用动量定理解决电磁感应问题
用动量定理解决电磁感应问题
应用动量定理解决电磁感应问题的思维起点电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。
本文结合例题分析应用动量定理解决电磁感应问题的思维起点。
一、 以累积公式q=It 结合动量定理为思维起点直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。
通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。
在时间△t 内安培力的冲量BLq t BLI t F =∆=∆,式中q 是通过导体截面的电量。
利用该公式结合动量定理是解答此类问题思维起点。
例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。
析与解:当右棒运动时,产生感应电动势,两棒中有感应电流通过,右棒受到安培力作用而减速,左棒受到安培力作用而加速。
当它们的速度相等时,它们之间的距离最大。
设它们的共同速度为v ,则据动量守恒定律可得:mv 0=2mv ,即021v v = 对于左棒应用动量定理可得:BILt= mv 所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2=∆ 由上述各式可得: x =220LB R mv 。
v点评:本题结合冲量公式BLq t BLI t F =∆=∆应用动量定理,使貌似复杂的问题得到迅速解决。
例2.(原创预测题)如图所示,两水平放置的平行光滑金属导轨相距为L ,导轨左端用导线连在一起,导轨电阻不计,整个装置垂直处于磁感强度为B 的匀强磁场中,另有一根长也为L 的金属棒垂直放在导轨上,现给金属棒一向右的水平初速度v 。
动量定理及动量守恒定律在电磁感应中的应用
动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。
基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。
关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。
例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。
例析妙用动量定理解决电磁学中问题
例析妙用动量定理解决电磁学中问题摘要:自从2017年高考改革增加选修3-5模块为必考内容,众所周知动量是3-5的主要内容,而动量观点、能量观点与力学观点是解决动力学问题的三种途径。
如今动量变成必考模块,使学生的知识架构更加完善,在解题思维方面视野将更加开阔,总体来说对于学生解决物理问题还是有帮助的。
但通过平时教学发现大部分学生在运用动量定理解决有关电磁学问题是较薄弱的。
本文通过典例分析加深学生对动量定理在电磁学中运用的认识。
关键词:动量定理电磁感应冲量安培力洛伦兹力电容器1.动量定理解决叠加场中恒力(电场力、重力)与洛伦兹力作用下的运动问题在解决这类问题之前,先分析下运动电荷所受洛伦兹力的冲量,假设在xoy平面存在一垂直该平面的匀强磁场,磁感应强度为B,有一带电量为q的带电粒子,以速度v在磁场中做匀速圆周运动。
某时刻速度方向如图1所示。
分别将v、f正交分解,可知:在时间t内f沿x轴方向的冲量为:同理,f在y轴方向的冲量为:【例1】如图所示,某空间同时存在场强为E、方向竖直向下的匀强电场以及磁感应强度为B、方向垂直纸面向里的匀强磁场。
从该叠加场中某点P由静止释放一个带电粒子,质量为m,电量为+q(粒子受到的重力忽略不计),其运动轨迹如图中虚线所示。
求带电粒子在电、磁场中下落的最大高度H?解答:设小球运动到最低位置时速度最大为v,方向水平任意时刻v沿x轴正向、y轴负向的分速度分别为vx ,vy.。
与vy.对应的洛仑兹力水平分力方向沿x轴正向,小球由静止释放到最低点的过程中,在水平方向上,应用动量定理得:······①小球由静止释放到最低点的过程中,由动能定理得:······②联立①②可得:如果上例1中,重力不可忽略不计(已知重力加速度为g),实际上水平方向上动量定理①式不变,全程由动能定理得:·····③联立①③同样可得:1.动量定理解决电磁感应中电荷量相关问题根据电流的定义式,式中q是时间t内通过导体截面的电量;又欧姆定律,R是回路中的总电阻;结合电磁感应中可以得到安培力的冲量公式,此公式的特殊性决定了它在解题过程中的特殊应用。
例析动量定理在电磁感应问题中的应用
△ △f
导轨 MN、 Q, P 存在 有竖 直向上的匀 强磁 场 , 磁感 .
应强度为 B, 导轨上 放着 两根 质量均 为 、 电阻均 图3
为| R的金属棒 n b 、。开 始时 , 棒 静止 , b a棒 以初 速度向 右运动 。设两棒始终不相碰 , 在运动过程 中通过 a棒 求 上 的总电荷量 。 解析 : 设棒稳 定运动后 的共 同速度为 , 对系统从 a 棒开始运动到两棒达 到共 同速度 的过程 , 应用动量守 恒 定律有 : o my mv :2 设 回路中的平均 电流 为 J 。再对 a棒 , 应用 动量定
理:
一
根据欧姆定律 , 可得平均 电流为 了 E一 : 由动量定理得 : 一B儿 ・ 一 △ 一0 联立上式 :一 点评 : 本题 实质上是利 用动量定理 求感应电荷 量。
【 2 如 图 2 例 】
B L△t I 一
— m
所示 , 足够 长 的相 距 为z 的平行金 属导轨
由法拉第 电磁感应定律得 : 一 :
【 1 如图 1 示 , 例 】 所
质量为 m 的导体棒可沿光
滑 水 平 面 的 平 行 导 轨 滑
由闭合 电路欧姆定律 :一 一 - E 』
对 a 应 用 动量 定 理 得 : l £=1 解得 : x 棒 B = 17 =1 2 A 一
又 Q=7 t = a 解得 : = Q一 点评 : 本题是利用动量定理计算电荷量的典型例子。
MN 、 Q放 置在 水平 P 面内 , 强 磁 场 竖 直 匀
通过 以上三个例题 的分析 , 会当导体切 割磁感 线 体
而产生感应 电流 , 果感应 电流不恒定 , 体所受 到的 如 导 安 培力也 不恒 定 而做变 速运 动 时 , 些 问题 如 涉及 位 有 ( 责任 编辑 易志毅)
电磁感应现象中的动量问题
③列出最终稳定时动量守恒方程;
④该过程能量转化。
三、归纳总结
1.涉及单杆问题,一般可以考虑动量定理,求解变 力的冲量,解决牛顿运动定律不易解答的非匀变速 运动问题
2.涉及双杆问题,如果系统合外力为零,一般考虑 应用动量守恒定律
PQ放在水平面上,左端向上弯曲,导轨间距为L,电阻不计,水 平段导轨所处空间存在方向竖直向上的匀强磁场,磁感应强度大 小为B。导体棒a与b的质量均为m,电阻值分别为Ra=R,Rb= 2R。b棒放置在水平导轨上足够远处,a棒在弧形导轨上距水平 面h高度处由静止释放。运动过程中导体棒与导轨接触良好且始 终与导轨垂直,重力加速度为g。求: ①当a导体棒刚进入磁场时,从动力学角度分析两导体棒的运动 过程;
一、动量定理在电磁感应问题中的应用
1.如图,金属杆ab以一定初速度v0 在光滑水平轨道上滑动,质量为m, 电阻不计,两导轨间距为L。求: ①分析金属杆ab的运动过程;
②当经历时间为 ∆t,金属杆的速度为0时,此过程 守恒在电磁感应问题中的运用 2.(P210 例5)如图所示,两根平行的光滑金属导轨MN、
电磁感应问题中动量定理应用归类
电磁感应问题中动量定理应用归类电磁感应是物理学中非常重要的一个分支,与动量定理的关系也
非常密切。
动量定理是物理学中的基本定律之一,它表明了物体的动
量会随时间的推移而改变,这种变化与物体所受的力的大小和方向有关。
在电磁感应问题中,动量定理可以应用于以下几个方面。
1. 电动势的产生
电动势是指电路中电势差的改变所导致的电场力,即带电体感应
产生的电势差。
当外界场改变时,导体中的电子会受到作用力,从而
导致电子动量改变,从而产生电动势。
此时,根据动量定理,受到该
作用力的物质越多,电势差的变化就越大。
2. 磁场的产生
在电磁感应问题中,动量定理还可以应用于磁场的产生。
因为磁
场实际上是由运动电荷产生的,因此当电流流过导体时,会导致电子
的运动并产生动量。
根据动量定理,当电流越大时,电子运动就越快,从而导致的磁场也就越强。
3. 电磁波的传播
电磁波是由振动电场和磁场相互作用产生的,它们通过相互作用
来传播。
在电磁波传播过程中,电磁波会将电子推动,并导致其产生
动量变化。
根据动量定理,越多的电子受到作用力,电磁波的能量就
越大,传播的速度也就越快。
总之,动量定理是应用于电磁感应问题的一个非常重要的定律,它可以帮助我们更好地理解电磁现象的产生和传播。
在物理学的学习和应用中,我们要充分利用这一定律,将其应用到实际问题中,为科学技术的发展做出贡献。
专题 电磁感应中的动量问题
专题 应用动量观点分析电磁感应问题知识点一:应用动量定理解决电磁感应问题导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为I 安=BILt =BLq ,通过导体棒或金属框的电荷量为q =I Δt =E R 总Δt =n ΔΦΔtR 总Δt =n ΔΦR 总,磁通量变化量ΔΦ=B ΔS=BLx .如果安培力是导体棒或金属框受到的合外力,则I 安=m v 2-m v 1.当题目中涉及速度v 、电荷量q 、运动时间t 、运动位移x 时常用动量定理求解更方便.知识点二:应用动量守恒定律解决电磁感应问题在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便. 例1 如图所示,光滑的金属导轨固定在绝缘水平面上,导轨足够长,电阻不计,两轨间距为L ,其左端连接一阻值为R 的电阻.导轨处在竖直向下的匀强磁场中,磁感应强度大小为B ,一质量为m 的金属棒,放置在导轨上,其电阻为r ,某时刻一水平力垂直作用在金属棒中点,金属棒从静止开始做匀加速直线运动,已知加速度大小为a ,金属棒F 始终与导轨接触良好.(1)从力F 作用开始计时,请推导F 与t 时间的关系式;(2)F 作用时间t 0后撤去,求金属棒能继续滑行的距离s .例2 如图所示,两条相距为l 的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R 的电阻,在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B .现使长为l 、电阻为r 、质量为m 的金属棒ab 由静止开始自OO′位置释放,向下运动距离d 后速度不再变化(棒ab 与导轨始终保持良好的接触且下落过程中始终保持水平,导轨电阻不计).(1)求棒ab 在向下运动距离d 过程中回路产生的总焦耳热;(2)棒ab 从静止释放经过时间t 0下降了d 2,求此时刻的速度大小.例3 如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L .导轨上横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量均为m ,电阻均为R ,回路中其余部分的电阻不计.在整个导轨平面内存在竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒ab 静止,棒ab 有指向棒cd 的初速度v 0,若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的34时,cd 棒的加速度是多少?例4 (多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A . 金属棒ab 、cd 都做匀速运动B . 金属棒ab 上的电流方向是由b 向aC . 金属棒cd 所受安培力的大小等于2F 3D . 两金属棒间距离保持不变巩固训练1. 如图所示,长为L 、电阻r =0.3 Ω、质量m =0.1 kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑导轨上,两导轨间距也是L ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0.5 Ω的电阻,量程为0~3.0 A 的电流表串接在一条导轨上,量程为0~1.0 V 的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面,现以向右恒定外力F 使金属棒右移,当金属棒以v =2 m /s 的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏,问:(1)此满偏的电表是什么表?说明理由;(2)拉动金属棒的外力F 多大?(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R 的电荷量.2. 如图所示,质量为M的U形金属架M′MNN′,静止在粗糙绝缘水平面上(与水平面间的动摩擦因数为μ),且最大静摩擦力等于滑动摩擦力.M′M、NN′相互平行,相距为L,电阻不计且足够长,底边MN垂直于M′M,电阻为r.质量为m的光滑导体棒ab长为L、电阻为R,垂直M′M放在框架上,整个装置处于垂直框架平面向上,磁感应强度大小为B的匀强磁场中.在与ab垂直的水平拉力F 作用下,ab由静止开始向右做匀加速直线运动,经x距离后撤去拉力F,直至最后停下,整个过程中框架恰好没动,ab与M′M、NN′始终保持良好接触.求ab运动的总路程.3. 两根足够长的平行光滑导轨,相距1 m水平放置.匀强磁场竖直向上穿过整个导轨所在的空间,B=0.4 T.金属棒ab、cd质量分别为0.1 kg和0.2 kg,电阻分别为0.4 Ω和0.2 Ω,并排垂直横跨在导轨上.若两棒以相同的初速度3 m/s向相反方向分开,不计导轨电阻,求:(1)棒运动达到稳定后的ab棒的速度大小;(2)金属棒运动达到稳定的过程中,回路上释放出的焦耳热;(3)金属棒运动达到稳定后,两棒间距离增加多少?4. 如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高.ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长.试求:(1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热.5.如图甲所示,两足够长且不计电阻的光滑金属轨道固定在水平面上,间距为d=1 m,在左端弧形轨道部分高h=1.25 m处放置一金属杆a,弧形轨道与平直轨道的连接处光滑无摩擦,在平直轨道右端放置另一金属杆b,杆a、b接入电路的电阻分别为R a=2 Ω、R b=5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度为B=2 T.现杆b以大小为v0=5 m/s的初速度开始向左滑动,同时由静止释放杆a,杆a由静止滑到平直轨道的过程中,通过杆b的平均电流为0.3 A;从杆a下滑到平直轨道时开始计时,杆a、b运动的速度—时间图像如图乙所示(以杆a运动方向为正方向),其中杆a的质量为m a=2 kg,杆b的质量为m b=1 kg,取g=10 m/s2.求:(1)杆a在弧形轨道上运动的时间;(2)杆a在平直轨道上运动过程中通过其截面的电荷量;(3)在整个运动过程中杆b产生的焦耳热.6.如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b,与导轨紧密接触且可自由滑动.先固定a,释放b,当b的速度达到10 m/s时,再释放a,经过1 s后,a的速度达到12 m/s,则:(1)此时b的速度大小是多少?(2)若导轨很长,求a、b棒最后的运动状态.。
电磁感应问题中动量定理应用归类
电磁感应问题中动量定理应用归类电磁感应是指通过磁场的变化产生感应电流或电动势的现象。
动量定理是牛顿力学中的重要定律,描述了物体的动量变化与施加在其上的力之间的关系。
本文将探讨电磁感应问题中动量定理的应用,并提供相关的参考内容。
1. 电磁感应中的电磁铁制动问题当磁铁的磁场加强时,会引起铝片产生感应电流。
根据安培力定律,感应电流会受到一个与外磁场相反的磁场之力,即产生阻力。
这一阻力使得磁铁减速,最终停止。
在这个过程中,动量定理可以用来描述磁铁的动能的变化。
参考内容:杨继拓. (2013). 电磁铁制动过程中电磁感应定律的应用. 物理, (8), 31-32.2. 电磁感应中的涡流制动问题当金属盘在磁场中旋转时,会产生涡流。
根据法拉第电磁感应定律,涡流会产生磁场,磁场与外磁场相互作用会产生力,即涡流制动力。
这一力对金属盘产生负作用,使其减速或停止旋转,同时也会消耗金属盘的动能。
动量定理可以用来描述金属盘的动能的变化。
参考内容:郁锋. (2017). 电磁感应中的涡流制动效应研究. 科技创新导报, 14(5), 183-184.3. 电磁感应中的感应电动势问题当导体中的磁通量发生变化时,会在导体两端产生感应电动势。
根据洛伦兹力定律,感应电动势会产生电流,而电流在导体中受到电阻力的作用,从而减慢电流的流动速度。
动量定理可以用来描述电阻力对电流动能的影响,进而分析电流的变化情况。
参考内容:陈立农. (2018). 电磁感应中感应电动势的发生和应用. 科技导报, (15), 110-112.4. 电磁感应中的电磁泵问题电磁泵是利用电磁感应产生的电磁力来实现液体输送的装置。
当电流通过线圈时,会在涡轮中产生涡流。
根据法拉第电磁感应定律,涡流会产生磁场与线圈的磁场相互作用,从而产生电磁力,将液体推入导管中。
动量定理可以用来分析电磁力对液体动能的传递。
参考内容:杨伟. (2013). 基于电磁感应原理的电磁泵设计. 物理, (8), 61-62.5. 电磁感应中的感应发电问题当导体与磁场相互作用时,会产生感应电流。
动量观点在电磁感应中的应用
小于磁场区域的宽度。若线框进、出磁场的过程中通
过线框横截面的电荷量分别为q1、q2,线框经过位置
Ⅱ时的速度为v。则下列说法正确的是( BD)
A.q1=q2 C.v=1.0 m/s
B.q1=2q2 D.v=1.5 m/s
01 02 03 04 05 06 07 08
图2
目录
提升素养能力
解析 根据 q=ΔRΦ=BRΔS可知,线框进、出磁场的过程中通过线框横截面的电 荷量 q1=2q2,故 A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理- B-I1LΔt1=mv-mv0,即-BLq1=mv-mv0,同理线圈从位置Ⅱ到位置Ⅲ,由动 量定理-B-I2LΔt2=0-mv,即-BLq2=0-mv,联立解得 v=13v0=1.5 m/s,故 C 错误,D 正确。
目录
研透核心考点
解析 对 ab 棒由动量定理有-B-ILt=0-mv0,而 q=-It,即-BqL=0-mv0,当流过棒的电荷量为q2 时,有-B·q2L=mv1-mv0,解得 v1=12v0,A 错误; 当棒发生位移为 s 时,q=ΔRΦ=BRLs,则当棒发生位移为3s时,q′=ΔRΦ′=B3LRs, 可知此时流过棒的电荷量 q′=q3,代入 B-ILΔt=BLq′=mv2-mv0,解得棒的速 度为 v2=32v0,B 错误;定值电阻与导体棒释放的热量相同,在流过棒的电荷量 达到q2的过程中,棒释放的热量为 Q=1212mv20-12mv21=136mv20=3B1q6Lv0,C 正确; 同理可得整个过程中定值电阻 R 释放的热量为 Q′=21×21mv20=qB4Lv0,D 错误。
给金属棒 ab 一个水平向右的初速度 v0,金属棒沿着金属导轨滑过磁场的过程中,流 过金属棒的电流最大值为 I,最小值为12I。不计导轨电阻,金属棒与导轨始终接触良
电磁感应问题中动量定理应用归类
电磁感应问题中动量定理应用归类
动量定理是指在相互作用系统中,两个物体发生相互作用前后,它们的动量变化量相等且大小相同,也就是说总动量守恒。
在电磁感应问题中,动量定理可以被应用于分析导体中自由电子受到电磁力的作用。
下面是电磁感应问题中动量定理的应用所需的相关参考内容:
1. 磁场中运动带电粒子的动量定理
在磁场中运动带电粒子的情况下,动量定理可以用来分析带电粒子受到磁场作用时的运动规律。
具体的参考内容包括磁场对带电粒子产生的洛伦兹力公式以及动量定理的定义和应用。
2. 感应电动势的产生与动量定理
在感应电动势的产生问题中,可以利用动量定理来推导感应电动势的产生。
具体的参考内容包括受到磁场作用的导体中的自由电子受到洛伦兹力的描述、动量定理的定义和应用、以及感应电动势的产生过程。
3. 电磁铁中导体的运动和动量定理
在电磁铁中导体的运动问题中,动量定理可以用来分析导体所受的力以及速度的变化。
具体的参考内容包括电磁铁的结构和工作原理、动量定理的定义和应用、以及导体受到的力和速度的变化规律。
小专题(十九) 电磁感应中的动量问题
系统动量守恒
系统动量不守恒
示意图
动力学
观点
动量
观点
能量
观点
棒1动能的减少量=棒2动能的增加量+焦耳热
外力做的功=棒1的动能+棒2的动能+焦耳热
[例3][导体框与导体棒在同一匀强磁场中的运动] (多选)如图所示,一质量为
2m的足够长U形光滑金属框abcd置于水平绝缘平台上,bc边长为L,不计金属框电
方案有多种,并且十分复杂。一种简化的物理模型如图所示,电源和一对足够长平行金属
导轨M、N分别通过单刀双掷开关K与电容器相连。电源的电动势E=10 V,内阻不计。两条
足够长的导轨相距L=0.1 m 且水平放置在磁感应强度B=0.5 T的匀强磁场中,磁场方向垂
直于导轨平面且竖直向下,电容器的电容C=10 F。现将一质量为m=0.1 kg,电阻r=0.1 Ω
总
总
总
BΔS=BLx。当题目中涉及速度 v、电荷量 q、运动时间 t、运动位移 x 时常用动量定理
求解。
[例1][“单棒+电阻”模型] (2022·辽宁沈阳模拟)(多选)如图所示,两根足够长、电阻
不计且相距L=0.2 m的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额
定电压为U=4 V的小灯泡(电阻恒定),两导轨间有一磁感应强度大小为B=5 T、方向垂直
斜面向上的匀强磁场。今将一根长为L、质量m=0.2 kg、电阻r=1.0 Ω的金属棒垂直于
导轨放置,在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒与导轨间的动摩擦
因数μ。已知金属棒下滑x=3.6 m后速度稳定,且此时小灯泡恰能正常发光,重力加速度g
取10 m/s2,sin 37°=0.6,cos 37°=0.8,则(
08讲 动量与动量守恒定律在电磁感应中的应用解析版
2022-2023高考物理二轮复习(新高考)08讲动量与动量守恒定律在电磁感应中的应用●动量与动量守恒定律在电磁感应中的应用的思维导图●重难点突破一.动量定理在电磁感应现象中的应用:导体棒在感应电流所引起的安培力作用下运动时,当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.二.动量守恒定律在电磁感应中的应用:在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便.●考点应用,质量为m,电阻不计,匀强1.水平放置的平行光滑导轨,间距为L,左侧接有电阻R,导体棒初速度为v磁场的磁感应强度为B,导轨足够长且电阻不计,从开始运动至停下来导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,常用的计算:-B I L Δt =0-mv 0,q =I Δt ,q =mv 0BL -B 2L 2v R Δt =0-mv 0,x =v Δt =mv 0R B 2L2例1:如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上、磁感应强度大小为B 的匀强磁场中。
一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。
现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。
设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g ,则此过程错误的是()A .杆的速度最大值为22()F mg RB d μ-B .流过电阻R 的电荷量为BdLR r+C .从静止到速度恰好达到最大经历的时间2222()()()m R r B d L t B d F mg R r μ+=+-+D .恒力F 做的功与安培力做的功之和大于杆动能的变化量【答案】A【详解】A .当杆的速度达到最大时,安培力为22=B d v F R r +安此时杆受力平衡,则有F-μmg-F 安=0解得22()()F mg R r v B d μ-+=A 错误,符合题意;B .流过电阻R 的电荷量为BdLq It R r R r∆Φ===++B 正确,不符合题意;C .根据动量定理有()F mg t BIt mv μ--=,q It=结合上述解得2222()()()mg R r B d L t B d F mg R r μ+=+-+C 正确,不符合题意;D .对于杆从静止到速度达到最大的过程,根据动能定理,恒力F 、安培力、摩擦力做功的代数和等于杆动能的变化量,由于摩擦力做负功,所以恒力F 、安培力做功的代数和大于杆动能的变化量,D 正确,不符合题意。
高考物理二轮复习专题归纳—动量观点在电磁感应中的应用
高考物理二轮复习专题归纳—动量观点在电磁感应中的应用命题规律1、命题角度:动量定理、动量守恒定律在电磁感应中的应用.2、常用方法:建立单杆切割中q、x、t的关系模型;建立双杆系统模型.3、常考题型:选择题、计算题.考点一动量定理在电磁感应中的应用在导体单杆切割磁感线做变加速运动时,若牛顿运动定律和能量观点不能解决问题,可运用动量定理巧妙解决问题求解的物理量应用示例电荷量或速度-B I LΔt=mv2-mv1,q=IΔt,即-BqL=mv2-mv1位移-B2L2vΔtR总=0-mv,即-B2L2xR总=0-mv时间-B I LΔt+F其他Δt=mv2-mv1即-BLq+F其他Δt=mv2-mv1已知电荷量q、F其他(F其他为恒力)-B2L2vΔtR总+F其他Δt=mv2-mv1,即-B2L2xR总+F其他Δt=mv2-mv1已知位移x、F其他(F其他为恒力)例1(多选)(2022·河南开封市二模)如图所示,在光滑的水平面上有一方向竖直向下的有界匀强磁场.磁场区域的左侧,一正方形线框由位置Ⅰ以4.5m/s 的初速度垂直于磁场边界水平向右运动,经过位置Ⅱ,当运动到位置Ⅲ时速度恰为零,此时线框刚好有一半离开磁场区域.线框的边长小于磁场区域的宽度.若线框进、出磁场的过程中通过线框横截面的电荷量分别为q 1、q 2,线框经过位置Ⅱ时的速度为v .则下列说法正确的是()A.q 1=q 2B.q 1=2q 2C.v =1.0m/s D.v =1.5m/s答案BD 解析根据q =ΔΦR =BSR可知,线框进、出磁场的过程中通过线框横截面的电荷量q 1=2q 2,故A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理-B I 1L Δt 1=mv -mv 0,即-BLq 1=mv -mv 0,同理线圈从位置Ⅱ到位置Ⅲ,由动量定理-B I 2L Δt 2=0-mv ,即-BLq 2=0-mv ,联立解得v =13v 0=1.5m/s,故C 错误,D正确.例2(2022·浙江省精诚联盟联考)如图(a)所示,电阻为2R 、半径为r 、匝数为n 的圆形导体线圈两端与水平导轨AD 、MN 相连.与导体线圈共圆心的圆形区域内有竖直向下的磁场,其磁感应强度随时间变化的规律如图(b)所示,图(b)中的B 0和t 0均已知.PT 、DE 、NG 是横截面积和材料完全相同的三根粗细均匀的金属棒.金属棒PT 的长度为3L 、电阻为3R 、质量为m .导轨AD 与MN 平行且间距为L ,导轨EF 与GH 平行且间距为3L ,DE 和NG 的长度相同且与水平方向的夹角均为30°.区域Ⅰ和区域Ⅱ是两个相邻的、长和宽均为d 的空间区域.区域Ⅰ中存在方向竖直向下、磁感应强度大小为B 0的匀强磁场.0~2t 0时间内,使棒PT 在区域Ⅰ中某位置保持静止,且其两端分别与导轨EF 和GH 对齐.除导体线圈、金属棒PT 、DE 、NG 外,其余导体电阻均不计,所有导体间接触均良好且均处于同一水平面内,不计一切摩擦,不考虑回路中的自感.(1)求在0~2t 0时间内,使棒PT 保持静止的水平外力F 的大小;(2)在2t 0以后的某时刻,若区域Ⅰ内的磁场在外力作用下从区域Ⅰ以v 0的速度匀速运动,完全运动到区域Ⅱ时,导体棒PT 速度恰好达到v 0且恰好进入区域Ⅱ,该过程棒PT 产生的焦耳热为Q ,求金属棒PT 与区域Ⅰ右边界的初始距离x 0和该过程维持磁场匀速运动的外力做的功W ;(3)若磁场完全运动到区域Ⅱ时立刻停下,求导体棒PT 运动到EG 时的速度大小v .答案(1)0~t 0时间内F =nB 02πLr 23Rt 0;t 0~2t 0时间内F =0(2)d -3mRv 0B 02L23Q +1 2mv2(3)v-23B2L33mR解析(1)在0~t0时间内,由法拉第电磁感应定律得E=nΔBΔtS=nBtπr2由闭合电路欧姆定律得I=E3R=nBπr23Rt故在0~t0时间内,使PT棒保持静止的水平外力大小为F=FA=BIL=nB2πLr23Rt在t0~2t时间内,磁场不变化,回路中电动势为零,无电流,则外力F=0(2)PT棒向右加速运动过程中,取向右的方向为正方向,由动量定理得B2L2Δx3R=mv得Δx=3mRv0 B2L2所以x0=d-Δx=d-3mRvB2L2PT棒向右加速过程中,回路中的总焦耳热为Q总=3Q由功能关系和能量守恒定律得W=3Q+12 mv2(3)棒PT从磁场区域Ⅱ左边界向右运动距离x时,回路中棒PT的长度为lx =233x+L回路中总电阻为R总x x+2233xR233x+L+2233xR=RL(23x+3L)回路中电流为Ix =BlxvxR总x=B233x+L vxRL23x+3L=BLvx3R棒PT所受安培力大小为FA x =BIxlx=B2Lvxlx3R棒PT从磁场区域Ⅱ左边界运动到EG过程中,以v方向为正方向,由动量定理得-∑B2Lvxlx3RΔt=mv-mv即-B2LS梯3R=mv-mv其中S梯=23L2所以v=v0-23B2L33mR.考点二动量守恒定律在电磁感应中的应用双杆模型物理模型“一动一静”:甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件——甲杆静止,受力平衡两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减;系统动量是否守恒分析方法动力学观点通常情况下一个金属杆做加速度逐渐减小的加速运动,而另一个金属杆做加速度逐渐减小的减速运动,最终两金属杆以共同的速度匀速运动能量观点两杆系统机械能减少量等于回路中产生的焦耳热之和动量观点对于两金属杆在平直的光滑导轨上运动的情况,如果两金属杆所受的外力之和为零,则考虑应用动量守恒定律处理问题例3(2022·广东省模拟)如图所示,间距L=1m的光滑平行金属导轨MN和PQ的倾斜部分与水平部分平滑连接,水平导轨处在方向竖直向上、磁感应强度大小为B=0.2T的匀强磁场中,距离磁场左边界D=1.8m的导轨上垂直放置着金属棒cd,现将金属棒ab从距离桌面高度h=0.8m的倾斜导轨处由静止释放,随后进入水平导轨,两金属棒未相碰,金属棒cd从导轨右端飞出后,落地点距导轨右端的水平位移s=1.20m.已知金属棒ab的质量m=0.2kg,金属棒cd的质量1m=0.1kg,金属棒ab、cd的电阻均为r=0.1Ω、长度均为L,两金属棒在导2轨上运动的过程中始终与导轨垂直且接触良好,导轨电阻不计,桌面离地面的高度H=1.8m,重力加速度g=10m/s2,求:(1)金属棒cd在水平导轨上运动的最大加速度;(2)金属棒ab在水平导轨上运动的过程中克服安培力所做的功和整个回路中产生的焦耳热;(3)金属棒ab、cd在水平导轨上运动的过程中两金属棒之间距离的最小值.答案(1)8m/s2(2)0.7J0.5J(3)0.8m解析(1)金属棒ab从释放到刚进入水平导轨的过程,根据机械能守恒定律得m 1gh =12m 1v 2,金属棒ab 切割磁感线产生的感应电动势E =BLv ,回路中的电流I =E 2r金属棒cd 所受的安培力大小为F cd =BIL ,此时金属棒cd 的加速度最大,最大加速度a m =F cd m 2联立解得a =8m/s 2(2)金属棒cd 离开水平导轨后做平抛运动,有s =v c t ,H =12gt 2金属棒ab 与金属棒cd 在相互作用的过程中,根据动量守恒定律得m 1v =m 1v a +m 2v c 设金属棒ab 克服安培力做的功为W ,由动能定理得-W =12m 1v a 2-12m 1v 2解得W =0.7J,整个回路中产生的焦耳热Q =m 1gh -12m 1v a 2-12m 2v c2解得Q =0.5J(3)金属棒cd 在安培力的作用下加速,根据动量定理得B I L Δt =m 2v c金属棒ab 、金属棒cd 组成的回路中通过某截面的电荷量q =I -Δt根据法拉第电磁感应定律得E =ΔΦΔt =B ΔxL Δt ,I -=E 2r ,联立解得Δx =1m,两金属棒之间距离的最小值为D -Δx =0.8m.1.(多选)如图所示,水平金属导轨P 、Q 间距为L ,M 、N 间距为2L ,P 与M 相连,Q 与N 相连,金属棒a 垂直于P 、Q 放置,金属棒b 垂直于M 、N 放置,整个装置处在磁感应强度大小为B 、方向竖直向上的匀强磁场中.现给a 棒一大小为v 0的初速度,方向水平向右.设两部分导轨均足够长,两棒质量均为m ,在a 棒的速度由v 0减小到0.8v 0的过程中,两棒始终与导轨接触良好.在这个过程中,以下说法正确的是()A.俯视时感应电流方向为顺时针B.b 棒的最大速度为0.4v 0C.回路中产生的焦耳热为0.1mv 02D.通过回路中某一截面的电荷量为2mv 025BL 答案BC解析a 棒向右运动,根据右手定则可知,俯视时感应电流方向为逆时针,故A错误;由题意分析可知,a 棒减速,b 棒加速,设a 棒的速度大小为0.8v 0时b 棒的速度大小为v ,取水平向右为正方向,根据动量定理,对a 棒有-B I L Δt =m ·0.8v 0-mv 0,对b 棒有B I ·2L Δt =mv ,联立解得v =0.4v 0,此后回路中电流为0,a 、b 棒都做匀速运动,即b 棒的最大速度为0.4v 0,故B 正确;根据能量守恒定律有Q =12mv 02-[12m (0.8v 0)2+12m (0.4v 0)2]=0.1mv 02,故C 正确;对b 棒,由2B I L ·Δt =mv 得,通过回路中某一截面的电荷量q =I ·Δt =mv 2BL =mv 05BL ,故D 错误.2.(2022·安徽阜阳市质检)如图,两平行光滑金属导轨ABC 、A ′B ′C ′的左端接有阻值为R 的定值电阻Z,间距为L ,其中AB 、A ′B ′固定于同一水平面上(图中未画出)且与竖直面内半径为r 的14光滑圆弧形导轨BC 、B ′C ′相切于B 、B ′两点.矩形DBB ′D ′区域内存在磁感应强度大小为B 、方向竖直向上的匀强磁场.导体棒ab 的质量为m 、阻值为R 、长度为L ,ab 棒在功率恒定、方向水平向右的推力作用下由静止开始沿导轨运动,经时间t 后撤去推力,然后ab 棒与另一根相同的导体棒cd 发生碰撞并粘在一起,以32gr 的速率进入磁场,两导体棒穿过磁场区域后,恰好能到达CC ′处.重力加速度大小为g ,导体棒运动过程中始终与导轨垂直且接触良好,不计导轨的电阻.(1)求该推力的功率P ;(2)求两导体棒通过磁场右边界BB ′时的速度大小v ;(3)求两导体棒穿越磁场的过程中定值电阻Z 产生的焦耳热Q ;(4)两导体棒到达CC ′后原路返回,请通过计算判断两导体棒能否再次穿过磁场区域.若不能穿过,求出两导体棒停止的位置与DD ′的距离x .答案(1)36mgrt(2)2gr(3)323mgr (4)不能3mR 2gr B 2L 2解析(1)设两导体棒碰撞前瞬间ab 棒的速度大小为v 0,在推力作用的过程中,由动能定理有Pt =12mv 02设ab 与cd 碰后瞬间结合体的速度大小为v 1,由题意知v 1=32gr ,由动量守恒定律有mv 0=2mv 1联立解得P=36mgr t(2)对两导体棒沿圆弧形导轨上滑的过程分析,由机械能守恒定律有12×2mv2=2mgr解得v=2gr(3)两棒碰撞并粘在一起,由电阻定律可知,两导体棒的总电阻为R2,阻值为R的定值电阻Z产生的焦耳热为Q,故两棒产生的总焦耳热为Q2,由能量守恒定律有-(Q+Q2)=12×2mv2-12×2mv12解得Q=323 mgr(4)设导体棒第一次穿越磁场的时间为t1,该过程回路中的平均电流为I,DD′与BB′的间距为x1,由动量定理有-B I Lt1=2mv-2mv1根据法拉第电磁感应定律和电路相关知识有I t1=BLx13R2解得x1=6mR2grB2L2由机械能守恒定律可知,导体棒再次回到BB′处时的速度大小仍为v=2gr,导体棒再次进入磁场向左运动的过程中,仍用动量定理和相关电路知识,并且假设导体棒会停在磁场中,同时设导体棒在磁场中向左运动的时间为t2,导体棒进入磁场后到停止运动的距离为Δx,该过程回路中的平均电流为I′,同前述道理可分别列式为-B I ′Lt 2=0-2mvI ′t 2=BL ·Δx 3R 2解得Δx =3mR 2gr B 2L 2显然Δx <x 1,假设成立,故导体棒不能向左穿过磁场区域,导体棒停止的位置与DD ′的距离x =x 1-Δx =3mR 2grB 2L2.专题强化练1.(2022·广东省调研)如图所示,左端接有阻值为R 的定值电阻,且足够长的平行光滑导轨CE 、DF 的间距为L ,导轨固定在水平面上,且处在磁感应强度大小为B 、方向竖直向下的匀强磁场中,一质量为m 、电阻为r 的导体棒ab 垂直导轨放置且静止,导轨的电阻不计.某时刻给导体棒ab 一个水平向右的瞬时冲量I ,导体棒将向右运动,最后停下来,则此过程中()A.导体棒做匀减速直线运动直至停止运动B.电阻R 上产生的焦耳热为I 22m C.通过导体棒ab 横截面的电荷量为I BLD.导体棒ab 运动的位移为IRB 2L 2答案C解析导体棒获得向右的瞬时冲量后切割磁感线,回路中出现感应电流,导体棒ab 受到向左的安培力,向右做减速运动,有B 2L 2vR +r =ma ,由于导体棒速度减小,则加速度减小,所以导体棒做的是加速度减小的减速运动直至停止运动,A 错误;导体棒减少的动能E k =12mv 2=12m (I m )2=I 22m,根据能量守恒定律可得E k =Q 总,又根据串、并联电路知识可得Q R =R R +r Q 总=I 2R2m R +r ,B 错误;根据动量定理可得-B I L Δt =0-mv ,I =mv ,q =I -Δt ,联立可得q =IBL,C 正确;由于q =I -Δt=E -R +r Δt =ΔΦR +r =BLx R +r ,将q =I BL 代入可得,导体棒ab 运动的位移x =I R +r B 2L2,D 错误.2.(多选)如图甲所示,质量m =3.0×10-3kg 的形金属细框水平放置在两水银槽中,形框的水平细杆CD 长l =0.20m,处于磁感应强度大小为B 1=1.0T、方向水平向右的匀强磁场中.有一匝数n =300匝、面积S =0.01m 2的线圈通过开关K 与两水银槽相连.线圈处于与线圈平面垂直、沿竖直方向的匀强磁场中,其磁感应强度B 2随时间t 变化的关系如图乙所示.t =0.22s 时闭合开关K,瞬间细框跳起(细框跳起瞬间安培力远大于重力),跳起的最大高度h =0.20m.不计空气阻力,重力加速度g 取10m/s 2,下列说法正确的是()A.0~0.10s内线圈中的感应电动势大小为3VB.0.10~0.20s内线圈中的磁通量最大,故感应电动势最大C.开关K闭合瞬间,CD中的电流方向由C到DD.开关K闭合瞬间,通过细杆CD的电荷量为0.03C答案CD解析由题图乙所示图像可知,在0~0.10s内,ΔΦ=ΔB2S=(1.0-0)×0.01 Wb=0.01Wb0~0.10s内线圈中的感应电动势大小E=n ΔΦΔt=300×0.010.1V=30V,在0.10~0.20s内线圈中的磁通量最大,但B2-t图像的斜率为0,故感应电动势为0,A、B错误;由题可知细杆CD所受安培力方向竖直向上,由左手定则可知,电流方向为由C到D,C正确;对细杆,由动量定理及题意得B1I l·Δt=mv-0,细杆竖直向上做竖直上抛运动,有v2=2gh,电荷量Q=IΔt,联立解得Q=m2ghB1l=0.03C,D正确.3.(多选)(2022·河南信阳市高三质量检测)如图所示,两根足够长相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻.一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在两端等高的挡条上.在竖直导轨内有垂直纸面的匀强磁场,磁感应强度B=0.50T(图中未画出).撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m.假设棒始终与导轨垂直,且与导轨接触良好,不计一切摩擦阻力和导轨电阻,重力加速度取10m/s 2.下列说法正确的是()A.导体棒能获得的最大速度为20m/s B.导体棒能获得的最大速度为10m/sC.t =0.25s 时间内通过导体棒的电荷量为2.9×10-2CD.t =0.25s 时导体棒的速度为2.21m/s 答案BCD解析导体棒获得最大速度时,导体棒受力平衡,有mg =F 安=BId ,解得I =1A,又由E =Bdv m ,I =E2R,解得v m =10m/s,故A 错误,B 正确;在下落0.29m 的过程中有E =ΔΦt ,I =E 2R ,q =I t ,可知q =ΔΦ2R ,其中ΔΦ=ΔS ·B =0.2×0.29×0.5Wb=0.029Wb,解得q =2.9×10-2C,故C 正确;由动量定理有(mg -B I d )t =mv ,通过导体棒的电荷量为q =I t =Bdh 2R ,可得v =gt -B 2hd 22Rm,代入数据解得v =2.21m/s,故D 正确.4.(多选)(2022·山东青岛市黄岛区期末)如图,光滑平行金属导轨MN 、PQ 固定在水平桌面上,窄轨MP 间距0.5m,宽轨NQ 间距1m,电阻不计.空间存在竖直向上的磁感应强度B =1T 的匀强磁场.金属棒a 、b 水平放置在两导轨上,棒与导轨垂直并保持良好接触,a 棒的质量为0.2kg,b 棒的质量为0.1kg,若a 棒以v=9m/s的水平初速度从宽轨某处向左滑动,最终与b棒以相同的速度沿窄轨运动.若a棒滑离宽轨前加速度恰好为0,窄导轨足够长.下列说法正确的是()A.从开始到两棒以相同速度运动的过程,a、b组成的系统动量守恒B.金属棒a滑离宽轨时的速度大小为3m/sC.金属棒a、b最终的速度大小为6m/sD.通过金属棒横截面的电荷量为0.8C答案BD解析由于两导轨的宽度不相等,根据F=BIL,知a、b两个金属棒所受水平方向的安培力之和不为零,系统动量不守恒,故A错误;a棒滑离宽轨前加速度恰好为0,即做匀速运动,a棒匀速运动时,两棒切割磁感线产生的电动势大小相等,有BLb vb=BLava,La=2Lb,得末速度vb=2va,对a棒根据动量定理可得-B I LaΔt=ma va-mav,对b棒根据动量定理可得B I LbΔt=mbvb,联立代入数据解得va=3m/s,vb=6m/s,故B正确;a棒滑离宽轨道进入窄轨道后,a、b两个金属棒所受水平方向的安培力之和为零,系统动量守恒,设a、b两个金属棒最终的共同速度为v′,则ma va+mbvb=(ma+mb)v′,解得v′=4m/s,故C错误;b金属棒始终在窄轨道上运动,对b金属棒全过程利用动量定理可得B I′Lb ·Δt′=mbv′,q=I′·Δt′,即BLb q=mbv′,代入数据得q=0.8C,故D正确.5.(多选)如图所示,两条足够长、电阻不计的平行导轨放在同一水平面内,相距l.磁感应强度大小为B的范围足够大的匀强磁场垂直于导轨平面向下.两根质量均为m 、电阻均为r 的导体杆a 、b 与两导轨垂直放置且接触良好,开始时两杆均静止.已知b 杆光滑,a 杆与导轨间最大静摩擦力大小为F 0.现对b 杆施加一与杆垂直且大小随时间按图乙所示规律变化的水平外力F ,已知在t 1时刻,a 杆开始运动,此时拉力大小为F 1,下列说法正确的是(最大静摩擦力等于滑动摩擦力)()A.当a 杆开始运动时,b 杆的速度大小为2F 0r B 2l 2B.在0~t 1这段时间内,b 杆所受安培力的冲量大小为2mF 0r B 2l 2-12F 1t 1C.在t 1~t 2这段时间内,a 、b 杆的总动量增加了F 1+F 2t 2-t 12D.a 、b 两杆最终速度将恒定,且两杆速度大小之差等于t 1时刻b 杆速度大小答案AD解析在整个运动过程中,a 、b 两杆所受安培力大小相等,当a 杆开始运动时,所受的安培力大小等于最大静摩擦力F 0,则B 2l 2v2r =F 0,解得b 杆的速度大小为v=2F 0rB 2l2,选项A 正确;由动量定理得I F -I 安=mv ,F -t 图线与横轴围成的面积表示I F 的大小,知I F =12F 1t 1,解得I 安=I F -mv =12F 1t 1-2mF 0rB 2l2,选项B 错误;在t 1~t 2这段时间内,外力F 对a 、b 杆的冲量为I F ′=F 1+F 2t 2-t 12,因a 杆受摩擦力作用,可知a 、b 杆所受合力的总冲量小于F 1+F 2t 2-t 12,即a 、b杆的总动量增加量小于F 1+F 2t 2-t 12,选项C 错误;由于最终外力F =F 0,故此时对两杆整体,所受合力为零,两杆所受的安培力均为F 0,处于稳定状态,因开始时b 杆做减速运动,a 杆做加速运动,故a 、b 两杆最终速度将恒定,速度大小之差满足B 2l 2Δv2r =F 0,即Δv =v ,速度大小之差等于t 1时刻b 杆速度大小,选项D 正确.6.(2022·天津市红桥区第二次质检)如图所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处由静止释放.导体棒进入磁场后流经电流表的电流逐渐减小,最终稳定为I .整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻,重力加速度大小为g .求:(重力加速度取10m/s 2)(1)导体棒的最大速度v m ,磁感应强度的大小B ;(2)电流稳定后,导体棒运动速度的大小v ;(3)若导体棒进入磁场后恰经t 时间达到稳定,这段时间的位移x 大小.答案(1)2gh mg IL (2)I 2R mg (3)(mgt +m 2gh -I 2R g )RB 2L2解析(1)由题意得导体棒刚进入磁场时的速度最大,设为vm,由机械能守恒定律得12mvm2=mgh解得vm=2gh电流稳定后,导体棒做匀速运动,此时导体棒受到的重力和安培力平衡,则有:BIL=mg解得:B=mg IL(2)感应电动势E=BLv感应电流I=E R解得v=I2R mg(3)导体棒进入磁场t时间运动的过程由动量定理有mgt-B I Lt=mv-mvm又q=I t=ΔΦR=BLxR,解得x=(mgt+m2gh-I2Rg)RB2L2.7.(2022·陕西西安市一模)如图所示,有两光滑平行金属导轨,倾斜部分和水平部分平滑连接,BE、CH段用特殊材料制成,光滑不导电,导轨的间距L=1m,左侧接R=1Ω的定值电阻,右侧接电容C=1F的电容器,ABCD区域、EFGH区域均存在垂直于导轨所在平面向下、磁感应强度B=1T的匀强磁场,ABCD区域长s =0.3m.金属杆a、b的长度均为L=1m,质量均为m=0.1kg,a的电阻为r =2Ω,b的电阻不计.金属杆a从距导轨水平部分h=0.45m的高度处由静止滑下,金属杆b静止在BEHC区域,金属杆b与金属杆a发生弹性碰撞后进入EFGH区域,最终稳定运动.求:(重力加速度g 取10m/s 2)(1)金属杆a 刚进入ABCD 区域时通过电阻R 的电流I ;(2)金属杆a 刚离开ABCD 区域时的速度v 2的大小;(3)金属杆b 稳定运动时的速度v 4的大小;(4)整个运动过程中金属杆a 上产生的焦耳热.答案(1)1A(2)2m/s(3)211m/s (4)16J 解析(1)金属杆a 从开始运动到进入ABCD 区域,由动能定理有mgh =12mv 12解得v 1=3m/s刚进入ABCD 区域时E =BLv 1I =E R +r联立解得I =1A(2)金属杆a 从进入ABCD 区域到离开ABCD 区域,由动量定理有-B I L ·t =mv 2-mv 1I t =BL vR +r t =BLsR +r 解得v 2=2m/s(3)金属杆a 、b 碰撞过程中,有mv 2=mv 2′+mv 31 2mv22=12mv2′2+12mv32解得v3=2m/s,v2′=0分析可知,杆b进入磁场后,电容器充电,杆b速度减小,匀速运动时,杆b产生的感应电动势与电容器两端电压相同,且通过杆b的电荷量就是电容器储存的电荷量,由动量定理有-BLq=mv4-mv3q C =BLv4联立解得v4=211m/s(4)杆a仅在ABCD区域中运动时产生焦耳热,即Q=rR+r(12mv12-12mv22)=16J.8.如图所示,MN、PQ为足够长的水平光滑金属导轨,导轨间距L=0.5m,导轨电阻不计,空间有竖直向下的匀强磁场,磁感应强度B=1T;两直导体棒ab、cd均垂直于导轨放置,导体棒与导轨始终接触良好.导体棒ab的质量m1=0.5kg,电阻R1=0.2Ω;导体棒cd的质量m2=1.0kg,电阻R2=0.1Ω.将cd棒用平行于导轨的水平细线与固定的力传感器连接,给ab一个水平向右、大小为v=3m/s 的初速度,求:(1)导体棒ab开始运动瞬间两端的电压Uab;(2)力传感器示数F随ab运动距离x的变化关系;(3)若导体棒ab向右运动的速度为1.5m/s时剪断细线,求此后回路中产生的焦耳热.答案(1)0.5V(2)F=2.5-2518x(N)(0≤x≤1.8m)(3)0.375J解析(1)导体棒ab开始运动瞬间产生的感应电动势E=BLv=1×0.5×3V=1.5 V回路的电流I=ER1+R2=1.50.2+0.1A=5A导体棒ab开始运动瞬间两端的电压U ab =IR2=0.5V(2)设导体棒ab向右运动x时的速度为v,则根据动量定理得-B I LΔt=m1v-m1v而I=ER1+R2,E=ΔΦΔt =BLx Δtab棒所受安培力F安=BI′L=B2L2vR1+R2cd棒与ab棒所受安培力大小相等,故力传感器的示数F=F安,联立得F=B2L2R1+R2[v-B2L2xm1R1+R2]代入数据得F=2.5-2518x(N)(0≤x≤1.8m)(3)若导体棒ab向右运动的速度为1.5m/s时剪断细线,此后ab做减速运动,cd 做加速运动,当两棒速度相等时达到稳定状态,由动量守恒定律可知m1v1=(m1+m2)v′回路中产生的焦耳热等于损失的机械能,则Q=12m1v12-12(m1+m2)v′2代入数据解得Q=0.375J.。
电磁感应问题中动量定理应用归类
电磁感应问题中动量定理应用归类电磁感应是电学的一个重要分支,它描述了磁场和电场交互作用的现象。
在这个过程中,一个恒定的磁场会在一个导体中产生一个阻尼运动,并且电流也会在其中生成。
这一过程应用了产生电动势的定律,即法拉第电磁感应定律。
动量定理则对于电磁感应过程中的动量守恒起着重要作用,如将动量定理应用于电磁感应问题中,可以更好地理解相关物理现象,提高我们的物理理解和分析问题的能力。
1.动量定理的基本概念动量定理是物理学中研究运动学的重要定理之一。
它不仅可以帮助我们更好地理解自然界中的运动现象,还能解释各种力学现象的本质。
动量定理内容如下:物体的动量变化率等于施加在物体上的合外力。
其中动量是质量和速度的乘积,即动量p=mv,其中p是动量,m是质量,v是速度。
合外力指施加在物体上的所有力的矢量和,其大小和方向由物体所处的环境和状态确定。
2.动量定理在电磁感应中的应用在电磁感应中,动量定理具有重要意义。
在电磁感应过程中,当一个导体通过磁场时,这个磁场会产生一个运动阻力,从而使导体运动速度降低。
这就是动量定理在电磁感应中的应用。
其中,动量定理可通过法拉第电磁感应定律得出,即磁通量改变剩余电荷所导致的电场。
当导体移动时,磁场以一定范围控制导体中的电子运动。
在这个过程中,当导体中的所有电荷向一个方向移动时,电子会受到合力,并且导体运动速度会降低。
这个动量由阻尼力提供,而阻尼又是由其与磁场的相互作用引起的。
此外,当电流被生成时,它还可以通过磁场和电场的相互作用来影响导体的运动。
动量定理可以帮助我们更好地理解这一复杂的过程。
在电磁感应过程中,动量定理告诉我们,当导体受到电磁力时,它的速度将会变化。
当导体停止运动时,电荷分布在导体上将会发生改变。
这一过程会继续,直到电流达到稳定状态为止。
3.电磁感应的动量定理应用案例一种常见的电磁感应案例是感应式加热。
感应式加热是一种运用电磁感应原理,通过电流在导体中产生的热来加热物体的加热方式。
电磁感应动量定理的应用
电磁感应中动量定理的运用动量定律I =∆P 。
设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力F 为变力,但其冲量可用它对时间的平均值进行计算,即I =F t ∆, 而F =B I L (I 为电流对时间的平均值)故有:B I L t ∆=mv 2-mv 1 . 而I t=q ,故有q=BLmv 12mv -理论上电量的求法:q=I •t 。
这种方法的依据是电流的定义式I=q/t 该式的研究对象是通电导体的某一截面,若在t 时间内流过该截面的电量为q ,则流过该切面的电流为I =q/t ,显然,这个电流应为对时间的平均值,因此该式应写为I = q/t ,变形后可以得q =I t ,这个关系式具有一般性,亦即无论流经导体的电流是恒定的还是变化的,只要电流用这段时间内的平均值代入,该式都适用,而平均电流的求解,在电磁感应问题中最为常见的思路为:对某一回路来说,据法拉第电磁感应定律,得E=t∆∆φ,显然该感应电动势也为对其时间的平均值,再由I =R E (R 为回路中的总电阻)可以得到I =tR ∆∆φ。
综上可得q =R φ∆。
若B 不变,则q =R φ∆=Rs B ∆ 电量q 与安培力的冲量之间有什么联系?可用下面的框图来说明。
从以上框图可见,这些物理量之间的关系可能会出现以下三种题型: 第一:方法Ⅰ中相关物理量的关系。
第二:方法Ⅱ中相关物理量的关系。
第三:就是以电量作为桥梁,直接把上面框图中左右两边的物理量联系起来,如把导体棒的位移和速度联系起来,但由于这类问题导体棒的运动一般都不是匀变速直线运动,无法使用匀变速直线运动的运动学公式进行求解,所以这种方法就显得十分巧妙。
这种题型难度最大。
2在解题中强化应用意识,提高驾驭能力由于这些物理量之间的关系比较复杂 ,只能从理论上把握上述关系还不够,还必须通过典型问题来培养学生的应用能力,达到熟练驾驭的目的。
请看以下几例:(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。
动量定理在电磁感应中的应用
动量定理在电磁感应中的应用例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,有一个边长为a(a<L)的正方形闭合线圈以初速v0垂直磁场边界滑过磁场后速度变为v(v<v0)那么[]A.完全进入磁场中时线圈的速度大于(v0+v)/2;B.安全进入磁场中时线圈的速度等于(v0+v)/2;C.完全进入磁场中时线圈的速度小于(v0+v)/2;D.以上情况A、B均有可能,而C是不可能的例2.水平固定的光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一阻值为R的电阻(金属框架、金属棒及导线的电阻均可忽略不计),整个装置处在竖直向下的匀强磁场中,磁感应强度大小为B.现给棒一个初速度v0,使棒始终垂直框架并沿框架运动.则(1)金属棒从开始运动到达稳定状态的过程中,求通过电阻R的电量和电阻R中产生的热量.(2)金属棒从开始运动到达稳定状态的过程中,求棒通过的位移.(3)如果将U型金属框架左端的电阻R换为一电容为C的电容器,其他条件不变,如题25图所示.求金属棒从开始运动到达稳定状态时电容器的带电量和电容器所储存的能量(不计电路向外辐射的能量).3.受外力等长双杆的运动例 3.、如图所示,竖直放置的两光滑平行金属导轨置于垂直于导轨平面向里的匀强磁场中,两根质量相同的金属棒a和b,和导轨紧密接触且可自由滑动,先固定a释放b,当b速度达到10m/s时,再释放a,经过1s时间a的速度达到12m/s,则()A.当va=12m/s时,vb=18m/sB. 当va=12m/s时,vb=22m/sC.若导轨很长,它们最终的速度必相同D.它们最终速度不相同,但速度差恒定(2003年全国理综卷)如图5所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离l=0.20m。
两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用动量定理解决电磁感应问题的思维起点
电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。
本文结合例题分析应用动量定理解决电磁感应问题的思维起点。
一、 以累积公式q=It 结合动量定理为思维起点
直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。
通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。
在时间△t 内安培力的冲量BLq t BLI t F =∆=∆,式中q 是通过导体截面的电量。
利用该公式结合动量定理是解答此类问题思维起点。
例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。
析与解:当右棒运动时,产生感应电动势,两棒中有感
应电流通过,右棒受到安培力作用而减速,左棒受到安培力
作用而加速。
当它们的速度相等时,它们之间的距离最大。
设它们的共同速度为v ,则据动量守恒定律可得:
mv 0=2mv ,即021v v = 对于左棒应用动量定理可得:
BILt= mv
所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2=∆ 由上述各式可得: x =220L
B R mv 。
v
点评:本题结合冲量公式BLq t BLI t F =∆=∆应用动量定理,使貌似复杂的问题得到迅速解决。
例2.(原创预测题)如图所示,两水平放置的平行光滑金属导轨相距为L ,导轨左端用导线连在一起,导轨电阻不计,整个装置垂直处于磁感强度
为B 的匀强磁场中,另有一根长也为L 的金属棒垂直放在导轨上,
现给金属棒一向右的水平初速度v 。
若已知金属棒从开始运动到停
止的这段时间内,通过金属棒的电量为q ,求金属棒的质量。
析与解:由动量定理得:BILt=mv 而q=It
由以上两式得 m=v BLq . 点评:金属棒受到向左的安培力,向右做加速度减小的减速运动,直到停止运动。
显然不能用牛顿运动定律结合运动学公式解题,从已知量q 我们当然应想到q=It ,用动量定理分析则题目很简单。
二、 以累积公式x=vt 结合动量定理为思维起点
直导线(或线框)在磁场中做非匀变速直线运动,在时间△t 内安培力的冲量x R
L B t R v L B t F 2
222=∆=∆,式中x 是时间△t 内直导线(或线框)通过的位移。
利用该公式结合动量定理是解答此类问题思维起点。
例3.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a <L )的正方形闭合线圈以初速v 0垂直磁场边界滑过磁场后速度变为v (v <v 0)那么
A .完全进入磁场中时线圈的速度大于(v 0+v )/2;
B .安全进入磁场中时线圈的速度等于(v 0+v )/2;
C .完全进入磁场中时线圈的速度小于(v 0+v )/2;
D .以上情况A 、B 均有可能,而C 是不可能的
析与解:设线圈完全进入磁场中时的速度为v x 。
线圈在
穿过磁场的过程中所受合外力为安培力。
对于线圈进入磁场的过程,据动量定理可得:
L a
a
a
对于线圈穿出磁场的过程,据动量定理可得:
由上述二式可得2
0v v v x +=,即B 选项正确。
例4.如图,甲、乙两个完全相同的线圈,在距地面同一高度处由静止开始释放,A 、B 是边界范围、磁感应强度的大小和方向均完全相同的匀强磁场,只是A 的区域比B 的区域离地面高一些,两线圈下落时始终保持线圈平面与磁场垂
直,则( )
A. 甲先落地。
B. 乙先落地。
C. 二者同时落地。
D. 无法确定。
析与解:先比较甲、乙线圈落地速度的大小。
乙进入磁场时的速度较大,则安培力较大,克服安培力做功较多,即产生的焦耳热较多。
由能量守恒定律可知,乙线圈落地速度较小。
线圈穿过磁场区域时受到的安培力为变力,设受到的平均安培力为F ,穿过磁场时间为t ∆,下落全过程时间为t ,落地时的速度为v ,则全过程由动量定理得
t F mgt ∆-=mv
而x R
L B t R v L B t F 2
222=∆=∆ 可见,两下落过程安培力的冲量相等。
因为:,甲乙v v < 所以 ,甲乙t t <
即乙线圈运动时间较短,先落地。
选B 。
三、 含电容器电路的电磁感应问题的思维起点
电磁感应电路中含有电容器时,电容器放电或给电容器充电的过程,导体杆的运动为非匀变速直线运动。
考虑公式R
BL BLq t BLI t F ∆Φ==∆=∆为该类问题的思维起点。
例5. 如图所示,水平放置的光滑U 型金属框架宽为L ,足够长,垂直处于磁感强度为B 的匀强磁场中,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直
框架并沿框架运动,求导体棒的最终速度。
析与解:
当ab 棒以稳定速度v 匀速运动时,有:BLv =U C =q/C
而对导体棒ab 利用动量定理可得:-BILt=-BLq =mv -mv 0
由上述二式可求得: C L B m mv v 220+= 点评:当金属棒ab 做切割磁感线运动时,要产生感应电动势,这样,电容器C 将被充电,ab 棒中有充电电流存在,ab 棒受到安培力的作用而减速,且为非匀变速运动。
应用动量定理结合电容器性质解决问题
例6.如下图所示是超导电磁炮的原理图,它能在较短的炮身中使炮弹加速到极高的速度,去攻击大气层中飞行的任何飞机.设水平放置的两光滑金属导轨MN 和PQ 相距为d ,左端连有开关s 和电容为c 的电容器.质量为m 的炮弹连有的金属杆EF 垂直于导轨放在其上,并可以自由滑动且接触良好,整个装置放在磁感应强度为B 、方向竖直向上的匀强磁场中.给电容器充电后,电容器两端电压为U ,合上开关S ,电容器迅速放电结束,炮弹在水平导轨上达到稳定速度.求:炮弹在水平导轨上所达到的稳定速度v 的大小的表达式.
析与解: 设放电时间为∆t ,
电容器放电前 Q=cu ①
对放电过程应用动量定理 BId ∆t=mv ②
I ∆t=∆Q ③
而 ∆Q= Q-cBdv ④
由以上几式得 v=2
2d cB m cuBd + 点评:电容器放电过程金属杆的运动既非匀速运动也不是匀变速运动,于是选择动
量定理,考虑公式R BL BLq t BLI t F ∆Φ==∆=∆来解决变力冲量的问题。
应用动量定理解决电磁感应模型问题的物理情境变化空间大,题目综合性强,所以该模型问题是高考的热点,同时也是难点,从这个意义上讲重视和加强此类问题的探究是十分必要和有意义的,另外还可起到触类旁通的效果,让学生同时具备解决电磁感应其它类模型问题的能力。
练习:
1.(原创预测题)如图所示,在光滑的水平面上,有一竖直向下的匀强磁场,分布在宽度为L 的区域内,现有一边长为d(d<L)的正方形闭合线框以垂直于磁场边界的初速度v 0滑过磁场,线框刚好能穿过磁场,则线框在滑进磁场的过程
中产生的热量Q 1与滑出磁场的过程中产生的热量Q 2之比为
( )
A .1:1
B .2:1
C .3:l
D .4:1
2.(原创预测题)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为d ,匀强磁场垂直于导轨所在平面向下,磁感应强度的大小为B ,两根金属杆1、2间隔一定的距离摆放在导轨上,且与导轨垂直,它们的电阻均为R ,两杆与导轨接触良好,导轨电阻不计,金属杆与导轨的摩擦不计.
求:(1)若让杆2固定,杆1以初速度v 0滑向杆2,为
使两杆不相碰,则最初摆放两杆时的最小距离.
(2) 若杆2不固定,杆1仍以初速度v 0滑向杆2,为使
两杆不相碰,则最初摆放两杆时的最小距离.
参考答案:
1.C 提示:进出磁场过程安培力冲量相同,故速度变化相同.再由能量守恒得出结果.
2.(1)2202d B mRv s =(2) 220d
B mRv s =。
提示(1)对杆1应用动量定理求解.(2)首先系统动量守恒, 对杆1应用动量定理求解.。