最新高效率光伏逆变器拓扑结构及功率器件介绍
光伏逆变器拓扑分析详解
变压器拓扑电网连接的单相光伏逆变器Iván Patrao∗, Emilio Figueres, Fran González-Espín, Gabriel GarceráGrupo de SistemasElectrónicosIndustriales del Departamento de Ingeniería Electrónica, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain文章信息文章历史:收到于2011年1月12日接受于2011年3月21日关键词:多电平逆变、无变压器逆变器、光伏逆变器、可再生能源摘要为了提高效率,降低光伏系统的成本,使用的变压器光伏逆变器是一种越来越大的替代趋势。
然而,这种拓扑结构需要进一步研究,因为它提出了一些问题,有关电网和光伏发电机(如效率退化和安全问题)之间的电连接。
在本文中,着重介绍单相光伏风力发电并网逆变器,它基于已经推行的无变压拓扑结构。
一方面,它是替代经典拓扑结构的基础上提出的。
另一方面,研究显示,基于多层逆变器拓扑结构和经典的拓扑结构相比,没有漏电流产生。
2011爱思唯尔出版社有限公司版权所有目录1.前言 (3423)2.共模电压问题 (3424)3.桥拓扑功率变换器 (3425)3.1.全H桥 (3425)3.2.半H桥 (3425)3.3.高效可靠的逆变器的概念(HERIC) (3426)3.4.H5的拓扑 (3426)3.5.带发电控制电路的半H桥(GCC) (3426)4.基于多级拓扑的逆变器 (3427)4.1.级联H桥(CHB) (3427)4.2.中点钳位(NPC)半桥 (3427)4.3.飞电容(FC) (3428)4.4.电容分压器NPC半桥 (3428)4.5.ConergyNPC (3428)4.6.有源NPC(ANPC) (3429)5. 无变压光伏逆变器基本特性 (3429)6. 结论 (3429)鸣谢 (3430)参考文献 (3430)1.前言可再生能源,特别是那些光电源[1],由于对全球变暖的日益关注和政府对这些技术的扶持资助,近年来已经初步取得了很大的发展[2,3]。
最新高效率光伏逆变器拓扑结构及功率器件介绍
摘要:效率正成为电力电子装置设计中越来越重要的参数。在某些应用中,效率甚至成为行业发展的驱动力,典型的如太阳能发电行业。因为对于光伏发电行业,效率的提升可以直接带来经济效益。本文详细介绍了最新的能够提供高效率的光伏逆变器拓扑结构和功率器件,包括单相和三相逆变器,功率因数补偿对策,高效电流双向流动逆变器等。
图15: flowSOL0-BI-open E (P896-E02)
技术参数:
升压电路采用MOSFET(600V/45 mΩ)和SiC二极管组成
旁路二极管主要是当输入超过额定负载时,旁路Boost电路,从而改善逆变器整体效率
H桥的上桥臂采用IGBT(600V/75A)和SiC二极管,下桥臂采用MOSFET(600V/45 mΩ)
模块内部集成温度检测电阻
NPC逆变桥模块的技术参数(图10):
中间换向环节由75A/600V的IGBT和快恢复二极管组成
上下高频切换环节由MOSFET(600V/45 mΩ)组成
中心点钳位二极管由SiC二极管组成
模块内部集成温度检测电阻
图10: flowSOL-NPI – NPC逆变桥
对于这种拓扑结构,关于模块的设计要求基本类似于前文提到的单相逆变模块,唯一需要额外注意的是,无论是双Boost电路还是NPC逆变桥,都必须保证DC+,DC-和中心点之间的低电感设计。有了这两个模块,就很容易设计更高功率输出光伏逆变器。例如使用两个双Boost电路并联和三相NPC逆变桥就可以得到一个高效率的10kW的光伏逆变器。而且这两个模块的管脚设计充分考虑了并联的需求,并联使用非常方便。
图18:三电平逆变器
以一相为例,在2kW额定输出时,三电平逆变器(图18)可以达到99.2%的欧效。稍作改动,该拓扑就可以实现无功功率流动。
逆变器的电路结构及组成说明
逆变器的电路结构及组成说明逆变器主要由半导体功率器件和逆变器驱动、控制电路两大部分组成。
随着微电子技术与电力电子技术的迅速发展,新型大功率半导体开关器件和驱动控制电路的出现促进了逆变器的快速发展和技术完善。
目前的逆变器多数采用功率场效应晶体管(VMOSFET)、绝缘栅极品体管(IGBT)、可关断晶体管(GTO)、MOS控制晶体管(MGT)、MOS控制品闸管(MCT)、静电感应晶体管(SIT)、静电感应晶闸管(SITH)以及智能型功率模块(IPM)等多种先进且易于控制的大功率器件,控制逆变驱动电路也从模拟集成电路发展到单片机控制,甚至采用数字信号处理器(DSP)控制,使逆变器向着高频化、节能化、全控化、集成化和多功能化方向发展。
1.逆变器的电路构成逆变器的基本电路构成如图6-3所示。
由输入电路、输出电路、主逆变开关电路(简称主逆变电路)、控制电路、辅助电路和保护电路等构成。
各电路作用如下所示。
图6-3 逆变器的基本电路构成(1)输入电路。
输入电路的主要作用就是为主逆变电路提供可确保其正常工作的直流工作电压。
(2)主逆变电路。
主逆变电路是逆变电路的核心,它的主要作用是通过半导体开关器件的导通和关断完成逆变的功能。
逆变电路分为隔离式和非隔离式两大类。
(3)输出电路。
输出电路主要是对主逆变电路输出的交流电的波形、频率、电压、电流的幅值相位等进行修正、补偿、调理,使之能满足使用需求。
(4)控制电路。
控制电路主要是为主逆变电路提供一系列的拄制脉冲来控制逆变开关器件的导通与关断,配合主逆变电路完成逆变功能。
(5)辅助电路。
辅助电路主要是将输入电压变换成适合控制电路工作的直流电压。
辅助电路还包含了多种检测电路。
(6)保护电路。
保护电路主要包括输入过压、欠压保护,输出过压、欠压保护,过载保护,过流和短路保护,过热保护等。
2.逆变器的主要元器件(1)半导体功率开关器件。
主要有可控硅(晶闸管)、大功率晶体管、功率场效应管及功率模块等。
光伏逆变器的拓扑结构与性能优化
光伏逆变器的拓扑结构与性能优化光伏逆变器是太阳能发电系统的重要组成部分,它可以将直流电转换为交流电,以满足电网接入或独立电力供应的需求。
在设计和优化光伏逆变器的拓扑结构和性能时,需要考虑多种因素,包括效率、功率因数、谐波失真、电磁干扰等。
本文将介绍光伏逆变器的常见拓扑结构,以及在实际应用中如何优化其性能。
光伏逆变器的拓扑结构主要有单相桥式逆变器、三相桥式逆变器和多电平逆变器等。
其中,单相桥式逆变器适用于单相光伏系统,拓扑简单、成本低廉。
三相桥式逆变器适用于三相光伏系统,能够提供更高的功率密度和更低的谐波失真。
而多电平逆变器则可以有效减小输出波形的谐波失真,提高系统的效率和可靠性。
在光伏逆变器的性能优化方面,首先要考虑的是其效率。
逆变器的效率直接影响到太阳能发电系统的整体效能。
为了提高逆变器的效率,可以采用高效的功率开关器件,如硅碳化物(SiC)器件,其开关速度快、导通压降低。
此外,还可以采用最大功率点追踪(MPPT)算法,在不同光照条件下,调整逆变器的工作点,以获得最大的输出功率。
其次,功率因数也是光伏逆变器性能优化的重要指标之一。
功率因数反映了电流和电压之间的相位差,功率因数越接近1,说明逆变器对电网的负载更加合适。
为了提高功率因数,可以采用电容滤波器或无源滤波器,将逆变器输出的谐波成分滤除,减小谐波失真,进而提高功率因数。
此外,光伏逆变器的谐波失真也需要得到重视和优化。
逆变器输出波形中存在的谐波成分会对电网和其他电气设备造成干扰,并增加能量损耗。
为了降低谐波失真,可以采用多电平逆变器拓扑结构,通过增加电平数来调整逆变器输出波形,减小谐波成分。
此外,还可以采用滤波器来滤除高次谐波,以获得更纯净的输出波形。
另外,光伏逆变器在工作过程中还会产生一定的电磁干扰。
为了减小电磁干扰,可以采用屏蔽器件、优化线路布局和地线设计,以提高光伏逆变器的抗干扰能力。
此外,还可以采用PWM调制技术,调整开关频率,减小高频谐波传输,从而降低电磁干扰的程度。
光伏并网逆变器硬件设计以及拓扑结构
光伏并网逆变器硬件设计以及拓扑结构首先,光伏并网逆变器的拓扑结构有很多种,常用的有串联逆变器、并联逆变器以及单相桥式逆变器等。
1.串联逆变器串联逆变器是将多个逆变单元串联在一起,通过分时工作的方式实现高电压输出。
它能够实现更高的输出功率和电压,适用于大容量的光伏发电系统。
2.并联逆变器并联逆变器是将多个逆变单元并联在一起,实现总输出功率的叠加。
它具有输出功率分散、可靠性高的特点,适用于小功率的光伏发电系统。
3.单相桥式逆变器单相桥式逆变器是采用单相桥式整流电路和逆变电路,能够实现交流输出。
它结构简单,适用于小功率的光伏发电系统。
选取逆变器的拓扑结构时,需要考虑光伏电池板的输出电压和功率以及电网的要求。
不同的拓扑结构有不同的特点和适用场景,设计者需要根据具体需求选择最合适的拓扑结构。
在硬件设计中,光伏并网逆变器的主要电路包括:整流电路、滤波电路、逆变电路和控制电路等。
1.整流电路:用于将光伏板输出的直流电转换为交流电。
常见的整流电路包括单相全波桥式整流电路和三相全波桥式整流电路等。
2.滤波电路:用于去除转换过程中产生的谐波和噪声,保证逆变器输出的电流和电压的纯净度。
常见的滤波电路有LC滤波电路和LCL滤波电路等。
3.逆变电路:用于将直流电转换为交流电,并注入电网。
常见的逆变电路有全桥逆变电路和半桥逆变电路等。
4.控制电路:用于控制逆变器的输出电流和电压,以及保护逆变器的安全运行。
控制电路通常包括微控制器、驱动电路、保护电路等。
在硬件设计过程中,需要选取合适的元器件和电路参数。
如选择功率器件时需要考虑功率损耗、开关速度等因素;选择电容和电感时需要考虑峰值电流和谐振频率等因素。
同时,还需要设计合理的散热系统来保证逆变器的温度和性能稳定。
总而言之,光伏并网逆变器的硬件设计和拓扑结构是实现光伏发电系统有效注入电网的关键。
合理的硬件设计和拓扑结构能够提高逆变器的效率和可靠性,从而提高光伏发电系统的整体性能。
光伏逆变器的dcdc拓扑
光伏逆变器的dcdc拓扑1.引言1.1 概述光伏逆变器是将光伏电池发出的直流电能转换为交流电能的装置。
其核心部分是DC-DC拓扑,它能够实现对直流电压进行有效的调整和转换,以满足逆变器和光伏电池的工作要求。
DC-DC拓扑是指将一个直流电源的电压转换到另一个电压水平的电路结构。
它是光伏逆变器中的关键组成部分,用于将光伏电池发出的直流电能转换为适合于输送到电网的交流电能。
因此,DC-DC拓扑在光伏逆变器中发挥着至关重要的作用。
光伏逆变器的DC-DC拓扑应用有许多种。
其中比较常见的有升压拓扑、降压拓扑和升降压拓扑。
升压拓扑适用于光伏电池电压较低的情况,能够将低电压的直流电能转换为高电压的直流电能。
降压拓扑适用于光伏电池电压较高的情况,能够将高电压的直流电能转换为低电压的直流电能。
而升降压拓扑则是一种能够实现对直流电压进行升压或降压的多功能拓扑。
总之,光伏逆变器的DC-DC拓扑是光伏电池转换为交流电的核心环节。
它通过有效的电压调整和转换,实现了光伏逆变器和光伏电池之间的协同工作。
掌握不同拓扑的应用特点和优势,对于光伏逆变器的设计和性能提升具有重要意义。
1.2文章结构文章结构部分的内容可以包括以下内容:文章结构部分旨在介绍本文的结构框架,帮助读者了解全文的组织结构和内容安排。
本文分为引言、正文和结论三个部分。
其中引言部分包括概述、文章结构和目的三个小节;正文部分包括DC-DC拓扑概述和光伏逆变器的DC-DC拓扑应用两个小节;结论部分包括总结和展望两个小节。
引言部分首先对光伏逆变器的DC-DC拓扑进行简要概述,介绍其基本概念和作用。
接着,介绍了本文的结构框架,即引言、正文和结论三个部分的内容。
最后,明确了本文的目的,即通过对光伏逆变器的DC-DC 拓扑进行深入研究,揭示其应用领域和重要性。
正文部分首先对DC-DC拓扑进行了全面的概述,包括定义、分类和基本特点等方面的内容。
进一步,详细讨论了光伏逆变器的DC-DC拓扑应用,重点介绍了其在光伏发电系统中的作用和优势。
三相t型光伏逆变拓扑
三相t型光伏逆变拓扑
三相T型光伏逆变拓扑是一种常见的光伏逆变器拓扑结构,它可以将直流电能转换为交流电能,以满足电力系统的需求。
本文将介绍三相T型光伏逆变拓扑的原理、特点和应用。
三相T型光伏逆变拓扑的原理是利用三相桥式整流器将光伏电池板输出的直流电能转换为三相交流电能,然后通过三相T型逆变器将交流电能输出到电力系统中。
其中,三相桥式整流器的作用是将光伏电池板输出的直流电能进行整流,使其变成稳定的直流电源。
而三相T型逆变器则是将直流电能转换为交流电能,并通过滤波器进行滤波,以保证输出的交流电能质量。
三相T型光伏逆变拓扑的特点是具有高效率、高可靠性和低成本等优点。
由于采用了三相桥式整流器和三相T型逆变器,可以有效地提高转换效率,同时也可以提高系统的可靠性。
此外,由于采用了简单的拓扑结构,可以降低系统的成本,提高系统的经济性。
三相T型光伏逆变拓扑的应用非常广泛,主要用于太阳能发电系统、风力发电系统和电动汽车充电系统等领域。
在太阳能发电系统中,三相T型光伏逆变拓扑可以将光伏电池板输出的直流电能转换为交流电能,以满足电力系统的需求。
在风力发电系统中,三相T型光伏逆变拓扑可以将风力发电机输出的交流电能转换为稳定的交流电能,以满足电力系统的需求。
在电动汽车充电系统中,三相T型光伏逆变拓扑可以将电网输出的交流电能转换为直流电能,以满足电
动汽车的充电需求。
三相T型光伏逆变拓扑是一种高效、可靠、经济的光伏逆变器拓扑结构,具有广泛的应用前景。
随着新能源技术的不断发展,三相T 型光伏逆变拓扑将会得到更广泛的应用。
大功率光伏逆变器简介
大功率光伏逆变器(100kwp~500kwp)一、光伏逆变器简介逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。
根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正弦波逆变器和组合式三相逆变器。
对于用于并网系统的逆变器,根据有无变压器又可分为变压器型逆变器和无变压器型逆变器。
(1)并网光伏发电系统并网式光伏发电系统由光伏组件、并网逆变器、计量装置及配电系统组成。
光伏组件将太阳光能转换为直流电能,再由逆变器将直流电能转换为高品质的正弦波电流,直接馈入电网或者做为本地用电设备的电力来源。
(2)离网光伏发电系统离网式光伏发电系统由光伏组件、控制器、蓄电池、离网逆变器及配电系统组成,与并网式光伏发电系统的工作原理十分相似,唯一不同的是离网系统输出的电力被直接消耗使用而不输送到电网中。
离网式系统中配备有蓄电池,用于储存电能,可以满足阳光不足状态下的发电需求。
通过控制器可以实现对蓄电池的控制。
对于无法接入公共电网的偏远地区,离网式光伏发电系统是解决用电需求最完。
二、产品型号ESI——————————光伏逆变器5———————————额定输入电压 1.24vdc 2.48vdc 3.450vdc 3———————————输出电压 2.220vac 3.380vacB———————————变压器功能 B可并联 N不可并联100——————————额定输出功率 100kw、 250kw、 500kwX———————————厂商代码 X希望电子有限公司T———————————T有隔离变压器 N无隔离变压器三、执行标准.GB/T 19939光伏系统并网技术要求.GB/T 20046光伏(PV)系统电网接口特性.GB/T 20513光伏系统性能监测测量、数据交换和分析导则. GB/Z 19964光伏发电站接入电力系统的技术规定. GB/T 3859.1半导体变流器基本要求的规定. GB/T 3859.2半导体变流器应用导则. GB 17625.2 电磁兼容限值对额定电流不大于 16A的设备在低压供电系统中产生的电压波动和闪烁的限制. GB/Z 17625.3 电磁兼容限值对额定电流大于 16A的设备在低压供电系统中产生的电压波动和闪烁的限制. GB/T 17626.2电磁兼容试验和测量技术静电放电抗扰度试验. GB/T 17626.3 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验. GB/T 17626.4 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验. GB/T 17626.5电磁兼容试验和测量技术浪涌(冲击)抗扰度试验. GB/T 17626.6 电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度. GB/T 17626.11 电磁兼容试验和测量技术电压暂降、短时中断和电压变化的抗扰度试验. GB 17799.3 电磁兼容通用标准居住、商业和轻工业环境中的发射标准. GB 17799.4电磁兼容通用标准工业环境中的发射标准. GB 4208外壳防护等级(IP代码). GB/T 191包装储运图示标志四、产品结构及工作原理逆变器是一种由半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电力。
500kW光伏逆变器功率单元介绍
WSH600-4/380C12F功率单元介绍一、产品简介WSH系列功率单元是武汉华尚新源科技有限公司开发的高度集成化功率器件平台系列产品,它将电力半导体开关器件、驱动电路、电流传感器、直流电容、吸收电容、母排、散热器及离心风机集成一体,并带有过流、过热等故障保护功能,以标准的电气接口和机械接口提供给客户,可以作为功率变换的核心部件,应用于光伏逆变器、高压变频器等多种电力电子设备。
WSH600-4/380C12F型功率单元采用4只1200V/600A的IGBT模块并联构成单相桥臂,适合应用在交流输出为380V,直流母线电压<900V 的AC/DC或DC/AC的功率变换场合。
容量方面,与用户的设计参数选择有关,主要取决于开关器件的损耗,典型应用:500kW光伏逆变器。
二、技术特点1)快速的过流保护。
在发生短路和过载的情况时,内部IGBT将被软关断,同时向控制端发出故障信号。
2)可靠的过热保护。
过热保护电路检测靠近IGBT芯片基板上的热敏电阻,当基板过热时,过热保护电路关断门极驱动,并输出故障信号。
3)抗干扰能力强。
驱动电路紧靠IGBT,布局合理,减少各部分引入干扰的机会。
功率平台的输入驱动使用光纤接口,有效避免驱动信号传输过程中引入干扰。
4)驱动电源欠压保护。
当驱动电源低于15V时,会造成驱动能力不够,增加导通损耗。
功率平台保护回路检测驱动电源,当低于15V超过10us时,关断驱动信号,并输出故障信号。
5)均流效果好。
低压功率平台采用对称的叠层母排设计,有效地减小了回路的杂散电感,并依靠其对称的驱动电路,减小并联模块产生的电流动态不均流和静态不均流。
6)散热性能优异。
低压功率平台经过专业优化散热设计,在散热方面具备最佳效果。
三、技术指标四、外形尺寸及接口定义WSH600-4/380C12F型功率单元外形尺寸如下图所示:控制接口定义如下表所示:五、容量选择与功耗计算WSH600-4/380C12F 功率单元的损耗与母线电压、交流输出电压电流、开关频率、控制方式等有关。
光伏逆变器功能特点和主要技术参数说明
光伏逆变器功能特点和主要技术参数说明光伏逆变器功能特点和主要技术参数说明将直流电能变换成为交流电能的过程称为逆变,完成逆变功能的电路称为逆变电路,⽽实现逆变过程的装置称为逆变器或逆变设备。
太阳能光伏系统中使⽤的逆变器是⼀种将太阳能电池产⽣的直流电能转换为交流电能的转换装置。
它使转换后的交流电的电压、频率与电⼒系统交流电的电压、频率相⼀致,以满⾜为各种交流⽤电装置、设备供电及并⽹发电的需要,它是光伏系统的⼤脑。
1.离⽹逆变器的主要特点(1)采⽤16位单⽚机或32位DSP微处理器进⾏控制;(2)太阳能充电采⽤PWM控制模式,⼤⼤提⾼了充电效率;(3)采⽤数码或液晶显⽰各种运⾏参数,可灵活设置各种定值参数;(4)⽅波、修正波、正弦波输出。
纯正弦波输出时,波形失真率⼀般⼩于5%;(5)稳压精度⾼,额定负载状态下,输出精度⼀般不⼤于±3%;(6)具有缓启动功能,避免对蓄电池和负载的⼤电流冲击;(7)⾼频变压器隔离,体积⼩、重量轻;(8)配备标准的RS232/485通信接⼝,便于远程通信和控制;(9)可在海拔5500m以上的环境中使⽤。
适应环境温度范围为-20~50℃;(10)具有输⼊接反保护、输⼊⽋压保护、输⼊过压保护、输出过压保护、输出过载保护、输出短路保护、过热保护等多种保护功能。
2.并⽹型逆变器主要性能特点(1)功率开关器件采⽤新型IPM模块,⼤⼤提⾼系统效率;(2)采⽤MPPT⾃寻优技术实现太阳能电池最⼤功率跟踪,最⼤限度地提⾼系统的发电量;(3)液晶显⽰各种运⾏参数,⼈性化界⾯,可通过按键灵活设置各种运⾏参数;(4)设置有多种通信接⼝可以选择,可⽅便地实现上位机监控(上位机是指:⼈可以直接发出操控命令的计算机,屏幕上显⽰各种信号变化如电压、电流、⽔位、温度、光伏发电量等);(5)具有完善的保护电路,系统可靠性⾼;(6)具有较宽的直流电压输⼊范围;(7)可实现多台逆变器并联组合运⾏,简化光伏发电站设计,使系统能够平滑扩容;(8)具有电⽹保护装置,具有防孤岛保护功能。
第五章 光伏并网逆变器的电路拓扑总结
5-25Βιβλιοθήκη 5.4 多支路光伏并网逆变器
5.4.1 隔离型多支路光伏并网逆变器
图5-20 多支路高频链光伏并网逆变器结构
5-26
5.4 多支路光伏并网逆变器
5.4.1 隔离型多支路光伏并网逆变器
图5-21 多支路高频链光伏并网逆变器系统整体控制框图
5-27
5.4 多支路光伏并网逆变器
5.4.2 非隔离型多支路光伏并网逆变器
图5-7 三相工频隔离型结构 a) 三相两电平 b) 三相三电平
5-10
5.2 隔离光伏并网逆变器
5.2.2 高频隔离型光伏并网逆变器
DC/DC变换型高频链光伏并网逆变器,单级容量一般在 几个千瓦以内,整机工作效率大约在93%以上。
图5-8 DC/DC变换型高频链光伏并网系统一 a) 电路组成 b) 波形变换模式
第五章
5.1 5.2 5.3 5.4 5.5
光伏并网逆变器的电路拓扑
光伏并网逆变器的分类 隔离型光伏并网逆变器 非隔离型光伏并网逆变器 多支路光伏并网逆变器 微型光伏并网逆变器
5-1
第五章 光伏并网逆变器的电路拓扑
光伏并网逆变器将太阳能电池输出的直流电转换成 符合电网要求的交流电再输入电网,是光伏并网系 统能量转换与控制的核心。 光伏并网逆变器的性能影响和决定整个光伏系统是 否能够稳定、安全、可靠、高效地运行,同时也是 影响整个系统使用寿命的主要因素。 本章将对光伏并网逆变器进行分类讨论。
5.2.1 工频隔离型光伏并网逆变器
优点:结构简单、可靠性高、抗冲击性能好、安全性高、无直流电 流问题。 缺点:体积大、质量重、噪声高、效率低。
图5-5 工频隔离变压器对系统效率的影响
5-8
5.2 隔离光伏并网逆变器
晶科光伏逆变器-概述说明以及解释
晶科光伏逆变器-概述说明以及解释1.引言1.1 概述晶科光伏逆变器是一种将太阳能光伏电池板所产生的直流电转换为交流电的关键设备。
在光伏发电系统中,逆变器的作用十分重要,它能够确保光伏系统的高效运行并将所产生的电能送入电网中。
晶科光伏逆变器具有高效率、稳定性强、输出波形质量高等特点,广泛应用于光伏发电领域。
本文将深入探讨晶科光伏逆变器的原理、技术特点、市场前景以及性能分析,旨在为读者提供了解和认识晶科光伏逆变器的全面视野。
1.2 文章结构文章结构部分主要包括以下内容:1. 引言: 在这部分将会概述本文的主题,介绍晶科光伏逆变器的重要性和背景。
2. 正文:- 晶科光伏逆变器的原理和技术特点: 详细介绍晶科光伏逆变器的工作原理和独特技术特点,包括电路结构、工作模式等方面。
- 晶科光伏逆变器的应用领域和市场前景: 探讨晶科光伏逆变器在光伏发电领域的应用情况,以及未来的市场前景和发展趋势。
- 晶科光伏逆变器的性能和可靠性分析: 分析晶科光伏逆变器在实际运行中的性能表现,包括电能转换效率、稳定性、耐用性等方面的评估。
3. 结论:- 总结: 对整篇文章进行总结,概括主要内容和核心观点。
- 展望: 展望晶科光伏逆变器在未来的发展方向和挑战。
- 结论: 提出对晶科光伏逆变器的评价和建议,为读者提供一个对该技术的全面认识和理解。
文章1.3 目的:本文旨在介绍晶科光伏逆变器的原理、技术特点、应用领域和市场前景,以及对其性能和可靠性进行分析。
通过深入了解晶科光伏逆变器的特点和优势,有助于读者更好地了解该技术在光伏发电领域的应用及发展前景。
同时,通过对其性能和可靠性的分析,可以为行业相关从业者提供参考和借鉴,促进光伏逆变器技术的进步和推广应用。
2.正文2.1 晶科光伏逆变器的原理和技术特点晶科光伏逆变器是一种将直流电能转换为交流电能的电气设备,是太阳能发电系统中的关键部件之一。
其工作原理主要包括三个步骤:首先,光伏电池板将太阳能转化为直流电能;然后,晶科光伏逆变器将这些直流电能转换为交流电能;最后,交流电能经由电网输送到电器设备中供给使用。
光伏逆变器简介完整版
(2)现代控制理论的控制策略:
1、多变量状态反馈控制 多变量状态反馈控制的优点在于可以大大改善系统的动态品质,因为 它可以任意的配置系统的极点,但是建立逆变器的状态模型时很难将负载 的动态特性考虑在内,所以,状态反馈只能针对空载或假定负载进行,对 此应采用负载电流前馈补偿,预先进行鲁棒性分析,才能使系统有好的稳 态和动态性能。 2、无差拍控制 无差拍控制的基本思想是将给定的正弦参考波形等间隔的划分成若干 个周期,根据每个采样周期的起始值采用预测算法计算出在采样结束时
图2 高频环节逆变原理图
单相逆变电路拓扑的介绍:
实现逆变有很多种典型的电路拓扑,主要有推挽逆变拓扑、半桥 逆变拓扑、全桥逆变拓扑三种,下文将对这三种拓扑进行介绍。
推挽逆变拓扑:
图3 所示的推挽电路只用两个开关元器件,比全桥电路少用了 一半的开关器件,可以提高能量利用率,另外驱动电路具有公共地, 驱动简单,适用原边电压比较低的场合,但由于本身电路的结构特点, 推挽电路拓扑无法输出正弦电压波形,只能输出方波电压波形,适用 于1KW 以下的方波电压方案。
按逆变器输出电压或电流的波形分可分为: (1)方波逆变器
方波逆变器输出的电压波形为方波,此类逆变器所使用的逆变电 路也不。设计功率一般在百瓦至千瓦之间。 方波逆变器的优点是:线路简单,维修方便,价格便宜。 缺点是方波电压中含有大量的高次谐波,在带有铁心电感或变压 器的负载用电器中将产生附加损耗,对收音机 和某些通讯设备有干 扰。此外,这类逆变器还有调压范围不够宽,保护功能不够完善,噪 声比较大等缺点。
(3)正弦波逆变器
正弦波逆变器输出的电压波形为正弦波 正弦波逆变器的优点是:输出波形好,失真度很低,对收音机及通讯设备 干扰小,噪声低。此外,保护功能齐全,整机效率高。
集中式逆变器拓扑-概述说明以及解释
集中式逆变器拓扑-概述说明以及解释1.引言1.1 概述概述部分的内容:集中式逆变器是一种常见的逆变器拓扑结构,广泛应用于各种电力转换系统中。
逆变器是将直流电能转换为交流电能的电子器件,而集中式逆变器则是通过集中式的方式对直流电能进行转换,以满足交流电能的需求。
集中式逆变器的基本原理是通过将输入直流电源连接到一个中心逆变器,在逆变器中进行电能转换,并将交流电能输出到负载中。
相比于其他逆变器拓扑结构,集中式逆变器具有许多优势,例如结构简单、成本低、效率高等。
集中式逆变器的拓扑结构通常包括输入滤波器、整流器、升压器、逆变器和输出滤波器等组成部分。
输入滤波器用于滤除输入电源中的噪声和谐波,保证电源对逆变器的输入稳定和可靠。
整流器将输入直流电能转换为稳定的直流电压,供给升压器使用。
升压器提供所需的高电压或变压比,以保证逆变器的输出电压水平。
逆变器将直流电能转换成稳定的交流电能,并将其输出到负载中。
输出滤波器用于滤除逆变器输出的谐波和噪声,保证负载对输出电能的需求。
总之,集中式逆变器是一种常见且有效的电力转换器件,其基本原理和拓扑结构的设计对于实际应用具有重要意义。
通过深入研究和理解集中式逆变器的概念和工作原理,我们可以更好地应用它们于各种电力系统中,提高电能转换的效率和可靠性。
1.2文章结构文章结构部分的内容可以是对整篇文章的组织框架进行介绍和概述,以帮助读者更好地理解文章的内容和结构。
下面是一个可能的编写内容示例:1.2 文章结构本文将围绕集中式逆变器的拓扑结构展开详细的讨论。
在引言部分中,我们将概述集中式逆变器的基本原理和其在能量转换中的作用。
这将为读者提供整体的背景和了解。
在正文部分,我们将首先介绍集中式逆变器的基本原理,包括其工作原理、优点和应用领域。
然后,我们将详细讨论集中式逆变器的拓扑结构,包括常见的拓扑类型和其特点。
通过对不同拓扑结构的比较和分析,我们将深入探讨各种拓扑的优缺点,以及其在特定应用中的适用性。
光伏逆变器拓扑结构优化设计
光伏逆变器拓扑结构优化设计光伏逆变器是将太阳能光伏电池板输出的直流电转换为交流电的电力转换装置。
它的主要功能是调整输出电压和频率,使得光伏电池板输出的直流电能够适应不同电网的要求。
逆变器的拓扑结构对于其性能和效率有着重要的影响。
在本文中,我们将讨论光伏逆变器的拓扑结构优化设计。
首先,我们需要了解光伏逆变器的基本拓扑结构。
光伏逆变器的基本结构包括两级逆变器、三级逆变器、多电平逆变器等。
其中,两级逆变器是最常见的拓扑结构,它由两个逆变器级联组成,包括直流-直流转换器和直流-交流逆变器。
直流-直流转换器用于从光伏电池板的输出直流电中提取最大功率,将其转换为适应逆变器输入的直流电。
直流-交流逆变器将直流电转换为交流电,并将其输出到电网中。
在光伏逆变器的拓扑结构优化设计中,我们可以从以下几个方面进行考虑。
首先是逆变器的效率。
逆变器的效率直接影响到光伏发电系统的整体效益。
优化设计应该尽可能提高逆变器的效率,减少能量损耗。
一种常见的优化方法是采用多电平逆变器拓扑结构,通过增加电平数目来降低逆变器的开关频率,从而减小开关损耗和谐波损耗。
其次是逆变器的可靠性。
光伏逆变器作为太阳能发电系统的核心部件,其可靠性对于系统的长期运行至关重要。
优化设计应该考虑逆变器的故障诊断和容错能力,以及对于不同工作条件的适应性。
一种常见的优化方法是采用模块化设计,将逆变器划分为多个模块,每个模块具有自主控制和故障检测功能,以提高系统的可靠性和容错能力。
第三是逆变器的体积和重量。
光伏逆变器通常安装在户外,优化设计应该尽量减小逆变器的体积和重量,方便安装和维护。
一种常见的优化方法是采用高频变压器和磁性材料,以减小变压器的体积和重量。
此外,采用新型的散热材料和散热结构也可以有效减小逆变器的体积。
最后是逆变器的成本。
光伏逆变器的成本包括材料、制造、测试和运输等多个方面。
优化设计应该尽量降低逆变器的成本,提高经济性。
一个常见的优化方法是采用新型的功率半导体器件和集成电路,以减小材料和制造成本。
第五章光伏并网逆变器的电路拓扑讲解
第五章光伏并网逆变器的电路拓扑5.1 光伏并网逆变器的分类5.2 隔离型光伏并网逆变器5.3 非隔离型光伏并网逆变器5.4 多支路光伏并网逆变器5.5 微型光伏并网逆变器第五章光伏并网逆变器的电路拓扑光伏并网逆变器将太阳能电池输出的直流电转换成符合电网要求的交流电再输入电网,是光伏并网系统能量转换与控制的核心。
光伏并网逆变器的性能影响和决定整个光伏系统是否能够稳定、安全、可靠、高效地运行,同时也是影响整个系统使用寿命的主要因素。
本章将对光伏并网逆变器进行分类讨论。
5.1 光伏并网逆变器的分类根据光伏并网逆变器与电网的连接有无隔离变压器,可将光伏并网逆变器分为隔离型和非隔离型两大类,详细分类如图5-1所示。
图5-1 光伏并网逆变器分类5.1 光伏并网逆变器的分类5.1.1 隔离型光伏并网逆变器结构工频隔离型特点:主电路和控制电路相对简单,光伏阵列直流输入电压的匹配范围较大,可有效防止电网电流通过桥臂与人体在直流侧形成回路造成的人体伤害事故,保证系统不会向电网注入直流分量,有效的防止了配电变压器的饱和。
但体积大、质量重,增加了系统损耗及成本。
5.1 光伏并网逆变器的分类5.1.1 隔离型光伏并网逆变器结构高频隔离型特点:相比工频隔离型,具有较小的体积和质量,克服了工频隔离型的主要缺点。
图5-3 高频隔离型光伏并网逆变器结构a) DC/DC变换型 b) 周波变换型5.1 光伏并网逆变器的分类5.1.2 非隔离型光伏并网逆变器结构与隔离型相比,省去了笨重的隔离变压器,体统结构简单、质量变轻、成本降低并提高了效率,将成为今后主要的光伏并网逆变器结构。
包括单级非隔离型和多级非隔离型。
图5-4 非隔离型光伏并网逆变器结构5.1 光伏并网逆变器的分类5.1.2 非隔离型光伏并网逆变器结构非隔离型的光伏并网系统中,光伏阵列与电网电压直接连接。
大面积的光伏阵列与大地之间存在较大的分布电容,因此会产生光伏阵列对地的共模漏电流。
光伏微型逆变器拓扑
光伏微型逆变器拓扑光伏微型逆变器是一种用于将光伏电池板产生的直流电转换为交流电的设备。
它在光伏发电系统中起到了至关重要的作用。
光伏微型逆变器的拓扑结构对其性能和效率有着直接影响。
光伏微型逆变器的拓扑结构多种多样,常见的有单相桥式拓扑、全桥式拓扑和半桥式拓扑等。
不同的拓扑结构适用于不同的应用场景和功率范围。
单相桥式拓扑是最简单、最常见的光伏微型逆变器拓扑结构。
它由四个功率开关器件和一个输出变压器组成。
在这种拓扑结构中,光伏电池板产生的直流电经过滤波电容器后,经过桥式整流电路得到整流的直流电。
然后,通过PWM控制技术,将直流电转换为交流电,并通过输出变压器将输出电压调整到合适的值。
全桥式拓扑是一种更复杂的光伏微型逆变器拓扑结构,它由四个功率开关器件和一个输出变压器组成。
这种拓扑结构相较于单相桥式拓扑具有更高的功率密度和更好的电网适应性。
全桥式拓扑在光伏微型逆变器中的应用较为广泛,特别适用于高功率和高效率的光伏发电系统。
半桥式拓扑是一种介于单相桥式拓扑和全桥式拓扑之间的结构。
它由两个功率开关器件和一个输出变压器组成。
半桥式拓扑在功率密度和电网适应性方面介于单相桥式拓扑和全桥式拓扑之间。
在一些中小功率的光伏微型逆变器中,半桥式拓扑是一种较为常见的选择。
除了以上提到的常见拓扑结构外,还有其他一些特殊的拓扑结构,如多电平逆变器、多端子逆变器等。
这些拓扑结构通常应用于大功率光伏发电系统或特殊的应用场景中。
光伏微型逆变器的拓扑结构的选择要根据具体的应用需求和性能要求来确定。
在选择拓扑结构时,需要考虑光伏电池板的功率和输出电压要求、电网的电压和频率要求,以及系统的成本和可靠性等因素。
光伏微型逆变器的拓扑结构也需要考虑功率开关器件的选择和控制策略的设计。
功率开关器件的选择应考虑其性能、效率和可靠性等因素。
控制策略的设计应考虑到输出电压的稳定性、功率因数的改善和谐波的抑制等要求。
光伏微型逆变器的拓扑结构是影响其性能和效率的关键因素之一。
光伏储能逆变器应用拓扑
光伏储能逆变器应用拓扑1 光伏储能逆变器的作用随着人们对环境保护的认识不断提高,新能源的应用越来越广泛。
而光伏储能逆变器作为一种新型逆变器,是将太阳能光伏发电系统和储能电池系统结合起来,能够将直流电转换为交流电,从而提高光伏发电系统的利用率。
在应用中,光伏储能逆变器可以实现对储能系统电池的充电和放电控制,同时还可以将多个光伏发电系统连接在一起,实现并网发电或独立发电。
2 光伏储能逆变器的应用拓扑光伏储能逆变器的应用拓扑主要有以下几种:##2.1 单向逆变器拓扑单向逆变器拓扑结构简单,适用于小型光伏发电系统。
该拓扑结构只能实现单向充电或单向放电,即只能将太阳能电池板向储能电池组充电,或者将储能电池组向负载放电。
但是,由于其结构简单,成本较低,因此在小型光伏发电系统中应用较为广泛。
##2.2 双向逆变器拓扑双向逆变器拓扑结构相对复杂,但是具有双向充放电功能,即可实现将太阳能电池板向储能电池组充电,同时还可以将储能电池组向负载放电,从而实现能量的双向流动。
该拓扑结构适用于中小型光伏发电系统,并且可以通过多个光伏发电系统的并联,实现更大规模的发电。
##2.3 多能源逆变器拓扑多能源逆变器拓扑结构更加复杂,适用于多能源混合发电系统。
该拓扑结构可以将太阳能、风能、水能等多种能源进行混合利用,从而提高能源的利用率。
该拓扑结构在大型光伏发电系统和混合发电系统中应用较为广泛。
3 总结光伏储能逆变器作为一种新型逆变器,可以实现将直流电转换为交流电,从而提高光伏发电系统的利用率。
在应用中,光伏储能逆变器的应用拓扑有单向逆变器、双向逆变器和多能源逆变器等。
不同的应用拓扑适用于不同规模的光伏发电系统,可以根据实际需求进行选择。
三相光伏并网逆变器拓扑结构及其控制方案
C2
V7
PV
V4 V2 V6
C
三相光伏并网逆变器基本拓扑
4
三相并网光伏逆变器基本拓扑及其控制方案
1 最大功率点跟踪 (Maximum Power Point Tracking,MPPT)
P/W P/W
100
光照增强
75
50
25
0
5
10 15 20 25
30U/V
光照对U-P曲线的影响
100 75
V1
V5
V9
C1 VD1
V2 VD3
V6 VD5
V10L
L
C3 V13
PV
VD2
VD4
VD6
C2
V3
Байду номын сангаас
V7
V11
C
V4
V8
V12
二极管钳位式(Neutral Point Clamping,NPC)
9
H桥级联式逆变器拓扑结构及其控制方案
一种H桥级联式三相光伏并网逆变器
10
H桥级联式逆变器拓扑结构及其控制方案
50
温度升高
25
0
5 10 15 20 25 30
温度对U-P曲线的影响
5
三相并网光伏逆变器基本拓扑及其控制方案
6
三相并网光伏逆变器基本拓扑及其控制方案
P/W P/W
50
40
30
20 P1
10
P0
0
5
Pn
P3
P2
P4
10 15 25
30 35
U/V
50
40
P0
30
Pn
P2
P1
光伏逆变器拓扑结构及设计思路
光伏逆变器拓扑结构及设计思路光伏逆变器是一种将直流电转换为交流电的装置,在光伏发电系统中起到重要作用。
它的主要功能是将光伏电池板产生的直流电转换为交流电,以满足电网的要求。
同时,逆变器还需要具备稳定可靠、高效节能等特点。
本文将介绍光伏逆变器的拓扑结构及设计思路。
光伏逆变器的拓扑结构主要有单相桥式、三相桥式、多电平桥式、谐振桥式等。
其中,单相桥式是应用最广泛的一种拓扑结构,主要由四个IGBT(绝缘栅双极性晶体管)和四个二极管组成,用于将直流电转换为交流电。
相位控制是单相桥式逆变器的主要控制策略,它可以通过改变IGBT的通断来控制输出交流电的相位和频率。
三相桥式逆变器类似于单相桥式逆变器,但是它由六个IGBT和六个二极管组成,可以实现三相交流电的输出。
多电平桥式逆变器可以通过增加IGBT和二极管的数量,来实现更精确的逆变控制,从而提高逆变器的输出质量。
谐振桥式逆变器是一种利用谐振原理工作的逆变器,具有高效、低开关损耗等优点。
在光伏逆变器的设计过程中,需要考虑以下几个方面。
首先是功率选择,即根据光伏电池板的额定功率和输出功率需求,确定逆变器的额定功率。
其次是控制策略选择,即确定逆变器的工作方式和控制算法,可以选择PWM控制或者谐振控制等方式。
同时,还要考虑逆变器的效率、稳定性等性能指标,尽量提高逆变器的工作效率,并通过合理的电路设计和控制策略来提高逆变器的稳定性。
最后是滤波和保护电路的设计,逆变器输出的交流电需要进行滤波处理,以去除谐波和杂波成分,并且需要设计相应的保护电路,以提高逆变器的安全性和可靠性。
总之,光伏逆变器的拓扑结构和设计思路需要根据具体的应用需求进行选择和确定。
在设计过程中,需要考虑功率选择、控制策略选择、效率和稳定性等方面的问题,并通过合理的电路设计和控制策略来提高逆变器的性能和可靠性。
光伏逆变器的发展将进一步推动光伏发电技术的应用,为可持续能源的开发和利用做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新高效率光伏最新高效率光伏逆变器拓扑结构及功率器件介绍逆变器拓扑结构及功率器件介绍作者:Michael Frisch Erno Temesi翻译:韩 军 陈道杰摘要摘要::效率正成为电力电子装置设计中越来越重要的参数。
在某些应用中,效率甚至成为行业发展的驱动力,典型的如太阳能发电行业。
因为对于光伏发电行业,效率的提升可以直接带来经济效益。
本文详细介绍了最新的能够提供高效率的光伏逆变器拓扑结构和功率器件,包括单相和三相逆变器,功率因数补偿对策,高效电流双向流动逆变器等。
高效光伏逆变器设计 – 背景和现状对于传统电力电子装置的设计,我们通常是通过每千瓦多少钱来衡量其性价比的。
但是对于光伏逆变器的设计而言,对最大功率的追求仅仅是处于第二位的,欧洲效率的最大化才是最重要的。
因为对于光伏逆变器而言,不仅最大输出功率的增加可以转化为经济效益,欧洲效率的提高同样可以,而且更加明显[1]。
欧洲效率的定义不同于我们通常所说的平均效率或者最高效率。
它充分考虑了太阳光强度的变化,更加准确地描述了光伏逆变器的性能。
欧洲效率是由不同负载情况下的效率按照不同比重累加得到的,其中半载的效率占其最大组成部分(图1)。
图 1: 欧洲效率计算比重因此为了提高光伏逆变器的欧洲效率,仅仅降低额定负载时的损耗是不够的,必须同时提高不同负载情况下的效率。
欧效的改善所带来的经济效益也很容易通过计算得到。
例如以一个额定功率3kw 的光伏逆变器为例,根据现在市场上的成本估算,光伏发电每千瓦安装成本大约需要4000欧元[2],那也就意味着光伏逆变器每提高欧效1%就可以节省120欧元。
提高光伏逆变器的欧洲效率带来的经济效益是显而易见的,“不惜成本”追求更高的欧效也成为现在光伏逆变器发展的趋势。
功率器功率器件的选型件的选型在通用逆变器的设计中,综合考虑性价比因素,IGBT 是最多被使用的器件。
因为IGBT 导通压降的非线性特性使得IGBT 的导通压降并不会随着电流的增加而显著增加。
从而保证了逆变器在最大负载情况下,仍然可以保持较低的损耗和较高的效率。
但是对于光伏逆变器而言,IGBT 的这个特性反而成为了缺点。
因为欧洲效率主要和逆变器不同轻载情况下效率的有关。
在轻载时,IGBT 的导通压降并不会显著下降,这反而降低了逆变器的欧洲效率。
相反,MOSFET 的导通压降是线性的,在轻载情况下具有更低的导通压降,而且考虑到它非常卓越的动态特性和高频工作能力,MOSFET 成为了光伏逆变器的首选。
另外考虑到提高欧效后的巨大经济回报,最新的比较昂贵的器件,如SiC 二极管,也正在越来越多的被应用在光伏逆变器的设计中,SiC 肖特基二极管可以显著降低开关管的导通损耗,降低电磁干扰。
光伏逆变器的设计目标对于无变压器式光伏逆变器,它的主要设计目标为:对太阳能电池输入电压进行最大功率点跟踪,从而得到最大的输入功率 追求光伏逆变器最大欧效低的电磁干扰为了得到最大输入功率,电路必须具备根据不同太阳光条件自动调节输入电压的功能,最大功率点一般在开环电压的70%左右,当然这和具体使用的光伏电池的特性也有关。
典型的电路是通过一个boost 电路来实现。
然后再通过逆变器把直流电逆变为可并网的正弦交流电。
单相无变压器式光伏逆变器拓扑单相无变压器式光伏逆变器拓扑介绍介绍拓扑结构的选择和光伏逆变器额定输出功率有关。
对于4kw 以下的光伏逆变器,通常选用直流母线不超过500V ,单相输出的拓扑结构。
图 2: 单相无变压器式光伏逆变器功能图这个功能(图2)可以通过以下的原理图实现(图3)。
图 3: 单相无变压器式光伏逆变器原理图Boost 电路通过对输入电压的调整实现最大功率点跟踪。
H 桥逆变器把直流电逆变为正弦交流电注入电网。
上半桥的IGBT 作为极性控制器,工作在50HZ ,从而降低总损耗和逆变器的输出电磁干扰。
下半桥的IGBT或者MOSFET进行PWM高频切换,为了尽量减小Boost电感和输出滤波器的大小,切换频率要求尽量高一些,如16KHz。
我们推荐使用功率模块来设计光伏逆变器,因为把图3拓扑结构上的所有器件集成到一个模块里面可以提供以下优点:安装简单,可靠研发设计周期短,可以更快地把产品推向市场更好的电气性能而对于模块的设计,我们必须保证:直流母线环路低电感设计为了实现这个目标,我们必须同时降低模块内部和外部的寄生电感。
为了降低模块内部的寄生电感,必须优化模块内部的绑定线,管脚布置以及内部走线。
为了降低模块外部寄生电感,我们必须保证在满足安全间距的前提下,Boost电路和逆变桥电路的直流母线正负两端尽量靠近。
给快速开关管配置专有的驱动管脚开关管在开关过程中,绑定线的寄生电感会造成驱动电压的降低。
从而导致开关损耗的增加,甚至开关波形的震荡。
在模块内部,通过给每个开关管配置专有的驱动管脚(直接从芯片上引出),这样就可以保证在驱动环路中不会有大电流流过,从而保证驱动回路的稳定可靠。
这种解决方案目前只有功率模块可以实现,单管IGBT还做不到。
图4显示了Vincotech公司最新推出的光伏逆变器专用模块flowSOL-BI (P896-E01),它集成了上面所说的优点:图4: flowSOL-BI – boost电路和全桥逆变电路技术参数:Boost电路由MOSFET(600V/45mΩ)和SiC二极管组成旁路二极管主要是当输入超过额定负载时,旁路Boost电路,从而改善逆变器整体效率H桥电路上半桥由75A/600V IGBT和SiC二极管组成,下半桥由MOSFET(600V/45mΩ)组成集成了温度检测电阻单相无变压器光伏逆变器专用模块flowSOL0-BI的效率计算这里我们主要考虑功率半导体的损耗,其他的无源器件,如Boost电感,输出滤波电感的损耗不计算在内。
基于这个电路的相关参数,仿真结果如下:条件:Pin=2kWf PWM = 16kHzV PV-nominal = 300VV DC = 400V图 5: boost 电路效率仿真结果 EE=99.6%图 6: flowSOL-BI 逆变电路效率仿真结果 - EE=99.2%标准IGBT 全桥 – EE=97.2% (虚线)根据仿真结果我们可以看到,模块的效率几乎不随负载的降低而下降。
模块总的欧洲效率(Boost+Inverter)可以达到98.8%。
即使加上无源器件的损耗,总的光伏逆变器的效率仍然可以达到98%。
图6虚线显示了使用常规功率器件,逆变器的效率变化。
可以明显看到,在低负载时,逆变器效率下降很快。
三相无变压器光伏逆变器拓扑结构介绍大功率光伏逆变器需要使用更多的光伏电池组和三相逆变输出(图7),最大直流母线电压会达到1000V 。
图7: 三相无变压器式光伏逆变器功能图这里标准的应用是使用三相全桥电路。
考虑到直流母线电压会达到1000V,那开关器件就必须使用1200V的。
而我们知道,1200V功率器件的开关速度会比600V器件慢很多,这就会增加损耗,影响效率。
对于这种应用,一个比较好的替代方案是使用中心点钳位(NPC=neutral point clamped)的拓扑结构(图8)。
这样就可以使用600V的器件取代1200V的器件。
图8: 三相无变压器NPC光伏逆变器原理图为了尽量降低回路中的寄生电感,最好是把对称的双Boost电路和NPC逆变桥各自集成在一个模块里。
双Boost模块技术参数(图9):双Boost电路都是由MOSFET(600V/45 mΩ)和SiC二极管组成旁路二极管主要是当输入超过额定负载时,旁路Boost电路,从而改善逆变器整体效率模块内部集成温度检测电阻图9: flowSOL-NPB – 对称双boost电路NPC逆变桥模块的技术参数(图10):中间换向环节由75A/600V的IGBT和快恢复二极管组成上下高频切换环节由MOSFET(600V/45 mΩ)组成中心点钳位二极管由SiC二极管组成模块内部集成温度检测电阻图10: flowSOL-NPI – NPC逆变桥对于这种拓扑结构,关于模块的设计要求基本类似于前文提到的单相逆变模块,唯一需要额外注意的是,无论是双Boost 电路还是NPC 逆变桥,都必须保证DC+,DC-和中心点之间的低电感设计。
有了这两个模块,就很容易设计更高功率输出光伏逆变器。
例如使用两个双Boost 电路并联和三相NPC 逆变桥就可以得到一个高效率的10kW 的光伏逆变器。
而且这两个模块的管脚设计充分考虑了并联的需求,并联使用非常方便。
图 11: 双boost 模块并联和三相NPC 逆变输出模块布局图针对1000V 直流母线电压的光伏逆变器,NPC 拓扑结构逆变器是目前市场上效率最高的。
图12比较了NPC 模块(MOSFET+IGBT)和使用1200V 的IGBT 半桥模块的效率。
图 12: NPC 逆变桥输出效率(实线)和半桥逆变效率(虚线)比较根据仿真结果,NPC 逆变器的欧效可以达到99.2%,而后者的效率只有96.4%.。
NPC 拓扑结构的优势是显而易见的下一代光一代光伏逆变器拓扑伏逆变器拓扑伏逆变器拓扑的的设计思路设计思路介绍介绍目前混合型H 桥(MOSFET +IGBT )拓扑已经取得了较高的效率等级。
而下一代的光伏逆变器,将会把主要精力集中在以下性能的改善:效率的进一步提高无功功率补偿高效的双向变换模式单相单相光伏光伏光伏逆变器拓扑结构逆变器拓扑结构对于单相光伏逆变器,首先讨论如何进一步提高混合型H桥拓扑的效率(如图13)。
图13: 光伏逆变器的发展-混合型在图13中,上桥臂IGBT的开关频率一般设定为电网频率(例如50Hz),而下桥臂的MOSFET则工作在较高的开关频率下,例如16kHz,来实现输出正弦波。
仿真显示,这种逆变器拓扑在2kW额定功率输出时,效率可以达到99.2%。
由于MOSFET内置二极管的速度较慢,因此MOSFET不能被用在上桥臂。
由于上桥臂的IGBT工作在50Hz的开关频率下,实际上并不需要对该支路进行滤波。
因此对电路拓扑进行优化,可以得到图14所示的发射极开路型拓扑。
这种拓扑的优点是只有有高频电流经过的支路才有滤波电感,从而减小了输出滤波电路的损耗。
图14 改进的无变压器上桥臂发射极开路型拓扑目前Vincotech公司已经有标准的发射极开路型IGBT模块产品,型号是flowSOL0-BI open E (P896-E02),如图15所示:图2: flowSOL0-BI-open E (P896-E02)技术参数:升压电路采用MOSFET(600V/45 mΩ)和SiC二极管组成旁路二极管主要是当输入超过额定负载时,旁路Boost电路,从而改善逆变器整体效率H桥的上桥臂采用IGBT(600V/75A)和SiC二极管,下桥臂采用MOSFET(600V/45 mΩ)模块内部集成温度检测电阻下面再来分析一下图14所示的发射极开路型拓扑。