第一章1.1-1.1.1第1课时集合的含义 答案

合集下载

高中数学第1章集合与常用逻辑用语1.1集合的概念第1课时集合的含义人教A版必修第一册

高中数学第1章集合与常用逻辑用语1.1集合的概念第1课时集合的含义人教A版必修第一册
[解] 由题意可知,a=1或a2=a, (1)若a=1,则a2=1,这与a2≠1相矛盾,故a≠1. (2)若a2=a,则a=0或a=1(舍去),又当a=0时,A中含有元素1和 0,满足集合中元素的互异性,符合题意. 综上可知,实数a的值为0.
1.(变条件)本例若去掉条件“a∈A”,其他条件不变,求实数a的取 值范围.
点、易混点)
自主预习 探新知
1.元素与集合的相关概念 (1)元素:一般地,把研究对象统称为元素,常用小写的拉丁字母 a,b,c,… 表示. (2)集合:一些元素组成的总体叫做集合(简称为集),常用大写拉丁 字母 A,B,C,… 表示. (3)集合相等:指构成两个集合的元素是一样 的. (4)集合中元素的特性:确定性 、互异性和无序性 .
元素与集合的关系
【例2】 (1)下列所给关系正确的个数是( )
①π∈R;② 2∉Q;③0∈N*;④|-5|∉N*.
A.1
B.2
C.3
D.4
(2)已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,那么a为
() A.2
B.2或4
C.4
D.0
(1)B (2)B [(1)①π是实数,所以π∈R正确; ② 2是无理数,所以 2∉Q正确;③0不是正整数,所以0∈N*错误; ④|-5|=5为正整数,所以|-5|∉N*错误.故选B. (2)集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,a=2∈A,6-a =4∈A, 所以a=2, 或者a=4∈A,6-a=2∈A, 所以a=4, 综上所述,a=2或4.故选B.]
第一章 集合与常用逻辑用语
1.1 集合的概念 第1课时 集合的含义
学习目标
核心素养
1.通过实例了解集合的含义.(难点) 1.通过集合概念的学习,逐步

第1章 1.1 1.1.1 第1课时 集合的含义

第1章  1.1  1.1.1  第1课时 集合的含义

集合1.1.1 集合的含义与表示第一课时集合的含义[新知初探]1.元素与集合的概念(1)元素:一般地,把研究对象统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.(4)元素的特性:确定性、无序性、互异性.[点睛] 集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是点,也可以是一些人或一些物.2.元素与集合的关系[点睛] 对元素和集合之间关系的两点说明(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a ∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.3.常用的数集及其记法[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)你班所有的姓氏能组成集合.( )(2)新课标数学人教A版必修1课本上的所有难题.( )(3)一个集合中可以找到两个相同的元素. ( )答案:(1)√(2)×(3)×2.下列元素与集合的关系判断正确的是( )A.0∈N B.π∈QC.2∈Q D.-1∉Z答案:A3.已知集合A中含有两个元素1,x2,且x∈A,则x的值是( )A.0 B.1C.-1 D.0或1答案:A4.方程x2-1=0与方程x+1=0所有解组成的集合中共有________个元素.答案:2集合的基本概[例1] 考查下列每组对象,能构成一个集合的是( )①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④[解析] ①中“成绩优秀”没有明确的标准,所以不能构成一个集合;②③④中的对象都满足确定性,所以能构成集合.[答案] B1.给出下列说法:①中国的所有直辖市可以构成一个集合; ②高一(1)班较胖的同学可以构成一个集合; ③正偶数的全体可以构成一个集合;④大于2 013且小于2 018的所有整数不能构成集合. 其中正确的有________.(填序号)解析:②中由于“较胖”的标准不明确,不满足集合元素的确定性,所以②错误;④中的所有整数能构成集合,所以④错误.答案:①③[例2] (1)下列关系中,正确的有( ) ①12∈R ;② 2∉Q ;③|-3|∈N ;④|-3|∈Q. A .1个 B .2个 C .3个D .4个(2)集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________.[解析] (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)由题意可得:3-x 可以为1,2,3,6,且x 为自然数,因此x 的值为2,1,0.因此A 中元素有2,1,0. [答案] (1)C (2)0,1,2元素与集合的关系[活学活用]2.已知集合A 中有四个元素0,1,2,3,集合B 中有三个元素0,1,2,且元素a ∈A ,a ∉B ,则a 的值为( ) A .0 B .1 C .2D .3解析:选D ∵a ∈A ,a ∉B ,∴由元素与集合之间的关系知,a =3. 3.用适当的符号填空:已知A ={x|x =3k +2,k ∈Z},B ={x|x =6m -1,m ∈Z},则有:17________A ;-5________A ;17________B.解析:令3k +2=17得,k =5∈Z. 所以17∈A.令3k +2=-5得,k =-73∉Z.所以-5∉A.令6m -1=17得,m =3∈Z , 所以17∈B. 答案:∈ ∉ ∈[例3] 已知集合A 含有两个元素a 和a 2,若1∈A ,则实数a 的值为________.集合中元素的特性及应用[解析] 若1∈A,则a=1或a2=1,即a=±1.当a=1时,集合A有重复元素,不符合元素的互异性,∴a≠1;当a=-1时,集合A含有两个元素1,-1,符合元素的互异性.∴a=-1.[答案] -1[一题多变]1.[变条件]本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.解:因2∈A,则a=2或a2=2即a=2,或a=2,或a=- 2.2.[变条件]本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?解:因A中有两个元素a和a2,则由a≠a2解得a≠0且a≠1.3.[变条件]已知集合A含有两个元素1和a2,若“a∈A”,求实数a的值.解:由a∈A可知,当a=1时,此时a2=1,与集合元素的互异性矛盾,所以a≠1.当a=a2时,a=0或1(舍去).综上可知,a=0.根据集合中元素的特性求解字母取值(范围)的3个步骤层级一学业水平达标1.下列说法正确的是( )A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程(x-1)(x+1)2=0的所有解构成的集合中有3个元素解析:选C A项中元素不确定.B项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等.D项中方程的解分别是x1=1,x2=x3=-1.由互异性知,构成的集合含2个元素.2.已知集合A由x<1的数构成,则有( )A.3∈A B.1∈AC.0∈A D.-1∉A解析:选C 很明显3,1不满足不等式,而0,-1满足不等式.3.下面几个命题中正确命题的个数是( )①集合N*中最小的数是1;②若-a∉N*,则a∈N*;③若a∈N*,b∈N*,则a+b最小值是2;④x2+4=4x的解集是{2,2}.A.0 B.1 C.2 D.3解析:选C N*是正整数集,最小的正整数是1,故①正确;当a=0时,-a∉N*,且a∉N*,故②错;若a∈N*,则a的最小值是1,又b∈N*,b的最小值也是1,当a和b都取最小值时,a+b取最小值2,故③正确;由集合元素的互异性知④是错误的.故①③正确.4.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为( )A.2 B.2或4C .4D .0解析:选B 若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A.故选B.5.由实数-a ,a ,|a|,a 2所组成的集合最多含有的元素个数是( ) A .1 B .2 C .3 D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a≠0时,a 2=|a|=⎩⎪⎨⎪⎧a ,a>0,-a ,a<0,所以一定与a 或-a 中的一个一致.故组成的集合中有两个元素,故选B.6.下列说法中:①集合N 与集合N +是同一个集合; ②集合N 中的元素都是集合Z 中的元素; ③集合Q 中的元素都是集合Z 中的元素; ④集合Q 中的元素都是集合R 中的元素. 其中正确的有________(填序号).解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b________A ,ab________A .(填∈或∉).解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A. 答案:∉ ∈8.已知集合P 中元素x 满足:x ∈N ,且2<x<a ,又集合P 中恰有三个元素,则整数a =________. 解析:∵x ∈N,2<x<a ,且集合P 中恰有三个元素, ∴结合数轴知a =6. 答案:69.设A 是由满足不等式x<6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 解:∵a ∈A 且3a ∈A ,∴⎩⎪⎨⎪⎧a<6,3a<6,解得a<2.又a ∈N ,∴a =0或1.10.已知集合A 中含有两个元素x ,y ,集合B 中含有两个元素0,x 2,若A =B ,求实数x ,y 的值. 解:因为集合A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上知:x =1,y =0.层级二 应试能力达标1.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x≤1的自然数构成的集合,Q 是方程x 2=1的解集解析:选A 由于A 中P ,Q 元素完全相同,所以P 与Q 表示同一个集合,而B 、C 、D 中元素不相同,所以P 与Q 不能表示同一个集合.故选A.2.若以集合A 的四个元素a ,b ,c ,d 为边长构成一个四边形,则这个四边形可能是( ) A .梯形 B .平行四边形 C .菱形D .矩形解析:选A 由于a ,b ,c ,d 四个元素互不相同,故它们组成的四边形的四条边都不相等. 3.若集合A 中有三个元素1,a +b ,a ;集合B 中有三个元素0,ba ,b.若集合A 与集合B 相等,则b-a =( )A .1B .-1C .2D .-2解析:选C 由题意可知a +b =0且a≠0,∴a =-b , ∴ba=-1.∴a =-1,b =1,故b -a =2. 4.已知a ,b 是非零实数,代数式|a|a +|b|b +|ab|ab 的值组成的集合是M ,则下列判断正确的是( )A .0∈MB .-1∈MC .3∉MD .1∈M解析:选B 当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.5.不等式x -a≥0的解集为A ,若3∉A ,则实数a 的取值范围是________. 解析:因为3∉A ,所以3是不等式x -a<0的解,所以3-a<0,解得a>3. 答案:a>36.若集合A中含有三个元素a-3,2a-1,a2-4,且-3∈A,则实数a的值为________.解析:(1)若a-3=-3,则a=0,此时A={-3,-1,-4},满足题意.(2)若2a-1=-3,则a=-1,此时A={-4,-3,-3},不满足元素的互异性.(3)若a2-4=-3,则a=±1.当a=1时,A={-2,1,-3},满足题意;当a=-1时,由(2)知不合题意.综上可知:a=0或a=1.答案:0或17.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,现知9∈A且集合B中再没有其他元素属于A,能否根据上述条件求出实数a的值?若能,则求出a的值,若不能,则说明理由.解:∵9∈A,∴2a-1=9或a2=9,若2a-1=9,则a=5,此时A中的元素为-4,9,25;B中的元素为9,0,-4,显然-4∈A且-4∈B,与已知矛盾,故舍去.若a2=9,则a=±3,当a=3时,A中的元素为-4,5,9;B中的元素为9,-2,-2,B中有两个-2,与集合中元素的互异性矛盾,故舍去.当a=-3时,A中的元素为-4,-7,9;B中的元素为9,-8,4,符合题意.综上所述,满足条件的a存在,且a=-3.8.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明:(1)若a∈A,则11-a∈A.11 又∵2∈A ,∴11-2=-1∈A.∵-1∈A ,∴11--1=12∈A.∵12∈A ,∴11-12=2∈A.∴A 中必还有另外两个元素,且为-1,12.(2)若A 为单元素集,则a =11-a ,即a 2-a +1=0,方程无解. ∴a≠11-a ,∴集合A 不可能是单元素集.。

高中数学第一章集合与逻辑1-1集合1-1-1集合第1课时集合与元素学生用书湘教版必修第一册

高中数学第一章集合与逻辑1-1集合1-1-1集合第1课时集合与元素学生用书湘教版必修第一册

第一章集合与逻辑1.1 集合1.1.1 集合第1课时集合与元素教材要点要点一集合与元素的概念在数学语言中,把一些对象放在一起考虑时,就说这些对象组成了一个________________,这些对象中的每一个,都叫作这个集合的一个________.要点二元素与集合的关系要点三元素的基本属性(1)互异性:同一集合中的元素是________________.(2)确定性:集合中的元素是确定的.亦即给定一个集合,任何一个元素属于或不属于这个集合是确定的.(3)无序性:集合中的元素________.状元随笔(1)互异性:对于给定的集合,其中的元素一定是不同的,相同的对象归入同一个集合时只能算作集合的一个元素.(2)确定性:是指作为一个集合的元素必须是明确的,不能确定的对象不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素是确定的.(3)无序性:对于给定的集合,其中的元素是不考虑顺序的.如1,2,3与3,2,1构成的集合是同一个集合.要点四常用数集及表示符号要点五集合的分类(1)有限集:元素个数________的集合叫有限集(或有穷集).(2)无限集:元素________的集合叫无限集(或无穷集).(3)空集:没有元素的集合叫空集,记作________.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)在一个集合中可以找到两个相同的元素.( )(2)我班喜欢打篮球的同学不能组成一个集合.( )(3)空集是无限集.( )(4)由方程x2-4=0和x-2=0的根组成的集合中有3个元素.( )2.(多选)下列元素与集合的关系判断正确的是( )A.0∈N B.π∈QC.-1∈Z D.√2∉R3.已知集合A含有三个元素0,1,x-2,则实数x不能取的值是________.4.若A是不等式4x-5<3的解集,则1________A,2______A.(用∈或∉填空)题型1 集合概念的理解例1 判断下列每组对象能否构成一个集合:(1)援助湖北抗击新冠疫情的医护人员;(2)我校2021级所有高个子同学;(3)不小于3的自然数;(4)√3的近似值的全体.方法归纳判断一组对象能否组成集合的策略(1)注意集合中元素的确定性,看是否给出一个明确的标准,使得对于任何一个对象,都能按此标准确定它是不是给定集合的元素,若具有此“标准”,就可以组成集合;否则,不能组成集合.(2)注意集合中元素的互异性、无序性.跟踪训练1 (多选)下列对象能构成集合的是( )A.联合国常任理事国B.充分接近√2的实数的全体C.方程x2+x-1=0的实数根D.全国著名的高等院校题型2 元素与集合的关系例2 (1)(多选)由不超过5的实数组成集合A,a=√2+√3,则( )A.a∈A B.a2∈A∈A D.a+1∈AC.1a(2)给出下列关系:①1∈R;②|-3|∉N;③|-√3|∈Q;④0∉N.其中正确的个数为( )2A.1B.2C.3D.4方法归纳判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.跟踪训练2 (1)给出下列说法:①R中最小的元素是0;②若a∈Z,则-a∉Z;③若a∈Q,b∈N,则a+b∈Q.其中正确的个数为( )A.0B.1C.2D.3(2)设集合M是由不小于2√3的数组成的集合,a=√11,则下列关系中正确的是( )A.a∈M B.a∉MC.a=M D.a≠M题型3 集合特性的应用例3 设A为实数集,且满足条件:若a∈A,则1∈A(a≠1).1−a求证:(1)若2∈A,则A中必还有另外两个元素.(2)集合A不可能是单元素集.变式探究本例前提条件不变,求证以下两个问题:(1)若3∈A,则A中必还有另外两个元素.(2)若a∈A,则1-1∈A.a方法归纳根据集合中元素的特性求值的三个步骤跟踪训练3 设集合A中含有三个元素3,x,x2-2x,(1)求实数x应满足的条件.(2)若-2∈A,求实数x.易错辨析忽略集合元素的互异性例4 设a,b∈R,集合A中含有三个元素1,a+b,a,集合B中含有三个元素0,b,a b,且A=B,则a2021+b2021=________.=1.若b=1,解析:易知a≠0,a≠1,则根据两个集合相等可知a+b=0,且b=1或ba=1,则a=b,结合a+b=0,可知a=b=0,由a+b=0得a=-1,经验证,符合题意;若ba不符合题意.综上可知a=-1,b=1.故a2021+b2021=(-1)2021+12021=0.答案:0易错警示课堂十分钟1.下列各组对象可以组成集合的是( )A.数学必修1课本中所有的难题B.小于8的所有素数C.直角坐标平面内第一象限的一些点D.所有小的正数2.设M是所有偶数组成的集合,则( )A.3∈M B.1∈MC.2∈M D.0∉M3.下列各组中集合P与Q,表示同一个集合的是( )A.P是由元素1,√3,π构成的集合,Q是由元素π,1,|-√3|构成的集合B.P是由π构成的集合,Q是由3.14159构成的集合C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集4.已知集合A中的元素x满足x≥2,若a∉A,则实数a的取值范围是________.5.已知集合A是由所有形如3a+√2b(a∈Z,b∈Z)的数组成的,判断-6+2√2是不是集合A中的元素.第一章集合与逻辑1.1 集合1.1.1 集合第1课时集合与元素新知初探·课前预习要点一集合或集元素要点二a是集合S的元素a∈S a不是集合S中的元素a∉S要点三互不相同的没有顺序要点四N N*或N+Z Q R要点五有限无限多∅[基础自测]1.答案:(1)×(2)√(3)×(4)×2.解析:显然AC正确;π是无理数,B不正确;√2是实数,D不正确.故选AC.答案:AC3.解析:由元素的互异性可知x-2≠0且x-2≠1,即x≠2且x≠3.答案:2,34.解析:由4x-5<3得x<2,则1∈A,2∉A.答案:∈∉题型探究·课堂解透例1 解析:(1)能构成集合.(2)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合.(3)对于任意一个自然数能判断是不是不小于3,所以能构成集合.(4)“√3的近似值”没有明确精确到什么程度,因此很难判断一个数是不是它的近似值,所以不能构成集合.跟踪训练1 解析:B 、D 中的元素不能确定,不能构成集合,故选AC. 答案:AC例2 解析:(1)a =√2+√3<√4+√4=4<5, 所以a ∈A ,a +1<√4+√4+1=5,所以a +1∈A ,a 2=(√2)2+2√2×√3+(√3)2=5+2√6>5,所以a 2∉A ,1a=√2+√3=√3−√2(√2+√3)(√3−√2)√3−√2<5,所以1a ∈A .故选ACD. (2)①正确;②③④不正确.故选A. 答案:(1)ACD (2)A跟踪训练2 解析:(1)实数集中没有最小的元素,故①不正确;对于②,若a ∈Z ,则-a 也是整数,故-a ∈Z ,所以②也不正确;只有③正确.(2)判断一个元素是否属于某个集合,关键是看这个元素是否具有这个集合中元素的特征,若具有就是,否则不是.∵√11<2√3,∴a ∉M .答案:(1)B (2)B例3 证明:(1)若a ∈A ,则11−a ∈A . 又因为2∈A ,所以11−2=-1∈A . 因为-1∈A ,所以11−(−1)=12∈A . 因为12∈A ,所以11−12=2∈A .根据集合中元素的互异性可知,A 中另外两个元素为-1,12,结论得证. (2)若A 为单元素集,则a =11−a , 即a 2-a +1=0,方程无实数解.所以a ≠11−a ,所以集合A 不可能是单元素集. 变式探究 证明:(1)因为3∈A , 所以11−3=-12∈A , 所以11−(−12)=23∈A ,所以11−23=3∈A ,根据集合中元素的互异性可知,A 中另外两个元素为-12,23,结论得证. (2)因为a ∈A ,所以11−a ∈A , 所以11−11−a=1−a −a =1-1a ∈A .跟踪训练3 解析:(1)由集合中元素的互异性可知,x≠3,且x≠x2-2x,x2-2x≠3.解之得x≠-1且x≠0,且x≠3.(2)因为-2∈A,所以x=-2或x2-2x=-2.由于x2-2x=(x-1)2-1≥-1,所以x=-2.[课堂十分钟]1.解析:A中“难题”的标准不确定,不能构成集合;B能构成集合;C中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;D中没有明确的标准,所以不能构成集合.故选B.答案:B2.解析:∵0和2是偶数,∴2∈M,0∈M,故选C.答案:C3.解析:由于A中P、Q元素完全相同,所以P与Q表示同一个集合,而B、C、D中元素不相同,所以P与Q不能表示同一个集合.故选A.答案:A4.解析:∵x≥2,且a∉A,∴a<2.答案:a<25.解析:因为-2∈Z且2∈Z,所以-6+2√2=3×(-2)+√2×2是形如3a+√2b(a ∈Z,b∈Z)的数,即-6+2√2是集合A中的元素.。

第一章 §1 1.1 第1课时 集合的概念

第一章 §1 1.1 第1课时 集合的概念

§1集合1.1集合的概念与表示第1课时集合的概念学习目标 1.通过实例了解集合的含义.2.理解集合中元素的特征.3.体会元素与集合的“属于”与“不属于”关系.4.记住常用数集的表示符号并会应用.知识点一元素与集合的概念1.集合:一般地,我们把指定的某些对象的全体称为集合,通常用大写英文字母A,B,C,…表示.2.元素:集合中的每个对象叫作这个集合的元素,通常用小写英文字母a,b,c,…表示.3.集合中元素的特性:给定的集合,它的元素必须是确定的、互不相同的、顺序任意的.思考某班所有的“追梦人”能否构成一个集合?答案不能构成集合,因为“追梦人”没有明确的标准.知识点二元素与集合的关系关系说法记法属于a属于集合A a∈A不属于a不属于集合A a∉A思考符号“∈”“∉”的左边可以是集合吗?答案不能,符号“∈”和“∉”具有方向性,必须左边是元素,右边是集合.知识点三常见的数集及表示符号数集自然数集正整数集整数集有理数集实数集正实数集符号N N+或N*Z Q R R+1.组成集合的元素一定是数.(×)2.接近于0的数可以组成集合.(×)3.元素1,2,3和元素3,2,1组成的集合是不相同的.(×)4.一个集合中可以找到两个相同的元素.(×)一、对集合的理解例1(多选)考察下列每组对象,能构成集合的是()A.2 020年全国高考数学试卷中的所有难题B.中国各地美丽的乡村C.参加我市新冠防治的志愿者D.不小于3的自然数答案CD解析A中“难题”,B中“美丽的”标准不明确,不符合确定性;CD中的元素标准明确,均可构成集合,故选CD.反思感悟判断给定的对象能不能构成集合,关键在于是否给出一个明确的标准,使得对于任何一个对象,都能按此标准确定它是不是给定集合的元素.跟踪训练1下列说法中,正确的是()A.“不超过20的非负数”构成一个集合B.用实数2,0,2,0组成的集合有4个元素C.“3的近似值的全体”构成一个集合D.由甲、乙、丙三人组成的集合与丙、乙、甲三人组成的集合不同答案 A二、元素与集合的关系例2(1)下列关系式中正确的个数为()①2∈Q;②-1∉N;③π∉R;④|-4|∈Z;⑤0∈N.A.1 B.2 C.3 D.4答案 C解析①∵2是无理数,∴2∉Q,故①错误;②-1∉N,②正确;③∵π是实数,∴π∈R,故③错误;④∵|-4|=4是整数,∴|-4|∈Z,故④正确;⑤0是自然数,故⑤正确.(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为__________.答案2,1,0解析由题意可得,3-x可以为1,2,3,6,且x为自然数,因此x的值为2,1,0,因此A中元素有2,1,0.反思感悟判断元素与集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.跟踪训练2给出下列说法:①R中最小的元素是0;②若a∈Z,则-a∉Z;③若a∈Q,b∈N+,则a+b∈Q.其中正确的个数为()A.0 B.1 C.2 D.3答案 B解析实数集中没有最小的元素,故①不正确;对于②,若a∈Z,则-a也是整数,故-a∈Z,所以②也不正确;只有③正确.三、集合中元素特性的简单应用例3已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.解∵-3∈A,∴-3=a-3或-3=2a-1,若-3=a-3,则a=0,此时集合A中含有两个元素-3,-1,符合题意;若-3=2a-1,则a=-1,此时集合A中含有两个元素-4,-3,符合题意.综上所述,a=0或a=-1.(学生)反思感悟由集合中元素的特性求解字母取值(范围)的步骤跟踪训练3已知集合A中有0,m,m2-3m+2三个元素,且2∈A,则实数m为() A.2 B.3C.0或3 D.0,2,3均可答案 B解析由2∈A可知,若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾;当m=3时,此时集合A中含有3个元素0,2,3,故选B.1.现有下列各组对象:①著名的数学家;②某校今年在校的所有高个子同学;③不超过30的所有非负整数;④方程x2-4=0在实数范围内的解;⑤平面直角坐标系中第一象限内的点.其中能构成集合的是()A.①③B.②③C.③④D.③④⑤答案 D解析①著名的数学家无明确的标准,对某个数学家是否著名无法客观地判断,因此①不能构成一个集合;类似地,②也不能构成集合;③任给一个整数,可以明确地判断它是不是“不超过30的非负整数”,因此③能构成一个集合;类似地,④也能构成一个集合;对于⑤,“在第一象限内”不仅可以用坐标系进行图示,也可以通过点的横纵坐标是否都大于0来判断,标准是明确的,因此能构成一个集合.2.(多选)下列结论正确的是()A.0∈N+ B.2-7∉QC.0∉Q D.8∈Z答案BD3.已知集合M中的元素a,b,c是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形答案 D解析因为集合中元素具有互异性,所以a,b,c互不相等,因此选D.4.一个小书架上有十个不同品种的书各3本,那么由这个书架上的书组成的集合中含有________个元素.答案10解析由集合元素的互异性知,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个,因此书架上的书组成的集合中有10个元素.5.下列说法中:①集合N与集合N+是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的有________(填序号).答案②④解析因为集合N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.1.知识清单:(1)元素与集合的概念、元素与集合的关系.(2)常用数集的表示.(3)集合中元素的特性及应用.2.方法归纳:分类讨论.3.常见误区:忽视集合中元素的互异性.1.下列各组对象能构成集合的有( ) ①接近于1的所有正整数; ②小于0的实数; ③(2 020,1)与(1,2 020). A .1组 B .2组 C .3组 D .0组答案 B解析 ①中接近于1的所有正整数标准不明确,故不能构成集合;②中“小于0”是一个明确的标准,能构成集合;③中(2 020,1)与(1,2 020)是两个不同的数对,是确定的,能构成集合. 2.(多选)若a 是R 中的元素,但不是Q 中的元素,则a 可以是( ) A .3.14 B. 5 C.34 D .-7 答案 BD解析 由题意知a 应为无理数.3.给出下列关系:①13∈R ;②7∈Q ;③-3∉Z ;④-3∉N ,其中正确的个数为( )A .1B .2C .3D .4 答案 B解析 13是实数,①正确;7是无理数,②错误;-3是整数,③错误;-3是无理数,④正确.故选B.4.已知集合A 中的元素x 满足x -1<3,则下列各式正确的是( ) A .3∈A 且-3∉A B .-3∈A 且3∈A C .3∉A 且-3∉A D .3∉A 且-3∈A 答案 D解析 ∵3-1=2>3,∴3∉A , 又-3-1=-4<3,∴-3∈A . 5.已知集合M 是由满足y =12x ⎝⎛⎭⎫其中x ∈N +,12x ∈Z 的实数y 组成的,则M 中含有的元素个数为( ) A .4B .6C.8 D.12答案 B解析由题意,可知y可取的值为1,2,3,4,6,12,共6个,故选B.6.用符号“∈”或“∉”填空:设集合M中的元素为平行四边形,p表示某个矩形,q表示某个梯形,则p________M,q________M.答案∈∉解析矩形是平行四边形,梯形不是平行四边形,故p∈M,q∉M.7.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为________.答案-1解析当x=0,1,-1时,都有x2∈A,但考虑到集合中元素的互异性,x≠0,x≠1,故答案为-1.8.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=________. 答案 6解析∵x∈N,2<x<a,且集合P中恰有三个元素,∴结合数轴知a=6.9.设x∈R,集合A中含有三个元素3,x,x2-2x.(1)求元素x应满足的条件;(2)若-2∈A,求实数x的值.解(1)由集合元素的互异性可得x≠3,x2-2x≠x,且x2-2x≠3,解得x≠-1,x≠0,且x≠3.(2)若-2∈A,则x=-2或x2-2x=-2.由于方程x2-2x+2=0无实数解,所以x=-2.经检验,知x=-2符合题意.故x=-2.10.若集合A中含有a-2,a2+4a,10三个元素,若-3∈A,求实数a的值.解由-3∈A得,a-2=-3或a2+4a=-3.若a-2=-3,解得a=-1,此时a2+4a=1-4=-3,集合A中的元素为-3,-3,10,不满足元素的互异性,所以a=-1,舍去.若a2+4a=-3,解得a=-3或a=-1(舍去).当a =-3时,a -2=-5,此时集合A 中的元素为-5,-3,10,符合条件. 综上,a =-3.11.集合A 中只含有三个元素2,4,8,若a ∈A ,且8-a ∈A ,则a 为( ) A .2 B .4 C .8 D .0答案 B解析 若a =2,则8-a =8-2=6∉A ;若a =4,则8-a =8-4=4∈A ;若a =8,则8-a =8-8=0∉A ,故选B.12.(多选)已知x ,y 为非零实数,代数式x |x |+y |y |+xy|xy |的值所组成的集合是M ,则下列判断正确的是( )A .-1∈MB .1∈MC .2∈MD .3∈M 答案 AD解析 ①当x ,y 均为正数时,代数式x |x |+y |y |+xy|xy |的值为3;②当x ,y 为一正一负时,代数式x |x |+y |y |+xy |xy |的值为-1;③当x ,y 均为负数时,代数式x |x |+y |y |+xy|xy |的值为-1,所以集合M 的元素有-1,3.13.由a 2,2-a ,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值可以是( ) A .1 B .-2 C .-1 D .2 答案 C解析 由题意知a 2≠4,2-a ≠4,a 2≠2-a ,解得a ≠±2,且a ≠1,结合选项知C 正确,故选C.14.已知集合A 中有3个元素a ,b ,c ,其中任意2个不同元素的和的集合中的元素是1,2,3.则集合A 中的任意2个不同元素的差的绝对值的集合中的元素是________. 答案 1,2解析 由题意知⎩⎪⎨⎪⎧ a +b =1,b +c =2,c +a =3,解得⎩⎪⎨⎪⎧a =1,b =0,c =2,∴集合A 中元素为0,1,2,则集合A 中的任意2个不同元素的差的绝对值分别是1,2.故集合A 中的任意2个不同元素的差的绝对值的集合中的元素是1,2.15.已知集合M 有2个元素x ,2-x ,若-1∉M ,则下列说法一定错误的是________. ①2∈M ;②1∈M ;③x ≠3. 答案 ②解析 依题意⎩⎪⎨⎪⎧x ≠-1,2-x ≠-1,x ≠2-x .解得x ≠-1,x ≠1且x ≠3,当x =2或2-x =2,即x =2或0时,M 中的元素为0,2,故①可能正确;当x =1或2-x =1,即x =1时,M 中两元素为1,1不满足互异性,故②不正确,③显然正确. 16.集合A 中共有3个元素-4,2a -1,a 2,集合B 中也共有3个元素9,a -5,1-a ,现知9∈A 且集合B 中再没有其他元素属于A ,根据上述条件求出实数a 的值. 解 ∵9∈A ,∴2a -1=9或a 2=9,若2a -1=9,则a =5,此时A 中的元素为-4,9,25;B 中的元素为9,0,-4,显然-4∈A 且-4∈B ,与已知矛盾,故舍去.若a 2=9,则a =±3,当a =3时,A 中的元素为-4,5,9;B 中的元素为9,-2,-2,B 中有两个-2,与集合中元素的互异性矛盾,故舍去.当a =-3时,A 中的元素为-4,-7,9;B 中的元素为9,-8,4,符合题意. 综上所述,a =-3.。

人教版A数学必修一第1章 1.1.1 集合的含义

人教版A数学必修一第1章 1.1.1  集合的含义

人教版A数学必修一第1章 1.1.1 集合的含义解答题若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.(1)判断集合A={-1,1,2}是否为可倒数集;(2)试写出一个含3个元素的可倒数集.【答案】(1)不是(2)A={1,2,}或{-1,2,}或{1,3,}【解析】试题分析:(1)根据定义,由于2的倒数为不在集合A 中,故集合A不是可倒数集.(2)若两个倒数互不相等,则“可倒数集”元素个数为偶数,因此必有一个元素的倒数等于其本身,即必有1或-1,再取其它两个互为倒数的数即得含3个元素的可倒数集.试题解析:(1)由于2的倒数为不在集合A中,故集合A不是可倒数集.(2)若a∈A,则必有∈A,现已知集合A中含有3个元素,故必有一个元素有a=,即a=±1,故可以取集合A={1,2,}或{-1,2,}或{1,3,}等.填空题已知P={x|2<x<k,x∈N,k∈R},若集合P中恰有3个元素,则实数k的取值范围是__________.【答案】【解析】x只能取3,4,5,故5<k≤6.选择题下列集合中,不同于另外三个集合的是()A. {x|x=1}B. {x|x2=1}C. {1}D. {y|(y-1)2=0}【答案】B【解析】{x|x2=1}={-1,1},另外三个集合都是{1},选B.填空题设a,b∈R,集合{1,a+b,a}=,则b-a=_________.【答案】【解析】显然a≠0,则a+b=0,a=-b,=-1,所以a=-1,b=1,b-a=2.解答题.用适当的方法表示下列集合,并指出它们是有限集还是无限集.(1)不超过10的非负质数的集合;(2)大于10的所有自然数的集合.【答案】(1);(2)【解析】试题分析:(1)可用列举法写出所求集合;(2)可用描述法表示所求集合.试题解析:(1)不超过10的非负质数有2,3,5,7,用列举法表示为{2,3,5,7},是有限集.(2)大于10的所有自然数有无限个,故可用描述法表示为{x|x>10,x∈N},是无限集.选择题设A,B为两个实数集,定义集合A+B={x|x1+x2,x1∈A,x2∈B},若A={1,2,3},B={2,3},则集合A+B中元素的个数为()A. 3B. 4C. 5D. 6【答案】B【解析】当x1=1时,x1+x2=1+2=3或x1+x2=1+3=4;当x1=2时,x1+x2=2+2=4或x1+x2=2+3=5;当x1=3时,x1+x2=3+2=5或x1+x2=3+3=6.∴A+B={3,4,5,6},共4个元素.故选B.选择题已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A. 0∉MB. 2∈MC. -4∉MD. 4∈M【答案】D【解析】当x>0,y>0,z>0时,代数式的值为4,所以4∈M,故选D.填空题用列举法写出集合=___________.【答案】【解析】∵∈Z,x∈Z,①∴3-x为3的因数.∴3-x=±1,或3-x=±3.∴=±3,或=±1.∴-3,-1,1,3满足题意.选择题在“①高一数学中的难题;②所有的正三角形;③方程x2-2=0的实数解”中,能够构成集合的是()A. ②B. ③C. ②③D. ①②③【答案】C【解析】①高一数学中的难题的标准不确定,因而构不成集合;②而正三角形标准明确,能构成集合;③方程x2-2=0的解也是确定的,能构成集合,故选C.选择题用列举法表示集合{x|x2-2x+1=0}为()A. {1,1}B. {1}C. {x=1}D. {x2-2x+1=0}【答案】B【解析】试题分析:集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.解答题已知集合A={x|ax2-3x+2=0}.(1)若A是单元素集合,求集合A;(2)若A中至少有一个元素,求a的取值范围.【答案】(1)当时,,当时,;(2)【解析】试题分析:将求集合中元素问题转化为方程根问题.(1)集合A为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax2-3x+2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.试题解析:(1)因为集合A是方程ax2-3x+2=0的解集,则当a =0时,A={},符合题意;当a≠0时,方程ax2-3x+2=0应有两个相等的实数根,则Δ=9-8a=0,解得a=,此时A={},符合题意.综上所述,当a=0时,A={},当a=时,A={}.(2)由(1)可知,当a=0时,A={}符合题意;当a≠0时,要使方程ax2-3x+2=0有实数根,则Δ=9-8a≥0,解得a≤且a≠0.综上所述,若集合A中至少有一个元素,则a≤.选择题已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为()A. 2B. 3C. 0或3D. 0或2或3【解析】因为2∈A,所以m=2或m2-3m+2=2,解得m =0或m=2或m=3.又集合中的元素要满足互异性,对m的所有取值进行一一检验可得m=3,故选B.选择题方程组的解集是()A. B. {x,y|x=3且y=-7}C. {3,-7}D. {(x,y)|x=3且y=-7}【答案】D【解析】解方程组得,用描述法表示为{(x,y)|x=3且y=-7},用列举法表示为{(3,-7)},故选D选择题已知集合S={a,b,c}中的三个元素是△ABC的三边长,那么△ABC一定不是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【解析】由集合中元素的互异性知a,b,c互不相等,故选D.选择题下列六种表示法:①{x=-1,y=2};②{(x,y)|x=-1,y=2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x,y)|x=-1或y=2}.能表示方程组的解集的是()A. ①②③④⑤⑥B. ②③④⑤C. ②⑤D. ②⑤⑥【答案】C【解析】方程组的解是故选C.选择题已知集合A={x|x≤10},a=,则a与集合A的关系是()A. a∈AB. a∉AC. a=AD. {a}∈A【答案】A【解析】由于+<10,所以a∈A.故选A.。

第一章 1.1 1.1.1 第一课时 集合的含义

第一章   1.1   1.1.1   第一课时   集合的含义

第一课时
返回
集合的概念
[提出问题] 观察下列实例: (1)山东天成书业集团的所有员工; (2)平面内到定点 O 的距离等于定长 d 的所有的点;
x+1≥3 (3)不等式组 2 x ≤9
的整数解;
(4)方程 x2-5x+6=0 的实数根; (5)某中学所有较胖的同学.
返回
问题1:上述实例中的研究对象各是什么?
[例3] 已知集合A中含有两个元素a和a2,若1∈A,求实数
a的值.
[解] 若1∈A,则a=1或a2=1,即a=±1. 当a=1时,a=a2,集合A有一个元素, ∴a≠1. 当a=-1时, 集合A含有两个元素1,-1,符合互异性. ∴a=-1.
返回
[类题通法] 关注元素的互异性 根据集合中元素的确定性,可以解出字母的所有可能取 值,但要时刻关注集合中元素的三个特性,尤其是互异性,解 题后要注意进行检验.
不明确,即元素不确定,所以①②不是集合.同样,“ 2的 近似值”也不明确精确到什么程度,因此很难判定一个数, 比如 2 是不是它的近似值,所以⑤也不是一个集合.③④能 构成集合.
[答案] A
返回
(2)[解]
①不正确.因为“年轻人”没有确定的标准,对
象不具有确定性,所以不能组成集合. 3 6 1 1 ②不正确. 由于 = , -2= , 由集合中元素的互异性知, 2 4 2 3 1 这个集合是由 1, , 这三个元素组成的. 2 2 ③正确.集合中的元素相同,只是次序不同,所以它们仍 表示同一个集合.
x2,若A=B,求实数x,y的值.
解:因为集合A,B相等,则x=0或y=0. (1)当x=0时,x2=0,则B={0,0},不满足集合中元素的互异 性,故舍去. (2)当y=0时,x=x2,解得x=0或x=1.由(1)知x=0应舍

高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案含解析第一册

高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案含解析第一册

1.1 集合1.1。

1集合及其表示方法内容标准学科素养1。

通过实例了解集合的含义,体会元素与集合的“属于”关系.数学抽象数学建模2.能用自然语言、图形语言、集合语言描述不同的具体问题。

授课提示:对应学生用书第1页[教材提炼]知识点一元素与集合的概念1.集合:有一些能够确定的、不同的对象汇聚在一起,就说由这些对象构成一个集合.通常用英文大写字母A,B,C…表示.2.元素:组成集合的每个对象都是这个集合的元素,通常用英文小写字母a,b,c…表示.3.空集:不含任何元素的集合称为空集,记作∅。

知识点二元素与集合的关系1.属于:如果a是集合A的元素,就记作a∈A,读作a属于A。

2.不属于:如果a不是集合A中的元素,就记作a∉A,读作a 不属于集合A。

3.无序性:集合中的元素,可以任意排列,与次序无关.知识点三集合元素的特点1.确定性:集合的元素必须是确定的.2.互异性:对于一个给定的集合,集合中的元素一定是不同的.知识点四集合的分类1.有限集:含有有限个元素的集合.2.无限集:含有无限个元素的集合.知识点五几种常见的数集号N*知识点六集合的表示方法1.列举法把集合的所有元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,这种表示集合的方法称为列举法.2.描述法(1)特征性质:一般地,如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个特征性质.(2)描述法:用特征性质p(x)来表示集合的方法,称为特征性质描述法,简称描述法.知识点七区间及其表示1.如果a<b,则有下表:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a 〈x<b}开区间(a,b){x|a≤x 〈b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]2.实数集R可以用区间表示为(-∞,+∞),“∞"读作“无穷大”.如:符号[a,+∞)(a,+∞)(-∞,a](-∞,a)定义{x|x≥a}{x|x〉a}{x|x≤a}{x|x〈a}[自主检测]1.下列给出的对象中,能组成集合的是()A.与定点A,B等距离的点B.高中学生中的游泳能手C.无限接近10的数D.非常长的河流答案:A2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案:D3.下列结论中,不正确的是()A.若a∈N,则错误!∉NB.若a∈Z,则a2∈ZC.若a∈Q,则|a|∈QD.若a∈R,则错误!∈R答案:A4.分别用描述法、列举法表示大于0小于6的自然数组成的集合.解析:描述法:{x∈N|0<x<6},列举法:{1,2,3,4,5}.授课提示:对应学生用书第2页探究一集合的概念[例1]下列对象中可以构成集合的是()A.大苹果B.小橘子C.中学生D.著名的数学家[解析]选项正误原因A×大苹果到底以多重算大,标准不明确B×小橘子到底以多重算小,标准不明确C√中学生标准明确,故可构成集合Dד著名”的标准不明确[答案]C判断一个“全体"是否能构成一个集合,其关键是对标准的“确定性”的把握,即根据这个“标准”,可以明确判定一个对象是或者不是给定集合的元素.给出下列元素①学习成绩较好的同学;②方程x2-1=0的解;③漂亮的花儿;④大气中直径较大的颗粒物.其中能组成集合的是()A.②B.①③C.②④D.①②④答案:A探究二元素与集合的关系[例2]集合A中的元素x满足错误!∈N,x∈N,则集合A 中的元素为________.[解析]由错误!∈N,x∈N知x≥0,错误!>0,且x≠3,故0≤x<3.又x∈N,故x=0,1,2。

北师大版必修第一册--第1章-1.1-第1课时集合的概念--课件(35张)

北师大版必修第一册--第1章-1.1-第1课时集合的概念--课件(35张)
值.
分析:1∈A→a=1或a2=1→验证互异性
解:因为1∈A,所以a=1或a2=1,即a=±1,当a=1时,a=a2,集合A中
只有一个元素,所以a≠1;当a=-1时,集合A中含有两个元素1,-1,
符合互异性,所以a=-1.
1.本例中若去掉条件“1∈A”,其他条件不变,则实数a的取值范
围是什么?
解:由题意a和a2组成含有两个元素的集合,则a≠a2,解得a≠0且
A.0∈A B.a∉A C.a∈A D.a=A
解析:∵集合A中只含有一个元素a,
∴a属于集合A,即a∈A.
答案:C
)
3.由x2,x3组成一个集合A,A中含有两个元素,则实数x的取值可
以是(
)
A.0 B.-1 C.1 D.-1或1
解析:验证法:若x=0,x2=0,x3=0,不合题意;
若x=1,x2=1,x3=1,不合题意;
(1)1
N+;(2)-3

(3)

(5)-
Q;(4)
N;
Q;
R.
答案:(1)∈ (2)∉ (3)∈ (4)∉ (5)∈
【思考辨析】
判断下列说法是否正确,正确的在它后面的括号里画“ ”,错
误的画“×”.
(1)如果小明的身高是1.78 m,那么他应该是由高个子学生组
成的集合中的一个元素.( × )
么是,要么不是,两者必居其一,且仅居其一,故“等边三角形的
全体”能组成集合;同理可得,(2)能组成集合;(3)能组成集合;
(4)“聪明的人”没有明确的判断标准,对于某个人算不算聪明
无法客观判断,因此“聪明的人”不能组成集合;同理可得,(5)不能 Nhomakorabea成集合.

人教版高中数学必修一《集合》导学案(含答案)

人教版高中数学必修一《集合》导学案(含答案)

第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义 课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.45.符号____ ________ ____ 一、选择题1.下列语句能确定是一个集合的是( )A .著名的科学家B .留长发的女生C .2010年广州亚运会比赛项目D .视力差的男生2.集合A 只含有元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A3.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .25.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可6.由实数x 、-x 、|x |、x 2及-3x 3所组成的集合,最多含有( )A .2个元素B .3个元素C .4个元素D .5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a ,b ,c 与由元素b ,a ,c 组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义知识梳理1.(1)研究对象 小写拉丁字母a ,b ,c ,… (2)一些元素组成的总体 大写拉丁字母A ,B ,C ,… 2.确定性 互异性 无序性3.一样 4.a 是集合A a 不是集合A 5.N N *或N + Z Q R作业设计1.C [选项A 、B 、D 都因无法确定其构成集合的标准而不能构成集合.]2.C [由题意知A 中只有一个元素a ,∴0∉A ,a ∈A ,元素a 与集合A 的关系不应用“=”,故选C.]3.D [集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}6二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号) ①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时集合的表示知识梳理1.一一列举 2.描述法{x|x<10}{x∈Z|x=2k,k∈Z}作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x<5}={1,2,3,4}.]2.D [集合{(x ,y)|y =2x -1}的代表元素是(x ,y),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧ x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x2-2x +1=0可化简为(x -1)2=0,∴x1=x2=1,故方程x2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x(x2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x|x =2n +1,且x<1 000,n ∈N};③{x|x>8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x2+3中y 的取值范围是y≥3,所以B ={y|y≥3}. 集合C 中代表的元素是(x ,y),这是个点集,这些点在抛物线y =x2+3上,所以C ={P|P 是抛物线y =x2+3上的点}.12.C [由集合的含义知{x|x =1}={y|(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A [M ={x|x =2k +14,k ∈Z},N ={x|x =k +24,k ∈Z}, ∵2k +1(k ∈Z)是一个奇数,k +2(k ∈Z)是一个整数,∴x0∈M 时,一定有x0∈N ,故选A.]。

苏教版必修一课后作业:第一章 集合 1.1 第1课时 Word版含答案

苏教版必修一课后作业:第一章 集合 1.1 第1课时 Word版含答案

第1课时 集合的含义学习目标 1.通过实例理解集合的有关概念.2.初步理解集合中元素的三个特性.3.体会元素与集合的属于关系.4.了解常用数集及其专用符号,学会用集合语言表示有关数学对象.知识点一 集合的概念思考 有首歌中唱道:“他大舅他二舅都是他舅”你能从集合的角度解读一下这句话吗? 答案 “某人的舅”是一个集合,某人的大舅、二舅都是这个集合中的元素.梳理 (1)一定范围内某些确定的、不同的对象的全体构成一个集合.常用大写字母拉丁A ,B ,C ,…来表示.(2)集合中的每一个对象称为该集合的元素,简称元. 集合的元素常用小写拉丁字母a ,b ,c ,…表示. 知识点二 元素与集合的关系 思考 1是整数吗?12是整数吗?答案 1是整数;12不是整数.梳理 元素与集合的关系有两种,分别为属于、不属于,数学符号分别为∈、∉. 知识点三 元素的三个特性思考1 某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合元素确定性的含义是什么?答案 某班所有的“帅哥”不能构成集合,因为“帅哥”无明确的标准.高于175厘米的男生能构成一个集合,因为标准确定.元素确定性的含义:集合中的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.思考2构成单词“bee”的字母形成的集合,其中的元素有多少个?答案2个.集合中的元素互不相同,这叫元素的互异性.思考3“中国的直辖市”构成的集合中,元素包括哪些?甲同学说:北京、上海、天津、重庆;乙同学说:上海、北京、重庆、天津,他们的回答都正确吗?由此说明什么?答案两个同学都说出了中国直辖市的所有城市,因此两个同学的回答都是正确的,由此说明集合中的元素是无先后顺序的,这就是元素的无序性.梳理元素的三个特性是指确定性、互异性、无序性.知识点四常用数集及表示符号名称自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R类型一判断给定的对象能否构成集合例1观察下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某校2015年在校的所有高个子同学;(4)3的近似值的全体.解(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合.(2)能构成集合.(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合.(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数,如“2”是不是它的近似值,所以不能构成集合.反思与感悟判断给定的对象能不能构成集合,关键在于能否找到一个明确的标准,对于任何一个对象,都能确定它是不是给定集合的元素.跟踪训练1下列各组对象可以组成集合的是________.(填序号)①数学必修1课本中所有的难题;②小于8的所有素数;③直角坐标平面内第一象限的一些点;④所有小的正数.答案 ②解析 ①中“难题”的标准不确定,不能构成集合;②能构成集合;③中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;④中没有明确的标准,所以不能构成集合. 类型二 元素与集合的关系 命题角度1 判定元素与集合的关系 例2 给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N .其中正确的为________.(填序号) 答案 ①②解析 12是实数,①对;2不是有理数,②对; |-3|=3是自然数,③错; |-3|=3为无理数,④错; 0是自然数,⑤错.反思与感悟 要判断元素与集合的关系,首先要弄清集合中有哪些元素(涉及常用数集,如N ,R ,Q ,概念要清晰);其次要看待判定的元素是否具有集合要求的条件. 跟踪训练2 用符号“∈”或“∉”填空. -2________R ; -3________Q ; -1________N ; π________Z . 答案 ∈ ∈ ∉ ∉命题角度2 根据已知的元素与集合的关系推理例3 集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.答案 0,1,2解析 ∵x ∈N ,63-x ∈N ,∴0≤x ≤2且x ∈N .当x =0时,63-x =63=2∈N ;当x =1时,63-x =63-1=3∈N ;当x =2时,63-x =63-2=6∈N .∴A 中元素有0,1,2.反思与感悟 判断元素和集合关系的两种方法 (1)直接法①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现. (2)推理法①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征.跟踪训练3 已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A,2∈A ,则a 的取值范围是____________. 答案 (-4,-2]解析 ∵1∉A ,∴2×1+a ≤0,a ≤-2. 又∵2∈A ,∴2×2+a >0,a >-4, ∴-4<a ≤-2.类型三 元素的三个特性的应用例4 已知集合A 中有三个元素:a -3,2a -1,a 2+1,集合B 中也有三个元素:0,1,x . (1)若-3∈A ,求a 的值; (2)若x 2∈B ,求实数x 的值; (3)是否存在实数a ,x ,使A =B . 解 (1)由-3∈A 且a 2+1≥1, 可知a -3=-3或2a -1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1.经检验,0与-1都符合要求.∴a=0或-1.(2)当x=0,1,-1时,都有x2∈B,但考虑到集合元素的互异性,x≠0,x≠1,故x=-1.(3)显然a2+1≠0.由集合元素的无序性,只可能a-3=0或2a-1=0.若a-3=0,则a=3,A={a-3,2a-1,a2+1}={0,5,10}≠B.若2a-1=0,则a=12,A={a-3,2a-1,a2+1}={0,-52,54}≠B.故不存在这样的实数a,x,使A=B.反思与感悟(1)元素的无序性主要体现在①给出元素属于某集合,则它可能表示集合中的任一元素;②给出两集合相等,则其中的元素不一定按顺序对应相等.(2)元素的互异性主要体现在求出参数后要代入检验,同一集合中的元素要互不相等.跟踪训练4已知集合A只含有两个元素a和a2,若1∈A,求实数a的值.解若1∈A,则a=1或a2=1,故a=1或-1.当a=1时,集合A有重复元素,∴a≠1;∴当a=-1时,集合A含有两个元素1,-1,符合题意,∴a=-1.1.下列给出的对象中,能组成集合的是________.(填序号)①一切很大的数;②好心人;③漂亮的小女孩;④方程x2-1=0的实数根.答案④2.下面说法正确的是________.(填序号)①所有在N中的元素都在N*中;②所有不在N*中的数都在Z中;③所有不在Q中的实数都在R中;④方程4x=-8的解既在N中又在Z中.答案③3.由“book”中的字母构成的集合中元素的个数为________.答案 34.设函数y=x2-2x-1图象上的点构成集合A,则点(0,-1)________A.答案∈5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为________.答案 3解析由2∈A可知,若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A的元素为0,3,2,符合题意.1.考察对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),依此特征(或标准)能确定任何一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.元素a与集合A之间只有两种关系:a∈A,a∉A.3.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.课时作业一、填空题1.已知集合A由x<1的数构成,则有________.①3∈A;②1∈A;③0∈A;④-1∉A.答案③解析很明显3,1不满足不等式,而0,-1满足不等式.2.由实数x,-x,|x|,x2,-3x3所组成的集合,最多含________个元素.答案 2解析由于|x|=±x,x2=|x|,-3x3=-x,并且x,-x,|x|之中总有两个相等,所以最多含2个元素.3.下列结论中,不正确的是________.(填序号)①若a∈N,则-a∉N;②若a∈Z,则a2∈Z;③若a∈Q,则|a|∈Q;④若a∈R,则3a∈R.答案①解析①不对.反例:0∈N,-0∈N.4.已知x,y为非零实数,代数式x|x|+y|y|的值所组成的集合是M,则M中的元素为________.答案-2,0,2解析①当x,y为正数时,代数式x|x|+y|y|的值为2;②当x,y为一正一负时,代数式x|x|+y|y|的值为0;③当x,y均为负数时,代数式x|x|+y|y|的值为-2,所以集合M的元素共有3个:-2,0,2.5.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a的值为________.答案2或4解析若a=2∈A,则6-a=4∈A;若a=4∈A,则6-a=2∈A;若a=6∈A,则6-a=0∉A .6.不等式x -a ≥0的解集为A ,若3∉A ,则实数a 的取值范围是________. 答案 (3,+∞)解析 因为3∉A ,所以3是不等式x -a <0的解,所以3-a <0,解得a >3. 7.在方程x 2-4x +4=0的解集中,有________个元素. 答案 1解析 易知方程x 2-4x +4=0的解为x 1=x 2=2,由集合元素的互异性知,方程的解集中只有1个元素.8.下列所给关系正确的个数是________.①π∈R ; ②3D ∈/Q ; ③0∈N *; ④|-4|D ∈/N *. 答案 2解析 ∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数为2.9.如果有一集合含有三个元素:1,x ,x 2-x ,则实数x 的取值范围是________. 答案 x ≠0,1,2,1±52解析 由集合元素的互异性可得x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52.10.已知a ,b ∈R ,集合A 中含有a ,ba ,1三个元素,集合B 中含有a 2,a +b,0三个元素,若A =B ,则a +b =______. 答案 -1解析 ∵A =B,0∈B ,∴0∈A . 又a ≠0,∴ba =0,则b =0.∴B ={a ,a 2,0}. ∵1∈B ,∴a 2=1,a =±1. 由元素的互异性知,a =-1, ∴a +b =-1. 二、解答题11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求实数a 的值. 解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,故a =-1舍去. 当a =-32时,a -2=-72,2a 2+5a =-3,满足题意.∴实数a 的值为-32.12.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值. 解 (1)因为-3∈A , 所以-3=a -3或-3=2a -1. 若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1. (2)因为a ∈A ,所以a =a -3或a =2a -1. 当a =a -3时,有0=-3,不成立;当a =2a -1时,有a =1,此时A 中有两个元素-2,1,符合题意. 综上所述,满足题意的实数a 的值为1.13.数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面的解答过程中,你能悟出什么道理?并大胆证明你发现的“道理”. 解 (1)2∈A ,则11-2∈A ,即-1∈A ,则11+1∈A ,即12∈A ,则11-12∈A ,即2∈A ,所以A 中其他所有元素为-1,12.(2)如:若3∈A ,则A 中其他所有元素为-12,23.(3)分析以上结果可以得出:A 中只能有3个元素,它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1. 证明如下:若a ∈A ,a ≠1,则有11-a ∈A 且11-a ≠1,所以又有11-11-a =a -1a ∈A 且a -1a ≠1,进而有11-a -1a=a ∈A . 又因为a ≠11-a (因为若a =11-a ,则a 2-a +1=0,而方程a 2-a +1=0无解),同理11-a ≠a -1a ,a ≠a -1a .又因为a ·11-a ·a -1a =-1,所以A 中只能有3个元素,它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1.三、探究与拓展14.已知集合A ={a ,b ,c }中任意2个不同元素的和的集合为{1,2,3},则集合A 的任意2个不同元素的差的绝对值的集合是________. 答案 {1,2} 解析 由题意知: ⎩⎪⎨⎪⎧ a +b =1,b +c =2,c +a =3,解得⎩⎪⎨⎪⎧a =1,b =0,c =2,∴集合A ={0,1,2},则集合A 的任意2个不同元素的差的绝对值分别是1,2. 故集合A 的任意2个不同元素的差的绝对值的集合是{1,2}. 15.已知集合A 中的元素x 均满足x =m 2-n 2(m ,n ∈Z ),求证: (1)3∈A ;(2)偶数4k-2(k∈Z)不属于集合A.证明(1)令m=2∈Z,n=1∈Z,得x=m2-n2=4-1=3,所以3∈A.(2)假设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立.①当m,n同奇或同偶时,m+n,m-n均为偶数,所以(m+n)(m-n)为4的倍数与4k-2不是4的倍数矛盾.②当m,n一奇一偶时,m+n,m-n均为奇数,所以(m+n)(m-n)为奇数,与4k-2是偶数矛盾.所以假设不成立.综上,4k-2∉A.。

高中数学(苏教版必修一)教师用书第1章 1.1 第1课时 集合的含义 Word版含解析

高中数学(苏教版必修一)教师用书第1章 1.1 第1课时 集合的含义 Word版含解析

.集合的含义及其表示第课时集合的含义.通过实例理解并掌握集合的有关概念..初步理解集合中元素的三个特征.(重点).体会元素与集合的属于关系.(重点).掌握常用数集及其专用符号,初步认识用集合语言表示有关数学对象.(重点、易错易混点)[基础·初探]教材整理集合的含义阅读教材开始至倒数第四自然段,完成下列问题..元素与集合的概念确定的一般地,一定范围内某些、不同的对象的全体构成一个集合.集合每一个中的对象称为该集合的元素,简称元..集合中元素的特性确定性集合中元素的特性:、、.无序性互异性判断(正确的打“√”,错误的打“×”)()漂亮的花可以组成集合.( ) ()在一个集合中可以找到两个(或两个以上)相同的元素.( )【解析】()×.因为“漂亮”没有明确的标准,其不满足集合中元素的确定性.()×.因为集合中的元素具有互异性,故在一个集合中一定找不到两个(或两个以上)相同的元素.【答案】()×()×教材整理元素与集合的关系阅读教材最后三个自然段,完成下列问题..元素与集合的表示()元素的表示:通常用小写拉丁字母,,,表示集合中的元素.…,,,()集合的表示:通常用大写拉丁字母表示集合.….元素与集合的关系∈),是集合中的元素,记作()属于(符号:,读作∈.“”属于),不是集合中的元素,记作∉()不属于(符号:或∉或.,读作”不属于“.常用数集及表示符号用“∈”、“∉”填空..;-;;*;.【解析】因为不是自然数,故∉;因为-是整数,故-∈;因为是实数,故∈;因为不是正整数,故∉*;因为是有理数,故∈.。

第一章1.1-1.1.1第1课时集合的含义

第一章1.1-1.1.1第1课时集合的含义

1.1 集合1.1.1 集合的含义与表示第1课时集合的含义A级基础巩固一、选择题1.已知集合A中的元素x满足-5≤x≤5,且x∈N*,则必有()A.-1∈A B.0∈AC.3∈A D.1∈A2.下列各对象可以组成集合的是()A.中国著名的科学家B.2017感动中国十大人物C.高速公路上接近限速速度行驶的车辆D.中国最美的乡村3.由x2,2|x|组成一个集合A中含有两个元素,则实数x的取值可以是() A.0 B.-2 C.8 D.24.已知集合M具有性质:若a∈M,则2a∈M,现已知-1∈M,则下列元素一定是M中的元素的是()A.1 B.0 C.-2 D.25.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是()A.1 B.-2 C.6 D.2二、填空题6.由下列对象组成的集体属于集合的是________(填序号).①不超过10的所有正整数;②高一(6)班中成绩优秀的同学;③中央一套播出的好看的电视剧;④平方后不等于自身的数.7. 以方程x2-2x-3=0和方程x2-x-2=0的解为元素的集合中共有________个元素.8.已知集合M含有两个元素a-3和2a+1,若-2∈M,则实数a的值是____________.三、解答题9.若集合A是由元素-1,3组成的集合,集合B是由方程x2+ax+b=0的解组成的集合,且A=B,求实数a,b.10.已知集合A中含有三个元素a-2,2a2+5a,12,且-3∈A,求a的值.B级能力提升1.集合A中含有三个元素2,4,6,若a∈A,且6-a∈A,那么a为() A.2 B.2或4 C.4 D.02.设x,y,z是非零实数,若a=x|x|+y|y|+z|z|+xyz|xyz|,则以a的值为元素的集合中元素的个数是______.3.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必有另外两个元素;(2)集合A不可能是单元素集.。

高中数学必修1课后习题答案完整版

高中数学必修1课后习题答案完整版

高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A . 2.(1)5A ∈; (2)7A ∉; (3)10A -∈. 当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数; (2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x=的自变量的值组成的集合;(3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)AB ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð,得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数. 1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;(A )(B )(C )(D )图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设与A 中元素60相对应的B 中的元素是什么?与B 中的元素2相对应的A 中元素是什么?4.解:因为3sin 60=,所以与A 中元素60相对应的B ;因为2sin 452=,所以与B 中的元素2相对应的A 中元素是45. 1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域:(1)3()4xf x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()1f x x =-.1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且; (4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x ==2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(f ,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2dx vt π=,即24v x t d π=,显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P的距离是2km,从点P沿海岸正东12km处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得1235x t -=+,(012)x ≤≤,即1235x t -=+,(012)x ≤≤.(2)当4x =时,12483()355t h -=+=≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =- (3)21()x f x x+=; (4)2()1f x x =+. 1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数; (4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-. 1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数;(2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值.1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是18.75m^2.3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-,又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合:(1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤;(3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形?(1){|}P PA PB =(,)A B 是两个定点;(2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a =, 得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B ,A C ,()()A B B C .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅; 集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55A B B C =-. 6.求下列函数的定义域:(1)y =(2)||5y x =-. 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥, 得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞. 7.已知函数1()1x f x x-=+,求:(1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1x f x x-=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x-=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.设221()1x f x x+=-,求证:50 (1)()()f x f x -=; (2)1()()f f x x=-. 8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-. 9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在(0,)+∞上是增函数还是减函数?(4)它在(,0)-∞上是增函数还是减函数?10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数;(4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U AB =ð,(){2,4}U A B =ð,求集合B . 3.解:由(){1,3}U AB =ð,得{2,4,5,6,7,8,9}A B =, 集合A B 里除去()U A B ð,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值. 4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=;当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. 5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++, 得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数?(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数?6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >,所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数. 7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =,所以该人当月的工资、薪金所得是2517.8元.第三章函数的应用3.1函数与方程练习(P88)1.(1)令f(x)=-x2+3x+5,作出函数f(x)的图象(图3-1-2-7(1)),它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=-3可化为2x2-4x+3=0,令f(x)=2x2-4x+3,作出函数f(x)的图象(图3-1-2-7(2)),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3)),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解. 下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f (0.75)·f (1)<0,所以x 0∈(0.75,1).再取(0.75,1)的中点x 2=0.875,用计算器可算得f (0.875)≈-0.04.因为f (0.875)·f (0.75)<0,所以x 0∈(0.75,0.875).同理,可得x 0∈(0.812 5,0.875),x 0∈(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 25<0.1,所以原方程的近似解可取为0.843 75.5.由题设有f (2)≈-0.31<0,f (3)≈0.43>0,于是f (2)·f (3)<0,所以函数f (x )在区间(2,3)内有一个零点.下面用二分法求函数f (x )=lnx x2-在区间(2,3)内的近似解. 取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)≈0.12.因为f (2)·f (2.5)<0,所以x 0∈(2,2.5).再取(2,2.5)的中点x 2=2.25,用计算器可算得f (2.25)≈-0.08.因为f (2.25)·f (2.5)<0,所以x 0∈(2.25,2.5).同理,可得x 0∈(2.25,2.375),x 0∈(2.312 5,2.375),x 0∈(2.343 75,2.375),x 0∈(2.343 75,2.359 375),x 0∈(2.343 75,2.351 562 5),x 0∈(2.343 75,2.347 656 25).由于|2.343 75-2.347 656 25|=0.003 906 25<0.01,所以原方程的近似解可取为2.347 656 25.B 组1.将系数代入求根公式x 得x =223(3)42(1)22±--⨯⨯-⨯=4173+, 所以方程的两个解分别为x 1=4173+,x 2=4173-.下面用二分法求方程的近似解.取区间(1.775,1.8)和(-0.3,-0.275),令f (x )=2x 2-3x -1.在区间(1.775,1.8)内用计算器可算得f (1.775)=-0.023 75,f (1.8)=0.08.于是f (1.775)·f (1.8)<0.所以这个方程在区间(1.775,1.8)内有一个解.由于|1.8-1.775|=0.025<0.1,所以原方程在区间(1.775,1.8)内的近似解可取为1.8.同理,可得方程在区间(-0.3,-0.275)内的近似解可取为-0.275.所以方程精确到0.1的近似解分别是1.8和-0.3.2.原方程即x3-6x2-3x+5=0,令f(x)=x3-6x2-3x+5,函数图象如下图所示.图3-1-2-9所以这个方程在区间(-2,0),(0,1),(6,7)内各有一个解.取区间(-2,0)的中点x1=-1,用计算器可算得f(-1)=1.因为f(-2)·f(-1)<0,所以x0∈(-2,-1).再取(-2,-1)的中点x2=-1.5,用计算器可算得f(-1.5)=-7.375.因为f(-1.5)·f(-1)<0,所以x0∈(-1.5,-1).同理,可得x0∈(-1.25,-1),x0∈(-1.125,-1),x0∈(-1.125,-1.062 5).由于|(-1.062 5)-(-1.125)|=0.062 5<0.1,所以原方程在区间(-2,0)内的近似解可取为-1.062 5.同理,可得原方程在区间(0,1)内的近似解可取为0.7,在区间(6,7)内的近似解可取为6.3.3.(1)由题设有g(x)=2-[f(x)]2=2-(x2+3x+2)2=-x4-6x3-13x2-12x-2.(2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x1=-2.5,用计算器可算得g(-2.5)=0.187 5.因为g(-3)·g(-2.5)<0,所以x0∈(-3,-2.5).再取(-3,-2.5)的中点x2=-2.75,用计算器可算得g(-2.75)≈0.28.因为g(-3)·g(-2.75)<0,所以x0∈(-3,-2.75).同理,可得x0∈(-2.875,-2.75),x0∈(-2.812 5,-2.75).由于|-2.75-(-2.812 5)|=0.062 5<0.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-2.8或-0.2.点评:第2、3题采用信息技术画出函数图象,并据此明确函数零点所在的区间.在教学中,如果没有信息技术条件,建议教师直接给出函数图象或零点所在区间.第三章复习参考题A组(P112)1.C2.C3.设经过时间t后列车离C地的距离为y,则y=200100,02,100200,2 5.t tt t-≤≤⎧⎨-<≤⎩图3-24.(1)圆柱形; (2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形; (4)呈下大上小的两节圆柱形. 图略.图3-35.令f(x)=2x3-4x2-3x+1,函数图象如图3-3所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x3-4x2-3x+1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)=-0.25.因为f(2.5)·f(3)<0,所以x0∈(2.5,3). 再取(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈4.09.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.5,2.5625),x0∈(2.5,2.53125),x0∈(2.515625,2.53125),x0∈(2.515625,2.5234375).由于|2.523 437 5-2.515 625|=0.007 812 5<0.01,所以原方程的最大根约为2.523 437 5.6.令lgx =x 1,即得方程lgx x 1-=0,再令g (x )=lgx x1-,用二分法求得交点的横坐标约为2.5.图3-47.如图,作DE ⊥AB,垂足为E.由已知可得∠ADB=90°.因为AD=x ,AB=4,于是AD 2=AE×AB,即AE=AB AD 2=42x . 所以CD=AB-2AE=4-2×42x =422x -. 于是y =AB+BC+CD+AD=4+x +422x -+x =22x -+2x +8. 由于AD>0,AE>0,CD>0,所以x >0,42x >0,422x ->0,解得0<x <22. 所以所求的函数为y =22x -+2x +8,0<x <22. 8.(1)由已知可得N=N 0(λe 1)t .因为λ是正常数,e >1,所以e λ>1,即0<λe1<1. 又N 0是正常数,所以N=N 0(λe1)t 是在于t 的减函数. (2)N=N 0e -λt ,因为e -λt =0N N ,所以-λt =ln 0N N ,即t =λ1-ln 0N N . (3)当N=20N 时,t =λ1-002N N =λ1-ln 2. 9.因为f (1)=-3+12+8=17>0,f (2)=-3×8+12×2+8=8>0,f (3)<0,所以,下次生产应在两个月后开始.B 组1.厂商希望的是甲曲线;客户希望的是乙曲线.2.函数的解析式为y=f(t)=22,01, 2(2)12,22.tt tt<≤⎪⎪⎪⎪--+<≤⎨>⎪⎩函数的图象为图3-5备课资料[备选例题]【例】对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.(1)当a=2,b=-2时,求f(x)的不动点;(2)若对于任何实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围.解:(1)f(x)=ax2+(b+1)x+b-2(a≠0),当a=2,b=-2时,f(x)=2x2-x-4,设x为其不动点,即2x2-x-4=x,则2x2-2x-4=0,解得x1=-1,x2=2,即f(x)的不动点为-1,2.(2)由f(x)=x,得ax2+bx+b-2=0.关于x的方程有相异实根,则b2-4a(b-2)>0,即b2-4ab+8a>0.又对所有的b∈R,b2-4ab+8a>0恒成立,故有(4a)2-4·8a<0,得0<a<2.。

(新教材)【人教A版】高一数学《1.1.1集合的含义》

(新教材)【人教A版】高一数学《1.1.1集合的含义》
1 a
【解析】1.选A.A中a=0时,显然不成立. 2.选A.a= + < + =4<5, 所以a∈A. a+1< + 2 +1=35, 4 4 所以a+1∈A,
44
a2=( )2+2 × +( )2=5+2 >5,
所以a22∉A, 2 3 3
6
=
<5,
所1 以 ∈1A.
3 2
第一章 集合与常用逻辑用语 1.1 集合的概念
第1课时 集合的含义
1.元素与集合 (1)元素:把研究对象统称为元素,常用小写的拉丁字母 a,b,c,…表示. (2)集合:一些元素组成的总体,简称集,常用大写拉丁 字母A,B,C,…表示.
(3)集合相等:指构成两个集合的元素是一样的. (4)集合中元素的特性:确定性、互异性和无序性.
【延伸·练】
数集A满足条件:若a∈A,则 ∈A(a≠1).若 ∈A,
求集合中的其他元素. 1 a
1
1 a
3
【解析】因为
1
∈A,所以
1
1 3
=2∈A,所以
1
2
=
3
1 1
1 2
-3∈A,所以1 3=-
1
∈A,所以
3 1
1 2
=ቤተ መጻሕፍቲ ባይዱ
1∈A.故当 1 ∈A
13 2
1 1 3
3
2
时,集合中的其他元素为2,-3,- 1 .
31 22
含有4个元素.其中正确的是 ( ) A.①②④ B.②③ C.③④ D.②④ 【解析】选B.①中的元素不能确定,④中的集合含有3 个元素,②③中的元素是确定的,所以②③能构成集合.

新版高中数学北师大版必修1习题:第一章集合 1.1.1(1)

新版高中数学北师大版必修1习题:第一章集合 1.1.1(1)

01第一章集合§1集合的含义与表示第1课时集合的含义课时过关·能力提升1给出下列说法:①地球周围的行星能构成一个集合;②实数中不是有理数的所有数能构成一个集合;③集合A为{1,2,3},集合B为{1,3,2},是不同的集合.其中正确的个数是()A.0B.1C.2D.3解析:①是错误的,因为“周围”是个模糊的概念,不满足集合元素的确定性.②是正确的,虽然满足条件的数有无数多个,但任给一个元素都能判断出其是否属于这个集合.③是错误的,因为集合中的元素是无序的.答案:B2已知集合M中的元素满足x=3k-1,k∈Z,则下列表示正确的是()A.-1∉MB.-11∈MC.3k 2-1∈MD.-34∉M解析:A 错,当k=0时,-1∈M ;B 错,若3k-1=-11,则k=-103∉Z ;C 正确,因为3k 2-1=3k-1,解得k=0或k=1,满足条件;D 错,当k=-10时,-34∈M.故选C .答案:C3集合A 的元素y 满足y=x 2+1,集合B 的元素(x ,y )满足y=x 2+1(A ,B 中x ∈R ,y ∈R ).下列选项中元素与集合的关系都正确的是( )A.2∈A ,且2∈BB.(1,2)∈A ,且(1,2)∈BC.2∈A ,且(3,10)∈BD.(3,10)∈A ,且2∈B答案:C 4已知集合A 含有两个元素a-3和2a-1,若a ∈A ,则实数a 的值是( )A.-3B.0或1C.1D.-1解析:由于a ∈A ,则a=a-3或a=2a-1.若a=a-3,则有-3=0,不成立;若a=2a-1,则a=1,此时集合A 中的两个元素是-2,1,符合题意.答案:C5已知集合M 中含有3个元素0,x 2,-x ,则x 满足的条件是( )A.x ≠0B.x ≠-1C.x ≠0且x ≠-1D.x ≠0且x ≠1解析:由{x 2≠0,x 2≠-x ,-x ≠0,解得x ≠0且x ≠-1.故选C .答案:C6集合A中有3个元素1,2,3,集合B中有2个元素4,5,设集合M中的元素x满足x=a+b,a∈A,b∈B,则M中元素的个数为()A.3B.4C.5D.6解析:因为集合A为1,2,3,集合B为4,5,集合M中的元素满足x=a+b,a∈A,b∈B,所以a+b的值可能为1+4=5,1+5=6,2+4=6,2+5=7,3+4=7,3+5=8,所以集合M中的元素有5,6,7,8,共4个,故选B.答案:B7若已知-5是x2-ax-5=0的根,集合M中的元素为方程x2-4x-a=0的根,则集合M中所有元素之和为.解析:把-5代入方程x2-ax-5=0,得a=-4,将a=-4代入方程x2-4x-a=0得x2-4x+4=0,故集合M中的元素即为2.因此所有元素之和为2.答案:28设a,b为非零实数,则x=a|a|+b|b|+ab|ab|的所有值组成的集合中的元素为.解析:当a<0,b<0时,ab>0,则x=-1-1+1=-1;当a<0,b>0时,ab<0,则x=-1+1-1=-1;当a>0,b>0时,ab>0,则x=1+1+1=3;当a>0,b<0时,ab<0,则x=1-1-1=-1.故x=-1或x=3.所以由x的所有值构成的集合中的元素为-1,3.答案:-1,39已知集合A的元素满足条件x=m+n√2,n,m∈Z.(1)设x1=3-4√2,x2=√9-4√2,判断x1,x2与集合A之间的关系;(2)任取x3,x4∈A,判断x3+x4与集合A之间的关系.解(1)∵x 1=3-4√2=-323−4√223,∴x 1∉A , ∵x 2=√(2√2)2-4√2+1=-1+2√2,∴x 2∈A.(2)x 3,x 4∈A ,设x 3=m 1+n 1√2,x 4=m 2+n 2√2(m 1,n 1,m 2,n 2∈Z ).则x 3+x 4=m 1+√2n 1+m 2+√2n 2=(m 1+m 2)+(n 1+n 2)√2,∵m 1,n 1,m 2,n 2∈Z ,∴m 1+m 2,n 1+n 2∈Z ,∴x 3+x 4∈A.10设集合A 的元素为2,3,a 2+2a-3,集合B 的元素为|a+3|,2.已知5∈A ,且5∉B ,求a 的值. 解∵5∈A ,∴a 2+2a-3=5,解得a=2或a=-4.又5∉B ,∴|a+3|≠5,解得a ≠2,且a ≠-8.∴a=-4.★11已知方程ax 2-3x-4=0的解组成的集合为A.(1)若A 中有两个元素,求实数a 的取值范围.(2)若A 中至多有一个元素,求实数a 的取值范围.解(1)因为A 中有两个元素,所以方程ax 2-3x-4=0有两个不等的实数根,所以{a ≠0,Δ=9+16a >0,即a>-916且a ≠0.所以实数a 的取值范围为a>-916,且a ≠0.(2)当a=0时,由-3x-4=0得x=-43;当a ≠0时,若关于x 的方程ax 2-3x-4=0有两个相等的实数根,则Δ=9+16a=0,即a=-916;若关于x 的方程无实数根,则Δ=9+16a<0,即a<-916,故所求的a 的取值范围是a ≤-916或a=0. ★12已知集合A 的元素全为实数,且满足当a ∈A 时,1+a1-a ∈A. (1)若2∈A ,则A 中一定还有哪些元素?(2)0是不是集合A 中的元素?请你设计一个实数a ∈A ,再求出A 中的所有元素.(3)根据(1)(2),你能得出什么结论?解(1)当2∈A 时,依次代入1+a 1-a ,计算可得, 1+21-2=-3∈A ,1-31+3=-12∈A , 1-121+12=13∈A ,1+131-13=2∈A ,…… 结果循环出现,故A 中一定还有-3,-12,13.(2)0不是集合A 中的元素.若0∈A ,则1+01-0=1∈A ,而此时1+11-1没有意义,与条件1+a 1-a ∈A 矛盾,故0不是集合A 中的元素. 若a=3,则集合A 的元素为3,-2,-13,12.(3)根据(1)(2)可得出如下结论:A 中不含0,1,-1;若a ∈A ,则其负倒数也属于A.。

高中数学必修1全册课时训练含答案

高中数学必修1全册课时训练含答案

人教A版高中数学必修1 全册课时训练目录1.1.1(第1课时)集合的含义1.1.1(第2课时)集合的表示1.1.2集合间的基本关系1.1.3(第1课时)并集、交集1.1.3(第2课时)补集及综合应用1.2.1(第1课时)函数的概念1.2.1(第2课时)函数概念的综合应用1.2.2(第1课时)函数的表示法1.2.2(第2课时)分段函数及映射1.3.1(第1课时)函数的单调性1.3.1(第2课时)函数的最大值、最小值1.3.2(第1课时)函数奇偶性的概念1.3.2(第2课时)函数奇偶性的应用集合与函数的概念-单元评估试题2.1.1(第1课时)根式2.1.1(第2课时)指数幂及运算2.1.2(第1课时)指数函数的图象及性质2.1.2(第2课时)指数函数及其性质的应用2.2.1(第1课时)对数2.2.1(第2课时)对数的运算2.2.2(第1课时)对数函数的图象及性质2.2.2(第2课时)对数函数及其性质的应用2.3幂函数基本初等函数-单元评估试题3.1.1方程的根与函数的零点3.1.2用二分法求方程的近似解3.2.1几类不同增长的函数模型3.2.2(第1课时)一次函数、二次函数应用举例3.2.2(第2课时)指数型、对数型函数的应用举例函数的应用-单元评估试题第1-3章-全册综合质量评估试卷课时提升卷(一)集合的含义(45分钟 100分)一、选择题(每小题6分,共30分)1.下列各项中,不能组成集合的是( )A.所有的正整数B.等于2的数C.接近于0的数D.不等于0的偶数2.(2013·冀州高一检测)若集合M中的三个元素a,b,c是△ABC的三边长,则△ABC一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.已知集合M具有性质:若a∈M,则2a∈M,现已知-1∈M,则下列元素一定是M中的元素的是( )A.1B.0C.-2D.24.已知2a∈A,a2-a∈A,若A只含这2个元素,则下列说法中正确的是( )A.a可取全体实数B.a可取除去0以外的所有实数C.a可取除去3以外的所有实数D.a可取除去0和3以外的所有实数5.下列四种说法中正确的个数是( )①集合N中的最小数为1;②若a∈N,则-a∉N;③若a∈N,b∈N,则a+b的最小值为2;④所有小的正数组成一个集合.A.0B.1C.2D.3二、填空题(每小题8分,共24分)6.(2013·天津高一检测)设集合A中含有三个元素2x-5,x2-4x,12,若-3∈A,则x的值为.7.(2013·济宁高一检测)若集合P含有两个元素1,2,集合Q含有两个元素1,a2,且P,Q相等,则a= .8.若a,b∈R,且a≠0,b≠0,则+的可能取值所组成的集合中元素的个数为.三、解答题(9题,10题14分,11题18分)9.集合A的元素由kx2-3x+2=0的解构成,其中k∈R,若A中的元素只有一个,求k的值.10.数集M满足条件,若a∈M,则∈M(a≠±1且a≠0),已知3∈M,试把由此确定的集合M的元素全部求出来.11.(能力挑战题)设P,Q为两个数集, P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,求P+Q中元素的个数.答案解析1.【解析】选C.怎样才是接近于0的数没有统一的标准,即不满足集合元素的确定性,故选C.2.【解析】选D.由集合元素的互异性可知,a,b,c三个数一定全不相等,故△ABC一定不是等腰三角形.3.【解析】选C.∵-1∈M,∴2×(-1)∈M,即-2∈M.4.【解析】选D.由集合元素的互异性可知,2a≠a2-a,解得a≠0且a≠3,故选D.5.【解析】选A.①中最小数应为0;②中a=0时,- a∈N;③中a+b的最小值应为0;④中“小的正数”不确定.因此①②③④均不对.6.【解析】∵-3∈A,∴-3=2x-5或-3=x2-4x.①当-3=2x-5时,解得x=1,此时2x-5=x2-4x=-3,不符合元素的互异性,故x≠1;②当-3=x2-4x时,解得x=1或x=3,由①知x≠1,且x=3时满足元素的互异性.综上可知x=3.答案:37.【解析】由于P,Q相等,故a2=2,从而a=±.答案:±8.【解题指南】对a,b的取值情况分三种情况讨论求值,即同正,一正一负和同负,以确定集合中的元素,同时注意集合元素的互异性.【解析】当a>0,b>0时,+=2;当ab<0时,+=0;当a<0,b<0时,+=-2.所以集合中的元素为2,0,-2.即集合中元素的个数为3.答案:39.【解析】由题知A中元素即方程kx2-3x+2=0(k∈R)的解,若k=0,则x=,知A中有一个元素,符合题意;若k≠0,则方程为一元二次方程.当Δ=9-8k=0即k=时,kx2-3x+2=0有两个相等的实数解,此时A中有一个元素.综上所述,k=0或.10.【解析】∵a=3∈M,∴==-2∈M,∴=-∈M,∴=∈M,∴=3∈M.再把3代入将重复上面的运算过程,由集合中元素的互异性可知M中含有元素3,-2,-,.【拓展提升】集合中元素互异性的应用集合中的元素是互异的,它通常被用作检验所求未知数的值是否符合题意.只要组成两个集合的元素是一样的,这两个集合就是相等的,与两个集合中元素的排列顺序无关.11.【解析】∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11,共8个.课时提升卷(二)集合的表示(45分钟 100分)一、选择题(每小题6分,共30分)1.(2013·临沂高一检测)设集合M={x∈R|x≤3},a=2,则( )A.a∉MB.a∈MC.{a}∈MD.{a}∉M2.集合{x∈N*|x-3<2}的另一种表示方法是( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}3.下列集合中,不同于另外三个集合的是( )A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}4.下列集合的表示法正确的是( )A.第二、四象限内的点集可表示为{(x,y)|xy≤0,x∈R,y∈R}B.不等式x-1<4的解集为{x<5}C.整数集可表示为{全体整数}D.实数集可表示为R5.设x=,y=3+π,集合M={m|m=a+b,a∈Q,b∈Q},那么x,y与集合M的关系是( )A.x∈M,y∈MB.x∈M,y∉MC.x∉M,y∈MD. x∉M,y∉M二、填空题(每小题8分,共24分)6.设A={4,a},B={2,ab},若A=B,则a+b= .7.已知集合A={x|∈N,x∈N},则用列举法表示为.8.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A且a∈B,则a 为.三、解答题(9题,10题14分,11题18分)9.用适当的方法表示下列集合:(1)所有被3整除的整数.(2)满足方程x=|x|的所有x的值构成的集合B.10.下面三个集合:A={x|y=x2+1}; B={y|y=x2+1};C={(x,y)|y=x2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?11.(能力挑战题)集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},a∈P,b ∈M,设c=a+b,则c与集合M有什么关系?答案解析1.【解析】选B.(2)2-(3)2=24-27<0,故2<3.所以a∈M.2.【解析】选B.集合中元素满足x<5且x∈N*,所以集合的元素有1,2,3,4.3.【解析】选D.A是列举法,B,C是描述法,而D表示该集合含有一个元素,即“x=0”.4.【解析】选D.选项A中应是xy<0;选项B的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x;选项C的“{ }”与“全体”意思重复.5.【解析】选B.∵x==--.y=3+π中π是无理数,而集合M中,b ∈Q,得x∈M,y M.6.【解析】两个集合相等,则两集合的元素完全相同,则有a=2,ab=4,将a=2代入ab=4,得b=2.∴a+b=4.答案:47.【解题指南】结合条件,可按x的取值分别讨论求解.【解析】根据题意,5-x应该是12的正因数,故其可能的取值为1,2,3,4,6,12,从而可得到对应x的值为4,3,2,1,-1,-7.因为x∈N,所以x 的值为4,3,2,1.答案:{1,2,3,4}8.【解析】∵a∈A且a∈B,∴a是方程组的解,解方程组,得∴a为(2,5).答案:(2,5)9.【解析】(1){x|x=3n,n∈Z}.(2)B={x|x=|x|,x∈R}.【变式备选】集合A={x2,3x+2,5y3-x},B={周长为20cm的三角形},C={x|x-3<2,x∈Q},D={(x,y) |y=x2-x-1}.其中用描述法表示的集合个数为( ) A.1 B.2 C.3 D.4【解析】选C.集合A为列举法表示集合,集合B,C,D均为描述法表示集合,其中B选项省略了代表元素和竖线.10.【解析】(1)在A,B,C三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A的代表元素是x,满足y=x2+1,故A={x|y=x2+1}=R.集合B的代表元素是y,满足y=x2+1,所以y≥1,故B={y|y=x2+1}={y|y≥1}.集合C的代表元素是(x,y),满足条件y=x2+1,即表示满足y=x2+1的实数对(x,y);也可认为是满足条件y=x2+1的坐标平面上的点.【拓展提升】三种集合语言的优点及应用集合语言包括符号语言、图形语言和自然语言三种.(1)符号语言比较简洁、严谨且内涵丰富有利于推理计算.(2)图形语言能够引起直观的视觉感受,便于理清关系,有利于直观地表达概念、定理的本质及相互关系,使得抽象的思维关系明朗化. (3)自然语言往往比较生动,能将问题研究对象的含义更加明白地叙述出来.集合的三种语言之间相互转化,在解决集合问题时,一般是将符号语言转化为图形语言、自然语言,这样有助于弄清集合是由哪些元素构成的,有助于提高分析问题和解决问题的能力.11.【解析】∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∴c∈M.课时提升卷(三)集合间的基本关系(45分钟 100分)一、选择题(每小题6分,共30分)1.下列四个结论中,正确的是( )A.0={0}B.0∈{0}C.0⊆{0}D.0=∅2.(2013·宝鸡高一检测)如果M={x|x+1>0},则( )A.∅∈MB.0MC.{0}∈MD.{0}⊆M3.(2013·长沙高一检测)已知集合A={x|3≤x2≤5,x∈Z},则集合A的真子集个数为( )A.1个B.2个C.3个D.4个4.设A={a,b},B={x|x∈A},则( )A.B∈AB.B AC.A∈BD.A=B5.(2013·潍坊高一检测)设A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.a≤2B.a≤1C.a≥1D.a≥2二、填空题(每小题8分,共24分)6.(2013·汕头高一检测)已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m= .7.已知集合A={x|x<3},集合B={x|x<m},且A B,则实数m满足的条件是.8.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P 的关系为.三、解答题(9题,10题14分,11题18分)9.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠ ,B⊆A,求a,b的值.10.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A B,求a的取值范围.(2)若B⊆A,求a的取值范围.11.(能力挑战题)已知A={x||x-a|=4},B={1,2,b},是否存在实数a,使得对于任意实数b(b≠1,且b≠2),都有A⊆B?若存在,求出对应的a的值;若不存在,说明理由.答案解析1.【解析】选B.{0}是含有1个元素0的集合,故0∈{0}.2.【解析】选D.M={x|x+1>0}={x|x>-1},∴{0}⊆M.3.【解析】选C.由题意知,x=-2或2,即A={-2,2},故其真子集有3个. 【误区警示】本题易忽视真子集这一条件而误选D.4.【解析】选D.因为集合B中的元素x∈A,所以x=a或x=b,所以B={a,b},因此A=B.5.【解析】选D.∵A⊆B,∴a≥26.【解析】∵B⊆A,∴m2=2m-1,∴m=1.答案:17.【解析】将数集A标在数轴上,如图所示,要满足A B,表示数m的点必须在表示3的点的右边,故m>3.答案: m>38.【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.答案:M=P9.【解析】由B⊆A知,B中的所有元素都属于集合A,又B≠ ,故集合B有三种情形:B={-1}或B={1}或B={-1,1}.当B={-1}时,B={x|x2+2x+1=0},故a=-1,b=1;当B={1}时,B={x|x2-2x+1=0},故a=b=1;当B={-1,1}时,B={x|x2-1=0},故a=0,b=-1.综上所述,a,b的值为或或10.【解题指南】利用数轴分析法求解.【解析】(1)若A B,由图可知,a>2.(2)若B⊆A,由图可知,1≤a≤2.11.【解析】不存在.要使对任意的实数b都有A⊆B,所以1,2是A中的元素,又∵A={a-4,a+4},∴或这两个方程组均无解,故这样的实数a不存在.课时提升卷(四)并集、交集(45分钟 100分)一、选择题(每小题6分,共30分)1.(2013·衡水高一检测)若集合A,B,C满足A∩B=A,B∪C=C,则A与C 之间的关系为( )A.C AB.A CC.C⊆AD.A⊆C2.已知M={0,1,2, 4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M ∩P)等于( )A.{1,4}B.{1,7}C.{1, 4,7}D.{4,7}3.(2013·本溪高一检测)A={x∈N︱1≤x≤10},B={x∈R︱x2+x-6=0},则图中阴影表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}4.(2013·德州高一检测)设集合A={x|x≤1},B={x|x>p},要使A∩B=∅,则p应满足的条件是( )A.p>1B.p≥1C.p<1D.p≤15.(2012·新课标全国卷)已知集合A={1,3,},B={1,m},A∪B=A,则m=( )A.0或B.0或3C.1或D.1或3二、填空题(每小题8分,共24分)6.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N= .7.(2013·清远高一检测)已知集合A={x|x≤1},集合B={x|a≤x},且A∪B=R,则实数a的取值范围是.8.(2013·西安高一检测)设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B= .三、解答题(9题,10题14分,11题18分)9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A ∩B.10.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=∅,求a的取值范围.11.(能力挑战题)已知:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若A∪B=B,求a的值.(2)若A∩B=B,求a的值.答案解析1.【解析】选D.∵A∩B=A,B∪C=C,∴A⊆B,B⊆C,∴A⊆C.2.【解析】选C.M∩N={1,4},M∩P={4,7},故(M∩N)∪(M∩P)={1,4,7}.3.【解析】选A.A={1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.4.【解析】选B.∵A∩B= ,∴结合数轴分析可知应满足的条件是p≥1. 【误区警示】本题易漏掉p=1的情况而误选A.5.【解析】选B.由A∪B=A得B⊆A,所以有m=3或m=.由m=得m=0或1,经检验,m=1时B={1,1}不符合集合元素的互异性,m=0或3时符合.6.【解析】由题意联立方程组得x=3,y=-1,故M∩N={(3,-1)}.答案:{(3,-1)}7.【解析】∵A∪B=R,∴a≤1.答案:a≤18.【解析】∵A∩B={2},∴2∈A,故a+1=2,a=1,即A={5,2};又2∈B,∴b=2,即B={1,2},∴A∪B={1,2,5}.答案:{1,2,5}9.【解析】∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.【解题指南】通过数轴直观表示,并结合A∩B=∅分析列不等式(组)求解.【解析】A∩B=∅,A={x|2a≤x≤a+3}.(1)若A=∅,有2a>a+3,∴a>3.(2)若A≠∅,如图所示.则有解得-≤a≤2.综上所述,a的取值范围是-≤a≤2或a>3.【拓展提升】数轴在解含参不等式(组)中的作用数轴是解不等式(组)的重要工具,它是实现数形结合解决数学问题的桥梁,在求解不等式(组)待定字母值或范围时,借助数轴的直观性,很轻松地将各变量间的关系表示出来,进而列出不等式(组),更能显示出它的优越性.11.【解析】(1)A={-4,0},若A∪B=B,则B=A={-4,0},解得a=1.(2)若A∩B=B,则①若B为空集,则Δ=4(a+1)2-4(a2-1)=8a+8<0,则a<-1;②若B为单元素集合,则Δ=4(a+1)2-4(a2-1)=8a+8=0, 解得a=-1,将a=-1代入方程x2+2(a+1)x+a2-1=0,得x2=0得,x=0,即B={0},符合要求;③若B=A={-4,0},则a=1,综上所述,a≤-1或a=1.课时提升卷(五)补集及综合应用(45分钟 100分)一、选择题(每小题6分,共30分)1.设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则ð(A∪B)=( )UA.{1,4}B.{1,5}C.{2,4}D.{2,5}2.已知全集U=R,集合A={x|-1≤x≤2},B={x|x<1},则A∩(ðB)=( )RA.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}3.已知全集U={1,2,3,4,5,6,7},A={1,3,5,7},B={3,5},则下列式子一定成立的是( )A.ðB⊆UðA B.(UðA)∪(UðB)=UUC.A∩ðB=∅ D.B∩UðA=∅U4.设全集U(U≠∅)和集合M,N,P,且M=UðN,N=UðP,则M与P的关系是( )A.M=ðP B.M=PUC.M PD.M P5.(2013·广州高一检测)如图,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是( )A.(ðA∩B)∩C B.(IðB∪A)∩CIC.(A∩B)∩ðC D.(A∩IðB)∩CI二、填空题(每小题8分,共24分)6.已知集合A={1,3,5,7,9},B={0,3,6,9, 12},则A∩(ðB)= .N7.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆ðP,则Ra的取值范围是.8.设集合A,B都是U={1,2,3,4}的子集,已知(ðA)∩(UðB)={2},(UðA)U∩B={1},且A∩B=∅,则A= .三、解答题(9题,10题14分,11题18分)9.(2013·济南高一检测)已知全集U=R,集合A={x|1≤x≤2},若B∪ðA=R,RB∩ðA={x|0<x<1或2<x<3},求集合B.R10.已知集合A={x|2a-2<x<a},B={x|1<x<2},且AðB,求a的取值范R围.11.(能力挑战题)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(ðA)∩B=∅,求m的值.U答案解析1.【解析】选C.由题知U={1,2,3,4,5},A∪B={1,3,5},故ð(A∪B)={2,4}.U2.【解析】选D.∵B={x|x<1},∴ðB={x|x≥1},R∴A∩ðB={x|1≤x≤2}.R3.【解析】选D.逐一进行验证.ðB={1,2,4,6,7},UðA={2,4, 6},显然UðAU⊆ðB,显然A,B错误;A∩UðB={1,7},故C错误,所以只有D正确.U4.【解析】选B.利用补集的性质:M=ðN=Uð(UðP)=P,所以M=P.U【拓展提升】一个集合与它的补集的关系集合与它的补集是一组相对的概念,即如果集合A是B相对于全集U 的补集,那么,集合B也是A相对于全集U的补集.同时A与B没有公共元素,且它们的并集正好是全集,即A∪B=U,A∩B= .5.【解析】选D.由图可知阴影部分是A的元素,且是C的元素,但不属于B,故所表示的集合是(A∩ðB)∩C.I6.【解析】∵A={1,3,5,7,9},B={0,3,6,9,12},∴ðB={1,2,4,5,7,8,…}.N∴A∩ðB={1,5,7}.N答案:{1,5,7}7.【解析】M={x|-2<x<2},ðP={x|x<a}.R∵M⊆ðP,∴由数轴知a≥2.R答案:a≥28.【解析】根据题意画出Venn图,得A={3,4}.答案:{3,4}9.【解析】∵A={x|1≤x≤2},∴ðA={x|x<1或x>2}.R又B∪ðA=R,A∪RðA=R,可得A⊆B.R而B∩ðA={x|0<x<1或2<x<3},R∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1或2<x<3}={x|0<x<3}.10.【解题指南】解答本题的关键是利用AðB,对A=∅与A≠∅进行R分类讨论,转化为等价不等式(组)求解,同时要注意区域端点的问题. 【解析】ðB={x|x≤1或x≥2}≠∅,R∵AðB.R∴分A=∅和A≠∅两种情况讨论.(1)若A=∅,则有2a-2≥a,∴a≥2.(2)若A≠∅,则有或∴a≤1.综上所述,a≤1或a≥2.11.【解题指南】本题中的集合A,B均是一元二次方程的解集,其中集合B中的一元二次方程含有不确定的参数m,需要对这个参数进行分类讨论,同时需要根据(ðA)∩B=∅对集合A,B的关系进行转化.U【解析】A={-2,-1},由(ðA)∩B=∅,得B⊆A,U∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或m=2.【变式备选】已知集合A={x|x2-5x+6=0},B={x|ax-6=0}且ðA⊆RðB,R求实数a的取值集合.【解析】∵A={x|x2-5x+6=0},∴A={2,3}.又ðA⊆RðB,R∴B⊆A,∴有B=∅,B={2},B={3}三种情形.当B={3}时,有3a-6=0,∴a=2;当B={2}时,有2a-6=0,∴a=3; 当B= 时,有a=0,∴实数a的取值集合为{0,2,3}.课时提升卷(六)函数的概念(45分钟 100分)一、选择题(每小题6分,共30分)1.设全集U=R,集合A=[3,7),B=(2,10),则ð(A∩B)=( )RA.[3,7)B.(-∞,3)∪[7,+∞)C.(-∞,2)∪[10,+∞)D.2.(2013·西安高一检测)下列式子中不能表示函数y=f(x)的是( )A.x=y2+1B.y=2x2+1C.x-2y=6D.x=3.(2013·红河州高一检测)四个函数:(1)y=x+1.(2)y=x3.(3)y=x2-1.(4)y=.其中定义域相同的函数有( )A.(1),(2)和(3)B.(1)和(2)C.(2)和(3)D.(2),(3)和(4)4.下列集合A到集合B的对应f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值5.(2013·盘锦高一检测)函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=( )A.[-2,+∞)B.[-2,2)C.(-2,2)D.(-∞,2)二、填空题(每小题8分,共24分)6.若[a,3a-1]为一确定区间,则a的取值范围是.7.函数y=f(x)的图象如图所示,那么f(x)的定义域是;其中只与x的一个值对应的y值的范围是.8.函数f(x)定义在区间[-2,3]上,则y=f(x)的图象与直线x=a的交点个数为.三、解答题(9题,10题14分,11题18分)9.(2013·烟台高一检测)求下列函数的定义域.(1)y=+.(2)y=.10.已知函数f(x)=,(1)求f(x)的定义域.(2)若f(a)=2,求a的值.(3)求证:f()=-f(x).11.(能力挑战题)已知函数y=(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.答案解析1.【解析】选B.∵A∩B=[3,7),∴ð(A∩B)=(-∞,3)∪[7,+∞).R2.【解析】选A.一个x对应的y值不唯一.3.【解析】选A.(1),(2)和(3)的定义域都是R,(4)的定义域是{x∈R|x≠0}.4.【解析】选A.按照函数定义,选项B中,集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.5.【解析】选B.由题意得M=(-∞,2),N=[-2,+∞),所以M∩N=(-∞,2)∩[-2,+∞)=[-2,2).6.【解析】由题意3a-1>a,则a>.答案:(,+∞)【误区警示】本题易忽略区间概念而得出3a-1≥a,则a≥的错误.7.【解析】观察函数图象可知f(x)的定义域是[-3,0]∪[2,3];只与x的一个值对应的y值的范围是[1,2)∪(4,5].答案:[-3,0]∪[2,3] [1,2)∪(4,5]【举一反三】本题中求与x的两个值对应的y值的范围.【解析】由函数图象可知y值的范围是[2,4].8.【解题指南】根据函数的定义,对应定义域中的任意一个自变量x 都有唯一的函数值与之对应.利用此知识可以结合函数图象分析. 【解析】当a∈[-2,3]时,由函数定义知,y=f(x)的图象与直线x=a只有一个交点;当a [-2,3]时,y=f(x)的图象与直线x=a没有交点.答案:0或19.【解析】(1)由已知得∴函数的定义域为[-,].(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,得x≠-3,x≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(-1,+∞).10.【解析】(1)要使函数f(x)=有意义,只需1-x2≠0,解得x≠±1,所以函数的定义域为{x|x≠±1}.(2)因为f(x)=,且f(a)=2,所以f(a)==2,即a2=,解得a=±.(3)由已知得f()==,-f(x)=-=,∴f()=-f(x).11.【解题指南】由题意得,(-∞,1]是函数y=的定义域的子集. 【解析】函数y=(a<0且a为常数).∵ax+1≥0,a<0,∴x≤-,即函数的定义域为(-∞,-].∵函数在区间(-∞,1]上有意义,∴(-∞,1] (-∞,-],∴-≥1,而a<0,∴-1≤a<0.即a的取值范围是[-1,0).关闭Word文档返回原板块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 集合的含义与表示
第1课时 集合的含义
A 级 基础巩固
一、选择题
1.解析:-5≤x ≤5,且x ∈N *,
所以x =1,2,所以1∈A .
答案:D
2.解析:看一组对象是否构成集合,关键是看这组对象是不是确定的,A ,C ,D 选项没有一个明确的判定标准,只有B 选项判断标准明确,可以构成集合.
答案:B
3.解析:根据集合中元素的互异性,验证可知a 的取值可以是8.
答案:C
4.解析:因为a ∈M ,且2a ∈M ,又-1∈M ,
所以-1×2=-2∈M .
答案:C
5.解析:因A 中含有3个元素,即a 2,2-a ,4互不相等,将选项中的数值代入验证可知答案选C.
答案:C
二、填空题
6.解析:①④中的对象是确定的,可以组成集合,②③中的对象是不确定的,不能组成集合.
答案:①④
7. 解析:因为方程x 2-2x -3=0的解是x 1=-1,x 2=3,方程x 2-x -2=0的解是x 3=-1,x 4=2,所以以这两个方程的解为元素的集合中的元素应为-1,2,3,共有3个元素.
答案:3
8.解析:因为-2∈M ,所以a -3=-2或2a +1=-2.若a -3=-2,则a =1,
此时集合M 中含有两个元素-2,3,符合题意;若2a +1=-2,则a =-32,此
时集合M 中含有两个元素-2、-92,符合题意;所以实数a 的值是1、-32.
答案:1、-32
三、解答题
9.解:因为A =B ,所以-1,3是方程x 2+ax +b =0的解.
则⎩⎨⎧-1+3=-a ,-1×3=b ,解得⎩⎨⎧a =-2,b =-3.
10.解:因为-3∈A ,所以a -2=-3或2a 2+5a =-3,
所以a =-1或a =-32.
当a =-1时,a -2=-3,2a 2+5a =-3,集合A 不满足元素的互异性,所以a =-1舍去.
当a =-32时,经检验,符合题意.所以a =-32.
B 级 能力提升
1.解析:若a =2,则6-2=4∈A ;
若a =4,则6-4=2∈A ;
若a =6,则6-6=0∉A .故选B. 答案:B
2.解析:当x ,y ,z 都是正数时,a =4,当x ,y ,z 都是负数时a =-4,当x ,y ,z 中有1个是正数另2个是负数或有2个是正数另1个是负数时,a =0.所以以a 的值为元素的集合中有3个元素.
答案:3
3.证明:(1)若a ∈A ,则
11-a ∈A . 又因为2∈A ,所以
11-2=-1∈A . 因为-1∈A ,所以11-(-1)
=12∈A . 因为12∈A ,所以11-12
=2∈A .
所以A 中另外两个元素为-1,12.
(2)若A为单元素集,则a=1
1-a
,即a2-a+1=0,方程无解.
所以a≠
1
1-a
,所以A不可能为单元素集.。

相关文档
最新文档