第一章 概率论的基本概念作业

合集下载

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答
2
{
2
}
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。 解 此题关键词: “与, ” “而” , “都”表示事件的“交” ; “至少”表示事件的“并” ; “不多 于”表示“交”和“并”的联合运算。 (1) ABC 。
概率论与数理统计作业习题解答(浙大第四版)
第一章 概率的基本概念 习题解析 第 1、2 题 随机试验、 随机试验、样本空间、 样本空间、随机事件 ------------------------------------------------------------------------------1.写出下列随机试验的样本空间: (1)记录一个小班一次数学考试的平均分数(设以百分制记分) 。 (2)生产产品直到有 10 件正品为止,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的记上“正品” ,不合格的记上“次品” ,如连续 查出 2 个次品就停止检查,或检查 4 个产品就停止检查,记录检查的结果。 (4)在单位圆内任意取一点,记录它的坐标。 解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n 个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 样本空间为 S=

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。

在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。

2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。

–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。

–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。

1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。

–基本事件:对于只包含一个样本点的事件,称为基本事件。

–复合事件:由一个或多个基本事件组成的事件称为复合事件。

2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。

随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。

–连续型随机变量:其取值在某个区间内的任意一个值。

1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。

如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。

–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。

2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。

–交:事件A和事件B同时发生,记作A∩B。

–差:事件A发生而事件B不发生,记作A-B。

第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。

–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。

2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。

概率论与数理统计练习册答案

概率论与数理统计练习册答案

概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。

概率论与数理统计习题集-(1)

概率论与数理统计习题集-(1)

概率论与数理统计习题集学号_______________姓名_______________班级_______________计算机学院第一章 概率论的基本概念一、填空题1,在一副扑克牌(52张)中任取4张,则4张牌花色全不相同的概率为_________。

2,设A,B,C,D 是四个事件,则四个事件至少发生一个可表示为_______________;四个事件恰好发生两个可表示为_______________。

3,已知5把钥匙中有一把能打开房门,因开门者忘记是哪把能打开门,逐次任取一把试开,则前三次能打开门的概率为 _________。

4,10件产品中有3件次品,从中随机抽取2件,至少抽到一件次品的概率是_________。

5,设两个随机事件A ,B 互不相容,且4.0)(=A P ,3.0)(=B P ,则=)(B A P _____。

二、选择题1,某公司电话号码有五位,若第一位数字必须是5,其余各位可以是0到9中的任意一个,则由完全不同数字组成的电话号码的个数是( )。

A ,126B ,1260C ,3024D ,50402,若B A ⊃,C A ⊃,9.0)(=A P ,8.0)(=⋃C B P ,则=-)(BC A P ( )。

A ,0.4B ,0.6C ,0.8D ,0.73,在书架上任意放置10本不同的书,其中指定的三本书放在一起的概率为( )。

A ,1/15B ,3/15C ,4/5D ,3/54,若5.0)(=A P ,4.0)(=B P ,3.0)(=-B A P ,则=⋃)(B A P ( )。

A ,0.6B ,0.7C ,0.8D ,0.55,设为A ,B 任意两个随机事件,且B A ⊂,0)(>B P ,则下列选项必然成立的是( )。

A ,)|()(B A P A P < B ,)|()(B A P A P ≤C ,)|()(B A P A P >D ,)|()(B A P A P ≥三、计算题1,10个零件中有3个次品,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得合格品的概率。

概率论讲义_带作业

概率论讲义_带作业

例 已知某类产品的次品率为0. 2 ,现从一大批这类产品中随机抽查2 0 件. 问恰好 有 件次品的概率是多少?
3) 泊松分布
概率论的基本概念 样本空间
样本点
事件
事件的概率
练习 1. 抛一枚骰子,观察向上一面的点数;事件表示“出现偶数点”
2. 对目标进行射击,击中后便停止射击,观察射击的次数;事件表示“射击次数不超 过5 次”
事件之间的关系与运算
事件语言
集合语言
样本空间
事件
的对立事件
事件 或者
分布律:如果记离散型随机变量 所有可能的取值为
值的概率,即事件
的概率为
, 取各个可能
上式称为离散型随机变量 的分布律. 分布律也可以直观的表示成下列表格:
根据概率的性质,分布律中的 应该满足下列条件: 1. 2. 例 某系统有两台机器独立运转. 设第一台与第二台机器发生故障的概率分别是 0. 1 ,0. 2. 以 表示系统中发生故障的机器数,求 的分布律.
随机变量的例子
掷一枚色子,用 记点数;
掷三枚色子,用 记点数之和;
掷一枚硬币,记
为“出现正面”,
为“出现反面”;
变量的取值是随机的,依赖于随机试验的结果
用随机变量来表示事件
设 为一个实数集合,则用
表示一个事件 ,即
例如,某射手射击某个目标,击中计1 分,未中计0 分,则计分 表示一个随机
变量,且“击中”这个事件可以表示为
第二章 随机变量及其分布
Hale Waihona Puke 第六讲 随机变量 离散随机变量
概率论的另一个重要概念是随机变量. 随机变量的引入, 使概率论的研究由个别的 随机事件扩大为随机变量所表征的随机现象的研究.

大学 概率复习题

大学 概率复习题

第一章 概率论的基本概念 1. 若事件B A ,满足21)|(,31)|(,41)(===B A P A B P A P ,则)(B A P = .2. 若事件B A ,满足7.0)(,4.0)(==B A P A P ,且5.0)|(=B A P ,则)|(A B P = .3. 设有两个相互独立事件A 与B 发生的概率分别为1p 和2p ,则两个事件恰好有一个发生的概率为4.()0.3P A =,()0.5P B =,若A 与B 相互独立,则()P AB = _.5.设B A ,为两个互不相容的事件,且()()0,0>>B P A P ,则 正确. A . ()1=AB P ; B . ()0=B A P ; C . B A =; D . Φ=-B A .6. 设有10件产品,其中有3件次品,从中任取3件,则3件中有次品的概率为( ) A.1201 B.247 C.2417 D.40217、盒中放有红、白两种球各若干个,从中任取3个球,设事件A=“3个中至少有1个白球”,事件B=“3个中恰好有一个白球”,则事件B -A =A .“至少2个白球”B .“恰好2个白球”C .“至少3个白球”D .“无白球”8. A ,B 为两个事件,若B A ⊂,则下列关系式正确的是 . A . )()(B P A P >; B . ()()P A P B ≤; C . 1)()(=+B P A P ; D . ()()P B P A >.9. 设甲袋中装有n只白球,m只红球,乙袋中装有N只白球,M只红球,今从甲袋中任取一个球放入乙袋中,再从乙袋中任意取出一只球.求:(1)从乙袋中取到白球的概率是多少?(2)若从乙袋中取到的是白球,则先前从甲袋中取到白球的概率是多少?10. 发报台分别以概率0.6和0.4发出信号“0”和“1”.由于通讯系统受到干扰,当发出信号“0”时,收报台未必收到信号“0”,而是以概率0.8和0.2收到信号“0”和“1”;同样,当发出信号“1”时,收报台分别以概率0.9和0.1收到信号“1”和“0”.求:(1)收报台收到“0”的概率;(2)当收报台收到信号“0”的时候,发报台确是发出信号“0”的概率.11. 某射击小组有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人。

概率论的基本概念

概率论的基本概念
⑴.两件都是正品: ;
⑵.两件都是次品: ;
⑶.一件是正品、另一件是次品: ;
⑷.第二件是次品: 。
6、高射炮向敌机发射三枚炮弹,设每发炮弹击中敌机的概率为 (每发击中与否相互独立),而敌机中一弹时坠落的概率为 ,中两弹时坠落的概率为 ,中三弹时坠落的概率为 。
⑴.求敌机被击落的概率;
⑵.若敌机被击落,求它只中一弹的概率。
解:用 分别表示电话是打给 的, 分别表示 因公外出,则
⑴. ;
⑵. ;
⑶. ;
⑷. ;
⑸. 。
解:用 表示敌机中 弹, ,用 表示敌机被击落,则
, ,故


7、已知男子中有 是色盲患者,女子中有 是色盲患者,现从男女人数相等的人群中随机地选一人,问此人是色盲患者的概率为多少若已知此人是色盲患者,求此人是男性的概率。
解:用 表示所选人为男性, 表示所选人为色盲患者,则
, , ,故


8、甲、乙、丙三人独立地去破译密码,已知甲、乙、丙各自能译出密码的概率分别为 ,问三人中至少有一人能将此密码译出的概率为多少
概率论的基本概念
第一章概率论的基本概念
【内容提要】
一、随机事件及其运算关系
1.随机现象在一定条件下,可能出现不同结果(不可预先确知的)的现象。
2.随机试验在一定条件下,对随机现象进行观测或观察的过程。随机试验具有如下特点:
⑴.可以在相同条件下重复进行;
⑵.每次试验的结果不止一个,并且能事先明确试验的所有可能结果;
⑴.非负性: ,有 ;
⑵.规范性: ;
⑶.可列可加性:对任意可列无穷多个两两互斥的事件 ,有 。
则称 为事件 的概率。事件的概率有如下性质:

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

概率统计习题带答案

概率统计习题带答案

概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。

3.试验E 为掷2颗骰子观察出现的点数。

每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。

设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。

试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。

问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。

今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。

试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。

试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。

试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。

求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。

概率统计第一章答案

概率统计第一章答案

概率论与数理统计作业班级 姓名 学号 任课教师第一章 概率论的基本概念教学要求:一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算.二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式.三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法.重点:事件的表示与事件的独立性;概率的性质与计算.难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理解与应用;独立性的应用.练习一 随机试验、样本空间、随机事件1.写出下列随机事件的样本空间(1)同时掷两颗骰子,记录两颗骰子点数之和;(2)生产产品直到有5件正品为止,记录生产产品的总件数;(3)在单位圆内任意取一点,记录它的坐标.解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12}; (2){=Ω5;6;7;…};(3)(){}1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件:(1)A 发生,B 与C 不发生,记为 C B A ;(2)C B A ,,至少有一个发生,记为C B A ;(3) C B A ,,中只有一个发生,记为C B A C B A C B A ;(4)C B A ,,中不多于两个发生,记为ABC .3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑球},,2,1=i 叙述下列事件的内涵:(1)21A A ={}次都取得黑球次、第第21.(2)21A A ={}次取得黑球次或地第21.(3)21A A ={}次都取得白球次、第第21 .(4)21A A ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21.4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件.解:321A A A B =练习二 频率与概率、等可能概型(古典概率)1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 163)(=AC P , 求事件A 、B 、C 都不发生的概率.解:由于 ,AB ABC ⊂ 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=169163414141=-++= 所以()().16716911=-=-=C B A P C B A P 2.设,)(,)(,)(r B A P q B P p A P === 求B A P ().解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ⊂则()()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=所以()()()().q r r q p p AB P A P B A P -=-+-=-=3.已知在8只晶体管中有2只次品,在其中任取三次,取后不放回,求下列事件的概率:(1)三只都是正品;(2)两只是正品,一只是次品.解:(1)设=A {任取三次三只都是正品},则基本事件总数5638==C n ,A 包含基本事件数2036==C m ,于是 ()1455620==A P . (2)设=B {任取三次两只是正品,一只是次品},则基本事件总数5638==C n ,B 包含基本事件数,301226==C C m 于是().28155630==B P 4.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码,(1)求最小号码为6的概率;(2)求最大号码为6的概率.解:(1)设=A {最小号码为6},则基本事件总数,120310==C n A 包含基本事件数,624==C m 于是().2011206==A P (2)设=B {最大号码为6},则基本事件总数,120310==C n B 包含基本事件数,1025==C m 于是().12112010==B P 5.一盒中有2个黑球1个白球,现从中依次取球,每次取一个,设i A ={第i 次取到白球},3,2,1=i . 求)(i A P , 3,2,1=i .解: ()311=A P ; ()=2A P 312312=⨯⨯, ()311231123=⨯⨯⨯⨯=A P . 6.掷两颗均匀的骰子,问点数之和等于7与等于8的概率哪个大?解:样本空间基本事件总数,3666=⨯=n 设=1A {点数之和等于7},=2A {点数之和等于8},则=1A {()()()()()()3,4;4,3;2,5;5,2;1,6;6,1},1A 包含基本事件数等于6 ;=2A {()()()()()3,5;5,3;4,4;2,6;6,2},2A 包含基本事件数等于5 ;于是 ()613661==A P ; ()3652=A P .所以()()21A P A P > . 7.一批产品共100件,对其抽样检查,整批产品不合格的条件是:在被检查的4件产品中至少有1件是废品.如果在该批产品有5﹪是废品,问该批产品被拒收的概率.解:设=A {被检查的4件产品至少有1件废品},则()812.05100495==C C A P ;所以 ()()188.01=-=A P A P .8.将3个球随机放入4个杯子中,求杯子中球数的最大值为2的概率.解:基本事件总数34444=⨯⨯=n ,设=A {杯子中球数最大值为2},则A 包含的基本事件数36131423==C C C m (3个球任取两个,然后4个杯子任取1个放入,再对1个球在3个杯子中任取一个放入),于是()3436=A P . 练习三 条件概率1.甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名.求在碰到甲班同学时,正好碰到1名女同学的概率.解:设=A {碰到甲班同学},=B {碰到乙班同学},则();7030=A P (),7015=AB P 于是 ()()()5.0301570307015====A P AB P A B P . 2.箱子里有10个白球,5个黄球,10个黑球.从中随机地抽取1个.已知它不是黑球,求它是黄球的概率.解:设=A {任取一个不是黑球},=B {任取一个是黄球},则(),532515==A P ();51255==B P 又A B ⊂ ,则()()B P AB P = ,于是()()()315351===A P AB P A B P3.某人有5把钥匙,其中2把能打开房门.从中随机地取1把试开房门,求第3次才打开房门的概率.解:设=i A {第i 次能打开门} ,;3,2,1=i 则 =321A A A {第3次才打开门},于是由乘法公式有53454.假设某地区位于甲、乙二河流的汇合处,当任一河流泛滥时,该地区就遭受水灾.设某时期内甲河流泛滥的概率为0.1,乙河流泛滥的概率为0.2.当甲河流泛滥时,乙河流泛滥的概率为0.3.求(1)该时期内这个地区遭受水灾的概率;(2)当乙河泛滥时甲河流泛滥的概率.解:设=A {某时期甲河泛滥},=B =A {某时期乙河泛滥},则(),1.0=A P ()2.0=B P , ()3.0=A B P于是()()()()()()15.02.03.01.0=⨯===B P A B P A P B P AB P B A P ()()()03.015.02.0=⨯==B A P B P AB P()()()()27.003.02.01.0=-+=-+=AB P B P A P B A P5. 甲、乙两车间加工同一种产品,已知甲、乙两车间出现废品的概率分别为3﹪、2﹪,加工的产品放在一起,且已知甲车间加工的产品是乙车间加工的产品的两倍.求任取一个产品是合格品的概率.解:设=A {任取一个为甲生产的产品},=B {任取一个产品为废品},则()()()()%2%,3,31,32====A B P A B P A P A P 由全概率公式有 ()()()()()752100231100332=⨯+⨯=+=A B P A P A B P A P B P 6.设甲袋中有3个红球及1个白球.乙袋中有4个红球及2个白球.从甲袋中任取一个球(不看颜色)放到乙袋中后,再从乙袋中任取一个球,求最后取得红球的概率.解:设=A {从甲袋中任取一个球为红球},=B {最后从乙袋中任取一个球为红球},则 ()()()();74,75,41,43====A B P A B P A P A P 由全概率公式287474 7.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机的一次性抽取4只察看,若无残次品,则买下该箱玻璃杯,否则退回,试求:(1)顾客买下该箱的概率;(2)在顾客买下的一箱中,确实没有残次品的概率.解:设=i A {售货员任取一箱玻璃杯有i 个残品},2,1,0=i ,=B {顾客买下该箱玻璃杯},则()()();1.0,1.0,8.0210===A P A P A P()()();632.0,8.0,1420418242041910≈====C C A B P C C A B P A B P (1)由全概率公式得()()()()()()()943.0632.01.08.01.018.0221100=⨯+⨯+⨯≈++=A B P A P A B P A P A B P A P B P(2)由贝叶斯公式得 ()()()().848.0943.018.0000≈⨯==B P A B P A P B A P 8.已知一批产品中有95﹪是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率.解:设=A {任取一个产品为合格品},=B {任取一个产品被判为合格品},则()()()();03.0,98.002.01,05.0,95.0==-===A B P A B P A P A P于是(1) 任意抽查一个产品,它被判为合格品的概率是 ()()()()()9325.003.005.098.095.0=⨯+⨯=+=A B P A P A B P A P B P(2)一个经检查被判为合格的产品确实是合格品的概率是 ()()()().9984.09325.098.095.0≈⨯==B P A B P A P B A P练习四 事件的独立性1.设甲、乙两人独立射击同一目标,他们击中目标的概率分别为0.9和0.8,求在一次射击中目标被击中的概率.解:设 =A {甲击中目标},=B {乙击中目标}, 则=B A {目标被击中},()()8.0,9.0==B P A P ,于是()()()()()()()().98.08.0098.09.0=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P2.三人独立地去破译一个密码,他们能译出的概率分别是41,31,51,问能将此密码译出的概率是多少?解:设=i A {第i 人破译密码} ,;3,2,1=i =B {破译密码}, 则 ()()(),41,31,51321===A P A P A P 321A A A B =, 于是()()()()()()().5343325411111321321321=⨯⨯-=-=-=-=-=A P A P A P A A A P A A A P B P B P3.电路由元件A 与两个并联的元件B 及C 串联而成,且它们工作是相互独立的.设元件A 、B 、C 损坏的概率分别是0.3,0.2,0.2,求电路发生间断的概率.解:设=D {电路正常},则()C A B A C B AD ==, 则 ()()()()()()()()()()().672.08.08.07.08.07.08.07.0=⨯⨯-⨯+⨯=-+=-+=C P B P A P C P A P B P A P C B A P C A P B A P D P 所以 ()()328.0672.011=-=-=D P D P4. 设每次射击时命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?解:设至少要进行n 次独立射击,则至少击中一次的概率不小于0.9可表为: ()(),9.0011≥=-=≥k P k P n n由于,2.0=p 则,8.0=q 于是()n n k P 8.0101-==-,所以有,1.08.0≥n 即32.103.0ln 2.0ln =≥n所以至少进行11次独立射击才能使至少击中一次的概率不小于0.9.综合练习题一、选择题1.设事件B A ,,有A B ⊂,则下列式子正确的是( A ).(A ));()(A P B A P = (B) );()(A P AB P =(C) );()|(B P A B P = (D) ).()()(A P B P A B P -=-2.设A 与B 为两个相互独立的事件,0)(>A P ,0)(>B P ,则一定有=)(B A P ( B).(A ))()(B P A P + (B ))()(1B P A P -(C ))()(1B P A P + (D ))(1AB P -.3.设B A ,为两事件,且B A ⊃,则下列结论成立的是( C ).(A )A 与B 互斥;(B ) A 与B 互斥;(C)A 与B 互斥;(D) A 与 B 互斥.4.设B A ,为任意两事件,且,0)(,>⊂B P B A 则下列选择必然成立的是( C ).(A))|()(B A P A P <; (B) )|()(B A P A P >;(C) )|()(B A P A P ≤; (D) )|()(B A P A P ≥.5.假设事件A 和B 满足1)(=A B P ,则下列正确的是( D ).(A )A 是必然事件; (B )();0=A B P ; (C )A B ⊂ ; (D )B A ⊂.6.对于任意二事件B A ,( B ).(A) 若AB ≠∅,则B A ,一定独立; (B) ,AB ≠∅则B A ,有可能独立;(C) AB =∅,则B A ,一定独立; (D) AB ≠∅,则B A ,一定不独立;7.若事件A 和B 满足)}(1)}{(1{)(B P A P B A P --= ,则正确的是( D ).(A )互不相容与B A ; (B ) 互不相容与B A ;(C ) B A ⊃; (D ) 互为独立与B A .8.设当事件A 与B 同时发生时,事件C 必发生,则( B ).(A )1)()()(-+≤B P A P C P ; (B )1)()()(-+≥B P A P C P ;(C ))()(AB P C P =; (D ))()(B A P C P =.9.设B A 、是两个事件,则=-)(B A P ( C ).(A ))()(B P A P -; (B ))()()(AB P B P A P +-;(C) )()(AB P A P -; (D) )()()(AB P B P A P ++.10.设C B A ,,是三个随机事件,41)()()(===C P B P A P ,81)(=AB P ,0)()(==AC P BC P ,则C B A ,,三个随机事件中至少有一个发生的概率是( B ).(A )43; (B ) 85; (C ) 83; (D ) 81. 11.某学生做电路实验,成功的概率是0(p ﹤p ﹤1),则在3次重复实验中至少失败1次的概率是( B ).(A )3p ; (B )31p -; (C )3)1(p -; (D )3)1(p -)1()1(22p P p p -+-+.12.设A P B P A P (,7.0)(,8.0)(==|8.0)=B ,则下面结论正确的是( A ).(A )事件A 与B 互相独立; (B )事件A 与B 互不相容;(C );B A ⊂ (D )).()()(B P A P B A P +=13.下列事件中与A 互不相容的事件是( D )(A )ABC ; (B) C B C B A ; (C) )(C B A ; (D) ))()((B A B A B A .14.若事件A 、B 相互独立且互不相容,则{}=)(),(min B P A P ( C ).(A) )(A P ; (B ) )(B P ; (C ) 0; (D ) )()(B P A P -.15.,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 设则( A ).(A) )()|(A P B A P = ; (B) A B =; (C) Φ≠AB ; (D) )()()(B P A P AB P ≠.二、填空题1.已知B A ⊂,3.0)(,2.0)(==B P A P ,则)(B A P - 0 .2.设7.0)(=A P ,5.0)(=B P .则的最小值为)(AB P 0.2 .3.三次独立的试验中,成功的概率相同,已知至少成功一次的概率为2719,则每次试验成功的概率为 1/3 .4.已知()0.5,()0.8P A P B ==,且(|)0.8 P B A =,则=)(B A P 0.9 .5. 设5.0)(=A P ,4.0)(=B P ,6.0)|(=B A P ,则)|(B A A P = 20/29 .6.假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是B A ⊂.7.已知7.0)(=A P ,3.0)(=-B A P ,则=)(AB P 0.4 . 8.已知41)(=A P ,31)(=AB P ,21)(=B A P ,则=)(B A P 1/3 . 9.设两个相互独立的事件A 和B 都不发生的概率为91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则=)(A P 2/3 .10.设C B A ,,构成一个完备事件组,且()0.5,()0.7P A P B ==,则=)(C P 0.2 .11.设A 与B 为互不相容的事件,0)(>B P ,则=)(B A P 0 .12.设事件C B A ,,两两互斥,且,4.0)(,3.0)(,2.0)(===C P B P A P则=-])[(C B A P 0.5 .13.设事件A 与B 相互独立,已知1)()(-==a B P A P ,97)(=B A P ,则=a 5/3或4/3 .14.甲、乙两人独立的对同一目标射击一次,其命中率分别为6.0和5.0,现已知目标被命中,则它是甲射中的概率为 3/4 .15.假设随机事件A 与B 满足),()(B A P AB P =且p A P =)(,则=)(B P p -1.三、应用题1.甲、乙、丙3人同向一飞机射击,设击中飞机的概率分别为0.4,0.5,0.7.如果只有一人击中飞机,则飞机被击落的概率是0.2;如果有2人击中飞机,则飞机被击落的概率是0.6;如果3人都击中飞机,则飞机一定被击落.求飞机被击落的概率.解:设=i A {第i 人击中飞机},=i 甲,乙,丙;=i B {i 人击中飞机};3,2,1,0=i ,=C {飞机被击落};则()()();7.0;5.0;4.0321===A P A P A P()()()()36.03213213211=++=A A A P A A A P A A A P B P ,()()()()41.03213213212=++=A A A P A A A P A A A P B P ,()()14.03213==A A A P B P ;(),2.01=B C P (),6.02=B C P ();13=B C P所以()()()()()()()458.0332211=++=B C P B P B C P B P B C P B P C P2.甲、乙2人投篮命中率分别为0.7,0.8,每人投篮三次,求(1)两人进球数相等的概率;(2)甲比乙进球数多的概率. 解:设=i A {甲人三次投篮进i 个球},=i B {乙人三次投篮进i 个球},则()(),027.07.0130=-=A P ()(),189.07.017.02131=-⨯⨯=C A P()()(),411.07.017.02232=-⨯⨯=C A P ()();343.07.03333=⨯=C A P()(),008.08.0130=-=B P ()(),096.08.018.02131=-⨯⨯=C B P()()(),384.08.018.02232=-⨯⨯=C B P ()();512.08.033==B P(1)=C {两人进球相等}33221100B A B A B A B A =,()()()()()()()()()()()()();36332.03322110033221100=+++=+++=B P A P B P A P B P A P B P A P B A P B A P B A P B A P C P (2)=D { 甲比乙进球数多}331303120201B A B A B A B A B A B A =()()()()()()()()()()()()().21476.0231303120201=+++++=B P A P B P A P B P A P B P A P B P A P B P A P D P3.一射手命中10环的概率为0.7,命中9环的概率为0.3.该射手3发子弹得到不小于29环的概率.解:设=1A {命中10环},=2A {命中9环},则;,2121Ω=Φ=A A A A 于是=B {3发子弹得到不小于29环}={3发子弹均为10环} {有2发击中10环},所以()()()()()()784.03.07.03.07.023223033333=⨯⨯+⨯⨯=+=C C P P B P4.有2500人参加人寿保险,每年初每人向保险公司交付保险费12元.若在这一年内投保人死亡,则其家属可以向保险公司领取2000元.假设每人在这一年内死亡的概率都是0.002,求保险公司获利不少于10000元的概率.解:设参加保险的人中有x 人死亡,当,100002000122500≥-⨯x 即10≤x 时,保险公司获利不少于10000元。

宁波工程学院概率与统计习题

宁波工程学院概率与统计习题

- 1 -第一章 概率论的基本概念 1、设A,B,C 为三个随机事件,用A,B,C 的运算表示下列各事件: (1) “A,B,C 中至少有一个发生”__________________ (2) “A,B,C 都不发生”_________________________ (3) “A,B,C 中至少有两个发生”_________________ (4) “A,B,C 中不多于一个发生”_________________ 2、(01年) 与A B B =不等价的是( )(A )A B ⊂(B )A B ⊃(C )AB =Φ(D )AB =Φ 3、建筑物因自然灾害而倒塌(记为事件A )原因有以下三个:地震(1A ),台风(2A ),暴雨(3A )。

又已知刮台风必下暴雨,则A =( )。

(A )123A A A (B )123()A A A (C )12A A (D )13A A4、设A 、B 为二事件,且()0.6,()0.7P A P B ==。

问:(1)在什么条件下,()P AB 取得最大值,最大值是多少?(2)在什么条件下,()P AB 取得最小值,最小值是多少?5、设A 、B 为二事件,已知()0.5,P A =()0.7,P B =()0.8P A B =。

则()P AB =______,()P AB =________6、A,B,C 为三个随机事件,已知1()()()4P A P B P C ===,()()0P AB P BC ==,1()8P AC =。

求:(1) A 、B 、C 至少一个发生的概率?(2)A 、B 、C 至多一个发生的概率?- 2 -7、已知()0.3,()0.6,P A P B ==(1)A 、B 不相容时,求()P AB 与()P AB ; (2)A B ⊂时,求()P AB 与()P AB 。

8、(97年) 已知事件A 、B 都发生时,事件C 一定发生。

则下列命题必成立的是( )。

第一章 概率论的基本概念

第一章  概率论的基本概念

第一章概率论的基本概念 1、A ,B ,C 三事件,则三事件中至少发生两个事件为( )(A )BC A C B A C AB _________++ (B )ABC BC A C B A C AB +++_________(C ) C B A ⋃⋃ (D )__________________C B C A B A ++ 2、在某年级的学生中任选一名学生,事件A 表示“被选学生是男生”,B 表示事件“被选学生是丙班的学生”,C 表示“被选学生是运动员”,下面结论中错误的是( ) A.AB表“被选学生是丙班的男生,不是运动员”B.该年级运动员都是丙班男生时,ABC=C 成立C.该年级运动员全是丙班学生时,C B 成立D.该年级丙班全是女生时 =B 成立3、某射手向目标独立射击5枪,设每次中靶的概率为0.6,则恰好中了两枪的概率为( )(A )0.63 0.42 (B )0.62 0.43 (C )C 520.63 0.42 (D )C 520.62 0.43 4、 已知P (A )=0.4,P (B )=0.3,P (A+B )=0.6,则P (AB )=_________。

5、一盒零件有5个正品,2个次品,不放回任取3个,其中至少有2个正品的概率为 .(A ) 7/2; (B ) 7/4; (C )7/5; (D ) 7/6. 6、设事件A 表示“甲种产品畅销,乙种产品滞销”,其对立事件为( ) (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”7、 设A B ⊂,则下面正确的等式是( )(A ))(1)(A P AB P -=; (B ))()()(A P B P A B P -=-; (C ))()|(B P A B P =; (D ))()|(A P B A P = 8、 掷一颗骰子,则点数小于5的概率是_________9、在1,2,…,10这十个数中随机抽取一数,令A={取到的数大于4},B={取到的数小于8},P(A|B)=________10、 在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码。

《概率论与数理统计》前三章习题解答

《概率论与数理统计》前三章习题解答

11.设随机变量(X,Y)的联合概率密度为
cxe y ,0 x y , f ( x, y) 其他. 0,
(1)求常数c (5)求(X,Y)的联合分布函数.
(1)由


f ( x, y)dxdy 1可解得c 1.
返回主目录
第三章 多维随机变量及其分布
第一章 概率论的基本概念
解:
令事件Ai分别表示输入AAAA,输入BBBB, 输入CCCC, i 1, , . 令事件A 表示输出ABCA. 23
由已知条件及独立性知
1 P( A | A2 ) P( A | A3 ) . 2
3
1 P( A | A1 ) , 2
2 2
返回主目录
第一章 概率论的基本概念
由贝叶斯公式知
P( A1 A) P( A1 | A) P( A)
P( A1 ) P( A | A1 ) P( A1 ) P( A | A1 ) P( A2 ) P( A | A2 ) P( A3 ) P( A | A3 )
2p1 . (3 1) p1 1
返回主目录
第二章 随机变量及其分布
2.将一颗骰子抛掷n次,将所得的n个点
数的最小值记为X,最大值记为Y.分别求 出X与Y的分布律. 解 : 以Yi 记第i次投掷时骰子出现的点 , 数
i 1,2,, n.则X minYi , Y maxYi .
1i n 1i n
X与Y的所有可能值均为 1,2,3,4,5, 6.
14

k
返回主目录
第三章 多维随机变量及其分布
பைடு நூலகம்
(2)当m 0,1,2,时 P{ X n, Y m} P{ X n | Y m} P{Y m}

概率论的基本概念练习题及答案

概率论的基本概念练习题及答案

第一章概率论的基本概念练习题1. 将一枚均匀的硬币抛两次,事件分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事件中的样本点。

2. 在掷两颗骰子的试验中,事件分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。

试写出样本空间及事件中的样本点。

3. 以分别表示某城市居民订阅日报、晚报和体育报。

试用表示以下事件:(1)只订阅日报;(2)只订日报和晚报;(3)只订一种报;(4)正好订两种报;(5)至少订阅一种报;(6)不订阅任何报;(7)至多订阅一种报;(8)三种报纸都订阅;(9)三种报纸不全订阅。

4. 甲、乙、丙三人各射击一次,事件分别表示甲、乙、丙射中。

试说明下列事件所表示的结果:, , , , , .5. 设事件满足,试把下列事件表示为一些互不相容的事件的和:,,.6. 若事件满足,试问是否成立?举例说明。

7. 对于事件,试问是否成立?举例说明。

8. 设,,试就以下三种情况分别求:(1),(2),(3).9. 已知,,求事件全不发生的概率。

10. 每个路口有红、绿、黄三色指示灯,假设各色灯的开闭是等可能的。

一个人骑车经过三个路口,试求下列事件的概率:“三个都是红灯”=“全红”;“全绿”;“全黄”;“无红”;“无绿”;“三次颜色相同”;“颜色全不相同”;“颜色不全相同”。

11. 设一批产品共100件,其中98件正品,2件次品,从中任意抽取3件(分三种情况:一次拿3件;每次拿1件,取后放回拿3次;每次拿1件,取后不放回拿3次),试求:(1)(1)取出的3件中恰有1件是次品的概率;(2)(2)取出的3件中至少有1件是次品的概率。

12. 从中任意选出3个不同的数字,试求下列事件的概率:,。

13. 从中任意选出4个不同的数字,计算它们能组成一个4位偶数的概率。

14. 一个宿舍中住有6位同学,计算下列事件的概率:(1)6人中至少有1人生日在10月份;(2)6人中恰有4人生日在10月份;(3)6人中恰有4人生日在同一月份;15. 从一副扑克牌(52张)任取3张(不重复),计算取出的3张牌中至少有2张花色相同的概率。

概率论及数理统计习题集及答案

概率论及数理统计习题集及答案

第1章概率论的基本概念§1 .8 随机事件的独立性1. 电路如图,其中A,B,C,D为开关。

设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L与R为通路(用T表示)的概率。

A BL RC D1.甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,相互独立,求下列概率: (1) 恰好命中一次,(2) 至少命中一次。

第1章作业答案§1 .8.1:用A,B,C,D表示开关闭合,于是T = AB∪CD,从而,由概率的性质及A,B,C,D的相互独立性P(T) = P(AB) + P(CD) - P(ABCD)= P(A)P(B) + P(C)P(D) – P(A)P(B)P(C)P(D)422p224-+==pppp-2:(1) 0.4(1-0.5)(1-0.6)+(1-0.4)0.5(1-0.6)+(1-0.4)(1-0.5)0.6=0.38;(2) 1-(1-0.4)(1-0.5)(1-0.6)=0.88.第2章随机变量及其分布0-分布和泊松分布§2.211 某程控交换机在一分钟接到用户的呼叫次数X是服从λ=4的泊松分布,求(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率;(3)每分钟最多有1次呼叫的概率;2 设随机变量X有分布律:X 23 , Y~π(X), 试求:p 0.4 0.6(1)P(X=2,Y≤2);(2)P(Y≤2);(3) 已知Y≤2, 求X=2 的概率。

§2.3贝努里分布2 设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9 ?§2.6均匀分布和指数分布2 假设打一次所用时间(单位:分)X 服从2.0=α的指数分布,如某人正好在你前面走进亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。

§2.7正态分布1 随机变量X ~N (3, 4), (1) 求 P(2<X ≤5) , P(- 4<X ≤10), P(|X|>2),P(X>3); (1)确定c ,使得 P(X>c) = P(X<c)。

第一、二章习题课(概率论)

第一、二章习题课(概率论)

第二章 随机变量及其分布
♦1. 基本概念:随机变量,离散型随机变量,连续型随 基本概念:随机变量,离散型随机变量,
机变量 ♦2.离散型随机变量及其分布律 离散型随机变量及其分布律 (1)如何求解 ) 设离散型随机变量X的可能取值为 的可能取值为x 设离散型随机变量 的可能取值为 k (k=1,2,…),事 事 件 发生的概率为 pk ,
P ( A) = 0.3, P ( B ) = 0.8, P (C ) = 0.6, P ( A U B ) = 0.9,
n−1
P ( AC ) = 0.1, P ( BC ) = 0.6, P ( ABC ) = 0.1.
试求: 试求:(1) P ( AB ) ) (2) P ( A U B U C )
1.若事件 若事件A,B是互不相容的 且 P ( A) > 0, P ( B ) > 0 是互不相容的,且 若事件 是互不相容的 则事件A,B一定不相互独立 一定不相互独立. 则事件 一定不相互独立 2. 若事件 若事件A,B相互独立 且 P ( A) > 0, P ( B ) > 0 相互独立,且 相互独立 则事件A,B一定相容 一定相容. 则事件 一定相容
事件A发生但事件 不发生 称为事件A与事件 与事件B的 事件 发生但事件B不发生 称为事件 与事件 的 发生但事件 不发生, 差事件。 差事件。 A B
S
显然有: 显然有:
A− B −
对于任意两事件A, 总有如下分解 总有如下分解: 对于任意两事件 ,B总有如下分解:
5 AI B =∅
0
则称A和 是互不相容的或互斥的 指事件A与 不 是互不相容的或互斥的,指事件 则称 和B是互不相容的或互斥的 指事件 与B不 可能同时发生。 可能同时发生。

概率统计与随机过程习题册解答

概率统计与随机过程习题册解答

解:以A表示事件“白漆10桶,黑漆3桶,红漆2桶”
P( A)
C1100C43C32 C1175
1 4 3 17 8
3 34
a
9பைடு நூலகம்
8
4.已知在10只晶体管中有2只是次品,在其中取两次, 每次任取一只,作不放回抽样,求下列事件的概率。
(1)两只都是正品 解:以A表示事件“两只都是正品
P( A) 8 7 ”28
1
S {v | v 0}
Aa {v | 60 v 80}
1
2.设A、B、C 为三个事件试用A、B、C 表示下列事件
(1)A与B 不发生,而C 发生
ABC
(2)A,B,C 都不发生
ABC
(3)A、B、C 至少有一个发生
A B C
(4)A、B、C中恰有一个发生 ABC ABC ABC
(5)A、B、C 中恰有两个发生 ABC ABC ABC
解:以A表示事件“系统的可靠性 ”
P( A) [1 (1 p)2]2 p2(2 p)2
(2,1)和(4,4)
P( A) 2 1 36 18
a
11
10
练习三
1. (1)已知 P( A) 0.3, P(B) 0.4, P( AB) 0.5,求 P(B | A B)
。解 :
P(B | A B)
P(B ( A B)) P(A B)
P( AB) P( A) P(B) P( AB)
0.002
0.3223
a
13
12
3.已知男子有5%是色盲患者,女子有0.25 %是色盲患 者。今从男女人数相等的人群中随机地挑选一人,则
(1)此人是色盲患者的概率
解:以A表示事件“色盲患者”,以B表示事件“所

第一章 概率论的基本概念

第一章  概率论的基本概念

第一章概率论的基本概念一、填空题1.设A,B,C,D是4个随机事件,利用这4个事件的运算式表达下列各事件。

(1)A发生为 A ,只有A发生为 Abcd ;(2)A,B,C,D恰有一个发生,为 abcD abCd aBcd Abcd ;(3)A,B,C,D至少有一个发生,为 A B C D ;(4)A,B,C,D都不发生,为 abcd 。

2.设A,B为两个随机事件,则AB∪(A-B)∪A= 全集b 。

3.若事件A,B互不相容,则BA+=Ω。

A+与Ω的关系为B4.设事件A,B互不相容,且P(A)=0.3,P(B)=0.7,求=AP 0 。

(B) 5.设A,B为任意两个随机事件,则))}AA= 0 。

PB)(A(({B6.若BA⊂,则A > B,P(A) >= P B。

7.如果BA⊂,则P(A-B)= 0 ,P(B-A)= P(B)-P(A)。

8.已知P(A)+P(B)=0.7,P(AB)=0.3,则)BP+= 0.1 。

PAA(B()9.设事件A,B互不相容,且P(A)=0.4,P(B)=0.3,则=P 0.3 。

A(B)10.设P(A)>0,P(B)>0,把P(A),P(AB),P(A∪B),P(A)+P(B)按大小排列应为P(AB)≤P(A)≤P(A∪B)≤P(A)+P(B)。

11.设BA⊂,P(A)=0.1,P(B)=0.5,则P(AB)= 0.1 ;P(A∪B)= 0.5 ;AP⋃= 0.9 ;)(B)P= 0.5 。

A(B12.掷两枚骰子,其点数之和为8的概率为 5/36 。

13.从52张扑克牌中任取5张牌,恰好为“同花顺”的概率为 3/216580 。

14.从52张扑克牌中任取5张牌,其中至多有两种花色的概率为 。

15.从0,1,…,9这10个数字中,随机抽取3个(不重复抽取),这3个数字组成一个三位奇数的概率为 。

16.设12件产品,其中3件次品。

现任取2件,已知所取2件中有一件为次品,则另一件也是次品的概率为 。

东华理工大学概率统计练习册答案

东华理工大学概率统计练习册答案

第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)} B.{(反,正),(正,反),(正,正),(反,反)} C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2.设A ,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A.P(AB)=P(A)P(B) B.P(A-B)=P(A)-P(B)C. )()(B A P B A P-= D.P(A+B)=P(A)+P(B) 4.设A,B 为随机事件,则下列各式中不能恒成立的是( ).A.P(A -B)=P(A)-P(AB)B.P(AB)=P(B)P(A|B),其中P(B)>0C.P(A+B)=P(A)+P(B)D.P(A)+P(A )=15.若φ≠AB ,则下列各式中错误的是( ).A .0)(≥AB P B.1)(≤AB PC.P(A+B)=P(A)+P(B)D.P(A-B)≤P(A)6.若φ≠AB ,则( ).A. A,B 为对立事件B.B A =C.φ=B AD.P(A-B)≤P(A)7.若,B A ⊂则下面答案错误的是( ).A. ()B P A P ≤)(B. ()0A -B P ≥C.B 未发生A 可能发生D.B 发生A 可能不发生8.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( ).A.若诸iA 两两互斥,则∑∑===ni i n i i A P A P 11)()(B.若诸i A 相互独立,则11()1(1())nni i i i P A PA ===--∑∏C.若诸iA 相互独立,则11()()nni i i i P A P A ===∏D.)|()|()|()()(1231211-=Λ=n n ni i A A P A A P A A P A P A P9.袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是( ).A.21B. b a +1C. b a a +D. b a b+ 10.设有r 个人,365≤r ,并设每个人的生日在一年365天中的每一天的可能性为均等的,则此r个人中至少有某两个人生日相同的概率为( ).A.r rP 3651365-B. rrr C 365!365⋅ C.365!1r - D. r r 365!1- 11.设A,B,C 是三个相互独立的事件,且,1)(0<<C P 则下列给定的四对 事件中,不独立的是( ).A.C AUB与 B. B A -与CC. C AC 与D. C AB 与12.当事件A 与B 同时发生时,事件C 也随之发生,则( ).A.1)()()(-+≤B P A P C PB.1)()()(-+≥B P A P C PC.P(C)=P(AB)D.()()P CP A B =13.设,1)()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 且则( ).A. A 与B 不相容B. A 与B 相容C. A 与B 不独立D. A 与B 独立14.设事件A,B 是互不相容的,且()0,()0P A P B >>,则下列结论正确的是( ).A.P(A|B)=0B.(|)()P AB P A =C.()()()P A B P A P B =D.P(B|A)>015.四人独立地破译一份密码,已知各人能译出的概率分别为61,31,41,51则密码最终能被译出的概率为( ).A.1B. 21C. 52D. 3216.已知11()()(),()0,()(),416P A P B P CP A BP A C P B C ======则事件A,B,C 全不发生的概率为( ).A. 81B. 83C. 85D. 8717.三个箱子,第一箱中有4个黑球1个白球,第二箱中有3个黑球3个白球,第三个箱中有3个黑球5个白球,现随机取一个箱子,再从这个箱中取出一个球,则取到白球的概率是( ).A. 12053B. 199C. 12067D. 191018.有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( ).A.135B. 4519C. 157D. 301919.接上题,若已知取到的是一只白球,则此球是来自第二类箱子的概率为( ).A. 21B. 31C. 75D. 71答:1.答案:(B ) 2. 答案:(B )解:AUB 表示A 与B 至少有一个发生,Ω-AB 表示A 与B 不能同时发生,因此(AUB)(Ω-AB)表示A 与B 恰有一个发生. 3.答案:(C ) 4. 答案:(C ) 注:C 成立的条件:A 与B 互不相容. 5. 答案:(C ) 注:C 成立的条件:A 与B 互不相容,即AB φ=. 6. 答案:(D ) 注:由C 得出A+B=Ω. 7. 答案:(C ) 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nnnnni i i i ii i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C ) 注:古典概型中事件A 发生的概率为()()()N A P A N =Ω.10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A 的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r rrC r P PA ⋅==,故365()1365rr P P A =-. 11.答案:(C ) 12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ⊂, 故()()PA B P C ≤;而()()()()1,P A B P A P B P A B ⋃=+-≤ 故()()1()()P A P B P A B P C +-≤≤.13.答案:(D ) 解:由(|)()1PAB PA B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()PA B PA B PA B PA B PB PB PB PB PA B PB PB PA PB PA B PB PB PA B PB PB PA PB PA B PB PB PA B PA BPB PB PAPB PB PBPA B PB -⋃+=+--+--+==-⇒-+--+=-⇒-+--+=2(())()()()PB PA B PAPB -⇒=故A 与B 独立. 14.答案:(A )解:由于事件A,B 是互不相容的,故()0P A B =,因此P(A|B)=()0()()P A B P B P B ==.15.答案:(D )解:用A 表示事件“密码最终能被译出”,由于只要至少有一人能译出密码,则密码最终能被译出,因此事件A 包含的情况有“恰有一人译出密码”,“恰有两人译出密码”,“恰有三人译出密码”,“四人都译出密码”,情况比较复杂,所以我们可以考虑A 的对立事件A “密码最终没能被译出”,事件A 只包含一种情况,即“四人都没有译出密码”,故111112()(1)(1)(1)(1)()543633P A P A =----=⇒=.16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638PA B C PA B C PA PB PC PA B PB C PA C PA B C =-⋃⋃=---+++-=---+++-=注:0()()0()0A B C A B P A B C P A B P A B C ⊂⇒≤≤=⇒=.17.答案:(A )解:用A 表示事件“取到白球”,用B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用B 表示事件“取到第i 类箱子”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++.二、填空题1. E :将一枚均匀的硬币抛三次,观察结果:其样本空间=Ω .2.设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示随机事件A 发生而B ,C 都不发生为 ;随机事件A ,B ,C 不多于一个发生 .3.设P (A )=0.4,P (A+B )=0.7,若事件A 与B 互斥,则P (B )= ;若事件A 与B 独立,则P (B )= .4.已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B|A )=0.8,则P (AUB )= .5.设随机事件A 、B 及和事件AUB 的概率分别是0.4,0.3和0.6,则P (A B )= .6.设A 、B 为随机事件,P (A )=0.7,P (A-B )=0.3,则P (A B )= .7.已知81)()(,0)(,41)()()(======BC p AC p AB p C p B p A p ,则C B A ,,全不发生的概率为 .8.设两两相互独立的三事件A 、B 和C 满足条件:φ=ABC,21)()()(<==C p B p A p ,且已知 169)(=C B A p ,则______)(=A p .9.一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 .10.将C 、C 、E 、E 、I 、N 、S 这7个字母随机地排成一行,恰好排成SCIENCE 的概率为 . 11.设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属于A 生产的概率是 .12.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被命中,则它是甲射中的概率是 .答:1.{(正,正,正),(正,正,反),(正,反,反),(反,反,反),(反,正,正),(反,反,正),(反,正,反),(正,反,正)}2.;A B C A B C A B C A B C A B C 或A BB CA C 3.0.3,0.5解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3; 若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A BP A P B P A +--===--.4.0.7解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7. 5.0.3解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P A B P A B P A +=,所以()()()0.60.30.3P A B P A B P B =-=-=.6.0.6解:由题设P (A )=0.7,P (A B )=0.3,利用公式A B A B A +=知()()()P A B P A P A B =-=0.7-0.3=0.4,故()1()10.40.6P A B P A B =-=-=.7.7/12解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P A B CP A B C P A B C P AP BP CP A BP B CP A CP A B C ==-=-++---+=-+=.8.1/4解:因为()()()()()()()()P A B C P A P B P C P A B P B C P A C P A B C =++---+由题设22()()(),()()()(),()()()()P A P B P C P A C P A P C P A P A B P A P B P A ======,2()()()(),()0P B C P B P C P A P A B C ===,因此有293()3()16PA P A =-,解得P (A )=3/4或P (A )=1/4,又题设P (A )<1/2,故P (A )=1/4. 9.1/6解:本题属抽签情况,每次抽到次品的概率相等,均为1/6,另外,用全概率公式也可求解.10.11260 解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114⨯⨯⨯⨯⨯⨯=,故所求的概率为417!1260=.11.3/7解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P A C P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯.12.6/11解:设A={甲射击},B={乙射击},C={目标被击中}, 则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66(|)()()(|)()(|)0.50.60.50.511P A C P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯.三、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P . 求A ,B ,C 至少有一个发生的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 概率论的基本概念
四、课后练习:
1、分别写出3个确定性现象和随机现象.
答:确定性现象:
(1) 太阳不会从西边升起
(2) 水从高处流像低处
(3) 同性电荷必然互斥
随机现象:
⑴ 新产品在未来市场的占有率
⑵ 加工某机械轴的误差
⑶ 一台电视机从开始使用到第一次发生故障的时间
2、随机试验是同时掷三颗骰子并记录三颗骰子点数之和,写出其样本空间. 答: ={3,4, (18)
3、的值互斥,求与,若和的概率分别为设事件)(2
131,A B P B A B A . 答:P(BA)=0
四、课后练习:
1、掷3颗均匀骰子,求点数之和为4的概率.
答:P=3/63
2、某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4,如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多少? 答:0.5
解:设A =“能活到20岁”,B =“能活到25岁”,
则P(A)=0.8,P(B)=0.4.
而所求概率为P(B|A),由于B ⊆A ,故P(AB)=P(B),
所以P(B|A)====0.5,
所以这个动物能活到25岁的概率为0.5
3、设每一名机枪射击手击落飞机的概率都是0.2,若10名机枪射击手同时向一架飞机射击,问击落飞机的概率是多少?
答:击落飞机的概率是0.893。

相关文档
最新文档