roof,:楼面、屋面活荷载准永久值(15)Rradial check:辐裂(70)ratio of axial compressive force to axial compressive ultimate capacity of section:轴压比(35) ratio of height to sectional thickness of wall or column:砌体墙柱高、厚比(48)ratio of reinforcement:配筋率(34)ratio of shear span to effective depth of section:剪跨比(35)redistribution of internal force:内力重散布(13)reducing coefficient of compressive strength in sloping grain for bolted connection:螺栓连接斜纹承压强度降低系数(68)reducing coefficient of liveload:活荷载折减系数(14)reducing coefficient of shearing strength for notch and tooth connection:齿连接抗剪强度降低系数(68)regular earthquake—resistant building:规则抗震建筑(9)reinforced concrete deep beam:混凝土深梁(26)reinforced concrete slender beam:混凝土浅梁(26)reinforced concrete structure:钢筋混凝土结构(24)reinforced masonry structure:配筋砌体结构(41)reinforcement ratio:配筋率(34)reinforcement ratio per unit volume:体积配筋率(35)relaxation of prestressed tendon:预应筋松弛(31)representative value of gravity load:重力荷载代表值(17)resistance to abrasion:耐磨性(38)resistance to freezing and thawing:抗冻融性(39)resistance to water penetration·:抗渗性(38)reveal of reinforcement:露筋(39)right—angle filletweld:直角角焊缝(61)rigid analysis scheme:刚性方案(45)rigid connection:刚接(21)rigid transverse wall:刚性横墙(42)rigid zone:刚域(13)rigid-elastic analysis scheme:刚弹性方案(45)rigidity of section:截面刚度(19)rigidly supported continous girder:刚性支座持续梁(11) ring beam:圈梁(42)rivet:铆钉(55)riveted connecction:铆钉连接(60)riveted steel beam:铆接钢梁(52)riveted steel girder:铆接钢梁(52)riveted steel structure:铆接钢结构(50)rolle rsupport:滚轴支座(51)rolled steel beam:轧制型钢梁(51)roof board:屋面板(3)roof bracing system:屋架支撑系统(4)roof girder:屋面梁(4)roof plate:屋面板(3)roof slab:屋面板(3)roof system:屋盖(3)roof truss:屋架(4)rot:腐朽(71)round wire:光圆钢丝(29)Ssafety classes of building structures:建筑结构安全品级(9) safetybolt:保险螺栓(69)sapwood:边材(65)sawn lumber+A610:方木(65)sawn timber structure:方木结构(64)saw-tooth joint failure:齿缝破坏(45)scarf joint:斜搭接(70)seamless steel pipe:无缝钢管(54)seamless steel tube:无缝钢管(54)second moment of area of tranformed section:换算截面惯性矩(34) second order effect due to displacement:挠曲二阶效应(13) secondary axis:弱轴(56)secondary beam:次粱(6)section modulus of transformed section:换算截面模量(34) section steel:型钢(53)semi-automatic welding:半自动焊接(59)separated steel column:分离式钢柱(51)setting time:凝结时刻(38)shake:环裂(70)shaped steel:型钢(53)shapefactorofwindload:风荷载体型系数(16)shear plane:剪面(67)shearing rigidity of section:截面剪变刚度(19)shearing stiffness of member:构件抗剪刚度(20)short stiffener:短加劲肋(53)short term rigidity of member:构件短时刻刚度(31) shrinkage:干缩(71)shrinkage of concrete:混凝干收缩(30)silos:贮仓(3)skylight truss:天窗架(4)slab:楼板(6)slab—column structure:板柱结构(2)slag inclusion:夹渣(61)sloping grain:‘斜纹(70)slump:坍落度(37)snow reference pressure:大体雪压(16)solid—web steel column:实腹式钢柱(space structure:空间结构(11)space suspended cable:悬索(5)spacing of bars:钢筋间距(33)spacing of rigid transverse wall:刚性横墙间距(46)spacing of stirrup legs:箍筋肢距(33)spacing of stirrups:箍筋间距(33)specified concrete:特种混凝上(28)spiral stirrup:螺旋箍筋(36)spiral weld:螺旋形焊缝(60)split ringjoint:裂环连接(69)square pyramid space grids:四角锥体网架(5)stability calculation:稳固计算(10)stability reduction coefficient of axially loaded compression:轴心受压构件稳固系数<13) stair:楼梯(8)static analysis scheme of building:衡宇静力汁算方案(45)static design:衡宇静力汁算方案(45)statically determinate structure:静定结构(11)statically indeterminate structure:超静定结构(11)sted:钢材(17)steel bar:钢筋(28)steel column component:钢柱分肢(51)steel columnbase:钢柱脚(51)steel fiber reinforced concrete structure·:钢纤维混凝土结构(26)steel hanger:吊筋(37)steel mesh reinforced brick masonry member:方格网配筋砖砌体构件(41) steel pipe:钢管(54)steel plate:钢板(53)steel plateelement:钢板件(52)steel strip:钢带(53)steel support:钢支座(51)steel tie:拉结钢筋(36)steel tie bar for masonry:砌体拉结钢筋(47)steel tube:钢管(54)steel tubular structure:钢管结构(50)steel wire:钢丝(28)stepped column:阶形柱(7)stiffener:加劲肋(52)stiffness of structural member:构件刚度(19)stiffness of transverse wall:横墙刚度(45)stirrup:箍筋(36)stone:石材(44)stone masonry:石砌体(44)stone masonry structure:石砌体结构(41)storev height:层高(21)straight—line joint failure:通缝破坏(45)straightness of structural member:构件乎直度(71)strand:钢绞线(2,)strength classes of masonry units:块体强度品级(44)strength classes of mortar:砂浆强度品级(44)strength classes of structural steel:钢材强度品级(55)strength classes of structural timber:木材强度品级(66)strength classes(grades) of concrete:混凝土强度品级(29)strength classes(grades) of prestressed tendon:预应力筋强度品级(30)strength classes(grades) of steel bar :普通钢筋强度品级(30)strength of structural timber parallel to grain:木材顺纹强度(66) strongaxis:强轴(56)structural system composed of bar:”杆系结构(11)structural system composed of plate:板系结构(12)structural wall:结构墙(7)superposed reinforced concrete flexural member:叠合式混凝土受弯构件(26) suspended crossed cable net:双向正交索网结构(6)suspended structure:悬挂结构(3)swirl grain:涡纹(?1)Ttensile(compressive) rigidity of section:截面拉伸(紧缩)刚度(19)tensile(compressive) stiffness of member:构件抗拉(抗压)刚度(20)tensile(ultimate) strength of steel:钢材(钢筋)抗拉(极限)强度(18)test for properties of concrete structural members:构件性能查验(40):thickness of concrete cover:混凝土保护层厚度(33)thickness of mortarat bed joint:水平灰缝厚度(49)thin shell:薄壳(6)three hinged arch:三铰拱(n)tie bar:拉结钢筋(36)tie beam,‘:系梁(22)tie tod:系杆(5)tied framework:绑扎骨架(35)timber:木材(17)timber roof truss:木屋架(64)tor-shear type high-strength bolt:扭剪型高强度螺栓(54)torsional rigidity of section:截面扭转刚度(19)torsional stiffness of member:构件抗扭刚度(20)total breadth of structure:结构总宽度(21)total height of structure:结构总高度(21)total length of structure:结构总长度(21)transmission length of prestress:预应力传递长度(36)transverse horizontal bracing:横向水平支撑(4)transverse stiffener·:横向加劲肋(53)transverse weld:横向焊缝(60)transversely distributed steelbar:横向散布钢筋(36)trapezoid roof truss:梯形屋架(4)triangular pyramid space grids:三角锥体网架(5)triangular roof truss:三角形屋架(4)trussed arch:椽架(64)trussed rafter:桁架拱(5)tube in tube structure:筒中筒结构(3)tube structure:简体结构(2)twist:扭弯(71)two hinged arch:双铰拱(11)two sides(edges) supported plate:两边支承板(12)two—way reinforced (or prestressed) concrete slab:混凝土双向板(27)Uultimate compressive strain of concrete’”:混凝土极限压应变(31)unbonded prestressed concrete structure:无粘结预应力混凝土结构(25) undercut:咬边(62)uniform cross—section beam:等截面粱(6)unseasoned timber:湿材(65)upper flexible and lower rigid complex multistorey building·:上柔下刚多层衡宇(45) upper rigid lower flexible complex multistorey building·:上刚下柔多层衡宇(45) Vvalue of decompression prestress :预应力筋消压预应力值(33)value of effective prestress:预应筋有效预应力值(33)verification of serviceability limit states·”:正常利用极限状态验证(10) verification of ultimate limit states :承载能极限状态验证(10)vertical bracing:竖向支撑(5)vierendal roof truss:空肚屋架(4)visual examination of structural member:构件外观检查(39)visual examination of structural steel member:钢构件外观检查(63) visual examination of weld:焊缝外观检查(62)Wwall beam:墙梁(42)wall frame:壁式框架(门)wall—slab structure:墙板结构(2)warping:翘曲(40),(71)warping rigidity of section:截面翘曲刚度(19)water retentivity of mortar:砂浆保水性(48)water tower:水塔(3)water/cement ratio·:水灰比(3g)weak axis·:弱轴(56)weak region of earthquake—resistant building:抗震建筑薄弱部位(9) web plate:腹板(52)weld:焊缝(6[))weld crack:焊接裂纹(62)weld defects:焊接缺点(61)weld roof:焊根(61)weld toe:焊趾(61)weldability of steel bar:钢筋可焊性(39)welded framework:焊接骨架()welded steel beam:焊接钢梁(welded steel girder:焊接钢梁(52)welded steel pipe:焊接钢管(54)welded steel strueture:焊接钢结构(50)welding connection·:焊缝连接(59)welding flux:焊剂(54)welding rod:焊条(54)welding wire:焊丝(54)wind fluttering factor:风振系数(16)wind reference pressure:大体风压(16)wind—resistant column:抗风柱(?)wood roof decking:屋面木基层(64)Yyield strength (yield point) of steel:钢材(钢筋)屈服强度(屈服点)。

建筑英文文献及翻译

建筑英文文献及翻译

外文原文出处:NATO Science for Peace and Security Series C: Environmental Security, 2009, Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data, Pages147-149动力性能对建筑物的破坏引言:建筑物在地震的作用下,和一些薄弱的建筑结构中,动力学性能扮演了一个很重要的角色。

特别是要满足最基本的震动周期,无论是在设计的新建筑,或者是评估已经有的建筑,使他们可以了解地震的影响。

许多标准(例如:欧标,2003;欧标,2006),建议用简单的表达式来表达一个建筑物的高度和他的基本周期。

这样的表达式被牢记在心,得出标定设计(高尔和乔谱拉人,1997),从而人为的低估了标准周期。

因为这个原因,他们通常提供比较低的设计标准当与那些把设计基础标准牢记在心的人(例:乔普拉本和高尔,2000)。

当后者从已进行仔细建立的数字模型中得到数值(例:克劳利普和皮诺,2004;普里斯特利权威,2007)。

当数字估计与周围震动测量的实验结果相比较,有大的差异,提供非常低的周期标准(例:纳瓦洛苏达权威,2004)。

一个概述不同的方式比较确切的结果刊登在马西和马里奥(2008);另外,一个高级的表达式来指定更有说服力的坚固建筑类型,提出了更加准确的结构参数表(建筑高度,开裂,空隙填实,等等)。

联系基础和上层建筑的震动周期可能发生共振的效果。

这个原因对于他们的振动,可能建筑物和土地在非线性运动下受到到破坏,这个必须被重视。

通常,结构工程师和岩土工程师有不同的观点在共振作用和一些变化的地震活动。

结构工程师们认为尽管建筑物和土壤的自振周期和地震周期都非常的接近。

但对于建筑物周期而言,到底是因为结构还是非结构造成的破坏提出了疑问。

如果加大振动,建筑物减轻自身的重量对共振产生的破坏有很大的减轻效果。

建筑抗震设计中地震荷载分析研究

建筑抗震设计中地震荷载分析研究

建筑抗震设计中地震荷载分析研究地震是一种非常破坏性的自然灾害,而建筑抗震设计的目标就是确保建筑在地震中能够充分抵抗地震荷载的作用,保持结构的完整性和人员的安全。

地震荷载分析是建筑抗震设计的重要组成部分,通过对地震力的研究和分析,可以更好地了解地震对建筑物产生的影响,从而合理地进行抗震设计。

地震荷载分析的基本原理是根据地震的产生机理和传播规律,对地震作用下建筑结构的动力响应进行定量分析。

地震荷载的大小和方向是根据建筑物所处地理位置和重要性来确定的。

通常来说,地震荷载分析主要包括两种方法,即静力分析和动力分析。

静力分析是一种简化的地震荷载计算方法,通过对建筑结构的质量和抗侧刚度的研究,来估计建筑物在地震中受到的最大静力荷载。

这种方法的优点是计算简单、直观,适用于一些简单结构和中小型建筑。

但是,静力分析并没有考虑到地震波的动力特性和结构的共振效应,因此在设计大型高层建筑等重要工程时并不常用。

动力分析是一种更加精确和复杂的地震荷载计算方法,它基于结构动力学理论,将建筑物和地震波共同作为一个动力系统,通过数学模型计算建筑结构的动力响应。

动力分析主要可以分为线性动力分析和非线性动力分析两种方法。

线性动力分析是一种简化的动力分析方法,它假设结构在地震作用下的变形是线性的,并且不考虑结构材料的非线性特性。

这种方法适用于一些少震区和轻型结构,计算过程相对简便,但精度较低。

非线性动力分析则是考虑了结构材料的非线性特性和结构的非弹性变形,通过更加复杂的计算模型来获取更加准确的地震荷载。

非线性动力分析适用于设计重要工程和对结构抗震性能要求较高的建筑物。

除了以上分析方法外,地震荷载分析还需要考虑到地震波的随机性和周期性特点。

地震波是一种复杂的振动过程,可以用时间、空间和频率等多个维度来描述。

地震荷载的分析需要对地震波的强度、方向和持续时间等特性进行统计和分析,从而得出适当的设计参数和值。

总之,地震荷载分析是建筑抗震设计中非常重要的一环,它通过对地震的研究和分析,为建筑物提供合理的设计参数和抗震性能要求。

建筑工程中的地震抗震设计

建筑工程中的地震抗震设计

建筑工程中的地震抗震设计地震是一种常见的自然灾害,对建筑工程的安全性和可持续性提出了严峻的挑战。

因此,在建筑工程中,地震抗震设计成为了不可或缺的环节。

本文将探讨建筑工程中地震抗震设计的重要性、设计原则以及相关标准和措施。

一、地震抗震设计的重要性地震抗震设计在建筑工程中具有极其重要的意义。

首先,地震是一种破坏性极大的自然灾害,能够给建筑物带来严重的损坏甚至倒塌。

因此,地震抗震设计能够有效地降低建筑物在地震中受损的风险,保护人们的生命财产安全。

其次,地震抗震设计还能够提高建筑物的韧性和可持续性。

通过采用合理的抗震设计措施,可以使建筑物在地震中发挥一定的形变能力,吸收和分散地震能量,降低对结构的破坏,从而提高建筑物的抗震性能。

这有助于保障建筑物的长期使用和可持续发展。

二、地震抗震设计的原则在进行地震抗震设计时,需要遵守一系列的设计原则。

首先,要根据地震勘探数据和地震烈度评价,合理确定地震设计参数,包括设计地震烈度、设计基本周期等。

这些参数是进行地震设计的基础,直接关系到设计的有效性和合理性。

其次,要根据建筑物的性质和用途,合理选择结构形式和材料。

常见的结构形式包括框架结构、剪力墙结构和桁架结构等。

在地震设计中,还需要考虑结构的均匀性和连续性,以提高抗震性能。

此外,地震抗震设计还需考虑地震荷载的作用。

地震荷载是指地震力对建筑物的作用力,通常按照相关的设计规范计算得出。

通过合理计算和分析地震荷载,可为建筑物提供合理的抗震设计参数。

三、地震抗震设计的标准和措施为了确保地震抗震设计的科学性和可行性,各国都制定了相应的地震抗震设计标准和规范。

在中国,常用的地震抗震设计标准包括《建筑抗震设计规范》、《钢结构设计规范》等。

这些标准对于建筑物的设计参数、结构形式、材料选择、地震荷载计算等都提出了相应的规定和要求。

在实际的地震抗震设计中,还需要采取一系列的措施来保障设计的有效性。

首先,需要进行地震勘察和地质调查,了解地震活动性和地质条件,为后续的设计提供可靠的数据支持。

框架结构的抗震设计思路外文文献翻译

框架结构的抗震设计思路外文文献翻译

文献信息:文献标题:Frame Structure Anti-earthquake Design Way of Thinking (框架结构的抗震设计思路)国外作者:Theodore V.Galambos文献出处:《Journal of Constructional Concrete Research》,2000, 55:289-303 字数统计:英文4451单词,22990字符;中文5601汉字外文文献:Frame Structure Anti-earthquake Design Way of ThinkingAbstract Currently, the anti-earthquake norms all round the world almost adopt to a kind of way of thinking: The adoption presses the earthquake strong or weak of possible situation to divide the line earthquake cent area; According to everyplace the history occurrence of the area earthquake of covariance result or to geology structure of the history investigate to have to explicit statistics the meaning establish the sport peak in waterproof and quasi-ground value acceleration; Make use of again the reaction acceleration that the acceleration reaction composes different period; Get a design to use acceleration level through earthquake dint adjust met coefficient R. In the meantime, most nations all approve such point,establishing to defend the earthquake intensity level can take to use a different value, choosing to use to establish to defend the earthquake intensity level more and highly, the ductility request of the structure also more low, choose to use to establish to defend earthquake intensity level more and lowly, structure of ductility request more high. The structure ductility guarantee of precondition is the ductility of the member, pass again an effectively reasonable conjunction in adopting a series of measure guarantee member the foundation of the ductility, the structure system choice is reasonable in the meantime, the degree just distributes reasonable of under condition ability basic assurance structure of ductility.Keywords: frame structure; anti-earthquake design; design way of thinking1.Simple Review of Anti-earthquake Design Way of ThinkingThe development that constructs the structure anti- earthquake is along with people all the earthquake move with the structure characteristic of the understanding is continuously thorough but develop gradually, however, from is born up to now the history of a hundred years, have mostly several to develop a stage as follows:(1) Quiet dint stage: It first from a Japanese professor passed to harm to prognosticate the anti- earthquake design theories that put forward with the theories understanding at that time to the limited earthquake, being applicable to only just rigid body structure. It didn't think characteristic and the place difference to consider structure to the influence that constructs structure.(2) Respond the table stage: Along with vibrate to record of obtain and the development of the structure dynamics theories, the Biota professor of the United States put forward flexibility to respond the concept of the table in 1940, respond the table is list the freely flexible system, it was obtain of numerous earthquakes record of encourage, the structure period or respond of the relation, include the acceleration reaction table, the speed responded a table, moved to respond a table. It consider the motive characteristic of the structure, it still is the foundation that all countries norm design earthquake dint takes a value up to now. The calculation of the earthquake function dint usually use shears with the bottom and flaps a decomposition to respond a table a method, flapping a decomposition to respond a table a method of basic define: Suppose the building structure is the line flexibility more freedom degree system, making use principle of flap a decomposition and flap a type, it will solve a freedom degree the earthquake of the flexible system to respond to resolve for solve an independence of etc. the effect single freedom degree flexible system most the heavy earthquake respond. Then begging should in each function affect that flaps a type. At this time, according to consider the way dissimilarity of the earthquake function, adopt a different array, group method, order flexible system to many qualities of the flat surface vibration, it can use a SRSS method, it is according tosuppose the importation earthquake as steady random process, each of a flap reaction is independent mutually but deduce to get; For consider even-twists many qualities that the lotus connect to order flexible system, the adoption CQC method, it lies in with the main differentiation of the SRSS method: Suppose when flat surface vibrate each flap a type independent mutually, and each contribution that flap a type increased along with the frequency high but lower;But even-twist lotus connect hour each flap a frequency span very small, close together and higher flap the frequency of the type and may near to this relativity that will consider a dissimilarity to flap a very much, also have influence of turn round the weight and not necessarily increase along with the frequency high but lower, sometimes higher flap the influence possibility of the type big in lower flap the influence of the type, it will consider more influences that flap a type while comparing SRSS. The bottom shears the dint method in consideration of the special of the structure system to the simplification that flaps a decomposition to respond to compose a method, be the building height not big, took shearing to slice to transform as the lord and the quality to follow height to distribute more even structure with degree just, the structure vibration moved to respond usually with the first flapped a type for lord, and when the first flapped a type to near to in the straight line, can flap a decomposition method simplification to shear the dint method calculation formula for the basic bottom. The level earthquake function that each quality that this basic formula calculation get order can better reflection just degree bigger structure, but when structure the basic period was long, the place characteristic period to compare with hour, the calculation income coping earthquake function be partial to small. of course , the Anti-earthquake Norm provision, be the structure basic period more than 1.4 place characteristic period, at coping additional level earthquake function.(3)the motive theories stage: Along with move understanding and comprehend to the earthquake of deepen continuously, know to some shortage of the reaction table, such as to the earthquake move hold of influence consideration not week, and the exaltation of the calculator function, make the motive method develop gradually, its essence solves a square distance of motive directly, but because of earthquake theground sport acceleration is very irregular, it can't beg for differential calculus square distance, it shuts to match a solution, so adopt number integral calculus method more. Usual way of doing is carry on a continuous cent a segment a processing towards having already record of the earthquake wave, each data all see do the constant, then the function get to structure up, pass an equilibrium and square distance of motive to beg at the moment of the acceleration, speed, move reaction, moving with ex- the acceleration, speed, the segment to carry on folding to add immediately after folding the result for add as the beginning that descends at that time a segment to start a data, pushing according to this kind, end beg structure at the give for low week again and again the earthquake wave under of the acceleration, speed and move the dint reaction variety process.(4) At American Northridge earthquake in 1994 and Japanese Kobe earthquake in 1995 after, the beautiful day scholar put forward again according to the anti- earthquake design method of behavior, it was during the period of usage to make the building structure satisfy various requests that used function according to the basic thought of behavior. Tradition according to the design method dissimilarity of the dint, adjudicate to the structure function mainly is according to move standard, move index sign to come with the different to the structure function to carry on a different control. But descend structure because of the big earthquake of not- flexible transform hard and accurate estimate of, make to can stay around according to the design method of behavior theoretically. But put forward its aggressive meaning to have 2:00 at least:a. Emphasize the system and the society of the earthquake engineering;b. The part that knows an original anti- earthquake to design norm is unsuited to reasonableness.Conduct and actions according to the foundation of the function anti- earthquake design, should to the particular level earthquake function of a certain covariance meaning under of the structure move, the speed and acceleration carry on accurate valuation, should also have a reasonable of valuation method with available valuation tool. It is exactly because of this purpose, put forward and developed the Pushover method and ability to compose a method. The basic way of thinking of the Pushovermethod is an adoption the quiet dint add to carry, supposing the side of the some penny cloth form toward lotus to carry a function on the structure, adding to carry gradually until attain the structure control point target to move or the structure break, getting the level side of the control point to move to shear the dint relation curve with substrate thus, evaluating in order to the anti-vibration ability of the structure. The Pushover method depends on to distribute a form and play the plasticity reaction table target to move to really settle in the side force.2.Basic Way of Thinking of Frame Structure Anti-earthquake Design—ductility StandardAfter the flexibility respond table put forward, the people's detection computes to gain from here of the structure respond with the actual earthquake the breakage phenomenon of the structure contain certain antinomy, mainly is press the flexibility reaction table to calculate of the structure responded the acceleration as habitual to design the earthquake dint to take to be worth big quite a few at that time doubly, and took to settle according to the habitual of the function of the design earthquake dint descends the house structure of design, the harm of the structure system wasn't serious in the earthquake.60's last century, the New mark passed to start to the beginning of different period just degree homology of the single freedom degree the system carried on analysis under the situation that many waves input, put forward etc. moved the principle and etc. energy principle, and put forward the concept of the structure ductility. Studied single and free system to accept defeat the level and flexibility thoroughly again from the relation of flapped the biggest not- flexible motive in the period and structure to respond afterward, this be customarily say of the theories of the R-μ -T effect. Passing these researches, announcing to public the ductility ability and plasticity to consume an ability is a structure Be taking to use to accept defeat level under not high circumstance, at big earthquake under the structure doesn't take place severity to break and doesn't don't tumble down of assurance. Arrive here, concerning the design earthquake dint's taking the basic problem of the value size have to arrive understanding definitely, be the anti- earthquake the earthquake dinttake a value of the size isn't a number of assurance, but with the structure ductility function and consume the ability mechanism related quantity value. Here what to need to be explain BE, designed the earthquake dint to take a value to resolve a problem only, but to the structure ductility function guarantee of the measure have to can also promise, this will at underneath a section discuss.Currently, the anti- earthquake norms all round the world almost adopts so a kind of way of thinking: The adoption presses the earthquake strong or weak of possible situation to divide the line earthquake cent area; According to everyplace the history occurrence of the area earthquake of covariance result or to geology structure of the history investigate to have to explicit statistics the meaning establish the sport peak value in waterproof and quasi- ground value acceleration; Make use of again the reaction acceleration that the acceleration reaction composes different period to descend structure to; get a design to use acceleration level through the earthquake dint adjustment coefficient R. In the meantime, most nations all approve such standpoint, establishing to defend the earthquake intensity level can take to use a different value, choosing to use to establish to defend the earthquake intensity level more and highly, the ductility request of the structure also more low, choose to use to establish to defend the earthquake intensity level more and lowly, structure of ductility request more high. The structure ductility guarantee of precondition is the ductility of the member, pass again an effectively reasonable conjunction in adopting a series of measure guarantee member the foundation of the ductility, the structure system choice is reasonable in the meantime, the degree just distributes reasonable of under condition ability basic assurance structure of ductility.Underneath this kind of discusses the our country anti- earthquake norm mostly way of thinking, the current Chinese norm didn't adopt a variety to establish to defend the earthquake intensity level to take to use, but don’ Ted add a distinction of unify an adoption of the earthquake dint adjustment coefficient R=1/0.35;In the meantime, mostly according to establish a dissimilarity of defend the earthquake intensity, divide the line the different anti- earthquake grade, fix attention on in establish to defend earthquake intensity differently, adopt the anti- earthquake measure of the differentassurance ductility. Very obvious here exist a misunderstanding of concept, also be according to the theories of the R-μ-T effect, the little more than earthquake dint adjustment coefficient R=1/0.35, should give the same ductility guarantee measure to the structure, but the Chinese norm adopt the different ductility guarantee measure, along with anti- earthquake the exaltation of the grade, ductility guarantee the ability correspond to strengthen. This kind of usefulness of the way of doing under way and not the line motive respond of verification, can describe so as a result mostly: For the district of 8 degrees 0.3 g and 9 degrees 0.4 g, because of correspond of the anti- earthquake grade is higher, the measure of the guarantee ductility is also stronger, so generally and more safe; And for the district of 6 degrees 0.05 g and 7 degrees 0.1 g, gain from here to of the level earthquake effect be partial to small, the general lotus carries an array, group is carried the control function by the gravity lotus, although to should of the measure of the guarantee ductility isn't very strong, can also guarantee structure generally under the big earthquake of not- flexible transform of function; But to the district of 7 degrees 0.15 g and 8 degrees 0.2 g, circumstance another the person worry, because of at the lotus carry an array, group, the earthquake function can have generally control function, but correspond measure of guarantee the ductility and be partial to weak, so difficult don't need to exist certain potential safety hazard to suffer from. See again other national earthquake dint adjustment coefficient R to choose to use, in order to have kept concrete understanding of view:The earthquake dint adjustment coefficient of all countries norm provision3.Ability Design MethodTop a part emphasized to discuss the design earthquake dint to take the problem of the value, but wanted to promise structure under the big earthquake of function, also need to establish the valid anti- earthquake measure, make the structure really have need of keep vertical loading under the dint condition not- flexible transform an ability, this be the so-called ability design method.Ability design method from New Zealand the reinforced concrete anti- earthquake expert scholars such as the T. Parlay and the R. Park etc. development with initiate, main way of thinking is to the member occasionally member dissimilarity inside the piece is subjected to the dint form of the loading ability differ of control, promise the reinforced concrete structure formation the beam swing joint organization and ductility bigger is cut noodles to be subjected to the dint breakage appearance, make the structure have to play plasticity to transform function enough, promise big earthquake hour have an enough ability to consume to spread function, avoid creation brittleness to break and appear disadvantageous of organization form. The key of the ability design method is the anti- earthquake design that leads the control concept into structure, there is the leading formation of the purpose to the beneficial breakage mechanism is to the structure and break mode, avoid not reasonable of the structure break appearance, and try assurance to anticipate to break part to play plasticity to transform an ability.The ability design method mainly passes the following three kinds of measure to give assurance:1. Enlarge pillar opposite in the anti- of the beam-curved ability, artificial of leading of the structure swing joint part.2. Raise opposite in is cut the noodles loading dint of the anti- shear ability, avoiding appearing non- ductility to shear to slice breakage.3. To the part that appears the plasticity swing probably, the adoption corresponds of structure measure, assurance necessity of not- flexible transform function.First, the reasonable part of the swing joint carry on a discussion, all countriesmostly of the way of thinking inclines toward to make the project that the beam carries first to carry to appear in the pillar about and all. This kind of swing joint project has a following advantage: The ductility of the beam is easy to a control, and under general circumstance compare pillar of the ductility is big; The whole plasticity of the beam swing joint ratio pillar swing joint formation transform small; The plasticity of the beam swing joint organization formation transform more stable. There are also two kinds of different design methods while admit the premise of have the initiative the formation beam swing joint, a kind of from is a representative New Zealand of, incline toward the formation ideal beam swing joint organization, be promise the beam carries to appear the plasticity swing, but in addition to first floor, the post all doesn't appear the plasticity swing, at this time to in addition to the first floor pillar give post opposite compare bigger and super and strong coefficient(probably 2.0) in the beam, the advantage is a post(in addition to first floor) and doesn't need to be carry on to go together with hoop complicatedly at this time, because of adopt such coefficient can promise a swing joint very explicit. But is exactly because this kind of design method pursues the ideal beam swing joint organization to cause the first floor post compare weaker, the possibility for throng will be a swing joint, the plasticity that correspond and then have to adopt the structure measure to promise this part transforms function. In the meantime, such as if the first floor the influence of the swing joint upon the structure will compare greatly, once pressing and mating because structural whole tumble down, this has to be given guarantee up from the structure, increasing a structure of difficulty. Another project includes total body, Chinese etc. in the United States, Europe, this kind of project leading structure pillar swing joint the night appears in the beam swing joint, unlimited make the emergence of the swing joint in the meantime, but request structure and do not become the layer side to move structure, at this time to post of super go together with coefficient to compare with to request New Zealand of want to be small, goes together with the project that the stirrup takes in to control to the post adoption in the meantime. BE super to go together with coefficient to really settle problem comparison complications to the post adoption in fact: The beam carries thesuper influence for go together with for construct; The beam carries the plasticity swing to appear inside the dint is heavy to distribute of influence; Before accept defeat of the not- flexible characteristic may make the post bending moment physically big get in the flexibility analysis of bending moment ;The indetermination factor that the material difference bring; Growth of the structure not- flexible characteristic cause the influence etc. that the structure motive characteristic variety bring. According to the request of the ability design, the plastic hinge that shears the dint wall appears generally in the bottom of the wall limb. The joining beam shear the loading dint and ductility that the loading dint and ductility and entrance to cave of the dint wall connect beam contain very great relation, designing generally and possibly weak connect beam, the leading that has intention to know connects beam at earthquake accept defeat first, then is the bottom wall to accept defeat, also be anticipate the area of plastic hinge to accept defeat.Avoided appearing to shear reason of slice the breakage early easy, be because of shearing to slice to break to belong to the brittleness breakage, disadvantage in promise the ductility of the structure, promise of way be according to the dissimilarity of the anti- earthquake grade to all beams, pillars, wall etc. the adoption is opposite to bend in the anti- of different super go together with coefficient.The basic request that the anti- earthquake anti- shear is before the beam carry plastic hinge that big epicenter need turn to move and don't take place to shear to slice breakage, this sheared concept difference with the non- anti- earthquake anti-.For various different processing methods that the structure anti- of the member shears mechanism and the our country norm, there is the necessity elucidation here once. Beam: When anti- shake because of low week again and again the function made the beam appear to cross an inclined fracture, fissure, the inclined fracture, fissure distributed an anti- of come to a decision the anti- earthquake to shear the ability ratio not an anti- earthquake to have to descend, reason: The anti- shake of shear to slice to break occurrence after the end long tendon accept defeat, the fracture, fissure compare at this time greatly; The harm that crosses the emergence of the fracture, fissure to the concrete is more serious; The enlargement beam carried the number of the negativebending moment when anti- shake, cause bigger sheared the dint value to appear under the beam to carry, sprinkle plank now because of descending to carry to have no, break more easily. But at this time the function and function for non- anti- to shake of the stirrup differ only a few, in the norm to the consideration of this disadvantageous function is to adopt to resist to shear formula in to the concrete item 0.6 of fold to reduce, in the meantime, in order not to non- ductility of inclined break bad, while adopting to shake than the non- anti- more scathing restriction measure, cut noodles to shear the dint design value ratio non- anti- earthquake multiply 0.8 of fold and reduce coefficient. Pillar: It resist earthquake in the norm the anti- of the pillar shear the processing principle of the formula similar, also is adopt to the concrete item 0.6 of fold and reduce coefficient, adopt more scathing measure to prevent from equally inclined break bad, cut noodles to shear the dint design value ratio non- anti- earthquake multiply 0.8 of fold and reduce coefficient. But because of under general circumstance, the stalk pressure comparison of the pillar is big, this kind of pressure shears function to be partial to the anti- of the member after appearing the plastic hinge to the pillar emollient, according to this kind of way of thinking, pillar the adoption fold to reduce with beam similarly to seem to be not greatly reasonable. Wall: When the anti- shake, there is almost no related on trial data in domestic, is an adoption only the earthquake is to the non- anti- of the anti- sheared formula to adopt to the concrete item and the reinforcing bar items 0.8 of fold and reduce coefficient, in the meantime, in bar of and inclined break bad, adoption the restriction shear a way of press the ratio, cut noodles to shear the dint design value ratio non- anti- earthquake multiply 0.8 of fold and reduce coefficient. What to need to be explaining BE, under general circumstance, the part that shears the dint wall anti- to shear a problem probably is a lower part are a few floors. Node: The main acceptance shears the dint member, the node shears dint mainly is depend on the truss organization, inclined press pole organization, the stirrup of the stipulation effect three organizations or path to bear. The truss organization mainly is resist the reinforcing bar lord to pull should dint, inclined press the pole organization mainly is the lord that resists the concrete and the reinforcing bar creation to press should dint, the stipulation effect of thestirrup then strengthens the anti- of the concrete to shear ability. Along with the node concrete inside the area not- line development, the truss the function of the structure lets up continuously, and then both of function but be strengthening continuously. Therefore, the main target of the node anti- earthquake is under the situation that be subjected to dint again and again, pass to strengthen inclined press the pole organization and the stirrup to control an effect to avoid the core area concrete inclined to press thus a diplomatic corps to order at attain to anticipate of the big earthquake respond before do not take place to shear to slice breakage.After shearing the discussion of mechanism to the above anti-earthquake, can be do with the function of the beam stirrup to tally up as follows: The first obvious function is to used for an anti- to shear; The second function controls concrete, this to guarantee the structure ductility contain count for much function, can also say literally here the obstacle that once high and strong concrete meet when used for anti- earthquake, this is related with the material of the high and strong concrete first, strength more high concrete more frailty, its should attain in the dint contingency relation biggest press should the contingency of the dint is smaller, this makes the design become the ductility member a difficulty with very great formation, is more high because of the strength of the concrete in the meantime, the stirrup rises the effect of the stipulation more bad, also can't the extreme limit of the enough valid exaltation concrete press a contingency, so cause to adopt the ductility of the structure member of the high and strong concrete hard get a guarantee; The third function is the stipulation function that carries to the beam lengthways reinforcing bar, prevent forming lengthways reinforcing bar lose steady, this has something to do with the special material of the reinforcing bar.中文译文:框架结构的抗震设计思路摘要目前,世界各国的抗震规范都采用这种思路:按可遇地震的强弱划分地震分区;根据各地区的历史发生地震的统计或对地质构造的考察得出设防水准地面的运动峰值加速度;再利用加速度反应谱给出不同周期下结构的反应加速度;通过地震力调整系数R得到设计加速度水准。

美国ANSI-AISC SSPEC-2002《钢结构建筑抗震设计规定》1

美国ANSI-AISC SSPEC-2002《钢结构建筑抗震设计规定》1

表1
结构体系超强系数Oo 值
地震荷载抗力体系分类
OO
满足本《规定》第Ⅰ部分要求的抗弯框架体系
3
满足本《规定》第Ⅰ部分要求的偏心支撑框架(EBF)
2.5
满足本《规定》第Ⅰ部分要求的其他类型体系
2
在ASCE 7、2000IBC 、2000NEHRP和1997UBC 等规范中,对水平地震荷载QE 的放大系数Oo 均作了规定,从表2所列可见,各规范的定义是不相同的。在各规范 的早期版本中,认为通过荷载组合就可以澄清这些差别(如在1997版《钢结构建筑 抗 震 设 计 规 定 》 中 所 采 用 的 放 大 的 地 震 荷 载 的 附 加 荷 载 组 合 : 1.2D+1.0E +0.2S+OoQE (4-1式)0.9D-OoQE (4-2式))。但由于各种规范所使用的原始资 料和背景的差别,荷载组合(4-1式)及(4-2式)反而造成了更大的混淆。为此, 在本《规定》中取消了荷载组合(4-1式)及(4-2式),而代之以“放大地震荷载 (Amplified Seismic Load)”。明确了当在规范中使用放大地震荷载时,则要求使 用超强(overstrength )系数Oo。
7. 接头、连接和紧固件
钢结构建筑抗震规定介绍(一)
5
6/23/2003
冶 金工 业部 建筑 研究 总院
7.1 适用范围
作为地震荷载抗力体系组成部分的接头、连接和紧固件应符合LRFD 规范第十 章(Chapter J)的要求。
7.2 螺栓连接
7.2.1 所有螺栓应采用完全受拉高强螺栓。所有螺栓连接摩擦面应按A级接触 面或摩擦型连接要求制作。螺栓连接的设计剪切承载力允许按承压型连接的设计剪 切承载力 进行计算。A 级接触面 是未经涂装的干净轧制表面 ,或经喷砂 (丸) 处理 后涂复以A 型面层的表面。其最小抗滑移系数µ=0.33。

地震灾害下建筑结构的抗震设计与防灾措施

地震灾害下建筑结构的抗震设计与防灾措施

地震灾害下建筑结构的抗震设计与防灾措施灾难往往是残酷而无情的,地震作为一种自然灾害,给人们带来了无尽的痛苦和伤亡。

然而,地震是无法避免的,唯一能做的就是采取合理的抗震设计和防灾措施,尽量减少损失。

一、抗震设计抗震设计是指将建筑物设计为具有抵御地震破坏及其余震影响能力的一项工作。

在抗震设计中,核心是地震荷载的确定。

地震荷载是指建筑物在地震作用下受到的外力,需要精确测定荷载的大小和方向,以便在设计阶段合理安排结构。

此外,抗震设计还包括选择合适的结构体系和材料,提高结构的韧性和抗侧移能力等。

对于地震灾害较为频繁的地区,抗震设计尤为重要。

比如,日本作为一个地震带,其建筑物中都采取了高度的抗震设计,以确保地震时尽量减少损失。

在抗震设计中,不仅要考虑建筑物的整体结构,还要考虑地基的稳定性及地震动力学等方面的问题。

只有在系统的抗震设计下,建筑物才能在地震中保持相对稳定。

二、防灾措施除了抗震设计,还需要采取一系列的防灾措施来减轻地震灾害带来的损失。

其中,最重要的一项就是加固旧建筑。

大部分地震灾害中,旧建筑往往是最容易受到破坏的。

因此,对于那些历史悠久、建筑结构脆弱的建筑物,需要采取适当的技术手段进行加固。

例如,通过增加钢筋混凝土的抗震柱、横梁和剪力墙等,提高建筑物的抗震性能。

另外,还需要加强地震灾害的减灾培训和教育。

公众的防灾意识和紧急反应能力的提升,将极大地减少地震灾害带来的人员伤亡。

政府和相关部门可以通过开展宣传活动、组织演习等方式,向公众普及地震安全知识,提高公众的自我保护和逃生能力。

此外,还可以在城市规划中加入抗震因素。

比如,在密集地区的建筑物之间保持一定的距离,以避免地震时因相互倒塌导致更大的损失。

在城市规划中合理规划道路和防护绿地,以便更好地进行救援和疏散工作。

总之,地震灾害下建筑结构的抗震设计和防灾措施是保障人民生命财产安全的核心所在。

只有在科学合理的设计和全面有效的防灾措施下,才能最大程度地减少地震带来的危害。

桥梁抗震设计中的地震荷载分析方法

桥梁抗震设计中的地震荷载分析方法

桥梁抗震设计中的地震荷载分析方法地震是造成人员伤亡和财产损失的一种自然灾害,对于大型工程建筑物,如桥梁,地震抗震设计显得尤为重要。

地震荷载分析方法是桥梁抗震设计的关键步骤之一,本文将论述桥梁抗震设计中地震荷载分析的方法和技术。

一、地震荷载的特点地震荷载是指地震作用在结构上的力和力矩,地震荷载的特点主要体现在以下几个方面:1. 非静力荷载:地震荷载是一种非静力荷载,与静态荷载不同,地震荷载是瞬时发生的,其大小和方向都在短时间内发生变化。

2. 高频荷载:地震荷载具有高频特性,地震波的频率通常在0.1Hz以上,达到几十甚至几百Hz。

这种高频荷载会引起桥梁的共振现象,对桥梁结构的破坏具有显著的影响。

3. 多向性荷载:地震荷载是多向性的,地震作用的方向不固定,可能是水平方向,也可能是垂直方向,因此需要考虑多个方向上的地震荷载。

二、地震动特性的分析地震动特性是进行地震荷载分析的基础,主要包括地震剧烈程度、地震频谱和地震时间历程等。

1. 地震剧烈程度:地震剧烈程度是评价地震强度的一个指标,通常使用震级和烈度来表示。

震级是地震的能量释放量,是对地震波幅值的对数进行数量化的结果;烈度是对地震发生时对不同地区产生的影响进行综合评判的结果。

2. 地震频谱:地震频谱是描述地震波特征的一种图形,即地震波的频率和相对振幅之间的关系。

通过对地震频谱的分析,可以了解地震波的强度和频率特性,进而对结构进行设计和评估。

3. 地震时间历程:地震时间历程是描述地震波产生和传播过程的一种曲线,通过采集真实地震数据,可以获得地震时间历程。

地震时间历程的分析可以确定地震的波形特性,并作为荷载分析的输入条件。

三、地震荷载分析方法地震荷载分析方法主要包括确定地震作用下的结构反应和地震动输入条件。

1. 结构反应分析:结构反应分析是指在给定地震输入条件下,计算出结构的响应,包括位移、速度、加速度等。

结构反应分析可采用传统的模态超级位置法、直接积分法或非线性时程分析法。

建筑抗震设计

建筑抗震设计

建筑抗震设计1. 简介建筑抗震设计是指在建筑设计阶段,通过考虑地震力作用下建筑的行为和结构特性,采取一系列措施以提高建筑的抗震能力。

地震是一种自然灾害,其破坏性极大,给建筑物带来严重威胁。

因此,进行合理的抗震设计对于确保建筑物的安全和可持续发展至关重要。

2. 抗震设计原理常见的建筑抗震设计原理可以总结为以下几点:2.1 结构合理性抗震设计首先要保证建筑结构的合理性。

建筑结构的设计需要满足力学和结构力学的要求,采用适当的结构形式和材料,确保结构能够设计为具有良好的刚度、强度和变形能力,能够抵抗地震力的作用。

2.2 地基处理地基是建筑物的基础,其稳定性对于抗震性能至关重要。

地基处理可以通过加固地下结构、增加地基的承载能力以及改进地基土体的性质等方式来实现。

合理的地基处理能够降低建筑物地震反应,提高其抗震能力。

2.3 结构连接建筑结构的连接部位是地震力传递和承载的关键部位。

连接的刚度、强度、可靠性等特性直接决定了建筑的抗震能力。

在抗震设计中,需要采用合适的连接方式和连接件来确保结构的连接部位能够承担地震力的作用。

2.4 整体布局建筑物的整体布局也会对抗震能力产生影响。

合理的布局设计可以降低地震作用下的结构侧移,减小地震力的集中作用,提高建筑物的整体稳定性。

例如,选取合适的楼层平面布置、合理设置楼梯、通道等设计措施。

2.5 振动控制在地震发生时,建筑物会发生振动。

适当的振动控制措施可以减小建筑物在地震中的变形和破坏。

采用阻尼器、加装弹簧、密封板等振动控制装置可以有效地降低建筑物的振动响应。

3. 抗震设计流程建筑抗震设计流程通常可分为以下几个步骤:3.1 地震区划和震度评定根据地震区划和震度评定,确定建筑物所在地区的地震参数。

这些参数包括地震活动性、设计基准地震烈度、地震作用时间等。

3.2 结构类型选择依据建筑物的用途和结构形式,选择适当的结构类型。

常用的结构类型包括框架结构、剪力墙结构、桁架结构等。

3.3 力学分析与抗震设计进行建筑结构的力学分析,探究结构受力情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑物的地震荷载及抗震设计1 、摘要抗震设计的首要目标是为了防止建筑物倒塌,从而在地震时减少死亡的危险和对人以及靠近这些建筑物的伤害。

由于破坏性地震是罕见的,按照经济的原则,建筑物的损坏是可以预期并避免可以接受的破坏。

因为它们的动态影响地面运动,建筑物的惯性产生地震势力。

动态性的影响,使地震作用明显不同于其它建筑荷载。

设计师的设计方向是结构影响是设计的根本,必须避免地震作用是‘一个非常强风’这个陷阱,从而地震的诱发作用可以由设计中能得到缓解。

设计师的设计观念必须考虑建筑物是一个有时会产生不安和不确定的东西。

虽然这对任何新的挑战都是可以理解的一个共同的特点,但通常会找错对象。

有效的抗震设计方法经常这样在不偏离效果设计的方案中容易被简化。

事实上,与很少被地震产生的土地的运动有关的高度不确定证明那时往往用复杂的分析技术也没有高水平的复杂设计。

一个好的地震工程设计,是一个地方的设计师以建筑物的影响作用作为控制建设的指标。

要达到这个目标,选择最好的对策模式,选择区非弹性变形可能会导致建筑物倒塌,这些都是可以接受的和压制发展的不良反应模式。

2 、抗震设计-概念性审查现代抗震设计在1920年和1930年的起源。

当时的抗震设计,通常涉及到的应用10 %的建设体重作为对结构的一个侧向力,统一适用了高度的建设。

事实上,到了1960年,强地面运动accelerographs的说法才变得更为普遍。

这些文书记录地面运动所产生的地震。

当和强震动记录仪一起使用时,它可以安装在不同的层次建筑物本身,当他们受到真正的地震地面运动,才成为可能衡量和理解的运动对建筑物的影响。

用实际地震动记录作为输入到最近研发无弹性整合时程分析软件包,那么,许多先前代码没有足够的实力来抵御设计水平地震体验过重大损失的建筑物的设计变得明显。

然而,观测表明,使用中的建筑物情况表明,这种缺乏实力当他们受到了严重的地震袭击甚至严重损害时,并不一定会导致建筑物破坏。

提供了足够的支持力,就可以维持过度退化作为非弹性变形的发展,这样建筑物就可以普遍不受破坏而且经常可以从经济上修理。

反过来说,建筑物经历了显着的强度损失往往成为不稳定而常常倒塌。

设计的主要参数重点转移到保证保留弹性后效强度,以使建筑物更耐久。

很明显,一些过渡弹性反应机制最好传向其他地方。

推荐机制,可以很容易描述以容纳预期的大型非弹性变形。

其他机制很容易被影响,迅速降解而可能出现崩溃性的结果。

这些机制必须加以压制,这个目标可能会通过适当详述再次实现。

因此,详细的结构要素成为现代地震工程设计成功的关键所在,排除了使可取弹性后效机制是查明并推动而形成的不良反应模式。

理想的机制是那些有足够能力抵御正常施加的荷载却没有损害的,而且有能力容纳大量的非弹性变形,且没有重大损失的强度或承载能力。

这种机制已经被发现的,一般涉及的抗弯反应钢筋混凝土或钢结构要素或弯曲钢桩响应的木材连接器等。

不良弹性后效反应机制的具体结构要素有脆性特征,并包括剪切破坏内部的钢筋混凝土,钢筋键失灵,失去轴向承载能力或屈曲压缩部位以及拉伸破坏脆部件等栏目,如作为木材或低于钢筋混凝土。

不良的全球反应机制,包括发展的一个软层高大厦内部(如在弹性变形的要求可能会集中,因此,使高标准和严要求抵抗能力的部位)或从结构形式或几何极不规则的建筑物,这使他们作出了工程模型用于设计以外的简化。

3 、抗震性能的期望抗震结构性能要求的建筑物,往往满足国家建筑法规。

比如第B1的结构的新西兰建筑守则[ 1 ]明表示,建筑,受到频繁活动的中等强度的外力时是意在美化市容,,而且要在罕见的高强度时保持稳定和避免倒塌。

澳大利亚建筑守则 [ 2 ]明预期业绩,而不是含糊的条款。

这是留给装载标准的新西兰[ 3 ]和澳大利亚[ 4,5,6,7 ]解释'适度'和'高'装载密度。

他们这样做等同于'市容'挽留优秀人才作为极限状态和倒塌避税作为极限状态荷载及其组合的负载。

因此,为符合强制性规定,由国家建筑守则下列条件必须得到满足:A、正常使用(极限状态):建筑的反应应该保持弹性为主,虽然有些轻微损坏但此种损害并不需要修理。

建筑物应保持充分运作。

保存适当层次的横向变形,以保护非结构性的破坏为主要的控制参数。

这个极限状态的荷载强度相对较低(在任何一年超越概率5 %)。

B、承载力极限状态(终极或生存极限状态):风险应维持在以生命安全可接受的最低水平。

建筑物倒塌是可以避免的。

显着的残余变形预计该建筑物内的结构和非结构构件经历的损害。

楼宇维修等可能不符合经济原则。

荷载强度用于设计,可以等同罕见的地震与长期( 500年),重现期。

因为它涉及到保全生命,这是唯一最重要的设计准则。

它要求该系统具备足够的整体结构延性,使负荷再分配,同时避免倒塌。

例如在新一代的地震荷载规范[ 8 ]表明,须极限状态下开始实施。

举例来说,继续占用(有点超出使用极限状态,虽然损害是轻微的,这将需要修复,但大楼将在事件发生后继续使用,)并损害控制极限状态(如重大损害的结构和非结构部件是经验丰富,但以它的条件在活动之前在经济上建筑可以修复,)。

这些条文是目前还没有强制性的。

但是,他们提供给业主(及其保险送死)的基础上,形成绩效导向的目标。

4、为有效的抗震设计关键材料参数符合性能标准的各种极限状态概述如上,就需要不同的材料特性。

该极限状态的标准,要求在一定的刚度和弹性强度参数内得到满足,主要是与线性应力/应变变形关系与弹性系统有关。

,一般要求达到国家规定的标准,可以避免倒塌。

这个理念在两个方面的材料和断面性质的假设成员有重要影响,也就是在翻译的结果导出弹性建模技术进入非弹性反应域。

普通的线性应力/应变关系的材料都必须遵守与极限状态性能的规定。

这些都是常规使用的参数,以评估结构抵抗其他负载。

提供体制仍然主要是弹性,避免损害的,从而保证可以合理地期望和遵守。

简单的弹性工程模型,可以用来确定建设反应在这些条件。

因此,对于混凝土及砌体结构,破获截面特性也适用于极限状态,但要加强钢筋的强度(以及随后保留残宽的裂缝)。

遵守与极限状态性能的规定,在弹性后效反应的结构,包括大跨弹性变形,需要考虑的。

打破在这个阶段的通常是传统的工程模型。

因此,可以利用高度精密工程建模技术,以证明遵守极限国家标准(即避免倒塌),除非有高度的信心之间的关系,弹性和非弹性结构响应是现实的。

简单的弹性应力/应变关系和弹性工程中使用的模型,以确定载荷分布成员之间的内部结构体系已经不再适用。

这是为解决这一特定职位弹性反应条件作为主要目标,良好的抗震工程设计,认为这些原则的能力,发达国家设计的建筑物随后引入许多现代的设计标准。

5 、水平地面运动的抗震设计一个基本参数包含在所有地震荷载标准是地震引起的地面运动,这是要设计的。

这一般是由地震学家和地质工程师准备。

它通常是向结构设计师呈现三个方面,即弹性反应的基底岩石(通常为加速度谱),地基处的地震强度(常作为一个套装区划图),修正功能是适用这项议案在下方基岩条件(无论是作为一个简单的放大系数或作为一个更复杂的土壤性质相关功能)。

5.1 弹性反应谱工程师们传统上用加速度反应谱,以代表议案,由设计地震。

这些光谱一般为响应函数(加速度,速度和位移)对反应时间的单自由度振荡器被认为代表结构(参照图2 )。

谱研制的计算响应一个单一的集体振荡器(通常为5 %临界阻尼)以设计水平震动。

工程师传统,表现出偏爱加速度谱的,因为由此产生的系数,乘以抗震质量,结果在横向剪切基地,为建设。

在澳大利亚[ 7 ]和军装建设代码用在美国西部[ 9 ]这些光谱是作为一个简单划一的系数后进行了指数衰减。

新西兰荷载标准[ 3 ]明弹性反应谱,导出一个统一的风险的做法,对每一个土壤阶层。

现代的趋势,如由欧洲地震标准[ 10 ] ,并在拟议中的国家地震减灾计划( nehrp )规范[ 8 ]就是要承认这个反应谱是建设期依赖性。

要实现这个目标,出版设计反应谱在参数表那里坐标每param5.1 。

弹性反应谱工程师们传统上用加速度反应谱代表运动设计抗震。

这些频谱通常当做回应功能被呈现(加速度,速度和位移)对反应时间的单自由度振荡器被认为代表结构。

谱研制的计算响应一个单一的集体振荡器(通常为5 %临界阻尼)以设计水平震动。

工程师传统地表现出偏爱加速度谱,因为由此产生的系数乘以抗震质量,结果为建建筑横向剪切变形。

在澳大利亚和建设法规用在美国西部这些光谱是作为一个简单划一的系数后进行了指数衰减。

新西兰荷载标准明弹性反应谱,对每一个土壤阶层导出一个统一的风险的做法。

现代的趋势,如由欧洲地震标准[ 10 ] ,拟在议中的国家地震减灾计划( nehrp )。

规范[ 8 ]就是要承认这个反应谱是建设期依赖性。

要实现这个目标,出版设计谱参数形式下的坐标,每个参数和特征曲线之间,他们都是读出了一系列的地震区划图,该区域的稳定。

5.2对地震活动目前一代的地震荷载标准采用单地震区划图与ISO - seismal等高线为代表的相对地震活动地点之间。

例如,给新西兰的一的例子被显示为图 3 。

起源于的地域因素的产品, Z 和侧面的加速系数设计光谱作为设计。

新一代的地震荷载标准预计明谱加速度作为一个函数的反应期,也设计活动返回其活性。

简单的线性尺度的一个标准谱形状将不再被接受。

相反,我们可以预期,举例来说,某套房的3个系列的地图,反映了不同的概率超出标准( 0.05 ( 20年重现期),0.002 (五百年重现期)和0.0005 ( 2000年重现期))。

每套将包括四地图,每一个谱坐标的时间也许T= 0 ,T=0.2秒,T=1秒和T = 2.5秒)。

完整的套件,因此可能包括12个地区的地图,这将使发展的不同形弹性反应谱不同的回返期。

5.3土壤详述地震是通常由破裂的一个断层破裂平面,往往深处地球的地幔。

地面运动经历了表面的结果,从传输的能量波基岩源传送首先是通过基岩,然后在经历重大的改造,由土层作为能量波接近地球表面的。

典型岩石地盘体验高短的时间内回应,但更迅速老化的问题。

因此,短期限的高强运动可以预期在这些地点。

反之软土,特别是当他们延长至中度深处( " > 50米),可能会过滤掉一些短期内的运动,并通常扩增一段较长的时间内作出回应,尤其是在有的情况下,土壤质量有一个天然期间类似高能组成的地震。

虽然这种共振效应包括这样的影响,可考虑到当现场特定光谱目前正在研制中,在荷载标准下它通常是不切实际的。

6、韧性设计反应谱最现代化的地震设计标准承认,建筑物受到严重的地震袭击时将会受到损坏的现实。

他们企图作出量化后不同的建筑和物质类型的弹性能力,包括某种形式的延性根据调整系数。

这起调低弹性反应系数下降到一个更便捷的水平,低于该弹性反应很少或根本没有损坏,但没想到其中有些损害是接受预期而避免倒塌得到保证结构的能力维持水平的非弹性变形隐含在这些依赖于物质的延性材料,并详细介绍使用。

相关文档
最新文档