《平均数》数据的分析(第2课时)PPT课件
合集下载
人教版《四年级下册平均数》(完美版)PPT课件2
100÷4=25(个) 110÷5=22(个)
25>22 答:第一小组成绩好些。
知识运用
1. 下面说法正确吗?正确的画“√”,错误的画“×”。
(1)王悦5次跳远的总成绩是10m,她每次的跳远成绩
肯定都是2m。
(× )
(2)学校排球队队员的平均身高是160cm,有的队员 身高会超过160cm,有的队员身高不到160cm。( √)
(91+89+93)÷ 3 =91(分)
平均数和原来那些数相比,处在中间的位置,比最大的数要小,比最小的数要大。
(16+24+35+21)÷4
小芳期末三科考试成绩分别为数学:91分 语文:93分 英语:89 分,小芳这三科的平均成绩是多少分?
110÷5=22(个)
(1)估计一下,这5天中平均每天售出门票大约多少张?
A.(16+24+35+21)÷4
B.(16+24+35+21)÷112
C.(16+24+35+21)÷365
为什么 选 B呢?
知识运用
(1)估计一下,这5天中平均每天售出门票大约多少张? (2)如果你是博物馆的馆长,看到这个信息,你有什么 想法? 你估计得准吗?请用自己
喜欢的方法验证一下。
通过学习,你有什么收获?
A、35 B、49 C、42
小芳期末三科考试成绩分别为数学:91分 语文:93分 英语:89 分,小芳这三科的平均成绩是多少分?
不用算,你能看出36,47,43三个数的平均数吗?
2. 不用算,你能看出36,47,43三个数的平均数吗? A、35 B、49 C、42
(1)王悦5次跳远的总成绩是10m,她每次的跳远成绩肯定都是2m。 (3)小东所在小组同学的平均体重是36kg,小刚所在小组同学的平均体重是34kg,小东一定比小刚重。
北师大版八年级数学上册《平均数》第2课时示范公开课教学课件
进退场有序
动作规范
动作整齐
一班
9
8
9
8
二班
10
9
7
8
三班
8
9
8
9
50%
30%
10%
10%
两种方案的结果不同说明了什么?
对“权”的进一步认识
“权”代表的是数据的“重要程度”,一组数据中,“权”越大,数据就越“重要”.
“权”的三种表现形式:
①各个数据出现的次数;
②比例的形式;
③百分比的形式.
分析:根据题意,小明的平均速度=总路程÷总时间,说明小明的平均速度受骑车的速度与步行速度影响 ,而骑车的时间与步行的时间可以看做是它们的权,可以根据加权平均数的公式计算出他的平均速度.
年龄(岁)
人数
分析:观察表格后可以发现不同年龄的获奖人数不一样,
权
权
每个年龄相对应的获奖人数就是该年龄的权.
使用加权平均数的公式即可计算出获奖者的平均获奖年龄.
权
获奖者的平均获奖年龄为35.6岁.
解:根据加权平均数的公式,获奖者的平均获奖年龄为:
(岁)
1.菲尔兹奖是数学领域的一项国际大奖,每四年颁发一次,从1936年到2010年,共有53人获奖,获奖者获奖时的年龄分布如下表,请计算获奖者的平均获奖年龄.(结果精确到0.1岁)
解:(1)20、32、45、50以0.25,0.25, 0.25,0.25为权数的平均数为:
20、32、45、50以0.25,0.25, 0.25,0.25为权数的加权平均数为36.75.
使用算术平均数公式列式:
使用加权平均数公式列式:
例 求20、32、45、50在不同权重下的加权平均数. (1)以0.25,0.25, 0.25,0.25为权数; (2)以0.4,0.3, 0.2,0.1为权数.
动作规范
动作整齐
一班
9
8
9
8
二班
10
9
7
8
三班
8
9
8
9
50%
30%
10%
10%
两种方案的结果不同说明了什么?
对“权”的进一步认识
“权”代表的是数据的“重要程度”,一组数据中,“权”越大,数据就越“重要”.
“权”的三种表现形式:
①各个数据出现的次数;
②比例的形式;
③百分比的形式.
分析:根据题意,小明的平均速度=总路程÷总时间,说明小明的平均速度受骑车的速度与步行速度影响 ,而骑车的时间与步行的时间可以看做是它们的权,可以根据加权平均数的公式计算出他的平均速度.
年龄(岁)
人数
分析:观察表格后可以发现不同年龄的获奖人数不一样,
权
权
每个年龄相对应的获奖人数就是该年龄的权.
使用加权平均数的公式即可计算出获奖者的平均获奖年龄.
权
获奖者的平均获奖年龄为35.6岁.
解:根据加权平均数的公式,获奖者的平均获奖年龄为:
(岁)
1.菲尔兹奖是数学领域的一项国际大奖,每四年颁发一次,从1936年到2010年,共有53人获奖,获奖者获奖时的年龄分布如下表,请计算获奖者的平均获奖年龄.(结果精确到0.1岁)
解:(1)20、32、45、50以0.25,0.25, 0.25,0.25为权数的平均数为:
20、32、45、50以0.25,0.25, 0.25,0.25为权数的加权平均数为36.75.
使用算术平均数公式列式:
使用加权平均数公式列式:
例 求20、32、45、50在不同权重下的加权平均数. (1)以0.25,0.25, 0.25,0.25为权数; (2)以0.4,0.3, 0.2,0.1为权数.
北师大版八年级数学上册《平均数》课件
A.84
B. 86
C. 88
D. 90
2.若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数
的平均数是( B )
A. (x+y)/2
B. (mx+ny)/(m+n)
C. (x+y)/(m+n)
D. (mx+ny)/(x+y)
课堂检测
基础巩固题
3.已知:x1,x2,x3… x10的平均数是a, x11,x12,x13… x30的平均数
72 4 503 881 65.75 4 3 1
为A的三项测试成绩的加权平均数.
探究新知
一般地,若n个数x1, x2, …, xn的权分别是f1,f2,…,fn ,则
x1 f1 x2 f2 xn fn f1 f2 fn
叫做这n个数的加权平均数.
权的意义:(1)数据的重要程度 (2)权衡轻重或份量大小
北师大版 数学 八年级 上册
6.1 平均数(第1课时)
导入新知
思
某小河平均水深1米,一个身高1.6米的小男孩在
考 这条河里游泳是否安全?
我身高1.6米
探究新知
知识点 算数平均数与加权平均数 在篮球比赛中,队员的身高、年龄都是影响球队实 力的因素,如何衡量两个球队队员的身高? 怎样理解“甲队队员的身高比乙队更高”? 怎样理解“甲队队员比乙队更年轻”?
探究新知
号码 3 6 7 8 9 10 12 13 20 21 25 31 32 51 55
北京金隅队 身高/cm 188 175 190 188 196 206 195 209 204 185 204 195 211 202 227
年龄/岁 35 28 27 22 22 22 29 22 19 23 23 28 26 26 29
《平均数》PPT优秀教学课件1
演讲效果 95 95
权是百分数的形式 由上可知选手 B 获得第一名,选手 A 获得第二名.
(1)权能够反映某个数据的重要程度,权越大, 该数据所占的比重越大;权越小,该数据所占的 比重越小. (2)权常见的三种表现形式:①数据出现的次 数(个数)的形式;②百分数的形式;③连比的 形式.
例2 某跳水队为了解运动员的年龄情况,作了一次年龄调查,
14.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主 测评,A,B,C,D,E五位老师作为评委,对“演讲答辩”情况进行评价, 全班50位同学参与了民主测评,结果如下表所示:
成绩如下:
写作能力 普通话水平 计算机水平
小亮 小丽
90分 60分
75分 84分
51分 72分
将写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2
计算,变成按5∶3∶2计算,总分变化情况是( B)
A.小丽增加多
B.小亮增加多
C.两人成绩不变化 D.变化情况无法确定
12.(杭州中考)某计算机程序第一次算得m个数据的平均数为x, 第二次算得另外n个数据的平均数为myx,+ny 则这m+n个数据的平均数等于_____m_+__n______.
综合得分=演讲答辩分×(1-a)+民主测评分×a(0. 表1 演讲答辩得分表(单位:分)
听、说、读、写成绩按照 2:1:3:4 的比确定,这说明赋予各项成绩的“重要程度”有所不同.
以都能录取. 小明认为两个人的总分一样,所以都能录取.
A.小丽增加多
B.小亮增加多
10.如果一组数据a1,a2,…,an的平均数是2,
人教版 · 数学· 八年级(下)
第20章 数据的分析 20.1.1 平均数
初中人教部编版八年级数学下册教案《平均数》数据的分析PPT课件
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71
91 111
频数(班次)
3 5 20 22 18 15
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
之间有何关系?
面积
=
总耕地面积 人口总数
郊 县
人数(万)
人均耕地面积(公顷)
A
15
0.15
B
7
0.21
C
10
0.18
总耕地
人均耕地
面积
面积
=
人口总数
思考1:总耕地面积
三个郊县耕地面积之和
思考2:人口总数
三个郊县人数之和
解答:这个市郊县的人均耕地面积是: 0.15×15 + 0.21×7 + 0.18×10 15+7+10
共汽车每个运行班次的载客量,得到下表,这天5路公共汽车平均每班
的载客量是多少?
载客量/人 1≤x<21 21 ≤x<41 41 ≤x<61 61 ≤x<81
频数(班次) 3 5 20 22
表格中载客量是六个 数据组,而不是一个具体 的数,各组的实际数据应 该选谁呢?
81 ≤x<101
18
101 ≤x<121
15
组中值:数据分组后,这个小组的两个端点的数的平均数叫做 这个组的组中值.
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71
《平均数》PPT课件
平均数在生活中的应用这么广 泛,说说你在哪儿遇到过或用 过平均数?
2.判断。
(1)投篮比赛,在规定的时间内
红队5人,每人投中的个数分别为1、12、15、18、20, 平均每人投中1个。( )
蓝队4人,每人投中的个数分别为:1、15、20、22, 平均每人投中22个。( )
(判断并说理后,请学生估计平均数的值, 在交流过程中学生初步感知到了平均数比一组数 中最小的数大,比最大的数小,而且最接近中间 大小的那个数。)
2.分析一下乙种饼干的销售量越来越大的原因。
你认为还有 其他原因吗?
3.从统计图中你还能得到什么信息?
一 二 三 四 五 六 日平均
最高温度/ 0C 20 21 23 24 22 21 22 最低温度/ 0C 10 10 11 12 12 12 12
做一做
王叔叔骑自行车去旅行。 下图是他前三天的行走路线。
学习目标
1. 同学们理解平均数的意义,初步学会求简 单的平均数的方法。
2. 理解平均数在统计学上的意义。
老大 老二
老三
小结:“移多补少”可以找出三个人的平均数
“全家总动员”才艺项目比赛得分情况
参赛家庭成员
孩子 爸爸
妈妈 爷爷
1号家庭 6 9 7 6
参赛家庭成员 孩子 爸爸 妈妈 爷爷 姑姑 阿
姨
1 2号家
庭
4
7
5
4
9
下面的说法对吗?请说明理由
三年级女生平均身高130厘米,男生平均 身高120厘 米。
三年级所有女生身高都是130厘米,所有 男生身高都是132厘米。
我们通过调查、统计、测算,发现严重缺水 地区平均每人每天用水量约 3千克。
而我们这儿的小明家平均每人每天用水量约 85千克。同学们,两者相比,相差多大呀,此时 此刻你有什么心里话要说?
课件《平均数》PPT_完美课件_人教版2
所以从综合能力来看应该录取甲
刚才的计算方式来求平均数吗?
情景二
应试者
听
说
读
写
甲
85
78
85
73
乙
73
80
82
83
如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成 绩按照2:1:3:4的比确定,计算两名应试者的平均成绩(百分制). 从他们的成绩看,应该录取谁?
应试者 听
说
读
写
甲
85
78
85
、16、24、2分别为权。
因为乙的平均成绩比甲高, 某校规定学生的体育成绩由三部分组成:早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.
权直接以数据出现的次数形式给出
上述两支球队中,哪支球队队员的身高更高?依据是什么?
所以从成绩来看应该录取乙.
归纳总结
一般地,若n个数x1,x2,…,xn的权分别
73
乙
73
80
82
83
(2)如何衡量两个球队的身高? 所以从成绩来看应该录取乙 因为乙的平均成绩比甲高,
2: 1: 3: 4
权数
所以从成绩来看应该录取乙
上述两支球队中,哪支球队队员的身高更高?依据是什么?
是w1,w2,…,wn,则 从他们的成绩看,应该录取谁?
会用算术平均数和加权平均数解决实际生活中的问题.(难点)
求这个跳水队运动员的平均年龄(结果取整数)。
从他们的成绩看,应该录取谁?
(2)如何衡量两个球队的身高?
所以从综合能力来看应该录取甲
日常生活中,我们常用平均数表示一组数据的“平均水平”.
所以从成绩来看应该录取乙
刚才的计算方式来求平均数吗?
情景二
应试者
听
说
读
写
甲
85
78
85
73
乙
73
80
82
83
如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成 绩按照2:1:3:4的比确定,计算两名应试者的平均成绩(百分制). 从他们的成绩看,应该录取谁?
应试者 听
说
读
写
甲
85
78
85
、16、24、2分别为权。
因为乙的平均成绩比甲高, 某校规定学生的体育成绩由三部分组成:早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.
权直接以数据出现的次数形式给出
上述两支球队中,哪支球队队员的身高更高?依据是什么?
所以从成绩来看应该录取乙.
归纳总结
一般地,若n个数x1,x2,…,xn的权分别
73
乙
73
80
82
83
(2)如何衡量两个球队的身高? 所以从成绩来看应该录取乙 因为乙的平均成绩比甲高,
2: 1: 3: 4
权数
所以从成绩来看应该录取乙
上述两支球队中,哪支球队队员的身高更高?依据是什么?
是w1,w2,…,wn,则 从他们的成绩看,应该录取谁?
会用算术平均数和加权平均数解决实际生活中的问题.(难点)
求这个跳水队运动员的平均年龄(结果取整数)。
从他们的成绩看,应该录取谁?
(2)如何衡量两个球队的身高?
所以从综合能力来看应该录取甲
日常生活中,我们常用平均数表示一组数据的“平均水平”.
所以从成绩来看应该录取乙
北师大版八年级数学上册《平均数》数据的分析PPT课件第2课时
A
85
B
95
演讲能力 95 85
演讲效果 95 95
请决出两人的名次.
选手
演讲内容 (50%)
演讲能力 (40%)
演讲效果 (10%)
A
85
95
95
B
95
85
95
解:选手A的最后得分是
选手B的最后得分是
85×50%+95×40%+95×10% 95×50%+85×40%+95×10%
50%+40%+10%
50%+40%+10%
=42.5+38+9.5
=47.5+34+9.5
=90.
=91.
由上可知选手B获得第一名,选手A获得第二名.
A 、60 B、70 C、75 D、80
3.一次演讲比赛中,评委将从演讲内容、演讲能力、演 讲效果三个方面为选手打分,各项成绩均按百分制,然 后再按演讲内容占50%、演讲能力占40%、演讲效果占 10%的比例,计算选手的综合成绩(百分制).进入决 赛的前两名选手的单项成绩如下表所示:
选手 演讲内容
解:
(1)
(2)21×0.4+32×0.3+43×0.2+54×0.1=32
例2 某学校进行广播操,比赛打分包括以下几项:服装统 一、进退场有序、动作规范、动作整齐(每项满分10分) 其中三个班级的成绩分别如下:
一班 二班 三班
服装统一 9 10 8
进退场有序 8 9 9
动作规范 9 7 8
动作整齐 8 8 9
(1)若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次 按10%,20%,30%,40%的比例计算各班的广播操比赛成绩,那么哪 个班的成绩最高?
八年级数学上册教学课件《平均数(第2课时)》
比赛成绩最高?与同伴进行交流.
探究新知
6.1 平均数
解:(1)一班的广播操成绩为: 9×10%+8×20%+9×30%+8×40%=8.4(分) 二班的广播操成绩为: 10×10%+9×20%+7×30%+8×40%=8.1(分) 三班的广播操成绩为: 8×10%+9×20%+8×30%+9×40%=8.6(分) 因此,三班的广播操成绩最高. (2)权有差异,得出的结果就会不同,也就是说 权的差异对结果有影响.
探究新知
6.1 平均数
由于小颖家去年的饮食、教育和其他三项支出金 额不等,因此,饮食、教育和其他三项支出的增长率 “地位”不同,它们对总支出增长率的“影响”不同, 不能简单地用算术平均数计算总支出的增长率,而应 将这三项支出金额3600,1200,7200分别视为三项支出 增长率的“权”,从而总支出的增长率为小亮的解法 是对的.
知识点 加权平均数的应用
6.1 平均数
问题一 某学校进行广播操比赛,比赛打分包括以下几项:服
装统一、进退场有序、动作规范、动作整齐(每项满分10分), 其中三个班级的成绩分别如下:
服装统一 进退场有序 动作规范
一班 9
8
9
二 班 10
9
7
三班 8
9
8
动作整齐 8 8 9
探究新知
6.1 平均数
服装统一 进退场有序 动作规范 动作整齐
15
答:样本的平均数是24.8.
课堂检测
基础巩固题
6.1 平均数
4.某校规定学生的体育成绩由三部分组成:早锻炼及体育课外活 动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%, 小颖的上述三项成绩依次是92分、80分、84分,则小颖这学期 的体育成绩是多少?
八年级数学上册第6章数据的分析1平均数第2课时加权平均数的应用课件新版北师大版
第六章
平均数
1
第2课时
数据的分析
加权平均数的应用
CONTENTS
目
录
01
1星题
夯实基础
02
2星题
提升能力
03
3星题
发展素养
知识点 加权平均数的应用
1. [2024淮安洪泽实验中学期中]某学校规定学生的数学成绩
由三部分组成,期末考试成绩占70%,期中考试成绩占
20%,平时作业成绩占10%,某人上述三项成绩分别为90
元、40元、50元,某天这四个等级苹果销
售数量的百分比如图所示,则这天销售的
31.5
苹果每箱平均价格为
元.
1
2
3
4
5
6
4. 某公司招考某工作岗位,只考数学和物理,计算综合得分
时,按数学占60%,物理占40%计算,如果小明的数学得
分为80分,估计综合得分最少要达到84分才有希望,那么
他的物理最少要考
本工资为70元/日,每加工一件零件奖励2元;乙加工厂:
全部按件数计算工资.若当日加工零件数不超过40件,每
件按4元计算工资;若当日加工零件数超过40件,超过部
分每件多奖励2元.
1
2
3
4
5
6
下面是某月份(30天)两家加工厂人均日加工零件数的
统计表:
人均日加工零件数(件)
38
39
40
41
42
甲加工厂天数
13
9
45
3
1
2
3
4
5
6
根据以上信息,以该月份的数据为依据,并将各加工厂的
人均日加工零件数视为该加工厂各工人的日加工零件数,
平均数
1
第2课时
数据的分析
加权平均数的应用
CONTENTS
目
录
01
1星题
夯实基础
02
2星题
提升能力
03
3星题
发展素养
知识点 加权平均数的应用
1. [2024淮安洪泽实验中学期中]某学校规定学生的数学成绩
由三部分组成,期末考试成绩占70%,期中考试成绩占
20%,平时作业成绩占10%,某人上述三项成绩分别为90
元、40元、50元,某天这四个等级苹果销
售数量的百分比如图所示,则这天销售的
31.5
苹果每箱平均价格为
元.
1
2
3
4
5
6
4. 某公司招考某工作岗位,只考数学和物理,计算综合得分
时,按数学占60%,物理占40%计算,如果小明的数学得
分为80分,估计综合得分最少要达到84分才有希望,那么
他的物理最少要考
本工资为70元/日,每加工一件零件奖励2元;乙加工厂:
全部按件数计算工资.若当日加工零件数不超过40件,每
件按4元计算工资;若当日加工零件数超过40件,超过部
分每件多奖励2元.
1
2
3
4
5
6
下面是某月份(30天)两家加工厂人均日加工零件数的
统计表:
人均日加工零件数(件)
38
39
40
41
42
甲加工厂天数
13
9
45
3
1
2
3
4
5
6
根据以上信息,以该月份的数据为依据,并将各加工厂的
人均日加工零件数视为该加工厂各工人的日加工零件数,
《平均数》ppt课件
男生套圈成绩统计图
(个)
10月18日
11
10
9
8
7
6
5
4
3
2
1
0
李
张
王
陈
小
晓
钢
明
宇
杰
学生活动: 观察男生成绩统计图,
想一想,怎样使他们每人套 中的个数相等?
04
任务二
男生套圈成绩统计图
(个)
11
10 9
9
8
77
6
7 6
6
5
4
3
2
1
0
李
张
王
陈
小
晓
钢
明
宇
杰
可以把多的补给 少的。
男生平均每人套 中7个。
作业设计
【知识技能类作业】
必做题:
2.学校象棋队七名队员的体重如下表,求出七名队员的平均身高。
姓名 王强 刘平 李海 孙亮 陈冬 肖俊 赵斌
体重/kg 52
29 48
33 37
32 35
(52+29+48+33+37+32+35)÷7
=266÷7
=38(kg)
答:七名队员的平均身高是38kg。
06
23×4+35×4-29×7
=92+140-203
=232-203
=29
答:中间那个数是29。
06
作业设计
【知识技能类作业】
必做题:
1.把第5次的( 1 )个给第1次,第5次的( 2
第2次,再把多出来的
( 1 )个给第4次,
5次的数量同样多。
3.1 平均数 第2课时 加权平均数 苏科版九年级数学上册教学课件
乙
73 80 82 83
提示:用算术平均数来衡量他们的成绩合理吗? 各项成 绩的“重要程度”相同吗?
课程讲授
1 加权平均数
问题1:为了解某市九年级学生开展“综合与实践”活 动的情况,抽样调查了该市200名九年级学生上 学期参加“综合与实践”活动的天数,比根据 调查所得的数据绘制条形统计图如下:
人数
60 50 40 30 20 10
0 2天 3天 4天 5天 6天
天数
求这200名学生参加“综合与实践”活动的平均天数.
课程讲授
1 加权平均数
2+3+4+5+6 =( 4 天) 5
2 10+3 30+4 60+5 50 6 50 =4.(5 天) 200
你认为上述两种算法哪一个正确?为什么?
D. a+b+c 3
随堂练习
2.(河南)某超市销售A , B , C , D四种矿泉水,它们的单 价依次是5元、3元、2元、1元.某天的销售情况如图所 示,则这天销售的矿泉水的平均单价是( ) C A.1.95 元 B.2. 15 元 AECF C.2. 25 元 D.2.75 元
随堂练习
3.(遂宁)某校拟招聘一批优秀教师,其中某位
课程讲授
1 加权平均数
如果采访写作、计算机操作和创意设计的成绩按4:2:4计 算.那么哪个人的素质测试平均成绩最高?
甲的得分= 70 4 60 2 86 4 =74.( 4 分)
424
乙的得分= 90 4 75 2 51 4 =71.( 4 分)
424
丙的得分= 60 4 84 2 78 4 =7( 2 分)
甲的得分= 70 5 60 2 86 3
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
81 ≤x<101
18
101 ≤x<121
15
组中值:数据分组后,这个小组的两个端点的数的平均数叫做 这个组的组中值.
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71
91 111
频数(班次)
3 5 20 22 18 15
根据频数分布表求加权平均数时,统计中常用各组的组中值代 表各组的实际数据,把各组的频数看作相应组中值的权.
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71
91 111
频数(班次)
3 5 20 22 18 15
载客量/人
取整数).
频数 14
12
10
8
6
4
2
0
40 50 60 70 80 90 周长/cm
解: 答:这批梧桐树干的平均周长是64cm.
3 用样本平均数估计总体平均数
使 (1)在很多情况下总体包含的个体数目很多,甚至 用 无限,不可能一一加以考察. 理 (2)有些从总体中抽取个体的试验带有破坏性,因 由 此抽取个体的数目不允许太多.
选取 样本 数据 的条 件
选取的样本要有随机性,样本中的数据要有代表性。
否则会影响样本对总 体估计的精确度。
新课导入
感谢您的阅读! 为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载!
问题2 为了了解某校1800名学生的身高情况,随机抽取该校男生和女 生进行抽样调查.利用所得数据绘制如下统计图表:
155≤x<165
C
165≤x<175
D
175≤x<185
男生身高情况直方图
女生身高情况扇形统计图
(2)已知抽取的样本中,女生和男生的人数相同,样本中女生的平 均身高约是多少?
组别 A B C D
身高/cm 145≤x<155 155≤x<165 165≤x<175 175≤x<185
男生身高情况直方图
女生身高情况扇形统计图
(3)若抽样的女生为m人,女生的平均身高会改变吗?若改变,请 计算;若不变,请说明理由.
组别 A B C D
身高/cm 145≤x<155 155≤x<165 165≤x<175 175≤x<185
男生身高情况直方图
女生身高情况扇形统计图
(4)根据以上结果,你能估计该校女生的平均身高吗?
用样本的平均数可以估计总体的平均数.
例2 用商家免费提供的塑料袋购物,我们享受着方便和快捷,但同时要
关注它对环境的潜在危害。为了解某市所有家庭每年丢弃塑料袋个数的情 况,统计人员采用了科学的方法,随机抽取了200户,对他们某日丢弃塑 料袋的个数进行了统计,结果如下表:
(1)求这天这200户家庭平均每户丢弃塑料袋的个数; (2)假设本市现有家庭100万户,据此估计全市所有家庭每年(以36天计算) 丢弃塑料袋的总数.
年龄 28≤X<30 30≤X<32 32≤X<34 34≤X<36 36≤X<38 38≤X<40 40≤X<42
频数 4 4 8 8 12 14 6
答案:36.1岁.
2.为了检查一批零件的质量,从中随机抽取10件, 测得它们的长度(单位:mm)如下: 22.36 22.35 22.33 22.35 22.37 22.34 22.38 22.36 22.32 22.35 根据以上数据,估计这批零件的平均长度. 解:根据以上数据,得
身高情况分组表(单位:cm)
组别 A B C D
身高/cm 145≤x<155 155≤x<165 165≤x<175 175≤x<185
男生身高情况直方图
女生身高情况扇形统计图
(1)根据图表提供的信息,样本中男生的平均身高约是多少?
身高情况分组表(单位:cm)
组别
身高/cm
A
145≤x<155
B
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71
91 111
频数(班次)
3 5 20 22 18 15
解:这天5路公共汽车平均每班的载客量是
2 使用计算器计算加权平均数
1.不同品牌的计算器的操作步骤有所不同,
操作时需要参阅计算器的题1: 为了解5路公共汽车的运营情况,公交部门统计了某天5路公
共汽车每个运行班次的载客量,得到下表,这天5路公共汽车平均每班
的载客量是多少?
载客量/人 1≤x<21 21 ≤x<41 41 ≤x<61 61 ≤x<81
频数(班次) 3 5 20 22
表格中载客量是六个 数据组,而不是一个具体 的数,各组的实际数据应 该选谁呢?
解:(1)(15×1+60×2+65×3+35×4+20×5+5×6)÷200=3(个), ∴这天这200户家庭平均每户丢弃3个塑料袋. (2)∵100×3×365=109500(万个),∴全市所有家庭每年约丢弃 109500万个塑料袋
随堂训练
1.下表是截至到2017年菲尔兹奖得主获奖时的年龄,根据表格中的 信息计算获菲尔兹奖得主获奖时的平均年龄(保留一位小数)?
2.通常需要先按动有关键,使计算器进入统计状态;然后依次 输入数据x1,x2,…,xn ,以及它们的权f, f2,…,fn ;
最后按动求平均数的功能键(例如 键),计算器便会求
出平均数
的值.
例1 为了绿化环境,柳荫街引进一批法国梧桐.三年后这些树的树
干的周长情况如图所示.计算这批法国梧桐树干的平均周长(结果
=
= 22.351 即样本平均数为 22.351 答:这批零件的平均长度大约是22.351mm.
3.下图是某学校的一次健康知识测验的分数段统计图(满分100 分,分数均为整数),点O是圆心,点D,O,E在同一条直线 上,∠AOE=36°.
第二十章 数据的分析
平均数
第2课时
学习目标
1 理解组中值的意义,能利用组中值计算一组数据的加权平
均数;(重点)
2 了解使用计算器计算加权平均数. 3 理解用样本平均数估计总体平均数的意义.(难点)
旧知回顾
1.若n个数x1,x2,…,xn的权分别是w1,w2,…,wn, 则__________________叫做这n个数的加权平均数. 2.“权”反映数据的“重要程度”,其表现形式有:数据所 占的百分比、各个数据所占的比值、数据出现的次数.