E第5章逆变电路
逆变电路原理图

逆变电路原理图逆变电路是一种将直流电转换为交流电的电路。
它通常由开关管和电感、电容等元件组成,可以实现直流电源向各种负载输出交流电。
逆变电路在各种电子设备中都有广泛的应用,例如逆变电源、UPS电源等。
在本文中,我们将介绍逆变电路的原理图及其工作原理。
逆变电路的原理图通常由输入端、输出端、开关管、电感、电容等元件组成。
其中,输入端接收直流电源,经过开关管的控制,通过电感和电容等元件实现直流电到交流电的转换,最终输出到负载中。
开关管的工作状态由控制电路来控制,它可以周期性地打开和关闭,从而实现对直流电的切割和转换。
电感和电容则起到了滤波和平滑输出波形的作用。
逆变电路的工作原理是基于开关管的工作状态来实现的。
当开关管处于导通状态时,直流电源通过电感储能,同时电容器充电,此时负载得到电源供电。
当开关管处于断开状态时,电感释放能量,电容器放电,此时负载得到的是电感和电容器放电的能量。
通过不断地切换开关管的工作状态,可以实现直流电到交流电的转换。
在逆变电路中,开关管的工作状态由控制电路来控制。
控制电路通常由PWM控制器、驱动电路、反馈电路等组成。
PWM控制器可以根据输入信号的大小和频率来生成相应的脉冲信号,驱动电路则将脉冲信号传递给开关管,控制其导通和断开。
反馈电路则可以监测输出端的电压和电流,将其反馈给PWM控制器,实现对输出波形的调节和稳定。
逆变电路的原理图和工作原理对于电子工程师来说是非常重要的。
通过深入理解逆变电路的原理图和工作原理,可以更好地设计和调试逆变电路,提高电路的效率和稳定性。
同时,对于工程师来说,熟练掌握逆变电路的原理图和工作原理也是必不可少的技能。
总之,逆变电路是一种非常重要的电子电路,在各种电子设备中都有着广泛的应用。
通过深入理解逆变电路的原理图和工作原理,可以更好地应用和设计逆变电路,提高电路的效率和稳定性。
希望本文对您有所帮助,谢谢阅读!。
逆变电路的构成

逆变电路的构成逆变电路是一种将直流电转换为交流电的电路。
它由直流电源、开关元件和滤波电路组成。
逆变电路在工业生产、能源转换等领域得到广泛应用。
我们来了解一下逆变电路的基本构成。
逆变电路的核心是开关元件,常见的开关元件有晶体管和功率MOS管。
开关元件的作用是控制电流的通断,从而实现直流电到交流电的转换。
在逆变电路中,开关元件的开启和关闭是周期性进行的,这样可以产生交流电。
逆变电路还需要一个滤波电路来平滑输出的交流电。
滤波电路由电容和电感组成,它们的作用是滤除交流电中的高频噪声,使输出电流更加稳定。
滤波电路的设计需要根据具体的应用需求进行,以确保输出电流的质量。
在逆变电路中,直流电源提供了电流的稳定来源。
直流电源可以是电池、电容器或其他直流电源装置。
直流电源的电压和电流决定了逆变电路的输出特性,因此在设计逆变电路时需要充分考虑直流电源的参数。
逆变电路的工作原理是通过开关元件的周期性开关来改变电流的方向和大小。
当开关元件导通时,电流从直流电源流向负载;当开关元件断开时,电流从负载流向直流电源。
通过不断地开关和断开,逆变电路可以产生交流电。
逆变电路有很多应用场景。
在工业生产中,逆变电路可以将直流电转换为交流电,供给各种设备和机械使用。
在能源转换中,逆变电路可以将太阳能、风能等可再生能源转换为交流电,以供电网使用。
逆变电路还可以用于电动车辆的驱动系统、太阳能发电系统等领域。
总结起来,逆变电路通过开关元件和滤波电路将直流电转换为交流电。
它广泛应用于工业生产、能源转换等领域。
逆变电路的设计需要考虑直流电源的参数和滤波电路的特性,以确保输出电流的质量。
逆变电路的工作原理是通过开关元件的周期性开关来改变电流的方向和大小。
逆变电路的应用场景包括工业生产、能源转换、电动车辆等领域。
通过逆变电路的转换,我们可以更好地利用和管理电能资源,实现能源的可持续发展。
电力电子技术5 逆变电路

晶闸管的导通电流方向一致,其电压只要稍大于变流器直流侧的平均电 压Ud。 (的2极)性内与部整条流件状:态变时流相电反路,必才须能工把作直在流β功小率于逆9变00区为域交,流使功直率流反端送电电压网U。d 这两个条件缺一不可。 (3)串接大电感
电力电子技术
第五章 逆变电路
第五章 逆变电路
5.1 5.2 5.3 5.4 5.5 5.6 5.7
电力器件的换流方式 有源逆变电路 无源逆变电路 电压型逆变电路 电流型逆变电路 负载换流式逆变电路 脉冲宽度调制型逆变电路
第五章 逆变电路
在实际应用中,有些场合需要将交流电转变为大小 可调的直流电——即前面讲过的整流。有时还需要 将直流电转变为交流电——即为逆变。它是整流电 路的逆过程。在一定条件下,一套晶闸管电路既可 用于整流又可用于逆变,这种装置称为变流器。
亦增大,导致
5.2 有源逆变电路
2、重物下放,变流器工作于逆变状 反送电网,这就是有源逆变的工
态
作原理。
在整流状态,电流Id由直流电压Ud产 生,整流电压Ud的波形必须使正面积 大于负面积。当重物下放时,电动
机转速方向相反,产生的电动势E亦
反向,为了防止两电源顺向串接形
成短路,此时Ud方向也要反向,即控 制角大于900,Ud波形出现负面积大 于正面积变成负值,但由于E的作用,
如果将逆变电路的交流侧接到交流电网上,把直流 电逆变成同频率的交流电反送到电网去,称为有源 逆变。它用于直流电机的可逆调速、绕线型异步电 动机的串级调速、高压直流输电和太阳能发电等方 面。如果逆变器的交流侧不与电网连接,而是直接 接到负载,即将直流电逆变成为某一频率或可变频 率的交流电供给负载,称为无源逆变。它用于交流 电机变频调速、感应加热、不间断电源等方面。
电力电子技术最新版配套习题答案详解第5章

目录第1章电力电子器件 (1)第2章整流电路 (4)第3章直流斩波电路 (20)第4章交流电力控制电路和交交变频电路 (26)第5章逆变电路 (31)第6章PWM控制技术 (35)第7章软开关技术 (40)第8章组合变流电路 (42)第5章逆变电路1.无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流侧接电网,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
2.换流方式各有那几种?各有什么特点?答:换流方式有4种:器件换流:利用全控器件的自关断能力进行换流。
全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强迫施加反向电压换流称为强迫换流。
通常是利用附加电容上的能量实现,也称电容换流。
晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。
3.什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点。
答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路电压型逆变电路的主要特点是:①直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
电流型逆变电路的主要特点是:①直流侧串联有大电感,相当于电流源。
直流侧电流基本无脉动,直流回路呈现高阻抗。
②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。
电力电子技术课后答案6

第5章逆变电路1.无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流侧接电网,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
2.换流方式各有那几种?各有什么特点?答:换流方式有4种:器件换流:利用全控器件的自关断能力进行换流。
全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强迫施加反向电压换流称为强迫换流。
通常是利用附加电容上的能量实现,也称电容换流。
晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。
3.什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点。
答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路电压型逆变电路的主要特点是:①直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
电流型逆变电路的主要特点是:①直流侧串联有大电感,相当于电流源。
直流侧电流基本无脉动,直流回路呈现高阻抗。
②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。
而交流侧输出电压波形和相位则因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电感起缓冲无功能量的作用。
因为反馈无功能量时直流电流并不反向,因此不必像电压型逆变电路那样要给开关器件反并联二极管。
电力电子填空题

第1章电力电子器件1.电力电子器件一般工作在__开关__状态。
2.在通常情况下,电力电子器件功率损耗主要为__通态损耗__,而当器件开关频率较高时,功率损耗主要为__开关损耗__。
3.电力电子器件组成的系统,一般由__控制电路__、_驱动电路_、_主电路_三部分组成,由于电路中存在电压和电流的过冲,往往需添加_保护电路__。
4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型器件_ 、_双极型器件_ 、_复合型器件_三类。
5.电力二极管的工作特性可概括为_承受正向电压导通,承受反相电压截止_。
6.电力二极管的主要类型有_普通二极管_、_快恢复二极管_、_肖特基二极管_。
7.肖特基二极管的开关损耗_小于_快恢复二极管的开关损耗。
8.晶闸管的基本工作特性可概括为__正向电压门极有触发则导通、反向电压则截止__ 。
9.对同一晶闸管,维持电流IH与擎住电流IL在数值大小上有IL__大于__IH 。
10.晶闸管断态不重复电压UDSM与转折电压Ubo数值大小上应为,UDSM_大于__Ubo。
11.逆导晶闸管是将_二极管_与晶闸管_反并联_〔如何连接〕在同一管芯上的功率集成器件。
12.GTO的__多元集成__结构是为了便于实现门极控制关断而设计的。
13.MOSFET的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的_截止区_、前者的饱和区对应后者的__放大区__、前者的非饱和区对应后者的_饱和区__。
14.电力MOSFET的通态电阻具有__正__温度系数。
15.IGBT 的开启电压UGE〔th〕随温度升高而_略有下降__,开关速度__小于__电力MOSFET 。
16.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为_电压驱动型_和_电流驱动型_两类。
17.IGBT的通态压降在1/2或1/3额定电流以下区段具有__负___温度系数,在1/2或1/3额定电流以上区段具有__正___温度系数。
第五章直流交流(DCAC)变换.

第五章直流一交流(DC—AC变换5.1 逆变电路概述5.1.1 晶闸管逆变电路的换流问题DC—AC变换原理可用图5-1所示单相逆变电路来说明,其中晶闸管元件VT1、VT4,VT2、VT3成对导通。
当VT、VT4导通时,直流电源E通过VT1、VE向负载送出电流,形成输出电压%左(+)、右(-),如图5-1 (a)所示。
当VT2、VT3导通时,设法将VT1、VT4关断,实现负载电流从VT1、VT4向VT a、VT3的转移,即换流。
换流完成后,由VT a、VT3向负载输出电流,形成左(-)、右(+)的输出电压%,如图5-1 (b)所示。
这两对晶闸管轮流切换导通,则负载上便可得到交流电压呦,如图5-1(c)波形所示。
控制两对晶闸管的切换导通频率就可调节输出交流频率,改变直流电压E的大小就可调节输出电压幅值。
输出电流的波形、相位则决定于交流负载的性质。
f;图5-1 DC —AC变换原理要使逆变电路稳定工作,必须解决导通晶闸管的关断问题,器件,在承受正向电压条件下只要门极施加正向触发脉冲即可导通。
作用,只有使阳极电流衰减至维持电流以下才能关断。
常用的晶闸管换流方法有:(1)电网换流(2)负载谐振式换流(3)强迫换流即换流问题。
晶闸管为半控但导通后门极失去控制5.1.2 逆变电路的类型逆变器的交流负载中包含有电感、电容等无源元件,它们与外电路间必然有能量的交换,这就是无功。
由于逆变器的直流输入与交流输出间有无功功率的流动,所以必须在直流输入端设置储能元件来缓冲无功的需求。
在交一直一交变频电路中,直流环节的储能元件往往被当作滤波元件来看待,但它更有向交流负载提供无功功率的重要作用。
根据直流输入储能元件类型的不同,逆变电路可分为两种类型:1.电压源型逆变器电压源型逆变器是采用电容作储能元件,图电压源型逆变器有如下特点:1)直流输入侧并联大电容C用作无功功率缓冲环节(滤波环节),构成逆变器低阻抗的电源内阻特性(电压源特性),即输出电压确定,其波形接近矩形,电流波形与负载有关,接近正弦。
电力电子第五章 ACDC变换器(整流和有源逆变电路)

5.2 不控整流电路
• 利用电力二极管的单相导电性可以十分简单 地实现交流—直流电力变换。
• 由于二极管整流电路输出的直流电压与交流 输入电压的大小有关,不能通过电路本身控 制其数值,故称为不控整流电路。
5.2.1 单相不控整流电路
u1
u2 O ud
uVDO1 O
VD4
VD2
a)
VD3
R VD4
VD1
-
ud AC + VD2
b)
VD3 R ud
VD4
c)
a)单相桥式整流电路 b)交流输入正半周单相桥式整流电路工作图 c)交流输入负半周单相桥式整流电路工作图
5.2.1 单相不控整流电路
AC +
ud
VD3
VD2
VD2
b)
图5-2 单相全波整流电路
u2
R
c)
d)
u2
共阳极连接 VD4
2 t
5.2.1 单相不控整流电路
VD1
VD1
VD3 VD1
u2 R
AC
+ -
R
-
AC +
R
t
u2
AC + -
ud
VACD1
+
ud
VD2
VD2
u2
VD2
VbD)3
u2
c)
d)
u2
R
VD2
u2 VD4
VD4
带续流二极管的单相 半波整流电路
b)
d)
u2
u2
t1
O
2
t1
t
O
2
第5章直流-交流(DC-AC)变换1剖析

第5章 无源逆变电路
5.1 逆变器的性能指标与分类 5.2 逆变电路的工作原理 5.3 电压型逆变电路 5.4 电流型逆变电路 5.5 逆变器的SPWM控制技术
5.2.2
逆变电路的工作原理
1、主要功能: 将直流电逆变成某一频率R为逆变器的输出负载。 电当压开u关0=TU1、d;T4闭合,T2、T3断开时,逆变器输出
2、无源逆变:
1)定义:逆变器的交流侧不与电网联接,而是直接接到 负载,即将直流电逆变成某一频率或可变频率的交 流电供给负载,
2)应用:它在交流电机变频调速、感应加热、不停电电源 等方面应用十分广泛,是构成电力电子技术的重要内容。
5.1.1 逆变器的性能指标
(1)谐波系数HF(Harmonic Factor)
其中, 为2输f s出电压角频率。
当 n=1时其基波分量的有效值为: (5.3.2)
U O1
2U d
2
0.45Ud
(5.3.3)
图5.3.1 电压型半桥逆变电路 及其电压电流波形
5.3.1 电压型单相半桥逆变电路
优点: 简单,使用器件少; 缺点: 1)交流电压幅值仅为Ud/2; 2)直流侧需分压电容器; 3)为了使负载电压接近正弦波通常在输出端要 接LC滤波器,输出滤波器LC滤除逆变器输 出电压中的高次谐波。 应用:用于几kW以下的小功率逆变电源;
① 非谐振式逆变电路 ② 谐振式逆变电路
5.1.3
逆变电路用途
逆变器的用途十分广泛:
• 1、可以做成变频变压电源(VVVF),主要用于交流 电动机调速。
2、可以做成恒频恒压电源(CVCF),其典型代表为 不间断电源(UPS)、航空机载电源、机车照明,通信等 辅助电源也要用CVCF电源。
第5章-逆变电路

当变化两组开关切换频率,就可变化输出交流电频
率相也;位不若也同接相。电同阻;负若载阻时感,负负载载时电,i流o相io和位u滞o旳后波于形uo相,同波,形
如图所示,设t1前S1、S4通,则uo和io均为正。 若在t1时刻断开S1、S4,合上S2、S3,则uo旳极性变负,但io 不能立即反向且仍维持原方向;
交直交变频电路由交直变换(整流)和直交变换两部分构成, 后一部分就是逆变。
3. 应用
多种直流电源,如蓄电池、干电池、太阳能电池等在向交流 负载供电时就需要逆变电路。
交流电机调速用变频器、不间断电源、感应加热电源等电力 电子装置旳关键部分都是逆变电路。
2024/9/22
5.1 换流方式
5.1.1 逆变电路旳基本工作原理 5.1.2 换流方式分类
优点:电路简朴,使用器件少。
缺陷电:容输器出串交联流,电须压控幅制值两仅者为电压Ud均/2衡,。且直流侧需要两个
应用: 常用于几kW下列旳小功率逆变电源。 单相全桥、三相桥式都可看成若干个半桥逆变电路 旳组合。
2024/9/22
5.2.1 单相电压型逆变电路
2. 全桥逆变电路
共四个桥臂,可看成两个 半桥电路组合而成。 两对桥臂交替导通180°。 输出电压和电流波形与半 桥电路形状相同,但幅值 高出一倍。 变化输出交流电压旳有效 值只能经过变化直流电压 Ud来实现。
2024/9/22
5.1.2 换流方式分类
4. 逼迫换流 举例:
设置附加旳换流电路,给欲关断旳晶闸管逼迫施加 反向电压或反向电流旳换流方式称为逼迫换流 (forced commutation), 这一般是利用附加电容上储存 旳能量来实现,故也称为电容换流。
任务五 逆变电路

重 物 放 下
Id的方向:从E的正极流出,从Ud的正 极流入,电流方向未变。 显然,这时电动机为发电状态运行, 对外输出电能,变流器则吸收上述能量 并回馈到交流电网,此时的电路进入到 图4-2 全波相控电路的整流与有源逆变 有源逆变工作状态。
子任务1 有源逆变电路
由图4-2中波形可见,电路工作在逆变时的直流电压可由积分来求 得
这种直流电动势源可以是直流电动机的电枢电动势,也可以是蓄电池电动势。它 是使电能从变流器的直流侧回馈交流电网的源泉,其数值应稍大于变流器直流侧 输出的直流平均电压Ud。
(2)内部条件:要求变流器中晶闸管的控制角α>π/2,这样才能 使变流器直流侧输出一个负的平均电压,以实现直流电源的能量 向交流电网的流转。
电压型
电压型逆变电路的输入 端并接有大电容,输入 直流电源为恒压源,逆 变电路将直流电压变换 成交流电压
电流型
电流型逆变电路的输入端 串接有大电感,输入直流 电源为恒流源,逆变电路 将输入的直流电流变换为 交流电流输出
子任务2 无源逆变电路
(2)根据电路的结构特点分类
①半桥式逆变电路 ②全桥式逆变电路 ③推挽式逆变电路
上述两个条件必须同时具备才能实现有源逆变。必须指出,对于半控桥 或者带有续流二极管的可控整流电路,因为它们在任何情况下均不可能 输出负电压,也不允许直流侧出现反极性的直流电动势,所以不能实现 有源逆变。为了保证电流连续,逆变电路中一定要串接大电感。
子任务1 有源逆变电路
从上面的分析可见,整流和逆变、直流和交流在交流电路中相互联 系并在一定条件下可相互转换。同一个变流器既可工作在整流状态 又可工作在逆变状态,其关键是电路的内部与外部条件不同。但是 半控桥或带有续流二极管的电路,因其整流电压ud不能出现负值,也 不允许直流侧出现负极性的电动势,故不能实现有源逆变。欲实现 有源逆变,只能采用全控电路。
逆变电路工作原理

逆变电路工作原理
逆变电路是一种能够将直流电能转换为交流电能的电路。
其基本原理是利用逆变器,通过控制开关元件的开关状态,将直流电源的电压逆变成一定频率和幅度的交流电信号。
逆变电路通常由输入端、输出端和控制端组成。
输入端连接直流电源,输出端连接负载,而控制端则控制开关元件的开关状态。
逆变器中常用的开关元件有晶体管、场效应管、三极管等。
开关元件的开关状态是通过控制端的控制信号来实现的。
在逆变电路工作过程中,当开关元件导通时,直流电源的电能通过开关元件传递给负载,从而实现了电能的传输。
而当开关元件关断时,直流电源的电能也就停止向负载传输。
通过不同的开关状态和控制信号,逆变电路可以产生不同频率和幅度的交流电信号。
通过调整控制信号的参数,可以实现对输出交流信号的改变,以满足不同负载的需求。
逆变电路广泛应用于各种场合,特别是在需要将直流电源转换为交流电源的情况下。
比如,太阳能发电系统中的逆变器可以将太阳能电池板产生的直流电转换为交流电,从而为家庭供电。
另外,逆变电路还可以在交流电源不可用或不稳定的地区提供稳定的电能供应,例如在太空航天器、车载电子设备等领域。
总之,逆变电路通过控制开关元件的开关状态,将直流电源的电压逆变成一定频率和幅度的交流电信号,从而实现了直流电
能向交流电能的转换。
它在能源转换和电能供应方面发挥了重要的作用。
第5章 逆变器

图5.10
晶闸管单相电流型逆变器
该晶闸管中频电源的输出频率是RLC并联谐振电路的谐振频率。
5.3.2 电流跟踪型逆变器
• 电流跟踪型逆变器使逆变器输出电流跟随给定的电流波 形变化,这是一种PWM控制方式。 • 电流跟踪一般采用滞环控制,即当逆变器输出电流与设 定电流的偏差超过一定值时,改变逆变器的开关状态, 使逆变器输出电流增加或减小,从而将输出电流与设定 电流的偏差控制在一定范围内。
'
• 规则采样法计算的开关时刻与自然采样法略有差异,但 是误差不大。规则采样法固定了采样时刻tP,使计算大 为简化,是一种实用的算法。在规则采样时,由于三角 波的两条边对称,输出脉冲也是以三角波中线为对称的
5.3 单相电流型逆变器
• • 晶闸管单相电流型逆变器 电流跟踪型逆变器
5.3.1 晶闸管单相电流型逆变器
5.1.1 电压源型和电流源型逆变电路
• 电压源型逆变器:当直流回 路采用大电容滤波时,逆 变器输入电压Ud波动很小, 具有电压源的性质,故称 为电压源型逆变器(图 5.1a) • 电流源型逆变器:直流回路 采用大电感滤波,电感使 逆变器输入电流Id波动很 小,具有电流源的性质, 故称为电流源型逆变器
双极性SPWM调制
4 单极倍频正弦脉宽调制 时
u r uc
T1
驱动,
u r uc 时 T2 驱动, T1 u r uc 0
T3
驱动,T4
T2
截止 截止
时
截止
u r uc 0 时 T3 截止 T4 驱动,
单极倍频正弦脉宽调制是单极性的,正半周只有正脉冲,负半周只 有负脉冲。若每周期各管有N个脉冲时,输出电压由2N个脉冲组成, 因此称为倍频控制,倍频控制以较少的开关次数得到较高调制频率 的效果,单极倍频正弦脉宽调制在单相变频器中使用较多。
课后习题电力电子(大三上)

第2章整流电路填空题:1.电阻负载的特点是________,在单相半波可控整流电阻性负载电路中,晶闸管控制角α的最大移相范围是________。
2.阻感负载的特点是________,在单相半波可控整流带阻感负载并联续流二极管的电路中,晶闸管控制角α的最大移相范围是________,其承受的最大正反向电压均为________,续流二极管承受的最大反向电压为________(设U2为相电压有效值)。
3.单相桥式全控整流电路中,带纯电阻负载时,α角移相范围为________,单个晶闸管所承受的最大正向电压和反向电压分别为________和________;带阻感负载时,α角移相范围为________,单个晶闸管所承受的最大正向电压和反向电压分别为________和________;带反电动势负载时,欲使电阻上的电流不出现断续现象,可在主电路中直流输出侧串联一个________。
4.单相全控桥反电动势负载电路中,当控制角α大于不导电角δ时,晶闸管的导通角θ =________; 当控制角α小于不导电角 δ 时,晶闸管的导通角θ =________。
5.从输入输出上看,单相桥式全控整流电路的波形与________的波形基本相同,只是后者适用于________输出电压的场合。
6.电阻性负载三相半波可控整流电路中,晶闸管所承受的最大正向电压U Fm 等于________,晶闸管控制角α的最大移相范围是________,使负载电流连续的条件为________(U2为相电压有效值)。
7.三相半波可控整流电路中的三个晶闸管的触发脉冲相位按相序依次互差________,当它带阻感负载时,α的移相范围为________。
8.三相桥式全控整流电路带电阻负载工作中,共阴极组中处于通态的晶闸管对应的是________的相电压,而共阳极组中处于导通的晶闸管对应的是________的相电压;这种电路 α 角的移相范围是________,u d波形连续得条件是________。
电力电子技术(王兆安第5版)课后习题答案

目录第1章电力电子器件 (1)第2章整流电路 (4)第3章直流斩波电路 (20)第4章交流电力控制电路和交交变频电路 (26)第5章逆变电路 (31)第6章PWM控制技术 (35)第7章软开关技术 (40)第8章组合变流电路 (42)第1章 电力电子器件1. 使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。
或:u AK >0且u GK >0。
2. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。
要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。
3. 图1-43中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 1、I 2、I 3。
002π2π2ππππ4π4π25π4a)b)c)图1-430图1-43 晶闸管导电波形解:a) I d1=π21⎰ππωω4)(sin t td I m =π2mI (122+)≈0.2717 I m I 1=⎰ππωωπ42)()sin (21t d t I m =2m I π2143+≈0.4767 I m b) I d2 =π1⎰ππωω4)(sin t td I m =πmI (122+)≈0.5434 I m I 2 =⎰ππωωπ42)()sin (1t d t I m =22mI π2143+≈0.6741I m c) I d3=π21⎰20)(πωt d I m =41I m I 3 =⎰202)(21πωπt d I m =21I m4. 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少?解:额定电流I T(AV) =100A 的晶闸管,允许的电流有效值I =157A ,由上题计算结果知a) I m1≈4767.0I≈329.35, I d1≈0.2717 I m1≈89.48 b) I m2≈6741.0I≈232.90,I d2≈0.5434 I m2≈126.56 c) I m3=2 I = 314,I d3=41 I m3=78.55. GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不能?答:GTO 和普通晶闸管同为PNPN 结构,由P 1N 1P 2和N 1P 2N 2构成两个晶体管V 1、V 2,分别具有共基极电流增益1α和2α,由普通晶闸管的分析可得,1α+2α=1是器件临界导通的条件。
第5章无源逆变电路

表5-1 180º导电型三相桥式逆变电路各阶段等效电路及相电压和线电压
5.2.3电压型逆变电路的特点
(1)直流侧接有大电容,相当于电压源,直流电压基本无脉动, 直流回路呈现低阻抗。
(2)由于直流电压源的箝位作用,交流侧电压波形为矩形波, 与负载阻抗角无关,而交流侧电流波形和相位因负载阻抗角 的不同而异,其波形接近三角波或接近正弦波。
5.5脉宽调制型逆变器
PWM控制方式就是对逆变电路开关器件的通断 进行控制,使输出端得到一系列幅值相等而宽度不 等的脉冲,用这些脉冲来代替正弦波所需要的波形。 按一定的规则对各脉冲的宽度进行调制,既可以改 变逆变电路输出电压的大小,又可以改变输出电压 的频率。
• 5.5.1 PWM控制的基本原理 • 5.5.2 PWM逆变器及其优点 • 5.5.3 SPWM控制电路
图5-14 电流型三相桥式逆变电路的输出波形
5.3.3电流型逆变器的特点
(1)直流侧串联有大电感,直流侧电流基本无脉动, 由于大电感抑流作用,直流回路呈现高阻抗,短 路的危险性也比电压型逆变电路小得多。
(2)电路中开关器件的作用仅是改变直流电流的流通 路径,因此交流侧输出的电流为矩形波,与负载 性质无关。而交流侧电压波形因负载阻抗角的不 同而不同。
5.5.1 PWM控制的基本原理
正弦波脉宽调制的控制思 想是利用逆变器的开关元 件,由控制线路按一定的 规律控制开关元件是否通 断,从而在逆变器的输出 端获得一组等幅、等距而 不等宽的脉冲序列。 SPWM 控 制 方 式 就 是 对 逆 变电路开关器件的通断进 行控制,使输出端得到一 系列幅值相等而宽度不相 等的脉冲,用这些脉冲来 代替正弦波或者其他所需 要的波形。
逆变电路的工作原理

逆变电路的工作原理逆变电路是一种将直流电转换为交流电的电路,其工作原理主要基于功率半导体器件的开关控制。
逆变电路在电力变换、电机驱动、太阳能发电等领域有着广泛的应用。
下面我们将详细介绍逆变电路的工作原理。
首先,逆变电路通常由功率半导体器件(如晶闸管、场效应管等)和控制电路组成。
在逆变电路中,功率半导体器件起到开关的作用,通过不同的开关组合可以实现对直流电的逆变,输出交流电。
其次,逆变电路的工作原理是通过控制功率半导体器件的导通和关断来实现对直流电的逆变。
当控制电路给出相应的触发信号时,功率半导体器件导通,直流电源输出到负载上;当控制电路给出另一种触发信号时,功率半导体器件关断,负载上不再有输出。
通过这种方式,可以实现对直流电的逆变,输出交流电。
另外,逆变电路的工作原理还涉及到逆变电路的拓扑结构。
常见的逆变电路拓扑结构有单相桥式逆变电路、三相桥式逆变电路等。
不同的拓扑结构对应不同的应用场景,可以实现不同的功率输出和控制方式。
此外,逆变电路的工作原理还包括对输出波形的控制。
在实际应用中,往往需要对逆变电路输出的交流电波形进行控制,以满足不同的负载要求。
通过控制功率半导体器件的触发角度和脉宽,可以实现对输出波形的调节,满足不同的应用需求。
总的来说,逆变电路的工作原理是基于功率半导体器件的开关控制,通过控制功率半导体器件的导通和关断来实现对直流电的逆变,输出交流电。
不同的逆变电路拓扑结构和输出波形控制方式可以满足不同的应用需求,具有广泛的应用前景。
以上就是逆变电路的工作原理的详细介绍,希望对您有所帮助。
如果您对逆变电路的工作原理还有其他疑问,欢迎随时与我们联系。
第5章逆变电路

第五章逆变电路一.换流方式1.分类:器件换流、电网换流、负载换流、强迫换流2.器件换流:适用于全控型器件●其余三种方式:针对晶闸管●器件换流和强迫换流属于自换流●电网换流和负载换流属于外部换流●当电流不是从一个支路向另一个支路转移,而是在支路内部终止流通而变为零,则称为熄灭二.逆变1.逆变电路的概念以及组成:与整流相对应,直流电变成交流电,它由逆变桥、控制逻辑和滤波电路组成●逆变:把直流电转变成交流电,整流的逆过程。
●交流侧接电网,为有源逆变●交流侧接负载,为无源逆变●既工作在整流状态又工作在逆变状态,称为变流电路。
2.逆变电路的分类:根据直流侧电源性质的不同●直流侧是电压源:电压型逆变电路又称为电压源型逆变电路●直流侧是电流源:电流型逆变电路又称为电流源型逆变电路3.产生逆变的条件:●有直流电动势,其极性和晶闸管导通方向一致,其值大于变流器直流侧平均电压●晶闸管的控制角α>π/2,使Ud为负值●半控桥或有续流二极管的电路,因其整流电压u d不能出现负值,也不允许直流侧出现负极性的电动势,故不能实现有源逆变●欲实现有源逆变,只能采用全控电路4.逆变和整流的区别:控制角α不同●0<α<π/2时,电路工作在整流状态●π/2<α<π时,电路工作在逆变状态5.把a>π/2时的控制角用π-α=β表示,β称为逆变角●逆变角β和控制角α的计量方向相反,其大小自β=0的起始点向左方计量6.逆变电路的基本工作原理:●逆变电路最基本的工作原理:改变两组开关切换频率,可改变输出交流电频率●电阻负载时,负载电流i o和u o的波形相同,相位也相同●阻感负载时,i o相位滞后于u o,波形也不同7.逆变失败的原因:●触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲,脉冲丢失、脉冲延时,致使晶闸管不能正常换相●晶闸管发生故障,该断时不断,或该通时不通●交流电源缺相或突然消失●换相的裕量角不足,引起换相失败8.三相桥整流电路有源逆变状态时各电量的计算:●U d=-1.35U2cosβ●输出直流电流的平均值亦可用整流的公式I d=(U-E)/R∑●每个晶闸管导通2π/3,故流过晶闸管的电流有效值I VT=I d/√3=0.577I d●从交流电源送到直流侧负载的有功功率Pd=R∑I d2+E M I d●在三相桥式电路中,变压器二次侧线电流的有效值I2=√2I VT=√(2/3)I d=0.816I d9.确定最小逆变角βmin的依据:●逆变时允许采用的最小逆变角β应等于βmin=δ+γ+θ●δ晶闸管的关断时间t q折合的电角度,t q大的可达200~300ms,折算到电角度约4︒~5︒●γ换相重叠角,随直流平均电流和换相电抗的增加而增大●θ安全裕量角,主要针对脉冲不对称程度一般可达5︒约取为10︒●βmin一般取30︒~35︒三.电压型逆变电路1.电压型逆变电路的特点:●直流侧为电压源或并联大电容,直流侧电压基本无脉动●输出电压为矩形波,输出电流因负载阻抗不同而不同●阻感负载时需提供无功功率,为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂并联反馈二极管四.单相电压型逆变电路1.半桥逆变电路●优点:电路简单,使用器件少●缺点:输出交流电压幅值为U d/2,且直流侧需两电容器串联,要控制两者电压均衡●应用:用于几kW以下的小功率逆变电源、单相全桥,三相桥式都可看成若干个半桥逆变电路的组合2.全桥逆变电路特点●共四个桥臂,可看成两个半桥电路组合而成●两对桥臂交替导通180°●输出电压合电流波形与半桥电路形状相同,幅值高出一倍●改变输出交流电压的有效值只能通过改变直流电压U d来实现●基波的幅值U o1m=4U d/π=1.27U d●基波的有效值U o1=2√2U d/π=0.9U d3.带中心抽头变压器的逆变电路与全桥电路的比较:●比全桥电路少用一半开关器件●器件承受的电压为2U d,比全桥电路高一倍●必须有一个变压器五.三相电压型逆变电路1.三个单相逆变电路可组合成一个三相逆变电路2.基本工作方式:180°导电方式●每桥臂导电180°,同一相上下两臂交替导电,各相开始导电的角度差120°●任一瞬间有三个桥臂同时导通●每次换流都是在同一相上下两臂之间进行,也称为纵向换流3.负载各相到电源中点N'的电压:U相,1通,u UN'=U d/2,4通,u UN'=-U d/24.负载线电压:●u UV=u UN'-u VN'●u VW=u VN'-u WN'●u WU=u WN'-u UN'5.负载相电压:●u UN=u UN'-u NN'●u VW=u VN'-u NN'●u WU=u WN'-u NN'6.负载中点和电源中点间电压7.负载三相对称时有u UN+u VN+u WN=08.输出线电压有效值U UV=0.816U d●其中基波幅值U UV1m=2√3U d/π=1.1U d●基波有效值U UV1=U UV1m/√2=√6/πU d=0.78U d9.输出线电压有效值U UN=0.471U d●其中基波幅值U UN1m=2U d/π=0.637U d●基波有效值U UN1=U UV1m/√2==0.45U d六.电流型逆变电路1.电流型逆变电路主要特点●直流侧串大电感,电流基本无脉动,相当于电流源●交流输出电流为矩形波,与负载阻抗角无关输出电压波形和相位因负载不同而不同●直流侧电感起缓冲无功能量的作用,不必给开关器件反并联二极管●换流方式有负载换流、强迫换流七.单相电流型逆变电路1.工作方式为负载换相2.工作分析:一个周期内有两个导通阶段和两个换流阶段●基波电流有效值I ol=4I d/√2π=0.9I d●负载电压有效值U o和直流电压U d的关系Uo=1.11Ud/cosφ3.自励方式:工作过程中,感应线圈参数随时间变化,必须使工作频率适应负载的变化而自动调整4.固定工作频率的控制方式称为他励方式七.三相电流型逆变电路1.电路分析:基本工作方式是120°导电方式,每个臂一周期内导电120°,每个时刻上下桥臂组各有一个臂导通,换流方式为横向换流2.输出电流波形和负载性质无关,正负脉冲各120°的矩形3.串联二极管式晶闸管逆变电路●主要用于中大功率交流电动机调速系统●是电流型三相桥式逆变电路●各桥臂的晶闸管和二极管串联使用●120°导电工作方式●强迫换流方式,电容C1~C6为换流电容●换流阶段分为恒流放电和二极管换流两个阶段八.多重逆变电路1.电压型逆变电路输出电压是矩形波,●电流型逆变电路输出电流是矩形波,含有较多谐波●多重逆变电路把几个矩形波组合起来,接近正弦●多电平逆变电路输出较多电平,使输出接近正弦2.两个单相全桥逆变电路组成,输出通过变压器T1和T2串联起来●输出波形:两个单相的输出u1和u2是180°矩形波3.多重逆变电路有串联多重和并联多重两种●串联多重——把几个逆变电路的输出串联起来,多用于电压型●并联多重——把几个逆变电路的输出并联起来,多用于电流型4.三相电压型二重逆变电路的工作原理●由两个三相桥式逆变电路构成,输出通过变压器串联合成●两个逆变电路均为180°导通方式,逆变桥II的相位逆变桥I滞后30°●T1为Δ/Y联结,线电压变比为1:√3,T2一次侧Δ联结,二次侧两绕组曲折星形接法,其二次电压相对于一次电压而言,比T1的接法超前30°,以抵消逆变桥II比逆变桥I滞后的30°这样,u U2和u U1的基波相位就相同●如果T2和T1,一次侧匝数相同,为了使U u2和U u1基波幅值相同,T2和T1二次侧间的匝比就应为1/√35.以N’为参考点,输出相电压有U d/2和-U d/2两种电平,称为两电平逆变电路6.三电平逆变电路也称中点钳位型逆变电路:每桥臂由两个全控器件串联构成,两者中点通过钳位二极管和直流侧中点相连7.线电压的电平:●相电压相减得到线电压●两电平逆变电路的输出线电压有±Ud和0三种电平●三电平逆变电路的输出线电压有±U d、±U d/2和0五种电平●三电平逆变电路输出电压谐波可大大少于两电平逆变电路●三电平逆变电路每个主开关器件承受电压为直流侧电压的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Load commutation
Condition: Load current is leading load voltage Application: capacitive load, synchronous motor
如图是基本的负载换流电路,4个桥臂均 由晶闸管组成。 整个负载工作在接近并联谐振状态而略 呈容性。 直流侧串电感,工作过程可认为id 基本 没有脉动。 负载对基波的阻抗大(基波频率接近谐振 频率)而对谐波的阻抗小。所以uo接近正 弦波。 注意触发VT2、VT3的时刻t1必须在uo过 零前并留有足够的裕量,才能使换流顺 利完成。
A classification of inverters
– Square-wave inverters (are discussed in this chapter) – PWM inverters ( will be discussed in Chapter 6)
3-46
5.1 Commutation types
Hale Waihona Puke 2-46Applications of Inverters
Conversion of electric power from DC type energy sources to AC type load
– Battery – Photovoltaic cell (Solar cell) – Fuel cell
5.4 Multiple-inverter connections and multi-level
inverters(多重逆变电路和多电平逆变电路)
1-46
Chapter 5 DC to AC Converters( Inverters )
Definition: DC→AC——与整流相对应。
Ac side-electric network, is called as active 本章讲述无源逆变 inversion; Ac side-loads, is called as passive inversion.
Basic operation principle —改变两组开关切换频率,可
改变输出交流电频率。
电阻负载时,负载电流io和u o的 波形相同,相位也相同。 阻感负载时,i o相位滞后于u o, 波形也不同(如图)。
5-46
5.1 Commutation types
The concept of commutation: 电流从一个支路向另一个支路转移的过程。
Chapter 5 DC to AC Converters( Inverters )
Outline
5.1 Commutation mode(换流方式) 5.2 Voltage source inverters(电压型逆变电路) 5.3 Current source inverters(电流型逆变电路)
Turning-on:适当的门极驱动信号就可使器件开通。 Turning-off: 全控型器件可通过门极关断。 半控型器件晶闸管,必须利用外部条件才能关断。 一般在晶闸管电流过零后施加一定时间反压,才 能关断。 研究换流方式主要是研究如何使器件关断。
6-46
4 types of commutation
Device commutation: Fully-controlled devices: GTO, IGBT, MOSFET(在采用IGBT 、电力 MOSFET 、GTO 、GTR等全控型器件的电路中的换流方式是器件换流) Line commutation
由电网提供换流电压的换流方式。 将负的电网电压施加在欲关断的晶闸管上即可使其关断。不需要器件具有门 极可关断能力,但不适用于没有交流电网的无源逆变电路。
For example: Phase-controlled rectifier, Phase-controlled AC controller
Load commutation
由负载提供换流电压的换流方式。 凡负载电流的相位超前于负载电压的场合,都可实现负载换流。
Forced commutation
设置附加的换流电路,给欲关断的晶闸管强迫施加反压或反向电流的换流方 式称为强迫换流。 通常利用附加电容上所储存的能量来实现,因此也称为电容换流
As a key part of power electronics devices
– AC-DC-AC frequency converter (for AC motor drive) – AC-DC-AC constant-voltage constant-frequency converter (for uninterruptable power supplies) – AC-DC-AC Converters for induction heating – AC-DC-AC-DC switching power supplies
uo io O i O i O uVT O iVT iVT
1
uo a)
io
?t
4
iVT
2
iVT
3
?t ?t
t1
uVT
uVT
b)
1
4
8-46
?t
Forced commutation (capacitance commutation)
由换流电路内电容 直接提供换流电压
当晶闸管VT处于通态时,预先给电容充 电。当S合上,就可使VT被施加反压而 关断。也叫电压换流。
Inversion and frequency conversion
Frequency changing circuit:AC-AC and AC-DCAC. AC-DC-AC frequency converter is composed of AC-DC (Rectifier) and DC-AC (Inverter) .
Basic operation principle of inverters
S1~S4是桥式电路的4个臂,它由电力电 子器件及辅助电路组成,负载为阻感负载。
S1、S4闭合,S2、S3断开时,负载电压uo为正。 S1、S4断开,S2、S3闭合时,负载电压uo为负
DC
AC
4-46
5.1 Commutation types