中考数学复习资料专题方程与不等式

合集下载

中考数学专题复习:方程与不等式

中考数学专题复习:方程与不等式

中考数学专题复习:方程与不等式一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元一次方程1、一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)2、一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)3、解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

4、一元一次方程有唯一的一个解。

三、一元二次方程1、一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)2、一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法3、一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:ac b 42-=∆当Δ>0时⇔方程有两个不相等的实数根; 当Δ=0时⇔方程有两个相等的实数根; 当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根 5、一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a b x x -=+21,ac x x =⋅21 6、以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x 三、分式方程1、定义:分母中含有未知数的方程叫做分式方程。

2、分式方程的解法: 一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

3、检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

中考数学《方程与不等式》专题知识训练50题(含参考答案)

中考数学《方程与不等式》专题知识训练50题(含参考答案)

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.若3x >﹣3y ,则下列不等式中一定成立的是( ) A .x >yB .x <yC .x ﹣y >0D .x +y >02.如果1x -大于0,那么x 的取值范围是( ) A .1x >B .1x <C .0x <D .0x >3.一元一次不等式x +1<2的解集在数轴上表示为( ) A . B . C .D .4.不等式﹣3x≤9的解集在数轴上表示正确的是( ) A .B .C .D .5.用配方法解方程22990x x --=,配方后得( ) A .2(1)99x -=B .2(1)100x +=C .2(1)98x -=D .2(1)100x -=6.若关于x 的分式方程43233m xx x +=+--有增根,则m 的值为( ) A .2B .3C .4D .57.一项工程,A 独做10天完成,B 独做15天完成,若A 先做5天,再A 、B 合做,完成全部工程的23,共需( ) A .8天B .7天C .6天D .5天8.若关于x 的方程534x kx -=+有整数解,那么满足条件的所有整数k 的和为( ) A .20B .6C .4D .29.不等式组372378x x -≥⎧⎨-<⎩的所有整数解共有( )A .1个B .2个C .3个D .4个10.下列运用等式性质进行的变形中,正确的是( ) A .如果a b =,那么23a b +=+ B .如果a b =,那么23a b -=- C .如果2a a =,那么1a =D .如果a bc c=,那么a b = 11.下列是一元一次方程的是( ) A .231x y +=B .20x -=C .3x +D .11x= 12.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出的方程正确的是( ) A .30252=+x x B .30252=+x x C .30252=-x x D .30252=-x x13.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同. 设2,3月份利润的月增长率为x ,那么x 满足的方程为( ) A .B .C .D .14.如图所示两个天平都平衡,则3个球体的质量等于( )个正方体的质量,括号内应填A .2B .3C .4D .515.若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( ) A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤516.下列变形中,正确的是( ) A .若a b =,则11a b +=-B .若32a b =,则a b =C .若2a b -=,则2a b =-D .若44b a -=-,则a b =17.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( )A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=3218.三元一次方程组10318x y z x y x y z ++=⎧⎪+=⎨⎪=+⎩的解是( )A .532x y z =⎧⎪=⎨⎪=⎩B .352x y z =⎧⎪=⎨⎪=⎩C .542x y z =⎧⎪=⎨⎪=⎩D .431x y z =⎧⎪=⎨⎪=⎩19.已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A .3瓶B .4瓶C .5瓶D .6瓶20.甲、乙、丙三名打字员承担一项打字任务,已知如下信息:如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( )A .1316小时B .1312小时C .1416小时D .1412小时二、填空题21.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为____克. 22.如果方程23252x x -+=-的解与方程72x b -=的解相同,则b =________. 23.由4x ﹣3y +6=0,可以得到用y 表示x 的式子为x =__.24.已知不等式组212(1)43x x x+>⎧⎨-+>⎩,请写出一个该不等式组的整数解___________.25.已知关于x 的一元二次方程x 2+x+m =0有实数根,则m 的取值范围是_____.26.若关于x 的方程()21410k x x ---=是一元二次方程,则k 的取值范围是______.27.当a =_____时,分式32a a +-的值为-4. 28.三角形的三边长分别为7,1+2x ,13,则x 的取值范围是___ 29.25y x +=用含x 的式子表示y 为________________________.30.若关于x ,y 的二元一次方程组2630x my x y -=⎧⎨-=⎩的解是正整数,则整数m =_______.31.某种服装打折销售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,则成本价为______元.32.已知A ∠与的B ∠两边分别平行,且A ∠比B ∠的3倍少20°,则A ∠的大小是__________.33.已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩, (1)代数式224x y +的值是_____. (2)代数式112x y+的值是______.34.已知关于x ,y 的方程组225,234x y m x y m +=-⎧⎨-=-⎩的解满足1x <,2y <,则m 的取值范围为______.35.已知关于x ,y 的不等式组100x x a ->⎧⎨-⎩有以下说法:①若它的解集是1<x ≤4,则a =4;①当a =1时,它无解;①若它的整数解只有2,3,4,则4≤a <5;①若它有解,则a ≥2.其中所有正确说法的序号是_____.36.若关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数,则k 的取值范围为__.37.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.38.如果关于x 的方程x2+2ax ﹣b2+2=0有两个相等的实数根,且常数a 与b 互为倒数,那么a +b=_____.39.某车间 56 名工人,每人每天能生产螺栓 16 个或螺母 24 个,设有 x 名工人生产螺栓, 有 y 名工人生产螺母,每天生产的螺栓和螺母按 1:2 配套,所列方程组是________. 40.若分式方程2211x m x x x x x+-=++有增根,则m 的值是______.三、解答题 41.解下列方程: (1)3x +7=32﹣2x ; (2)121224x x +--=+. 42.解方程:242111x x x++=---. 43.解方程组:(1)32528x y x y +=⎧⎨-=⎩;(2)234347x y x y ⎧+=⎪⎨⎪-=-⎩.44.某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商场共盈利多少元? 45.当k 为何值时,方程x 2﹣6x+k ﹣1=0, (1)两根相等; (2)有一根为0. 46.解方程组或不等式组:(1)20346x y x y +=⎧⎨+=⎩;(2)53231204x x x +≥⎧⎪⎨--<⎪⎩ 47.已知一个四位自然数N ,它的各个数位上的数字均不为0,且满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“和对称数”,将这个四位自然数N 的千位数字和百位数字互换,十位数字和个位数字互换,得到N ',规定()101N N F N '+=. 例如:4536N =,①4536+=+,①4536是“和对称数”,()45365463453699101F +==.2346N =,①2346+≠+,①2346不是“和对称数”.(1)请判断2451、3972是不是“和对称数”,并说明理由.若是,请求出对应的()F N 的值.(2)已知A ,B 均为“和对称数”,其中100010746A a b =++,1002026B m n =++(其38a ≤≤,05b ≤≤,29m ≤≤,512n ≤≤,且均为整数),令()()32k F A F B =+,当k能被77整除时,求出所有符合条件的A 的值. 48.解决以下问题:(1)221x y ±++,的算术平方根是5,求2318x y -+的立方根; (2)的值互为相反数,求a b c 、、的值. 49.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A 品牌足球共花费2880元,B 品牌足球共花费2400元,且购买A 品牌足球数量是B 品牌数量的1.5倍,每个足球的售价,A 品牌比B 品牌便宜12元. (1)求去年A ,B 两种足球的售价;(2)今年由于参加俱乐部人数增加,需要从该店再购买A ,B 两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A 品牌比去年提高了5%,B 品牌比去年降低了10%,如果今年购买A ,B 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B 品牌足球?50.某生态柑橘园现有柑橘31吨,租用9辆A 和B 两种型号的货车将柑橘一次性运往外地销售.已知每辆车满载时,A 型货车的总费用500元,B 型货车的总费用480元,每辆B型货车的运费是每辆A型货车的运费的1.2倍.(1)每辆A型货车和B型货车的运费各多少元?(2)若每辆车满载时,租用1辆A型车和7辆B型车也能一次性将柑橘运往外地销售,则每辆A型货车和B型车货各运多少吨?参考答案:1.D【分析】利用不等式的性质由已知条件可得到x+y>0,从而得到正确选项.【详解】①3x>﹣3y,①3x+3y>0,①x+y>0.故选D.【点睛】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.Ax->,即可求得x的取值范围.【分析】1x-大于0即10【详解】根据题意得:x->10x>解得:1故选A.【点睛】本题主要考查了一元一次不等式的应用,把判断一个式子的值的取值范围的问题掌握不等式的问题,这是解本题的关键.3.B【分析】求出不等式的解集,表示出数轴上即可.【详解】解:不等式x+1<2,解得:x<1,如图所示:故选B.【点睛】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4.A【详解】试题分析:本题考查了在数轴上表示不等式的解集:利用数轴表示不等式的解集体现了数形结合的思想.也考查了解一元一次不等式.先解不等式得到x≥﹣3,在数轴上表示为﹣3的右侧部分且含﹣3,这样易得到正确选项. 考点:在数轴上表示不等式的解集;解一元一次不等式 5.D【分析】把常数项-99移项后,应该在左右两边同时加上一次项系数-2的一半的平方. 【详解】把方程x 2-2x -99=0的常数项移到等号的右边,得到x 2-2x =99 方程两边同时加上一次项系数一半的平方,得到x 2-2x +1=100 配方得(x -1)2=100. 故选D .【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 6.D【分析】根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可. 【详解】解:①分式方程43233m xx x +=+--有增根, ①3x =,去分母,得()4323m x x +=+-, 将3x =代入,得49m +=, 解得5m =. 故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键. 7.C【分析】此题是工程问题,它的等量关系是A 独做的加上A 、B 合做的是总工程的23,此题可以分段考虑,A 独做了5天,合作了(x -5)天,利用等量关系列方程即可解得. 【详解】设共需x 天. 根据题意得:5112(5)()1010153x +-+= 解得:x =6. 故选C .8.A【分析】先解方程可得75x k=-,再根据关于x 的方程534x kx -=+有整数解,k 为整数,可得51k -=±或57k -=±,从而可得答案. 【详解】解:①534x kx -=+, ①57x kx -=,即()57k x -=, 当50k -≠时, ①75x k=-, ①关于x 的方程534x kx -=+有整数解,k 为整数, ①51k -=±或57k -=±,解得:4k =或6k =或2k =-或12k =, ①()4621220++-+=,①满足条件的所有整数k 的和为20. 故选A .【点睛】本题考查的是一元一次方程的解与方程的解法,掌握“方程的整数解的含义以及求解整数解的方法”是解本题的关键. 9.B【分析】解不等式组,得到关于x 的解集,再找出符合x 取值范围的整数解即可. 【详解】解:解不等式3x −7≥2得:x ≥3, 解不等式3x −7<8得:x <5, 即不等式组的解集为:3≤x <5,符合3≤x <5的x 的整数解为:3,4共2个, 故选:B .【点睛】本题考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的方法. 10.D【分析】根据等式的基本性质进行分析判断即可.【详解】解:A 选项中,“如果a b =,那么23a b +=+”是不成立的,故不能选A ; B 选项中,“如果a b =,那么23a b -=-”是不成立的,故不能选B ;C选项中,“如果2a a=,那么1a=”不一定成立,因为a的值可能为0,故不能选C;D选项中,“如果a bc c=,那么a b=”成立,故选D.故选:D.【点睛】本题考查等式的基本性质,熟记“等式的基本性质:(1)等式的两边都加上或者减去同一个整式,所得结果仍是等式;(2)等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式”是解答本题的关键.11.B【分析】根据一元一次方程的定义逐项分析判断即可求解.【详解】解:A、不是一元一次方程,故本选项错误;B、是一元一次方程,故本选项正确;C、不是等式,即不是一元一次方程,故本选项错误;D、不是整式方程,即不是一元一次方程,故本选项错误.故选B.【点睛】本题考查了一元一次方程的定义,掌握一元一次方程的定义是解题的关键.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).12.C【详解】解:设甲每小时骑行x公里,根据题意得:30252=-x x.故选C.13.D【详解】试题分析:一月份获利10万元,二月份获利10(1+x)万元,三月份获利10万元,然后根据一季度的总获利得出方程.考点:一元二次方程的应用14.D【分析】根据等式的性质求解即可.【详解】解:由图可知,2个球体的质量=5个圆柱的质量,2个正方体的质量=3个圆柱的质量,①6个球体的质量=15个圆柱的质量,10个正方体的质量=15个圆柱的质量,①6个球体的质量=10个正方体的质量,①3个球体的质量=5个正方体的质量,故选D .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式. 15.A【分析】先求出方程的解,再根据﹣3<a ≤3的范围,即可求解.【详解】解:由x +a =2,得:x =2-a ,①﹣3<a ≤3,①﹣1≤2-a <5,即:﹣1≤x <5,故选A .【点睛】本题主要考查解一元一次方程以及不等式的性质,用含a 的代数式表示x ,是解题的关键.16.D【分析】根据等式的性质逐个判断即可得到答案.【详解】解:由题意可得,若a b =,则111a b b +=+>-,故A 选项错误不符合题意;若32a b =,则23a b =,故B 选项错误不符合题意; 若2a b -=,则2a b =+,故C 选项错误不符合题意;若44b a -=-,则a b =,故D 选项正确符合题意;故选D .【点睛】本题考查等式的性质:等式两边同时加上或减去同一个数等式性质不变,等式两边同时乘以或除以同一个不为0的数等式性质不变.17.C【分析】设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x )场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x 的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,依题意,得:2x+3(11﹣x)=32.故选:C.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键. 18.A【分析】由①代入①、①消去x,解二元一次方程组得出y、z的数值,再进一步求得x的数值解决问题.【详解】10318x y zx yx y z++=⎧⎪+=⎨⎪=+⎩①②③,把①代入①得:y+z=5①,把①代入①得:4y+3z=18①,①×4–①得:z=2,把z=2代入①得:y=3,把y=3,z=2代入①得:x=5,则方程组的解为532xyz=⎧⎪=⎨⎪=⎩,故选A.【点睛】此题考查三元一次方程组的解法,注意逐步消元是解决问题的关键.19.C【详解】试题分析:因为15÷4=3余3空瓶,所以可换3瓶喝完,还剩3+3=6空瓶,拿出4空瓶换一瓶,还剩3个空瓶子,找人借一个瓶子凑齐四个喝完还剩一个再把这个瓶子还给那个人,故最多可以喝五瓶矿泉水.故选C.考点:命题.20.C【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【详解】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则5x x -解得x =20.经检验x =20是原方程的根,且符合题意.①x =20是所列方程的解.①x -5=15.①甲的工作效率是120,乙的工作效率是115, 则丙的工作效率是110. ①一轮的工作量为:1111320151060++=. ①4轮后剩余的工作量为:52216015-=. ①还需要甲、乙分别工作1小时后,丙需要的工作量为:211115201560--=. ①丙还需要工作16小时. 故一共需要的时间是:3×4+2+16=14 16小时. 故选:C . 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 21.2【分析】根据题意直接列一元一次不等式,并求解即可.【详解】解:设蛋白质的含量至少应为x 克,依题意得:0.4%500x ≥, 解得x ≥2,则蛋白质的含量至少应为2克.【点睛】本题考查了一元一次不等式的应用,根据题意正确列出不等式是解题的关键. 22.7 【分析】先解方程23252x x -+=-,得97x =,因为这个解也是方程72x b -=的解,根据方程的解的定义,把x 代入方程72x b -=中求出b 的值. 【详解】解:由23252x x -+=-,得2420(515),x x -=-+7所以可得97277b =⨯-= 故答案为:7.【点睛】本题考查了解一元一次方程和方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.23.364y - 【详解】方程4x −3y +6=0,解得:x =364y -, 故答案为364y -. 24.0##1【分析】分别求出两个不等式的解集,再求出两个解集的公共部分,即可得到答案.【详解】()212143x x x +>⎧⎪⎨-+>⎪⎩①② 解不等式①得:1x >-;解不等式①得:2x <;所以不等式组的解集为:12x -<<;则其整数解为0与1.故答案为:0(或1).【点睛】本题考查了求一元一次不等式组的整数解,正确并熟练地解一元一次不等式是解题的关键.25.m≤14【分析】一元二次方程有实数根,则①≥0,建立关于m 的不等式,求出m 的取值范围.【详解】解:由题意知,①=1﹣4m≥0, ①m≤14, 故答案为m≤14. 【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,①≥0. 26.1k ≠【分析】根据一元二次方程的定义列式计算即可得解.【详解】①关于x 的方程()21410k x x ---=是一元二次方程,①10k -≠,①1k ≠,故答案为:1k ≠.【点睛】本题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.27.1【分析】根据题意列出方程即可求出答案. 【详解】解:由题意得:342a a +=--, 去分母得,()342a a +=-- ,解得,1a =,经检验1a =是分式方程的解,故答案为:1【点睛】本题考查分式方程,解题的关键是熟练运用分式方程的解法.28.3<x <6【详解】试题分析:根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,可得13-7< 1+2x <20,解得3<x <6 .考点:三角形三边之间的关系点评:该题考查了三角形三边之间的关系,已知三角形的两边长,可以求第三边的范围,即两边之差<第三边长<两边之和.29.y=-2x+5【分析】把x 看做已知数求出y 即可.【详解】解:方程y+2x=5,解得:y=-2x+5.故答案为:y=-2x+5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .30.0,3,4,5【分析】先解方程组2630x myx y-=⎧⎨-=⎩,用m表示出方程组的解,根据方程组有正整数解得出m的值.【详解】解:2630x myx y-=⎧⎨-=⎩①②由①得:x=3y ①,把①代入①得:6y−my=6,①y=66-m,①x=186-m,①方程组2630x myx y-=⎧⎨-=⎩的解是正整数,①6−m>0,①m<6,并且66-m和186-m是正整数,m是整数,①m的值为:0,3,4,5.故答案是:0,3,4,5.【点睛】本题考查了二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.31.185【分析】设每件服装标价为x元,再根据无论亏本或盈利,其成本价相同,列出方程,求出x的解,最后根据成本价=服装标价×折扣,即可得出答案.【详解】解:设每件服装标价为x元,根据题意得:0.5x+35=0.8x-55,解得:x=300.则每件服装标价为300元,成本价是:300×50%+35=185(元),故答案为:185.【点睛】此题主要考查了一元一次方程的应用,正确找出等量关系是解题的关键.32.10°或130°【分析】根据A ∠与B ∠两边分别平行,由A ∠比B ∠的3倍少20°列方程求解即可得到答案.【详解】①A ∠比B ∠的3倍少20°,①A ∠=3B ∠- 20°,①A ∠与B ∠两边分别平行,①①A 与①B 相等或互补,①当A ∠=B ∠时,得到①A =3①A - 20°,①①A =10°;①当①A +①B =180°时,得到①A =3(180°-①A )-20°,①①A =130°,故答案为:10°或130°.【点睛】此题考查平行线的性质,解一元一次方程,能正确理解两边分别平行的两个角的关系是解题的关键.33. 17 54± 【分析】(1)令224n x y m xy +==,,将原方程组可化为关于m 、n 的二元一次方程组,进行求解即可;(2)先根据完全平方公式求出25x y +=±,再将112x y+通分进行计算即可. 【详解】(1)令224n x y m xy +==,,原方程组可化为3247236m n m n -=⎧⎨+=⎩, 解得172m n =⎧⎨=⎩, 即221724x y xy +==,,故答案为:17;(2)222(2)4178254x y x y xy +=+=+=+,25x y ∴+=±1125224x y x y xy +±∴+==,故答案为:54±. 【点睛】本题考查了解二元一次方程组,完全平方公式的变形,异分母分式相加等,熟练掌握知识点并运用整体代入法是解题的关键.34.823m -<< 【分析】先解出方程组的解,再根据解的情况列出关于m 的不等式组,解不等式组即可求解.【详解】解:225234x y m x y m +=-⎧⎨-=-⎩①② ①+①得:x =-1-m ,将x =-1-m 代入①中,得:y =342m -, ①该方程组的解满足1x <,2y <, ①113422m m --<⎧⎪⎨-<⎪⎩, 解得:823m -<<. 故答案为:823m -<<. 【点睛】本题考查解二元一次方程组的应用、解一元一次不等式组,熟练掌握二元一次方程组、一元一次不等式组的解法,正确解出x 、y 值是解答的关键.35.①①①【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:解不等式x ﹣1>0得,x >1;解不等式x ﹣a ≤0得,x ≤a ,故不等式组的解集为:1<x ≤a .①①它的解集是1<x ≤4,①a =4,故本小题正确;①①a =1,x >1,①不等式组无解,故本小题正确;①①它的整数解只有2,3,4,则4≤a <5,①4≤a <5,故本小题正确;①①它有解,①a >1,故本小题错误.故答案为:①①①.【点睛】本题主要考查了解一元一次不等式组,掌握解一元一次不等式组是解题的关键. 36.13k <<【分析】先求出方程组的解,根据题意得出关于k 的不等式组,再求出不等式组的解集即可.【详解】解:解方程组221x y x y k +=⎧⎨+=+⎩得:13x k y k=-⎧⎨=-⎩, 关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数, ∴1030k k ->⎧⎨->⎩, 解得:13k <<,故答案为:13k <<.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和解一元一次不等式组等知识点,能得出关于k 的不等式组是解此题的关键.37.22x -≤<【分析】分别求出每个不等式的解集,再取它们的公共部分即可得到不等式组的解集.【详解】解:23113x x -<⎧⎨-≤⎩①② 解不等式①得,x <2,解不等式①得,x ≥-2所以,不等式组的解集为:22x -≤<故答案为:22x -≤<.【点睛】此题考查了解一元一次不等式组,解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大中间找,大大小小无法找(空集).38.±2.【分析】根据根的判别式求出△=0,求出a 2+b 2=2,根据完全平方公式求出即可.【详解】解:①关于x 的方程x 2+2ax-b 2+2=0有两个相等的实数根,①①=(2a )2-4×1×(-b 2+2)=0,即a 2+b 2=2,①常数a 与b 互为倒数,①ab=1,①(a+b )2=a 2+b 2+2ab=2+2×1=4,①a+b=±2,故答案为±2.【点睛】本题考查了根的判别式和解高次方程,能得出等式a 2+b 2=2和ab=1是解此题的关键.39.5621624x y x y +=⎧⎨⨯=⎩【分析】此题中的等量关系有:①生产螺栓人数+生产螺母人数=56人;①每天生产的螺栓和螺母按1:2配套,那么螺栓要想与螺母的数量配套,则螺栓数量的2倍=螺母数量.【详解】解:根据生产螺栓人数+生产螺母人数=56人,得方程x+y=56;根据螺栓数量的2倍=螺母数量,得方程2×16x=24y .列方程组为:5621624x y x y +=⎧⎨⨯=⎩故答案为5621624x y x y +=⎧⎨⨯=⎩【点睛】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.40.1-或2【分析】根据增根是化为整式方程后产生的不适合分式方程的根,先把分式方程去分母化为整式方程,再通过使最简公分母不为0确定增根的可能值,将其代入整式方程即可算出m 的值.【详解】解:①2211x m x x x x x+-=++, ①()2221x m x -=+,①221m x x =--. ①2211x m x x x x x+-=++有增根, ①0x =或=1x -.当0x =时,2211m x x =--=-;当=1x -时,2212m x x =--=.①m 的值为1-或2.故答案为:1-或2【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;①化分式方程为整式方程;①把增根代入整式方程即可求得相关字母的值. 41.(1)x =5;(2)x =4.【分析】(1)移项,合并同类项,系数化成1即可;(2)去分母,然后移项,合并同类项,系数化成1即可.【详解】解:(1)移项合并得:5x =25,解得:x =5;(2)去分母得:2x +2﹣4=8+2﹣x ,移项合并得:3x =12,解得:x =4.【点睛】本题考查一元一次方程的解法,掌握一元一次方程的解法是关键.42.13x = 【分析】观察可得最简公分母是(x +1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】解:242111x x x ++=--- 整理,得:421(1)(1)1x x x x +-=-+-- 方程两边都乘以(x +1)(x ﹣1),得4﹣(x +1)(x +2)=﹣(x 2﹣1),整理,得,3x =1, 解得1x=3. 经检验,1x=3是原方程的根.①原方程的解是1x=3.【点睛】本题考查解分式方程,注意解分式方程,结果要检验.43.(1)32x y =⎧⎨=-⎩;(2)34x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求出解即可.(2)去分母后,加减法消元解方程.【详解】解:(1)32528x yx y+=⎧⎨-=⎩①②,①×2得,4x﹣2y=16①,①+①得,7x=21,解得x=3,把x=3代入①得,2×3﹣y=8,解得y=﹣2,所以,方程组的解是32xy=⎧⎨=-⎩;(2)方程组可化为4324347x yx y+=⎧⎨-=-⎩①②,①×4得,16x+12y=96①,①×3得,9x﹣12y=﹣21①,①+①得,25x=75,解得x=3,把x=3代入①得,3×3﹣4y=﹣7,解得y=4,所以,方程组的解是34xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.44.在这两笔生意中,商场共盈利90260元.【分析】盈利=总售价-总进价,应求出某商品的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是:“单价贵了4元”;等量关系为:第一次的单价=第二次的单价-4.【详解】设商场第一次购进某商品x件,则第二次购进某商品2x件,根据题意得:8000017600042x x-=.160000=176000-8x解这个方程得:x=2000.经检验:x=2000是原方程的根.商场利润:(2000+4000-150)×58+58×0.8×150-80000-176000=90260(元).答:在这两笔生意中,商场共盈利90260元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.45.(1)k=10;(2)k=1.【分析】(1)方程由两个相等的根,则△=0;(2)有一个根是0,则两根之积为0.【详解】解:(1)△=36﹣4(k-1)=40-4k,①两根相等,①①=0,即k=10;(2)①有一根为0,①0∆≥,即10k≤,由根与系数的关系可得,k﹣1=0,①k=1.【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握是解题的关键.一元二次方程根的情况与判别式①的关系:(1)①>0⇔方程有两个不相等的实数根;(2)①=0⇔方程有两个相等的实数根;(3)①<0⇔方程没有实数根.46.(1)63xy=⎧⎨=-⎩;(2)13x-≤<【分析】(1)方程组利用代入消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,表示在数轴上即可.【详解】(1)解:20 346 x yx y+=⎧⎨+=⎩①②方程①可化为2x y=-①把①代入①,得解得y=-3把y=-3代入①,得x=()236-⨯-=所以原方程组的解为:63x y =⎧⎨=-⎩(2)53231204x x x +≥⎧⎪⎨--<⎪⎩①② 解不等式①得1x ≥-解不等式①得3x <所以不等式组的解集为13x -≤<将其在数轴上表示如下:【点睛】本题两个小题分别考查了解二元一次方程组和解一元一次不等式组,根据相关题目要求按步骤求解是解题的关键47.(1)3972不是“和对称数”,2451是“和对称数”,理由见解析,()F N 值为66(2)A 的值为3746,4756,6776,5766,7786,8796【分析】(1)根据“和对称数”的定义,即可求解;(2)根据题意分别表示出()(),F A F B ,再由()()32k F A F B =+,k 能被77整除,并结合a ,m 的取值范围进行分类讨论,即可求解.【详解】(1)解:3972不是“和对称数”,①3924+≠,①3972不是“和对称数”.2451是“和对称数”,①2451+=+,。

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

知识必备02 方程与不等式(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图

知识必备02 方程与不等式(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图

知识必备02方程与不等式(公式、定理、结论图表)考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础.列方程解应用题的常用公式:(1)行程问题:距离=速度×时间;(2)工程问题:工作量=工效×工时;(3)比率问题:部分=全体×比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abh ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.考点二、一元二次方程1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般形式,它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如的一元二次方程.根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程的求根公式:(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即.5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中.(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.典例1:已知关于的一元二次方程.(1)求证:不论取何值时,方程总有两个不相等的实数根.(2)若直线与函数的图象的一个交点的横坐标为2,求关于的一元二次方程的解.【答案】(1)证明:∵不论取何值时,∴,即∴不论取何值时,方程总有两个不相等的实数根..(2)将代入方程,得再将代入,原方程化为,解得.考点三、分式方程1.分式方程分母里含有未知数的方程叫做分式方程.2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.典例2:近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程.【答案与解析】解:设今年5月份汽油价格为x元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得,整理,得.解这个方程,得x1=4.8,x2=-3.经检验两根都为原方程的根,但x2=-3不符合实际意义,故舍去.【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a ≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况对于其他情况,可根据学生的接受能力给予渗透.典例3:如图所示,是在同一坐标系内作出的一次函数y1、y2的图象、,设,,则方程组的解是( )A. B. C. D.【思路点拨】图象、的交点的坐标就是方程组的解.【答案】B;【解析】由图可知图象、的交点的坐标为(-2,3),所以方程组的解为【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.不等式组(其中a >b )图示解集口诀(同大取大)(同小取小)(大小取中间)无解(空集) (大大、小小找不到)(1)不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b≥a, 则a=b;④若a2≤0,则a=0;⑤若ab>0或,则a、b同号;⑥若ab<0或,则a、b异号.(2)任意两个实数a、b的大小关系:①a-b>O a>b;②a-b=O a=b;③a-b<O a<b.不等号具有方向性,其左右两边不能随意交换:但a<b可转换为b>a,c≥d可转换为d≤c.典例4:解不等式组并将解集在数轴上表示出来.【思路点拨】此题考查一元一次不等式组的解法,解出不等式组中的每个不等式,根据不等式组解的四种情况,看看属于哪种情况.【答案与解析】解不等式①得:.解不等式②得:x≥-1.所以不等式组的解集为-1≤x<.其解在数轴上表示为如图所示:【总结升华】注意解不等式组的解题步骤.典例5:为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉的情况如下表所示;造型甲乙A90盆30盆B40盆100盆综合上述信息,解答下列问题:(1)符合题意的搭配方案有哪儿种?(2)若搭配一个A种造型的成本为1000元,搭配一个B种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【思路点拨】本题首先需要从文字和表格中获取信息,建立不等式(组),然后求出其解集,根据实际问题的意义,再求出正整数解,从而确定搭配方案.【答案与解析】解:(1)设搭配x个A种造型,则需要搭配(50-x)个B种造型,由题意,得解得30≤x≤32.所以x的正整数解为30,31,32.所以符合题意的方案有3种,分别为:A种造型30个,B种造型20个;A种造型31个,B种造型19个;A种造型32个,B种造型18个.(2)由题意易知,三种方案的成本分别为:第一种方案:30×1000+20×1200=54000;第二种办案:31×1000+19×1200=53800;第三种方案:32×1000+18×1200=53600.所以第三种方案成本最低.【总结升华】实际问题的“最值问题”一般是指“成本最低”、“利润最高”、“支出最少”等问题.。

中考数学《方程与不等式》专题训练50题(含参考答案)

中考数学《方程与不等式》专题训练50题(含参考答案)

中考数学《方程与不等式》专题训练50题含参考答案一、单选题1.不等式组1036x x -<⎧⎨<⎩的解集是( )A .无解B .1x >C .2x <D .12x <<【答案】D【分析】分别解出两个不等式,取公共解集即可.【详解】解:1036x x -<⎧⎨<⎩①② 解①得:1x > , 解①得:2x < ,故此不等式组的解集为:12x << 故选D.【点睛】此题考查的是解不等式组,掌握解不等式的一般步骤、不等式的基本性质和不等式组公共解集的取法是解决此题的关键.2.如果3m =3n ,那么下列等式不一定成立的是( ) A . m -3=n -3 B .3m +3=3n +2 C .5+m =5+n D .3m -=3n -3.若()()221x ax x +--的展开式中不含x 的一次项,则a 的值为( )A .3-B .2-C .1-D .0【答案】B【分析】先将多项式展开,然后令x 的系数为0,求出a 的值即可.【详解】解:()()221x ax x +--32222x x ax ax x =-+--+()()32122x a x a x =+-+-++,①()()221x ax x +--展开后不含x 的一次项,①20a +=, ①2a =-; 故选:B .【点睛】本题考查了多项式乘多项式,熟练掌握多项式乘以多项式的运算法则是解题的关键. 4.方程23x +=11x -的解为( ) A .x =3 B .x =4C .x =5D .x =﹣5【答案】C【详解】方程两边同乘(x-1)(x+3),得 x+3-2(x-1)=0, 解得:x=5,检验:当x=5时,(x-1)(x+3)≠0, 所以x=5是原方程的解, 故选C.5.下列方程中,关于x 的一元二次方程的是( ) A .ax 2+bx +c =0 B .(x -1)2=x 2+3x +2 C .x 2=x +1D .2x 2-1x+1=0【答案】C【分析】根据一元二次方程的定义,逐项分析即可,一元二次方程的定义:含有一个未知数,未知数的最高次数是2;二次项系数不为0;是整式方程. 【详解】A. ax 2+bx +c =0(0a ≠),故该选项不正确,不符合题意;6.若2x-1=15与kx-1=15的解相同,则k的值为()A.8B.6C.-2D.2【答案】D【分析】先解2x-1=15求出x的值,再把求得的x的值代入kx-1=15,然后解关于k的方程即可求出k的值.【详解】①2x-1=15,①2x=16,①x=8.把x=8代入kx-1=15得8k-1=15,①k=2.故选D.【点睛】本题考查了一元一次方程解的定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解;解一元一次方程的基本步骤为:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.10080807644⨯-=B.2x-+=(100)7644x x【分析】利用平移的方法,平移后的剩余部分仍是矩形,且长与宽均减小x 米,从而由面积可列出方程.【详解】矩形场地上的两条路分别向上和向右平移后如图所示,则平移后剩余部分的长为(100-x )米,宽为(80-x )米,题意得:(100-x )(80-x )=7644 故选:C .【点睛】本题考查了一元二次方程的实际应用,关键是运用平移的思想,问题得以简化并得到解决.8.下列各组数中,是方程x+y=7的解的是( ) A .23x y =-⎧⎨=⎩B .31x y =-⎧⎨=⎩C .43x y =⎧⎨=⎩D .23x y =⎧⎨=⎩【答案】C【分析】将四个答案逐一代入,能使方程成立的即为方程的解. 【详解】解:A 、2317-+=≠,故此选项不符合题意; B 、3127-+=-≠,故此选项不符合题意; C 、437+=,故此选项符合题意; D 、2357+=≠,故此选项不符合题意; 故选C .【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键. 9.若表格中每对,的值都是同一个二元一次方程的解,则这个方程为( )A .53+=x yB .5x y +=C .20x y -=D .35x y +=【分析】设方程为y=kx+b ,把x 与y 的两对值代入求出k 与b 的值,即可确定出方程.【详解】解:设方程为y=kx+b ,把(0,5)与(1,2)代入得:52b k b =⎧⎨+=⎩ 解得:53b k =⎧⎨=-⎩,①这个方程为y=-3x+5,即3x+y=5, 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥ D .0x ≤,0y ≤【答案】C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果. 【详解】解:根据题意得,20x y ≥, ①20x ≥, ①0y ≥, ①0xy ≤, ①0x ≤, 故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.11.若a b <,则下列各式正确的是( ) A .22a b > B .22a b ->-C .34a b -<-D .22a b> 【答案】B【分析】根据不等式的性质,进行计算逐一判断即可解答. 【详解】解:A 、①a <b ,①2a <2b ,故该选项不符合题意; B 、①a <b ,①-2a >-2b ,故该选项符合题意;12.下列说法:①a为任意有理数,a2+1总是正数;①方程x+2=1x是一元一次方程;①若ab>0,a+b<0,则a<0,b<0;①代数式2,,23t a bb+都是整式;①若a2=(﹣2)2,则a=﹣2.其中错误的有()A.4个B.3个C.2个D.1个13.观察下列方程,经分析判断得知有实数根的是()A.33x=-B.22301x+=+C.()32x xx+=+D.221x xx-+=-【答案】C【分析】根据解分式方程的步骤逐一解答即可选出正确选项.去分母化为整式方程,解14.用配方法解一元二次方程x 2+6x ﹣3=0,原方程可变形为( ) A .(x +3)2=9 B .(x +3)2=12 C .(x +3)2=15 D .(x +3)2=39【答案】B【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】解:①x 2+6x =3, ①x 2+6x +9=3+9,即(x +3)2=12, 故选:B .【点睛】本题考查了用配方法解一元二次方程,解题需要注意解题步骤的准确应用,选择配方法解一元二次方程时,最好使方程的二次项系数为1,一次项系数是2的倍数15.已知关于x 、y 的二元一次方程()()23230m x m y m -+-+-=,当m 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是( ) A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .31x y =-⎧⎨=⎩【答案】D【分析】把原方程整理得:m (x +y +2)-(2x +3y +3)=0,根据“当m 每取一个值时就有一个方程,而这些方程有一个公共解”,可知这个公共解与m 无关,得到关于x 和y 的二元一次方程组,解之即可. 【详解】解:原方程可整理得: m (x +y +2)-(2x +3y +3)=0,根据题意得:202330x y x y ++=⎧⎨++=⎩ 解得31x y =-⎧⎨=⎩.故选D .【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,正确掌握解二元一次方程组是解题的关键. 16.利用求根公式求21562x x +=的根时,a ,b ,c 的值分别是( ) A .5,12,6 B .5,6,12C .5,﹣6,12D .5,﹣6,﹣1217.如表是德国足球甲级联赛某赛季的部分球队积分榜:规定:负一场积0分.观察后可知,柏林赫塔在这个赛季的胜场次数是( )A .18场 B .19场C .20场D .21场【答案】B胜场次数x 场,根据胜场积分与平场积分的和=总积分列出方程,解方程即可. 【详解】解:设球队胜一场积m 分,平一场积n 分, 由题意得:2166920767m n m n +=⎧⎨+=⎩, 解得:31m n =⎧⎨=⎩,球队胜一场积3分,平一场积1分,设柏林赫塔在这个赛季的胜场次数x 场,则平(34-x -8)=(26-x )场, 根据题意得:3x +(26-x )=64, 解得:x =19,①柏林赫塔在这个赛季的胜场次数是19, 故选:B .【点睛】考查了一元一次方程和二元一次方程组的应用,本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与平场的和.18.同型号的甲、乙两辆车加满气体燃料后均可行驶600km .它们各自单独行驶并返回的最远距离是300km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .380km B .400kmC .450kmD .500km【答案】B【分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回 A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【详解】解:如图,设行驶途中停下来的地点为C 地,AB xkm =,AC ykm =,根据题意,得226002600x y x y x +=⨯⎧⎨-+=⎩,解得400200x y =⎧⎨=⎩,①AB 的最大长度是400km .【点睛】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.19.关于x 的方程220ax +=是一元二次方程,则a 满足( ) A .a >0 B .a =1C .a ≥0D .a ≠0【答案】A【详解】根据一元二次方程的定义,得000a a a ≠⎧⇒>⎨≥⎩ .故选A. 20.代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A【分析】把代数式22244619x xy y x -+++根据完全平方公式化成几个完全平方和的形式,再进行求解即可.【详解】解:2222244619(3)(2)10x xy y x x x y -+++=++-+ ①22(3)0,(2)0x x y +≥-≥①代数式22244619x xy y x -+++的最小值是10. 故选:A .【点睛】本题考查的知识点是配方法的应用-用配方法确定代数式的最值,解此题的关键是将原代数式化成几个完全平方和的形式.二、填空题21.含有____________的_________叫方程. 【答案】 未知数; 等式.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:(1)含有未知数(2)等式.【详解】解:根据方程的定义可知:含有未知数的等式是方程. 故答案为未知数;等式.【点睛】本题主要考查了方程的定义,熟记方程的定义是解题的关键.22.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价_____元.【分析】设每套童装的售价为x 元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:设每套童装的售价为x 元,依题意,得:1000x ﹣10%×1000x ﹣88×1000≥20000,解得:x ≥120.故答案为:120.【点睛】此题主要考查一元一次不等式的应用,解题的关键是根据题意找到不等关系列式求解.23.如果方程1)k k x -(+3=0是关于x 的一元一次方程,那么k 的值是______. 【答案】-1【分析】根据一元一次方程的定义知|k |=1且未知数是系数k -1≠0,据此可以求得k 的值.【详解】解:①方程(k -1)x |k |+3=0是关于x 的一元一次方程,①|k |=1,且k -1≠0,解得,k =-1;故答案是:-1.【点睛】本题考查了一元一次方程的概念和绝对值方程.一元一次方程的未知数的指数为1,且未知数的系数不为零.24.我县某一天的最高气温是11①,最低气温是零下4①,则当天我县气温t (①)应满足的不等式是 __________.【答案】﹣4≤t ≤11【分析】根据题意写出不等式即可.【详解】解:因为最低气温是零下4①,所以﹣4≤t ,最高气温是11①,t ≤11,则今天气温t (①)的范围是﹣4≤t ≤11.故答案是:﹣4≤t ≤11.【点睛】本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式.25.已如m 是方程2350x x --=的一个根,则代数式262m m -的值为______.【答案】10-【分析】方程的根就是方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m 代入原方程即可求m 2-3m 的值,然后对原式进行变形代入计算.【详解】解:把x=m 代入方程2350x x --=可得:235m m -=①22622(3)2510=m m m m ---=-⨯=-;故答案为:-10.【点睛】此题考查了一元二次方程的解,解题时应注意把m 2-3m 当成一个整体.利用了整体的思想.26.如果x -2y =1,那么用含x 的代数式表示y ,则y =______.27.对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________.28.某种药品的说明书上注明:口服,每天30~60mg ,分2~3次服用.这种药品一次服用的剂量范围是_____mg~_____mg.【答案】1030【详解】试题分析:根据等量关系:一次服用剂量=每日用量÷每日服用次数,即可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式组求解即可.解:设这种药品一次服用的剂量为xmg当每日用量30mg,分3次服用时,一次服用的剂量最小;当每日用量60mg,分2次服用时,一次服用的剂量最大;根据依题意列出不等式组,解得所以这种药品一次服用的剂量范围是10mg~30mg.考点:一元一次不等式组的应用点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.29.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.30.如果不等式组112x mx m-≤⎧⎨+≥⎩无解,则不等式2x+2<mx+m的解集是______.【答案】1x>-【详解】分析:首先根据不等式无解得出m的取值范围,然后根据不等式的解法得出不等式的解.详解:解不等式组可得:121x m x m ≤+⎧⎨≥-⎩,①不等式无解, ①2m -1>m+1,解得:m >2,①2x -mx <m -2, 即(2-m)x <m -2, ①m >2, ①2-m <0, ①x >-1. 点睛:本题主要考查的是解不等式及不等式组的方法,属于中等难度的题型.理解不等式的解法是解题的关键.系数含参时,我们首先要判断系数的正负性,然后进行求解.如果在不等式的两边同时乘以或除以一个负数,则不等符号需要改变. 31.已知关于x 的方程()344a x x a +-=-的解为2x =-,则=a ______.【答案】4【分析】将x=-2代入方程,然后解方程求得a 的值.【详解】解:①()344a x x a +-=-的解为2x =-,①()23424a a -+-=--,解得:4a =故答案为:4.【点睛】本题考查方程的解和解一元一次方程,掌握方程的解的概念及解一元一次方程的步骤,正确计算是解题关键.32.不等式2x-1>5的解集为______.【答案】x>3【详解】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>3.故答案为x>3.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 33.若关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a 的最大整数值为_____.【答案】4.【分析】由关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值.【详解】解:①关于x 的一元二次方程ax 2﹣4x +1=0有实数根,①a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解得a ≤4,①a 的取值范围为a ≤4且a ≠0,所以a 的最大整数值为4.故答案为:4.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式①=b 2−4ac .当①>0,方程有两个不相等的实数根;当①=0,方程有两个相等的实数根;当①<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解. 34.已知代数式4x -与3(2)x 的值相等,则x 的值为______.【答案】1x =【分析】根据题意列方程,然后进行解答即可得出x 的值.【详解】解:由题意,得4-x=3(2-x)解得x=1故答案为1x =.【点睛】本题考查了解一元一次方程.关键在于根据题意列出方程.35.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得300元.若该店第二天销售香蕉t 千克,则第三天销售香蕉____千克.(用含t 的代数式表示.)36.若x 1,x 2是方程x 2+x -1=0的两根,则(x 12+x 1-2)(x 22+x 2-2)的值为_______.【答案】1【分析】根据一元二次方程的定义得到2111x x +=,2221x x +=,代入计算即可.【详解】解:①x 1,x 2是方程x 2+x -1=0的两根,①21110x x +-=,22210x x +-=,①2111x x +=,2221x x +=,①()()22112222x x x x +-+-=()()1212--=1故答案为:1.【点睛】本题考查了一元二次方程的解,解体的关键是掌握方程的解能使方程等式两边成立.37.若实数m 、n 满足|m ﹣3|+0,且m 、n 恰好是Rt △ABC 的两条边长,则第三条边长为_______.5##5【分析】先由非负数的性质求出m =3,n =4,由于题中直角三角形的斜边不能确定,38.若方程(a-3)x |a|-1+2x-8=0是关于x 的一元二次方程,则a 的值是_____.【答案】-3【分析】根据一元二次方程的定义列方程求出a 的值即可.39.一种药品现在售价56.10元,比原来降低了15%,原售价为____元.【答案】66.【详解】试题分析:设这种药品的原售价为x 元,则比原来降低了15%后的售价为(1-15%)x 元,根据题意得(1-15%)x=56.1,解得x=66.故答案为66.考点:列一元一次方程解应用题.40.如果关于x 的方程22220x ax b +-+=有两个相等的实数根,且常数a 与b 互为负倒数,那么a b +=__________. 【答案】0【分析】根据根的判别式求出0⊿=,得到222a b +=,再根据完全平方公式求出即可.【详解】关于x 的方程22220x ax b +-+=有两个相等的实数根,()()2224120a b ∴-⨯⨯-+=⊿=,化简得:222a b +=常数a 与b 互为负倒数,即1ab =-()222222(1)0a b a b ab ∴+=++=+⨯-= 0a b ∴+=故答案为0【点睛】本题考查了根的判别式,得到等式222a b +=和1ab =-是解题的关键.三、解答题41.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,今年南瓜亩产量的增长率是种植面积的增长率的12,设南瓜种植面积的增长率为x . (1)则今年南瓜的种植面积为________亩;今年南瓜亩产量为_______k g (用含x 的代数式表示)(2)今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.42.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为______;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2)P点的坐标为(﹣2,5)(3)AP=8【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)利用纵坐标-横坐标=7得m的值,代入点P的坐标即可求解;(3)利用纵坐标为3求得m的值,代入点P的坐标即可求解.(1)解:令2m-4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)解:令m+4-(2m-4)=7,解得m=1,所以P点的坐标为(-2,5);(3)解:①点P在过A(2,3)点且与x轴平行的直线上,①m+4=3,解得m=-1.①P点的坐标为(-6,3),①AP=2+6=8.【点睛】本题考查坐标与图形性质,解题的关键是理解题意,灵活运用所学知识解决问题.43.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x 米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】(1)100 56x yx y-=⎧⎨=⎩(2)甲施工队每天各铺设600米,乙施工队每天各铺设500米.【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y,从而可得答案(2)解方程组即可得到答案.(1)解:设甲队每天铺设x米,乙队每天铺设y米,则10056x y x y -=⎧⎨=⎩ (2)10056x y x y -=⎧⎨=⎩解得:600500x y =⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.44.解不等式:并把不等式的解集在数轴上表示出来:4-()314x +≥()528x ++2 【答案】x ≤0,数轴表示见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得,再在数轴上表示出来即可.【详解】解:去分母,得:32-6(x +1)≥5(x +2)+16,去括号,得:32-6x -6≥5x +10+16,移项,得:-6x -5x ≥10+16-32+6,合并,得:-11x ≥0,系数化为1,得:x ≤0,将不等式的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 45.(1)用配方法解方程:21090x x -+=.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.【答案】(1)121,9x x ==;(2)平均每次降价的百分率为:20%.【详解】试题分析:(1)先配方,再进行开方,化简即可;(2)利用数量关系:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.试题解析:(1)21090x x -+=210252590x x -+-+=()2516x -=54x -=±121,9x x ==;(2) 设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x )2=80,解得x 1=0.2=20%,x 2=﹣1.8(不合题意,舍去);故平均每次降价的百分率为:20%.考点:1. 配方法解方程,2. 一元二次方程的应用.46.解下列方程或不等式组:(1)解方程:122134x x -+=- (2)解不等式组()2563212x x x ⎧+≥⎨->+⎩47.在某校园超市中买1支英雄牌钢笔和3本硬皮笔记本需要18元钱;买同样的钢笔2支和笔记本5本需要31元.(1)求每支英雄牌钢笔和每本硬皮笔记本的价格;(2)九年一班准备用班费购买48件上述价格的钢笔和笔记本.作为毕业联欢会的奖品,已知班费不少于200元,求最少可以买多少本笔记本?【答案】(1)每支英雄牌钢笔3元,每本硬皮笔记本5元;(2)至少可以购买28本笔记本【分析】(1)用二元一次方程解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组;(2)本问可以列一元一次不等式解决.用钢笔数=48-笔记本数代入下列不等式关系:购买钢笔钱数+购买笔记本钱数≤200,可以列出一元一次不等式,求解即可.【详解】解:(1)设每支英雄牌钢笔x 元,每本硬皮笔记本y 元由题意得3182531x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:每支英雄牌钢笔3元,每本硬皮笔记本5元(2)设可以购买a 本笔记本由题意得()3485200a a -+≥解得28a ≥答:至少可以购买28本笔记本【点睛】本题考查了一元一次不等式的应用和二元一次方程组的应用,解题的关键是找出题中的等量关系或不等关系:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,购买钢笔钱数+购买笔记本钱数≤200.48.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.【答案】问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,49.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A 、B 两种机器共20台用于生产零件,经调查2台A 型机器和1台B 型机器价格为18万元,1台A 型机器和2台B 型机器价格为21万元.①求一台A 型机器和一台B 型机器价格分别是多少万元?①已知1台A 型机器每月可加工零件400个,1台B 型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?【答案】(1)甲每小时加工个20零件,乙每小时加工24个零件;(2)①A ,B 两种型号机器的单价分别为5万元和8万元;①有三种购买方案:方案一:购买A 型机器7台,B 型机器13台,方案二:购买A 型机器8台,B 型机器12台,方案三:购买A 型机器9台,B 型机器11台,方案三更省钱.【分析】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,利用乙每小时比甲多做4个,以及利用甲工作了1小时后,调来乙工人与甲合作了5小时完成,240个零件的任务得出等式方程求出即可;(2)①设A ,B 两种型号机器的单价分别为x 万元和y 万元,根据题意得方程组218221x y x y +⎧⎨+⎩==,解答即可; ①设购买A 型机器m 台,则购买B 型机器(20-m )台,根据购买总价和生产数量列出不等式组求解即可.【详解】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,根据题意得:465240x y x y +⎧⎨+⎩==,50.解方程组:(1)2(1)61x yx y+-=⎧⎨=-⎩(2)3(1)51135x yy x-=+⎧⎪-⎨=+⎪⎩【答案】(1)56 xy=⎧⎨=⎩(2)57x y =⎧⎨=⎩【分析】(1)用代入法求解即可;(2)用加减法求解即可.【详解】(1)解:()2161x y x y ⎧+-=⎨=-⎩①② , 将①代入①得:6y =,把6y =代入①得5x =,①原方程组的解为56x y =⎧⎨=⎩; (2)解:整理得:383520x y x y -=⎧⎨-=-⎩①②, ①-①,得428y =,解得:7y =,把7y =代入①,得378x -=,解得:5x =,①方程组的解是57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握用代入法或加减法解二元一次方程组是解题的关键.。

2023年广东中考数学二轮专题复习——方程(组)与不等式(组)(含答案)

2023年广东中考数学二轮专题复习——方程(组)与不等式(组)(含答案)

2023年广东中考数学专题复习——方程(组)与不等式(组)(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( )A.{x+y=10y=3x+2B.{x+y=10y=3x-2C.{x+y=10x=3y+2 D.{x+y=10x=3y-22.若把不等式组{2-x≥-3,x-1≥-2的解集在数轴上表示出来,则其对应的图形为A.长方形 B.线段 C.射线 D.直线3.用配方法解方程x2-2x-1=0时,配方后所得的方程为( )A.(x-1)2=2 B.(x-1)2=0C.(x+1)2=2 D.(x+1)2=04.计算2x-2-xx-2的结果是( )A.0 B.1 C.x D.-15.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为( ) A.1 B.-1 C.2 D.-26.不等式x≥2的解集在数轴上表示为( )A BC D7.已知方程组{2x+y=4,x+2y=5,则x+y的值为( )A.-1 B.0 C.2 D.38.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是( )A.k>-1 B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠09.小朱要到距家1 500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱的速度是x 米/分,则根据题意所列方程正确的是( )A .1 440x -100-1 440x =10B .1 440x =10+1 440x +100C .1 440x =1 440x -100+10D .1 440x +100-1 440x =1010.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为( )A .5 B .-5 C .1 D .-1二、填空题(本大题共5小题,每小题3分,共15分)11.要使分式5x -1有意义,则x 的取值范围是 .12.一元二次方程x 2-3x =0的根是 .13.已知a|a |+b|b |=0,则ab|ab |的值为 .14.如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b = .15.对于实数a ,b ,定义运算“*”:a*b ={a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2= .三、解答题(一)(本大题共3小题,每小题8分,共24分)16.解方程:x 2-10x +9=0.17.解不等式组:{9x +5<8x +7,43x +2>1-23x ,并写出其整数解.18.解方程:2xx-2=1-12-x.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.先化简,再求值:x-2x-1÷(x+1-3x-1),其中x=3-2.20.某条高速的建设正在紧张地进行,现有大量的沙石需要运输.某车队有载重为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石.(1)该车队载重为8吨和10吨的卡车各有多少辆?(2)随着工程的进展,该车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.21.已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:该方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车的进价为1 000元/辆,售价为1 300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?23.关于x的一元二次方程(m-1)x2-2mx+m+1=0.(1)求方程的根;(2)m为何整数时,此方程的两个根都为正整数?2023年广东中考数学专题复习——方程(组)与不等式(组) 答案版(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是(C)A.{x+y=10y=3x+2B.{x+y=10y=3x-2C.{x+y=10x=3y+2 D.{x+y=10x=3y-22.若把不等式组{2-x≥-3,x-1≥-2的解集在数轴上表示出来,则其对应的图形为(B)A.长方形 B.线段 C.射线 D.直线3.用配方法解方程x2-2x-1=0时,配方后所得的方程为(A)A.(x-1)2=2 B.(x-1)2=0C.(x+1)2=2 D.(x+1)2=04.计算2x -2-xx -2的结果是(D )A .0B .1C .xD .-15.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为(A )A .1B .-1C .2D .-26.不等式x≥2的解集在数轴上表示为(C )AB CD 7.已知方程组{2x +y =4,x +2y =5,则x +y 的值为(D )A .-1 B .0 C .2 D .38.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则实数k 的取值范围是(D )A .k>-1B .k<1且k≠0C .k≥-1且k≠0D .k>-1且k≠09.小朱要到距家1 500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱的速度是x 米/分,则根据题意所列方程正确的是(B )A .1 440x -100-1 440x=10 B .1 440x =10+1 440x +100C .1 440x =1 440x -100+10 D .1 440x +100-1 440x =1010.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为(B )A .5 B .-5 C .1 D .-1二、填空题(本大题共5小题,每小题3分,共15分)11.要使分式5x -1有意义,则x 的取值范围是x≠1.12.一元二次方程x 2-3x =0的根是x 1=0,x 2=3.13.已知a|a |+b|b |=0,则ab|ab |的值为-1.14.如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b =0.15.对于实数a ,b ,定义运算“*”:a*b ={a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2=3或-3.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.解方程:x 2-10x +9=0.解:方法一(配方法):将方程x 2-10x +9=0变形为x 2-10x =-9,配方,得x 2-10x +25=-9+25,整理,得(x -5)2=16,解得x 1=1,x 2=9.方法二(求根公式法):因为a =1,b =-10,c =9,Δ=100-36=64>0,由求根公式解得x 1=1,x 2=9.方法三(因式分解法):将方程x 2-10x +9=0变形为(x -1)(x -9)=0,解得x 1=1,x 2=9.17.解不等式组:{9x +5<8x +7,43x +2>1-23x ,并写出其整数解.解:{9x +5<8x +7, ①43x +2>1-23x , ②解不等式①得x<2,解不等式②得x>-12.把①②的解集表示在数轴上,如图.故原不等式组的解集是-12<x<2.其整数解是0和1.18.解方程:2x x -2=1-12-x.解:方程的两边同时乘(x -2),得2x =x -2+1,解得x =-1.检验:当x =-1时,x -2≠0,故x =-1是原方程的解.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.先化简,再求值:x -2x -1÷(x +1-3x -1),其中x =3-2.解:原式=x -2x -1÷(x 2-1x -1-3x -1)=x -2x -1×x -1(x +2)(x -2)=1x +2.当x =3-2时,原式=33.20.某条高速的建设正在紧张地进行,现有大量的沙石需要运输.某车队有载重为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石.(1)该车队载重为8吨和10吨的卡车各有多少辆?(2)随着工程的进展,该车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.解:(1)设该车队载重为8吨和10吨的卡车分别有x 辆、y 辆,根据题意得{x +y =12,8x +10y =110,解得{x =5,y =7.故该车队载重为8吨的卡车有5辆,载重为10吨的卡车有7辆;(2)设载重为8吨的卡车增加了z 辆,依题意得8(5+z)+10(7+6-z)>165,解得z<52.∵z≥0且为整数,∴z =0,1,2;∴6-z =6,5,4,∴车队共有3种购车方案:①载重为8吨的卡车不购买,载重为10吨的卡车购买6辆;②载重为8吨的卡车购买1辆,载重为10吨的卡车购买5辆;③载重为8吨的卡车购买2辆,载重为10吨的卡车购买4辆.21.已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:该方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.(1)证明:∵Δ=[-(2k+1)]2-4×1×(k2+k)=1>0,∴方程有两个不相等的实数根;(2)解:∵由x2-(2k+1)x+k2+k=0,得(x-k)[x-(k+1)]=0,∴x1=k,x2=k+1.即AB,AC的长为k,k+1,当AB=BC时,即k=5,满足三角形构成条件;当AC=BC时,k+1=5,解得k=4,满足三角形构成条件.综上所述,k=4或k=5.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车的进价为1 000元/辆,售价为1 300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?解:(1)设前4个月自行车销量的月平均增长率为x,根据题意列方程,得64(1+x)2=100,解得x1=-225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).故该商城4月份卖出125辆自行车.(2)设购进B 型车x 辆,则购进A 型车30 000-1 000x 500辆,根据题意得不等式组2x≤30 000-1 000x 500≤2.8x ,解得12.5≤x≤15,因为自行车辆数为整数,所以13≤x≤15,销售利润W =(700-500)×30 000-1 000x 500+(1 300-1 000)x.整理得W =-100x +12 000,因为W 随着x 的增大而减小,所以当x =13时,销售利润W 有最大值,此时,30 000-1 000×13500=34,所以该商城应购进A 型车34辆,B 型车13辆.23.关于x 的一元二次方程(m -1)x 2-2mx +m +1=0.(1)求方程的根;(2)m 为何整数时,此方程的两个根都为正整数?解:(1)方法一:根据题意得m≠1.Δ=(-2m)2-4(m -1)(m +1)=4.∴x 1=2m +22(m -1)=m +1m -1,x 2=2m -22(m -1)=1.方法二:根据题意得m≠1.原方程可化为(x -1)[(m -1)x -(m +1)]=0,∴x 1=m +1m -1,x 2=1.(2)由(1)知x 1=m +1m -1=1+2m -1,∵方程的两个根都是正整数,∴2m -1是正整数,∴m -1=1或2.∴m =2或3.。

中考数学总复习《方程不等式》练习题及答案

中考数学总复习《方程不等式》练习题及答案

中考数学总复习《方程不等式》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.实数x ,y 满足方程组{2x +y =7x +2y =8,则x +y 的值为( )A .3B .-5C .5D .-32.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有30名工人,每人每天可以生产900个口罩面或1200个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x 名工人生产口罩面,则下面所列方程正确的是( ) A .2×1200(30﹣x )=900x B .1200(15﹣x )=900x C .1200(30﹣x )=900xD .1200(30﹣x )=2×900x3.小明和小亮各收集了一些废电池.如果小明 ,他的废电池个数就和小亮一样多.设小亮收集了 x 个废电池,则两人一共收集了 (2x −6) 个.要将题目补充完整,横线上可填( ) A .少收集3个B .少收集6个C .多收集3个D .多收集6个4.一元二次方程 x 2+x −6=0 的根的情况是( )A .有两个相等的实根B .没有实数根C .有两个不相等的实根D .无法确定5.我校九年级某班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1275张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x (x ﹣1)=1275 B .x (x+1)=1275 C .2x (x+1)=1275D .x(x−1)2=12756.已知关于 x 的方程 x 2+2x −k −2=0 没有实数解,则函数 y =kx的图象大致是图中的( )A .B .C .D .7.不等式组{4(x −1)>3x −22x+13≥x −1的整数解是一个一元二次方程的两根,则该方程为( )A .x 2+3x +4=0B .x 2+7x +12=0C .x 2−3x +4=0D .x 2−7x +12=08.已知一元二次方程 x 2−8x +12=0 的两根恰好是某等腰三角形的两边长,则该等腰三角形的底边长为( ) A .2B .6C .8D .2或69.不等式组 {x +2>03x −6≤0 的解集在数轴上表示正确的是( )A .B .C .D .10.对于两个不相等的有理数a ,b ,我们规定符号max{a ,b}表示a ,b 两数中较大的数,例如max{2,4}=4.按照这个规定,那么方程max{x ,-x}=3x-2的解为( ) A .12B .1C .1或 12D .12 或 5611.一元二次方程2x 2-3x +1=0根的情况是( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根12.下列解方程的步骤中正确的是( )A .由 x −5=7 ,可得 x =7−5B .由 8−2(3x +1)=x ,可得 8−6x −2=xC .由 16x =−1 ,可得 x =−16D .由 x−12=x 4−3 ,可得 2(x −1)=x −3二、填空题13.在虚线上填写一个二元一次方程,使所成方程组 {5x −2y =1____的解是 {x =1y =2 .14.疫情期间,某快递公司推出无接触配送服务,第一周的订单数是5万件,第三周的订单数比第一周增加2.8万件,如果设平均每周订单数的增长率为x,那么正确的方程是.15.若关于x的分式方程x−mx−1﹣3x=1无解,则m的值为.16.如图,一块长12m,宽8m的长方形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为60m2,则道路的宽应为m.17.方程(x+3)⋅√x−2=0的解是.18.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等,则这种服装每件的标价是元.三、综合题19.为弘扬爱国主义精神,某校组织七年级学生以班级为单位观看电影《长津湖》,票价为每张40元,701班班长问售票员买团体票是否可以优惠,售票员说:“40人以上的团体票有两个优惠方案可选择,方案一:全体人员打8折;方案二:5人免票,其他人员打9折.”(1)702班有41名学生,选择哪个方案更优惠?(2)701班班长思考了一会儿说:“我们班无论选择哪种方案,要付的钱是一样多的.”请问701班有多少名学生?20.已知关于x的一元二次方程x2−6x+k=0有两个不相等的实数根(1)求k的取值范围;(2)若x1,x2为该方程的两个实数根且满足求k的值21.如图,在△ABC中,△B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经过几秒后,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,经过几秒后,PQ的长度等于2√10cm?(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.22.图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍.(1)设:长方体的高为xcm,则其宽为cm.(2)求长方体的体积.23.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣11,点B 表示10,点C表示18,我们称点A和点C在数轴上相距29个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等. 24.已知关于的一元二次方程x 2 +2x+2k-4=0有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求方程的根.参考答案1.【答案】C2.【答案】D3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】A9.【答案】A10.【答案】B11.【答案】B12.【答案】B13.【答案】x+y=314.【答案】5(1+x)2=5+2.815.【答案】﹣2或116.【答案】217.【答案】x=218.【答案】7519.【答案】(1)解:由题意可得方案一的花费为:41×40×0.8=1312(元)方案二的花费为:(41-5)×0.9×40=1296(元)∵1312>1296∴702班该选择方案二更优惠;(2)解:设701班有x名学生,根据题意得x×40×0.8=(x-5)×0.9×40解得x=45.答:701班有45名学生.20.【答案】(1)解:由题意可得△=36-4k>0所以k<9;(2)解:由x1+x2=6,x1x2=k得(x1·x2)2−(x1+x2)=115k2−6=115 k2=121k=±11∵k<9所以k=-11.21.【答案】(1)解:设经过x秒以后△PBQ面积为4cm2,根据题意得12(5−x)×2x=4整理得:x2-5x+4=0解得:x=1或x=4(舍去);或12(5−x)×7=4解得:x= 27 7答:1秒或277秒后△PBQ的面积等于4cm2(2)解:PQ= 2√10,则PQ2=BP2+BQ2,即40=(5-t)2+(2t)2解得:t=-1(舍去)或3.则3秒后,PQ的长度为2√10cm(3)解:令S△PQB=7,即BP× BQ2=7,(5-t)×2t2=7整理得:t2-5t+7=0由于b2-4ac=25-28=-7<0则原方程没有实数根;或Q到C了,P还在运动,(5-t)×7÷2=7解得t=3(舍去).所以在(1)中,△PQB的面积不能等于7cm222.【答案】(1)30−2x2(2)解:根据题意得:30−2x2=2x解得:x=5故长方体的宽为10,高为5,长为30﹣5×2=20则长方体的体积为5×10×20=1000cm3.答:长方体的体积为1000cm3.23.【答案】(1)解:点P运动至点C时,所需时间t=11÷2+10÷1+8÷2=19.5(秒)答:动点P从点A运动至C点需要19.5时间;(2)解:由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则11÷2+x÷1=8÷1+(10﹣x)÷2x=5答:M所对应的数为5.(3)解:P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上则:8﹣t=11﹣2t,解得:t=3.②动点Q在CB上,动点P在OB上则:8﹣t=(t﹣5.5)×1,解得:t=6.75.③动点Q在BO上,动点P在OB上则:2(t﹣8)=(t﹣5.5)×1,解得:t=10.5.④动点Q在OA上,动点P在BC上则:10+2(t﹣15.5)=t﹣13+10,解得:t=18综上所述:t的值为3、6.75、10.5或18.24.【答案】(1)因为x2+2x+2k -4 = 0有两个不相等的实数根所以Δ=b2−4ac>0,即22−4×1×(2k−4)>0所以8k<20,解得:k<5 2(2)因为k<52且k为正整数,所以k=1或2当k=1时,方程化为x2+2x−2=0,△=12,此方程无整数根;当k=2时,方程化为x2+2x=0解得x1=0,x2=2所以k=2,方程的有整数根为x1=0,x2=2.。

2024年九年级中考数学专题复习+课件++含参方程(组)、不等式(组)+

2024年九年级中考数学专题复习+课件++含参方程(组)、不等式(组)+
1
C.m>
3
3
1
D.m≥
3
变式
1.(2021·南充)已知关于x的一元二次方程x2-(2k+1)x+k²+h=0.
(1)求证:无论k取何值,方程都有两个不相等的实数根;
1
(2)如果方程的两个实数根为x1,x2,且k与 都为整数,求K所有可能的值.
2
2.若关于x的方程mx2-2(m+2)x+m+5=0无实数根,则关于x方程
8m + 9n = 10.
(1)试选择其中一名同学的思路,解答此题.
x + 3y
=4−α
(2)试说明在关于x,y的方程组
中,不论a取什么实数,x+y的值始终不
x − 5y = 3a
变,
变式:
mx − y = 47
1.如果关于x,y的二元一次方程组
的解是
nx + 3y = −39
x=5
,不求 m,n.的值,你能否求关于x,y的二元一次方程组
y=3
m(x + y) − (x − y) = 47
的解?如果能,请求出方程组的解.
n(x + y) + 3(x − y) = −39
2.若相异的实数a,b满足
则 ab =
.

22−1

= 2
2 −1
,
类型三 分式方程的解的问题

例3:若关于x的分式方程
2
−1
=
3
无解,则m=
2
−1
3
2或2
件的所有整数a.
2
− 2
4−
+
=

2023年中考数学解答题专项复习:方程与不等式(附答案解析)

2023年中考数学解答题专项复习:方程与不等式(附答案解析)

2023年中考数学解答题专项复习:方程与不等式1.(2021•镇江)(1)解方程:﹣=0;(2)解不等式组:.2.(2021•汉川市模拟)“绿水青山就是金山银山”,某村为了绿化荒山,计划在植树节当天种植柏树和杉树.经调查,购买1棵柏树比1棵杉树多50元,且花费900元购买杉树与花费1200元购买柏树的数量相同.(1)求柏树和杉树的单价各是多少元;(2)本次绿化荒山,需购买柏树和杉树共80棵,且柏树的棵数不少于杉树的2倍.为完成这次绿化任务,村里筹措了资金15000元,问该村完成这次绿化任务有几种方案?3.(2021•宁夏)学校计划购买甲、乙两种品牌的羽毛球拍若干副.已知购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元.(1)甲、乙两种品牌球拍的单价分别是多少元?(2)学校准备购买这两种品牌球拍共100副,要求乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,那么购买多少副甲种品牌球拍最省钱?4.(2021•北碚区校级模拟)第35届西部汽车博览会于2021年5月15日﹣16日在重庆江北区金源广场顺利举行.某品牌汽车有A、B两种车型,若2辆A种车型和3辆B种车型的生产成本之和为65万元,且4辆B种车型比5辆A种车型的生产成本多10万元.(1)求每辆A、B两种车型的生产成本各为多少万元?(2)本次车展该品牌出售A种车型的数量是B种车型的2倍,生产成本共350万元;在销售过程中,A 种车型的售价为生产成本提高a%后降价1.5万元,B种车型的售价为生产成本提高5a%后打a折;其销售额为458万元,求a的值.5.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?第1页共13页。

中考数学复习:第二章:方程与不等式专题复习

中考数学复习:第二章:方程与不等式专题复习

分式方程及其应用
•中考预知 •1、分式方程的解法; •2、分式方程实际的应用。
考点1:分式方程的解法
• 1.分式方程:分母中含有字母的方程叫分式方程. • 2.解分式方程的一般步骤: • (1)去分母,在方程的两边都乘以分母的最小公倍数,约去分母,
化成整式方程;
• (2)解这个整式方程; • (3)验根,把整式方程的根代入最简公分母,看结果是不是零,使
一次方程,它们的解就是原一元二次方程的解.
典例精讲
• 1、下列方程是一元二次方程的是( )
• A.ax2 bx c 0
• B.x2 2x x2 1
• C.x 1x 3 0
• D. 1 x 2 x2
• 2、分别用下列方法解方程
• (1)(2x 1) 2 9(直接开平方法)
(2)4x2–8x+1=0(配方法)
2cx+a=0,cx2+2ax+b=0,不可能都有两个相等的实数根.
• 七、判定三角形的形状 • 例7 设a、b、c是△ABC的三边长,且关于x的方程c(x2+n)+b(x2-n)
-2ax=0(n>0)有两个相等的实数根,试判断△ABC的形状.
• 八、讨论方程有理根的问题 • 例8 m为有理数,讨论后为何值时,方程x2+4(1-m)x+3m2-2m+4k=0
典例精讲
• 1、已知a,b,c均为实数,若a>b,c≠0,下列结论不一定正确的 是( )
• A.a+c>b+c
B.c-a<c-b
• C.
D.a2>ab>b2
• 2、若a>b,则下列不等关系一定成立的是( )
• A. ac bc
B. a b cc
C. c a c b D. a c b c

中考数学《方程与不等式》专题训练50题含答案

中考数学《方程与不等式》专题训练50题含答案

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.关于x ,y 的方程组24x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⎩■,其中y 的值被■盖住了,但不影响求出m 的值,则m 的值是( ) A .12B .12-C .13D .13-2.已知关于x 的方程290x a +-=的解是x =-2,则a 的值是( ) A .5 B .-5C .12D .13【答案】D【分析】把方程的解2x =-代入方程290x a +-=可得到关于a 的方程,解关于a 的方程即可.【详解】解:∵2x =-是方程290x a +-=的解, ∵2(2)90a ⨯-+-=. 解得:13a =. 故选:D .【点睛】本题考查了一元一次方程的解的应用,正确得到新的方程是解题关键. 3.已知关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0,则它的另一个根和m 的值分别是( ) A .3和1 B .2和3C .3和4D .4和1【答案】A【分析】先根据方程有一根为0,代入方程求出m 的值,然后把m 的值代入方程解一元二次方程即可.【详解】解:关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0, ∵-m =-1, ∵m =1,把m =1代入方程得()()()()211311x x x x -+=+-, 整理得:230x x -=, 因式分解得()30x x -=, 解得x x 1203,,∵另一个为3x =,m =1, 故选A .【点睛】本题考查方程的解,与解一元二次方程,掌握解方程的解概念,与一元二次方程的解法是关键.4.已知关于x 的一元二次方程:220x x m -+=有两个不相等的实数根,则m 的取值范围是( ) A .1m > B .1m < C .m>2 D .2m <【答案】B【分析】由方程有两个不相等的实数根,利用根的判别式可得出关于m 的一元一次不等式,解之即可得出结论.【详解】解:∵方程220x x m -+=有两个不相等的实数根, ∵()2240m ∆=-->, 解得:1m <, 故选:B .【点睛】本题考查了根的判别式,牢记“当方程有两个不相等的实数根时,0∆>”是解题的关键.5.甲乙两工程队共同参与一项筑路工程,规定x 天内完成任务.甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,甲、乙两队合作,可比规定时间提前14天完成任务,依题意列方程为( ) A .111104014x x x +=--+B .111104014x x x +=++- C .111104014x x x -=++- D .111104014x x x +=-+-6.若(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11,则m 的值为( ) A .4 B .5C .6D .7【答案】D【分析】先根据同底数幂的乘法法则把左侧化简,然后列出关于m 的方程求解即可. 【详解】∵(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11, ∵(a ﹣b )m +4=(a ﹣b )11, ∵ m +4=11, 解得:m =7, 故选:D .【点睛】本题考查了同底数幂的乘法,以及一元一次方程的解法,根据题意列出一元一次方程是解答本题的关键.7.若m 是关于x 的方程2420x nx m ++=的根()0m ≠,则4m n +的值为( ) A .-1 B .1C .-2D .2【答案】C【分析】根据一元二次方程的根的定义代入即可求解,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.【详解】m 是关于x 的方程2420x nx m ++=的根()0m ≠, ∴2420m mn m ++=,0m ≠,420m n ∴++=,即42m n +=-, 故选C .【点睛】本题考查了一元二次方程的根的定义,将方程的解代入求解是解题的关键. 8.方程3214x y +=在自然数范围内的解共有_____个 A .1 B .2C .3D .4【答案】C【分析】根据二元一次方程3x+2y=14,可知在自然数范围内的解有哪几组,从而可以解答本题.【详解】解:二元一次方程3x+2y=14在自然数范围内的解是:24x y =⎧⎨=⎩,41x y =⎧⎨=⎩,7x y =⎧⎨=⎩, 即二元一次方程3x+2y=14在自然数范围内的解的个数是3个. 故选C .【点睛】本题考查二元一次方程的解,解题的关键是明确什么是自然数,可以根据题意找到二元一次方程3x+2y=14在自然数范围内的解有哪几组.9.从正方形的铁片上,截去2cm 宽的一个长方形,余下的面积是248cm ,则原来的正方形铁片的面积是( ) A .281cm B .264cmC .254cmD .252cm【答案】B【分析】可设正方形的边长是x cm ,根据余下的面积是248cm ,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x -2,根据矩形的面积公式即可列出方程求解. 【详解】解:设正方形的边长是x cm , 根据题意得()248x x -=, 解得16x =-(舍去),28x =, ∵原正方形铁片的面积是8×8=64cm². 故选B .【点睛】本题考查了一元二次方程的应用,找到等量关系准确的列出方程是解决问题的关键,解题过程中要注意根据实际意义进行值的取舍.10.已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ) A .13x y -= B .12y x += C .253x y -=D .213x y --=11.方程247236x x ---=-去分母得( ) A .22(24)(7)x x --=-- B .122(24)7x x --=-- C .12(24)(7)x x --=-- D .122(24)(7)x x --=--122247,x x 从而可得答案.122247,x x【点睛】本题考查的是解一元一次方程的步骤,去分母,掌握12.下列方程一定是一元二次方程的是( )A .3x 2+2x﹣1=0B .5x 2﹣6y ﹣3=0C .ax 2﹣x +2=0D .3x 2﹣2x ﹣1=0【答案】D【详解】解:A 、是分式方程,故A 错误; B 、是二元二次方程,故B 错误; C 、a =0时,是一元一次方程,故C 错误; D 、是一元二次方程,故D 正确; 故选:D .【点睛】本题考查一元二次方程的识别,熟知一元二次方程的定义是解题的关键. 13.一元二次方程()371x x x +=-化为一般形式为( ) A .2470x x --= B .2270x x --=C .2470x x -+=D .2270x x -+=【答案】A【分析】根据一元二次方程的一般形式判断即可. 【详解】解:∵()371x x x +=-, ∵237x x x +-=, ∵2370x x x ---=, ∵2470x x --=,一元二次方程()371x x x +=-化为一般形式为:2470x x --=,故A 正确. 故选:A .【点睛】本题考查了一元二次方程的一般形式,熟练掌握一元二次方程的一般形式是解题的关键.14.不等式364x x -+≤-的解集在数轴上表示正确的是( ) A . B .C .D .【答案】A【分析】首先移项、合并同类项、未知数系数化1解不等式,再在数轴上表示解集即可.【详解】解:364x x -+≤-346x x -+≤-22-≤-x1x ≥,在数轴上表示为:,故选:A .【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:∵去分母;∵去括号;∵移项;∵合并同类项;∵化系数为1.15.随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( ) A .()2500014050x += B .()2405015000x += C .()2500014050x -= D .()2405015000x -=【答案】C【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.【详解】设这种药品的成本的年平均下降率为x ,根据题意得:()25000-x =40501 故选:C.【点睛】本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.16.将二次三项式267x x ++进行配方,正确的结果应为( ) A .2(3)2x ++ B .2(3)2x -+ C .2(3)2x +- D .2(3)2x --【答案】C【分析】x 2+6x+7中x 2+6x+9即是(x+3)2,因而x 2+6x+7=(x+3)2-2 【详解】解:∵x 2+6x+7=x 2+6x+9-9+7, x 2+6x+7=(x+3)2-2. 故选C .【点睛】此题考查了配方法,解题时要注意常数项的确定方法,若二次项系数为1,则二次项与一次项再加上一次项系数的一半的平方即构成完全平方式,若二次项系数不为1,则可提取二次项系数,将其化为1. 17.已知2x =是关于x 的方程()112a x a x +=+的解,则a 的值是( )A.15B.25C.35D.4518.若一元二次方程式241211470x x+-=的两根为a、b,且a b>,则3a b+之值为何?()A.22B.28C.34D.4019.若关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,则k的取值范围是()A.k≠0B.k≥﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0【答案】C【分析】根据二元一次方程的根的判别式列出不等式进行求解即可.【详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,∵0k 0∆⎧⎨≠⎩,即4400k k +⎧⎨≠⎩,解得:k ≥﹣1且k ≠0. 故答案为C .【点睛】本题考查了一元二次方程根的判别式,解题的关键在于:∵当∵=0时,方程有两个相等的实数根;∵当∵>0时,方程有两个不相等的实数根;∵当∵<0时,方程没有实数根. 20.若关于x 的方程244x ax x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4二、填空题21.不等式﹣3x >6的解是_______. 【答案】x <﹣2【分析】系数化为1并根据不等式的性质:∵不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,进行解答即可.【详解】解:系数化为1得:x <﹣2, 故答案是:x <﹣2.【点睛】本题主要考查不等式的性质,根据不等式的性质转换不等式的符号是解题的关键.22.方程2150b ax x -+=是关于x 的一元一次方程,则2a b +=____________. 【答案】2【详解】根据一元一次方程的定义可知x 的次数为1, 则ax 2=0且b-1=1,即a=0且b=2, 则2a+b=2×0+2=2. 故答案为2.23.某种商品原价每件40元,经两次降价,现售价每件32.4元,则该种商品平均每次降价的百分率是______. 【答案】10%【分析】设降价百分率为x ,根据售价从原来每件40元经两次降价后降至每件32.4元,可列方程求解.【详解】解:设降价百分率为x , 列方程:40(1﹣x )2=32.4.解得x 1=0.1,x 2=1.9(不合题意舍去). 故答案为:10%.【点睛】本题主要考查一元二次方程的实际应用,找准等量关系,根据题意列出方程是解题的关键.24.某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为2600m 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m ,另外三面用69m 长的篱笆围成,其中一边开有一扇1m 宽的门(不包括篱笆).则这个茶园的AB 的长为_________.【答案】20m【分析】设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据茶园的面积为2600m ,列出方程并解答即可.【详解】解:设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据题意,得:()6912600x x +-=,整理,得:2353000x x -+=,解得115x =,220x =,当15x =时,70240>35x -=,不符合题意舍去;当=20x 时,70230x -=,符合题意,故这个茶园的AB 为20m .故答案为:20m .【点睛】本题考查了一元二次方程的应用,根据数量关系列出方程是解题的关键. 25.甲、乙二人分别从相距20km 的A ,B 两地出发,相向而行.下图是小华绘制的甲、乙二人运动两次的情形,设甲的速度是x km/h ,乙的速度是y km/h ,根据题意所列的方程组是______,1.5x y +=______.【答案】 ()20.52201120x y x y ⎧++=⎨++=⎩11 【分析】设甲的速度是x km/h ,乙的速度是y km/h ,根据路程=速度×时间结合两次运动的情形,即可得出关于x ,y 的二元一次方程组,两式相加即可得解.【详解】解:设甲的速度是x km/h ,乙的速度是y km/h ,依题意,得:()20.52201120x y x y ⎧++=⎨++=⎩, 两式相加得:1.511x y +=,故答案为:()20.52201120x y x y ⎧++=⎨++=⎩,11. 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.26.关于x 的方程(m +5)x 2﹣2mx ﹣4=0是一个一元二次方程,那么m 的取值范围是___. 【答案】m ≠﹣5【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程,其中二次项系数不为0,可得m 的取值范围.【详解】解:因为(m +5)x 2﹣2mx ﹣4=0是关于x 的一元二次方程,所以m +5≠0,解得:m ≠﹣5,故答案为:m ≠﹣5.【点睛】本题考查了一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.27.对于x ,y 定义一种新运算“* ”,xy ax by =+,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,则11*的值为______. 【答案】11- 【分析】根据3515*=,4728*=列出二元一次方程组35154728a b a b +=⎧⎨+=⎩①②,求得a 、b ,再根据新运算的定义求解即可.【详解】解:根据题中的新定义化简得:35154728a b a b +=⎧⎨+=⎩①②, ∵4⨯-∵3⨯得:24b -=-,解得:24b =,把24b =代入∵得:35a =-,则1111a b *=+=-.故答案为:11-.【点睛】此题主要考查了二元一次方程组的求解,理解题意列出二元一次方程组和加减法解二元一次方程组是解决此题的关键.28.若213111x M N x x x -=+-+-则M =_______ ,N =_______ .∵31M N N M +=-⎧⎨-=⎩, 解得:21M N =-⎧⎨=-⎩. 故答案为:-2,-1.【点睛】本题考查分式的混合运算,解二元一次方程组.掌握分式的混合运算法则是解题关键.29.若2m +1 的值同时大于 3m -2和 m+2的值,且m 为整数,则 3m -5 =____. 【答案】1【分析】先根据题意列出不等式组求出m ,再求出代数式的值.【详解】依题意得2132212m m m m +-⎧⎨++⎩>> 解得31m m ⎧⎨⎩<> ∵m 为整数,∵m=2∵3m -5=6-5=1故答案为:1.【点睛】此题主要考查不等式组的应用,解题的关键是根据题意求出m 的值.30.不等式组11327x x x -≥+⎧⎨-<⎩的解集是______. 【答案】20x -<≤【分析】先分别求出两个不等式的解集,再找出解集的公共部分即可.【详解】解:11327x x x -≥+⎧⎨-<⎩①② 解不等式∵得,0x ≤,解不等式∵得,2x >-,则原不等式组的解集为:20x -<≤.故答案为:20x -<≤.【点睛】本题考查了解不等式组,要掌握解不等式组的步骤和方法是解题的关键. 31.如图,一块长为m a 宽为m b 的长方形土地的周长为16m ,面积为215m .现将该长方形土地的长、宽都增加2m ,则扩建后的长方形土地的面积是____________.【答案】35m 2【分析】根据题意列出关于a ,b 的方程,用含有a 的式子表示b ,可得关于a 的一元二次方程,求出a ,b 的值,即可得出答案.【详解】根据题意,得2()1615a b ab +=⎧⎨=⎩①②, 由∵得8b a =-∵,将∵代入∵,得(8)15a a -=,即28150a a -+=, 解得5a =或3a =(舍),将5a =代入∵,得3b =.长和宽都增加2m ,得7m ,5m ,所以扩建后的长方形土地的面积是7×5=35(cm 2).故答案为:35 cm 2.【点睛】本题主要考查了一元二次方程的应用,确定等量关系是解题的关键. 32.熊大、熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止,2分钟后熊大以熊二1.2倍速度跑过去,结果它们同时到达,如果设熊二的速度为x 米/分钟,那么可列方程为_________________.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.33.已知A ∠是ABC 的一个内角,并且方程24sin 102A x x -+=1,则A ∠=______.【答案】90︒##90度 sin 12A x +=)1sin 102A +=, 34.已知355x y a b +-和7332y x a b -是同类项,则x +y 的值是______. 【详解】-35.已知2x =是不等式ax-3a+2≥0的解,且1x =不是这个不等式的解,那么a 的取值范围是__________.【答案】12a <≤【分析】根据x=2是不等式ax-3a+2≥0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【详解】解:∵x=2是不等式ax-3a+2≥0的解,∵2-a≥0,解得:a≤2,∵x=1不是这个不等式的解,∵1-a<0,解得:a>1,∵1<a≤2,故答案为:1≤a≤2.【点睛】本题考查了解一元一次不等式,不等式的解集,解决本题的关键是求不等式的解集.36.规定11a ba b⊕=+,若232(1)(1)1xx xx++⊕-=-,则x的值是_____.37.阅读下面计算113⨯+135⨯+157⨯+…+1911⨯的过程,然后填空.解:∵113⨯=12(11-13),135⨯=12(13-15),…,1911⨯=12(19-111),∴113⨯+135⨯+157⨯+…+1911⨯=12(11-13)+12(13-15)+12(15-17)+…+12(19-111)=12(11-13+13-15+15-17+…+19-111)=12(11-111)=5 11.以上方法为裂项求和法,请参考以上做法完成:(1)124⨯+146⨯=______;(2)当113⨯+135⨯+157⨯+ (x)613时,最后一项x=______.38.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程方程为________.39.已知点C、D是线段AB上两点(不与端点A、B重合),点A、B、C、D四点组成的所有线段的长度都是正整数,且总和为29,则线段AB的长度为__________________ .【答案】8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∵3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∵AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.三、解答题40.解不等式组()101432x x ->⎧⎪⎨+<⎪⎩.41.某商场某型号的计算机2018年销售量为2880台,2020年受疫情影响,年销售量下降为2000台,求销售量的年平均下降率.(结果保留整数)42.解不等式组:102132x x x -≤⎧⎪⎨+-<⎪⎩①②,并把解集在数轴上表示出来.【答案】21x -<≤,见解析【分析】先分别解两个不等式 ,在数轴上标出解集,然后写出解集即可.【详解】解:解不等式∵得,1x ≤,解不等式∵得,2x >-,在数轴上分别表示这两个不等式的解集如图∵不等式组的解集为:21x -<≤.【点睛】本题考查不等式组的解集,准确掌握解集的求法是解题的关键. 43.已知:23231A x xy y =++-,2B x xy =-.(1)计算:3A B -;(2)若()()25A B A B +-+的值与y 的取值无关,求x 的值.44.x 的一元二次方程()2420x m x m +++=.(1)求证:方程总有两个不相等的实数根;(2)若1x 、2x 是方程的两个实根,且212124x x x x m m ++=-,求m 的值.)证明:(m ∆=+方程总有两个不相等的实数根;)解:根据题意得12x x +=12x x ++(4m ∴-+解得=1m 即m 的值为【点睛】本题考查了根与系数的关系:若45.(1)解方程:11322x x x-+=-- (2)解不等式组:1,2263 2.x x x x ⎧+≥⎪⎨⎪++⎩> 【答案】(1)无解;(2)24x -<【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)去分母得:13(2)1x x +-=-,解得:2x =,检验:把2x =代入得:20x -=,2x ∴=是增根,分式方程无解;12632x x +>+①2x -,4x <,不等式组的解集为24x <.【点睛】此题考查了解分式方程,以及解一元一次不等式组,解题的关键是熟练掌握各自的解法.46.用配方法解方程:212302x x --= 2210=-【分析】根据配方法解一元二次方程即可47.解方程:35136x x -=-. 48.新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金840元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金1380元.(1)求甲、乙型号口罩每箱的进价为多少元?(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预计用不多于5520元且不少于5280元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;(3)若甲型口罩的售价为每箱450元,乙型口罩的售价为每箱420元.为了促销,无论采取哪种进货方案,公司决定每售出一箱乙型口罩,返还顾客现金a 元,而甲型口罩售价不变,要使(2)中所有方案获利相同,直接写出a 的值. 【答案】(1)甲、乙型号口罩每箱的进价分别为300元,240元(2)有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱;方案二:购进甲型口罩9箱,则购进乙型口罩11箱;方案三:购进甲型口罩10箱,则购进乙型口罩10箱;方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)a =30【分析】(1)设甲型号口罩每箱进价为m 元,乙型号口罩每箱进价为n 元,根据题意建立方程组求解就可以求出答案;(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意建立不等式组,求出其解就可以得出结论;(3)由题意得出w =(a -30)x + 3600- 20a ,根据“(2)中所有方案获利相同”知w 与a 的取值无关,据此解答可得.(1)设甲、乙型号口罩每箱的进价分别为m 元,n 元,由题意得:2840321380m n m n +=⎧⎨+=⎩解得:300240m n =⎧⎨=⎩ 答:甲、乙型号口罩每箱的进价分别为300元,240元(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意得:300240(20)5520300240(20)5280x x x x +-≤⎧⎨+-≥⎩解得:812x ≤≤x 非负整数∴x =8或9或10或11或12∵有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱方案二:购进甲型口罩9箱,则购进乙型口罩11箱方案三:购进甲型口罩10箱,则购进乙型口罩10箱方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)设获得的总利润为ww =(450- 300)x +(420-240-a )(20-x )=150x +(180-a )(20-x )= 150x + 20(180-a ) -(180-a )x=(150-180+a )x + 3600-20a=(a -30)x + 3600- 20a要使(2)中所有方案获利相同∵a -30=0即a =30∵当a =30时,(2)中所有方案获利相同即w =3600-20×30=3600-600= 3000(元)【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,整式的加减无关类型,根据题意列出方程组,不等式组,代数式是解题的关键.49.解二元一次方程(1)3728x y x y -=⎧⎨+=⎩; (2)()()3212158y x x y ⎧-=+⎪⎨-=-⎪⎩.。

中考数学专题复习《方程与不等式》测试卷-附带答案

中考数学专题复习《方程与不等式》测试卷-附带答案

中考数学专题复习《方程与不等式》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列等式变形错误的是( )A .若 33x y -=- 则 0x y -=B .若112x x -= 则 12x x -= C .若 13x -= 则 4x =D .若 342x x += 则 324x x -=-2.用配方法解一元二次方程2870x x +-= 则方程可化为( )A .2(4)23x +=B .2(8)23x +=C .2(4)9x +=D .2(8)9x +=3.在解方程3157246x x -+-= 时 第一步去分母 去分母后结果正确的是( ) A .12(31)12212(57)x x --⨯=+ B .3(31)1222(57)x x --⨯=+ C .3(31)322(57)x x --⨯=+D .3(31)22(57)x x --⨯=+4.下列方程为一元一次方程的是( )A .+2=3 x yB .5y =C .22x x =D .12y y+= 5.《九章算术》中记载:“今有善田一亩 价三百 恶田七亩 价五百.今并买一顷 价钱一万.问善恶田各几何?”其大意是:今有好田1亩 价值300钱 坏田7亩 价值500钱.今共买好 坏田1顷(1顷=100亩) 价钱10000钱.问好 坏田各买了多少亩?设好田买了x 亩 坏田买了y 亩 则下面所列方程组正确的是( ) A .{x +y =100300x +7500y =10000 B .{x +y =100300x +5007y =10000 C .{x +y =1007500x +300y =10000D .{x +y =1005007x +300y =100006.已知方程组35ax by ax by +=-⎧⎨-=⎩的解是12x y =-⎧⎨=⎩则2a b -的值是( ) A .3B .-3C .5D .-57.如图 由矩形和三角形组合而成的广告牌紧贴在墙面上 重叠部分(阴影)的面积是4m 2 广告牌所占的面积是 30m 2(厚度忽略不计) 除重叠部分外 矩形剩余部分的面积比三角形剩余部分的面积多2m 2 设矩形面积是xm 2 三角形面积是ym 2 则根据题意 可列出二元一次方程组为( )A .{x +y −4=30(x −4)−(y −4)=2B .{x +y =26(x −4)−(y −4)=2C .{x +y −4=30(y −4)−(x −4)=2D .{x −y +4=30x −y =28.为了奖励学习认真的同学 班主任老师给班长拿了40元钱 让其购买奖品 现有单价为4元的A 种学习用品和单价为6元的B 种学习用品可供选择 若40元钱恰好花完 则班长的购买方案有( ) A .1种B .2种C .3种D .4种9.若x y < 则下列不等式中不成立的是( )A .22x y -<-B .22x y -<-C .22x y ->- D .22x y ->-10.已知公式12111R R R =+ ( 12R R ≠ ) 则表示 1R 的公式是( ) A .212R RR RR -=B .212RR R R R =-C .1212()R R R R R +=D .212RR R R R=-二 填空题11.已知2x =是方程230x x m -+=的解 则m 的值为 . 12. 已知a =120222023+ b =120232023+ c =120242023+ 则代数式 2(a 2+b 2+c 2-ab-bc-ac )的值是 .13.若一元二次方程 22(1)310k x x k -++-= 有一个根为 0x = 则k= .14.今年春节某超市组装了甲 乙两种礼品盆 他们都是由 ,,a b c 三种零食组成 其中甲礼品盒装有3千克 a 零食 1千克 b 零食 1千克 c 零食 乙礼品盒装有2千克 a 零食 2千克 b 零食 2千克 c 零食 甲 乙两种礼品盒的成本均为盆中 ,,a b c 三种零食的成本之和.已知每千克 a 的成本为10元 乙种礼品盒的售价为60元 每盒利润率为25%甲种每盒的利润率为50%当甲 乙两种礼盒的销售利润率为13时 该商场销售甲 乙两种礼盒的数量之比是 . 三 解答题15.计算:(1)解方程组:{y =2x −5 ①7x −3y =20 ② (2)解不等式:32523x x --> (3)解不等式组:523923x x ->⎧⎨-<⎩(4)解不等式组:{5x −12≤2(4x −3)x+42<3−6x−1616.解方程:241x - + 21x + = 1xx - 17.小红和小凤两人在解关于x y 的方程组 {ax +3y =5 ,bx +2y =8 .时 小红只因看错了系数a 得到方程组的解为 {x =−1 ,y =2 . 小凤只因看错了系数b 得到方程组的解为 {x =1 ,y =4 .求a b 的值和原方程组的解.18.阅读理解下列材料然后回答问题:解方程:x²-3|x|+2=0解:(1)当x≥0时 原方程化为x²-3x+2=0 解得: 1x =2 2x =1 ( 2 )当x <0时 原方程化为x²+3x+2=0 解得: 1x =1 2x =-2. ∴原方程的根是 1x =2 2x =1 3x =1 4x =-2. 请观察上述方程的求解过程 试解方程x²-2|x-1|-1=0.19.如图 在矩形ABCD 中剪去正方形ABFE 后 剩下的矩形EFCD 与原矩形ABCD 相似.求矩形ABCD 的宽和长的比.20.为了丰富市民的文化生活 我市某景点开放夜游项目.为吸引游客组团来此夜游 特推出了如下门票收费标准:标准一:如果人数不超过20人 门票价格为60元/人标准二:如果人数超过20人 每超过1人 门票价格降低2元 但门票价格不低于50元/人.(1)当夜游人数为15人时 人均门票价格为 元 当夜游人数为25人时 人均门票价格为 元(2)若某单位支付门票费用共1232元 则该单位这次共有多少名员工去此景点夜游?21.已知 422(2)50a a b y y+--+= 是关于y 的一元一次方程.(1)求 ,a b 的值. (2)若 2a x =-是 2211632x x x m--+-+= 的解 求 b m a m +-- 的值.22.新冠疫情以来 口罩成为了生活和工作的必需品.某口罩生产企业主要生产过滤式和供气式两种口罩.有过滤式口罩机和供气式口罩机各 10 台 统计发现 去年每台过滤式口罩机的产量比每台供气式口罩机多 60 万个 过滤式口罩的出厂价为 0.2 元/个 供气式口罩的出厂价为 4 元/个 两种口罩全部售出 总销售额为 10200 万元.(1)去年每台供气式口罩机的产量为多少万个?(2)今年 为了加大口罩供应量 该企业优化了生产方法 在保持口罩机数量不变的情况下 预计每台过滤式口罩机和供气式口罩机的产量将在去年基础上分别增加 2%a 和 %a .由于过滤式口罩更受市场欢迎 出厂价将在去年的基础上上涨 %a 而供气式口罩的出厂价保持不变 两种口罩全部售出后总销售额将增加20%17a 求 a 的值. 23.定义一种新运算“a ⊗ b”:当a≥b 时 a ⊗ b=a+2b 当a <b 时 a ⊗ b=a-2b.例如:3 ⊗ (-4)=3(8)(5)+-=- ()61262430-⊗=--=- .(1)填空:(-3) ⊗ (-2)=(2)若 (34)(5)(34)2(5)x x x x -⊗+=-++ 则x 的取值范围为 (3)已知 (57)(2)1x x -⊗-> 求x 的取值范围(4)利用以上新运算化简: ()()2235102m m m m ++⊗- .答案解析部分1.【答案】B【解析】【解答】A.若 33x y -=- 则 0x y -= 正确B.若112x x -= 两边同乘以2 则 22x x -= 故错误 C.若 13x -= 则 4x = 正确 D.若 342x x += 则 324x x -=- 正确 故答案为:B.【分析】等式的基本性质:(1)等式两边同加(或减)同一个数(或式子) 结果仍相等 (2)在不等式两边同乘一个数 或除以一个不为0的数 结果仍相等。

中考数学专题复习——方程与不等式

中考数学专题复习——方程与不等式

中考数学专题复习——方程与不等式本专题主要讲解方程和不等式两部分,其内容包括一元一次方程、一元二次方程、可化为一元一次方程(一元二次方程)的分式方程、二元一次方程组、一元一次不等式和一元一次不等式组的概念、解法及其应用。

在概念方面,一元一次方程中一次项系数不为零;一元二次方程中二次项系数也不为零。

方程的解法上,一元一次方程按其一般步骤求解;二元一次方程组中,解题的基本思想是“消元”,即代入消元法和加减消元法;一元二次方程的求解,直接开平方法、配方法、公式法、因式分解法是解一元二次方程的基本方法。

而因式分解法它体现方程“降次求解”的基本思想,公式法更具有一般性。

同学们在求解方程时应灵活选用,值得注意的是分式方程求解,要验根。

对于一元一次不等式(组)的求解,要熟练地掌握不等式的基本性质,它是不等式求解的基础,在解不等式(组)时,若不等式两边同时乘以或除以同一个负数时不等号方向要改变。

而不等式组的解是每个不等式解的公共部分,它常通过数轴这一步骤来得到不等式解的。

本专题的内容在初中知识结构上占较重要的位置,是各地市中考题中重要的考查内容。

一、典型例题导析例1、若关于x 的一元一次方程23132x k x k---=的解是x =-1,则k 的值是( )A 、27B 、1C 、1311- D 、0例2、方程242x x +=的正根为( )A.2B.2 C.2- D.2-+例3、解不等式组:302(1)33x x x+>⎧⎨-+≥⎩,并判断x =例4、若关于x 的不等式组3,3 1.x m x m >+⎧⎨<-⎩无解,试判断方程21(3)04m x x --+= 的根的情况。

例5、为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民月份用水12.5m3,则应收水费______元;(2)若该户居民3、4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民,3、4月份各用水多少立方米?二、选讲题,两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援※例6、某公司在A B建设,其中甲地需要15台,乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)请填写下表,并写出y与x之间的函数关系式;(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省?※例7、青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价 进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3)在“五·一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)。

中考数学专题复习课件 方程不等式

中考数学专题复习课件 方程不等式
3. 二元一次方程组的解法: (1)加减消元法; (2)代入消元法.
(五)分式方程 1.分母中含有未知数的方程 叫做分式方程.
2.分式方程与整式方程的联 系与区别. 分母中是否含有未知数.
3.分类:
(1)可化为一元一次方程的 分式方程.
4.解分式方程的一般步骤
(1)去分母,化为整式方程:
①把各分母分解因式;
2.一元二次方程的一般形式.
ax2+bx+c=0(a≠0).
3. 一元二次方程的解法:
(1)配方法;(2)公式法;(3)分 解因式法.
(1)配方法
①通过配成完全平方式的方法,得到了一 元二次方程的根,这种解一元二次方程的 方法称为配方法
1.②化用1:配把方二解次方项程系的数一化般为步1(骤方:程两边 都除以二次项系数);
b
2
(b2 4a
2
4ac)
4ac 4a2
c a;即x1 Nhomakorabeax2
b a
;
x1
x2
c a
.这一结论通常称为韦达定理.
(九)、列方程(组)解应用题的一 般步骤(六环节一条龙):
1审:分析题意,找出已、未知之 间的数量关系和相等关系. 2设:选择恰当的未知数(直接或 间接设元),注意单位的同一和语 言完整. 3列:根据数量和相等关系,正确 列出代数式和方程(组). 4解:解所列的方程(组). 5验: (有三次检验 ①是否是所列方
程(组)的解;②是否使代数式有意义; ③是否满足实际意义).
(十)、不等式的概念
1.不等式的性质
(1).不等式的两边都加上(或减
去)同一个整式,不等号方向不
变.
若a b,则a c b c.

中考数学专项复习《方程不等式》练习题及答案

中考数学专项复习《方程不等式》练习题及答案

中考数学专项复习《方程不等式》练习题及答案一、单选题1.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件,共需64元;若购甲4件、乙10件、丙1件,共需79元;现购甲、乙、丙各一件,共需( )元 A .33B .34C .35D .362.某公司今年1月的营业额为2400万元,按计划第一季度的总营业额要达到9200万元,设该公司2,3两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是( ) A .2400(1+x)2=9200 B .2400(1+x%)2=9200C .2400(1+x)+2400(1+x)2=9200D .2400+2400(1+x)+2400(1+x)2=92003.已知x >1,x+a =1,则a 的取值范围是( )A .a <0B .a≤0C .a >0D .a≥04.如图,在数轴上,点、分别表示数a 、b ,且a+b=2.若AB=4,则点表示的数为( )A .-1B .-2C .2D .15.如果关于x 的方程x²-2x-k=0没有实数根,那么k 的最大整数值是( )A .-3B .-2C .-1D .06.不等式组{x +2a >42x −b <5的解集是0<x <2,那么a+b =( )A .﹣2B .﹣1C .1D .27.某学校拟建一间长方形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m ,建成后的活动室面积为75m2,求长方形活动室的长和宽.若设长方形宽为xm ,根据题意可列方程为( )A .x (27-3x )=75B .x (3x-27)=75C .x (30-3x )=75D .x (3x-30)=758.如图,在数轴上表示的是下列哪个不等式( )A.x>−2B.x<−2C.x≥−2D.x≤−29.关于x的方程mx−1+31−x=1解为正数,则m的范围为()A.m≥2且m≠3B.m>2Bm≠3C.m<2且m≠3D.m>210.三角形两边的长分别是8和6,第三边的长是一元二次方程x2−16x+60=0的一个实数根,则该三角形的面积是()A.8√5B.24C.8√5或24D.4√5或2411.若关于x的不等式组{a−x2≤3x−3(2−x)≥2的解集是x≥2,则a的取值范围是()A.a>﹣4B.a≤﹣4C.a<4D.a≤412.某校在操场东边开发出一块长、宽分别为18m、11m的矩形菜园(如图),作为劳动教育系列课程的实验基地之一.为了便于管理,现要在中间开辟一横两纵三条等宽的小道,剩下的用于种植,且种植面积为96m2.设小道的宽为x m,根据题意可列方程为()A.(18−2x)(11−x)=96B.2x2=96C.(18−x)(11−2x)=96D.(18−2x)(11−2x)=96二、填空题13.若关于x的一元二次方程ax2+6x−4=0的解为x1=1,x2=2,则关于y的一元二次方程a(y+1)2+6(y+1)−4=0的解为.14.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,BD⊥CD,若四边形AECD是菱形,则cosC的值为.15.若x=a是方程x2+2x−2=0的一个根,则1−2a2−4a=.16.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”.其意是:有若干人共同买东西,如果每人出8元,则余3元,如果每人出7元,则少4元,问人数及所买东西的价格各是多少?若设有x人合买,则根据题意列出一元一次方程为.17.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送56张照片,如果全班有x名同学,根据题意,列出方程为.18.某铁路桥长1200m,现有一列火车从桥上通过,测得该火车从开始到完全过桥共用了1min,整列火车完全在桥上的时间共40s,则火车的长度为米.三、综合题19.今年新冠疫情期间,某公司计划将1200 套新型防护服进行加工,分给甲乙两个工厂,甲工厂单独完成任务,比乙工厂单独完成任务多用10天,乙工厂每天加工数量是甲的1.5倍.(1)求甲乙两个工厂每天分别能加工多少套?(2)如果甲工厂每天费用200元,乙工厂每天费用350元,从经济角度考虑,选用哪个工厂较好?20.列方程(组)及不等式(组)解应用题:水是生命之源.为了鼓励市民节约用水,江夏区水务部门实行居民用水阶梯式计量水价政策;若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,但每立方米污水处理费不变.下面表格是某居民小区4月份甲、乙两户居民生活用水量及缴纳生活用水水费的情况统计:4月份居民用水情况统计表(注:污水处理的立方数=实际生活用水的立方数)用水量(立方米)缴纳生活用水费用(元)甲用户827.6乙用户1246.3(2)设这个小区某居民用户5月份用水x立方米,需要缴纳的生活用水水费为y元.若他5月份生活用水水费计划不超过64元,该用户5月份最多可用水多少立方米?21.某体育用品商店欲购进A,B两种品牌的足球进行销售,若购进A种品牌的足球50个,B种品牌的足球25个,需花费成本4250元;若购进A种品牌的足球15个,B种品牌的足球10个,需花费成本1450元。

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

中考数学《方程与不等式》专题知识训练50题(含参考解析)

中考数学《方程与不等式》专题知识训练50题(含参考解析)

中考数学《方程与不等式》专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.已知一个不等式组的解集如图所示,则以下各数是该不等式组的解的是()A.﹣5B.2C.3D.4【答案】B【详解】由题意,得-2≤x<3,故选B.2.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.【答案】C【分析】根据数轴上表示不等式解集的方法进行解答即可.【详解】解:∵此不等式不包含等于号,∵可排除B、D,∵此不等式是小于号,∵应向左化折线,∵A错误,C正确.故选C.【点睛】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.3.关于x的一元二次方程220kx x--=有实数根,则实数k的取值范围是()A.18k=-B.18k≥-C.18k≥-且0k≠D.18k≤-【答案】C【分析】根据一元二次方程的定义和根的情况列出不等式即可求出结论.4.下列命题中,是真命题的是()A.内错角相等B.对顶角相等C.若x2=4,则x=2D.若a>b,则a2>b2【答案】B【分析】判断命题是真命题还是假命题,假命题只需举出反例,可判断A、C、D;B 通过定义发现是同一角的邻补角可证明B为真命题.【详解】A、在两直线平行的条件下,内错角相等,没有平行线条件,不相等,故A 假命题,B、由对顶角的定义,知是两直线相交所成的角中,有共顶点,没有公共边的两个角是同一个角的补角,故相等,B为真命题,C、x=-2,也有x2=4,故x2=4,x=±2,故C为假命题,D、a=-1,b=-3,故有a>b,但a2<b2,故D为假命题.故选择:B【点睛】本题考查命题真假问题,判断命题是真命题还是假命题,能举出反例就为假命题,真命题是需要加以证明.5.不等式3x-2>-1的解集是()A.x>13B.x<13C.x>-1D.x<-1【点睛】本题考查了一元一次不等式的解法,熟知解一元一次不等式的基本步骤是解决问题的关键.6.已知关于x的方程:22222 4 2 1 03 0x x x x x x y ax bx=-=+++=++=①;②();③;④,其中是一元二次方程的有()A.1个B.2个C.3个D.4个【答案】A【分析】根据一元二次方程的定义逐个判断即可.【详解】解:2 2x=①,是一元二次方程;2 4x x x x-=+②(),化简后是一元一次方程;2 2 1 0x y++=③,有两个未知数,不是一元二次方程;2 3 0ax bx++=④,二次项系数为0时,不是一元二次方程;故选:A.【点睛】本题考查了一元二次方程的定义,解题关键是明确只含一个未知数,且未知数的最高次为2的整式方程是一元二次方程,注意:一元二次方程二次项系数不为0.7.不等式组22xx>-⎧⎨≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.【详解】不等式组22xx>-⎧⎨≤⎩的解集在数轴上表示如下:故选:C.【点睛】本题考查了在数轴上表示不等式组的解集,解题的关键是掌握不等式的解集在数轴上的表示方法.8.某校拓展课书法培训班准备购买一批书法笔,购买一支A型书法笔与一支B型书法笔一共需要42元,用360元购买A 型书法笔与用450购买B 型书法笔的数量相同,设A 型书法笔的单价为x 元,依题意,下面所列方程正确的是( ) A .36045042x x=- B .36045042x x=+ C .36045042x x=-D .3604504242x x=-+9.如图,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的正方形,使得留下的图形面积是原矩形面积的80%,所截去的小正方形的边长是多少?设小正方形的边长是x cm ,下列方程正确的是( )A .()()10810880%x x --=⨯⨯B .()()1028210880%x x --=⨯⨯C .()()10810820%x x --=⨯⨯D .21084=10880%x ⨯-⨯⨯ 【答案】D【分析】等量关系为:矩形面积-四个全等的小正方形面积=矩形面积80%⨯,即可列出方程.【详解】解:设小正方形的边长为xcm ,由题意得2108410880%x ⨯-=⨯⨯,故选:D .【点睛】此题考查了有实际问题抽象出一元二次方程,读懂题意,找到合适的等量关系是解决本题的关键.10.一元二次方程23210x x 的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .只有一个实数根【答案】B【分析】直接利用判别式∵判断即可. 【详解】∵∆=()()22431160--⋅⋅-=> ∵一元二次方程有两个不等的实根 故选:B .【点睛】本题考查一元二次方程根的情况,注意在求解判别式∵时,正负号不要弄错了.11.二元一次方程432x y +=的解可以是( ) A .=1x -,2y = B .4x =,1y =C .1x =,2y =D .2x =-,2y =【答案】A【分析】分别把各选项中的值代入432x y +=验证即可.【详解】解:A.当=1x -,2y =时,4x+3y=-4+6=2,故是方程的解; B.当4x =,1y =时,4x+3y=16+3=19≠2,故不是方程的解; C.当1x =,2y =时,4x+3y=4+6=10≠2,故不是方程的解; D.当2x =-,2y =时,4x+3y=-8+6=-2≠2,故不是方程的解; 故选A .【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.12.某市2018年投入教育经费4900万元,预计2020年投入6400万元,设这两年投入教育经费的年平均增长率为x ,则( ) A .4900x 2=6400 B .4900(1+x)2=6400 C .4900 (1+x)=6400D .4900(1+x)+4900(1+x)2=6400 【答案】B【分析】这两年投入教育经费的年平均增长率为x ,根据某市2008年投入教育经费4900万元,预计2010年投入6400万元可列方程. 【详解】解:这两年投入教育经费的年平均增长率为x , 4900(1+x )2=6400. 故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程中增长率问题,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 13.分式方程411(1)(2)x x x x -=--+的解是( ) A .=1x - B .1x = C .2x = D .3x =14.一件商品的进价500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打( )折 A .6 B .7 C .8 D .915.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚16.温州某服装店十月份的营业额为8000元,第四季度的营业额共为40000元.若平均每月的增长率为x,则由题意可列出方程为()A.8000(1+x)2=40000B.8000+8000(1+x)2=40000 C.8000+8000×2x=40000D.8000[1+(1+x)+(1+x)2]=40000【答案】D【详解】试题解析:设平均每月的增长率为x,则十一月份的营业额为8000(1+x),十二月份的营业额为8000(1+x)2,由此列出方程:8000[1+(1+x)+(1+x)2]=40000.故选D.17.某店商以1200元/件卖了两件进价不同的商品,其中一件盈利20%,另一件亏损20%,在这次买卖中,该店商( ) A .不赢不亏 B .盈利100元C .亏损100元D .亏损300元【答案】C【分析】根据题意列出方程求解,然后根据利润等于售价减去进价即可得出结果. 【详解】解:设盈利商品的进价为x 元,亏损商品的进价为y 元,根据题意可得:()120%1200x +=,()120%1200y -=,解得:1000x =,1500y =, ∴1200120010001500100+--=-, ∴该商店亏损100元, 故选:C .【点睛】题目主要考查一元一次方程的应用,理解题意,列出方程是解题关键. 18.如图,在ABC 中,AB AC =,AD BC ⊥于点 D ,点M 是ABC 内一点,连接BM 交AD 于点 N ,已知108∠=︒AMB ,若点M 是CAN △的内心,则 BAC ∠的度数为( )A .36°B .48°C .60°D .72°【答案】B【分析】过M 点作ME AD ⊥交AD 于点E ,根据在ABC 中,AB AC =,AD BC ⊥于点D ,可得ABC 是等腰三角形,AD 是BC 边上的中垂线,得到NB NC =,NBDNCD ;根据AD BC ⊥,ME AD ⊥,得到NMENBD ,再根据点M 是CAN △的内心,得到NAMMAC ,ANM CNM ∠=∠,设NAM x ,NBDy ,可得4BAC x ,NBD NCDNMEy ,2ENMCNMy ,利用108∠=︒AMB 可整理出18272y x yx,求解即可得到结果.【详解】解:如图示,过M 点作ME AD ⊥交AD 于点E ,∵在ABC 中,AB AC =,AD BC ⊥于点 D , ∵ABC 是等腰三角形,AD 是BC 边上的中垂线, ∵NB NC =,BAD CAD ∠=∠, ∵NBDNCD ,又∵AD BC ⊥,ME AD ⊥ ∵//EM BC ∵NMENBD ,∵点M 是CAN △的内心,即点M 在NAC ∠和ANC ∠的角平分线上, ∵NAM MAC ,ANM CNM ∠=∠, 设NAMx ,NBDy ,则有:4BAC x ,NBDNCDNMEy ,2ENMCNMy ,∵108∠=︒AMB ∵108AMEAMBEMNy则在AEM △中,10890x y,ANM 中,218010872x y ,即有18272y x yx ,解之得:1230x y∵441248BACx,故选:B .【点睛】本题考查了等腰三角形的性质,三角形的内心,角平分线的性质,平行线的判定与性质,解二元一次方程组等知识点,熟悉相关性质是解题的关键. 19.已知代数式 23-x 与 312x -的值互为相反数,则x 的值为( )A .117B .7C .711D .1220. 如图,点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,点B 的坐标为 ( )A .(0,0)B .(-12,12)C .(2,-2) D .(12,-12)二、填空题21.方程218x --=的解是x=___________. 【答案】-20【分析】先移项,然后系数化为1即可求解. 【详解】解:移项得:-x=20, 系数化为1得:x=-20, 故答案为-20.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.22.“x 的2倍比y 小”用不等式表示为 _______. 【答案】2x <y##y >2x【分析】x 的2倍即为2x ,小即“<”,据此列不等式.【详解】解:由题意得,2x <y .故答案为:2x <y .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系是关键.23.如果关于x 的方程1333k x x =---有增根,那么k =___________.24.分式方程3214x x =+-的解为 _____.25.若2(2)350m x x --+=是关于x 的一元二次方程,则m 的取值范围为______.【答案】2m ≠【分析】根据形如20(0)ax bx c a ++=≠叫做一元二次方程,列式计算即可.【详解】因为2(2)350m x x --+=是关于x 的一元二次方程,所以20m -≠,所以2m ≠,故答案为:2m ≠.【点睛】本题考查了一元二次方程的定义即形如20(0)ax bx c a ++=≠叫做一元二次方程,熟练掌握方程的条件是解题的关键.26.己知方程2310x y -+=,且含x 的式子表示y =________.27.若关于x 的分式方程x m x 1x 1---=2的解为正实数,则整数m 的最大值是______. 【答案】0【分析】分式方程去分母转化为整式方程,表示出方程的解x ,由解为正实数确定出m 的范围,即可求出所求.【详解】解:分式方程去分母得:x-m=2x-2,解得:x=2-m ,由分式方程的解为正实数,得到2-m >0,且2-m≠1,解得:m <2且m≠1,则整数m 的最大值是0,故答案为0【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.28.列方程解应用题.某商品原售价为25元,经过连续两次降价后售价为16元.求平均每次降价的百分率.【答案】平均每次降价的百分率为20%【分析】根据题意得出等量关系,列出方程求解即可.【详解】解:设平均每次降价的百分率为x ,由题意可得:()225116x -=,解得10.2=20%x =,2 1.8x =(舍去)答:平均每次降价的百分率为20%.【点睛】本题考查了一元二次方程的应用,解题的关键是利用增长(降低)率的知识找出等量关系.29.不等式2x ﹣7<5﹣2x 的非负整数解的个数为__个.【答案】3【分析】【详解】∵2x+2x<5+7,∵4x<12,∵x<3,则不等式的非负整数解有0、1、2这3个,故答案为:3.30.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种. 【答案】4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m 的钢管b 根,根据题意得:a +2b =9, ∵a 、b 均为正整数, ∵14a b =⎧⎨=⎩,33a b =⎧⎨=⎩,52a b =⎧⎨=⎩,71a b =⎧⎨=⎩. a 的值可能有4种,故答案为:4.【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键. 31.某景点门票价是:每人5元,一次购票满30张,每张票可少收1元.当人数少于30人时,至少要有_______人去该景点,买30张票反而合算.【答案】25【分析】先求出购买30张票,优惠后需要多少钱,然后再利用5x >120时,求出买到的张数的取值范围再加上1即可.【详解】解:30×(5-1)=30×4=120(元),故5x >120时,解得:x >24,当有24人时,购买24张票和30张票的价格相同,再多1人时买30张票较合算, 24+1=25(人),则至少要有25人去世纪公园,买30张票反而合算.故答案为:25.【点睛】本题考查了一元一次不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解题的关键.32.某地区规划将21000平方米矩形土地用于修建文化广场,已知该片土地的宽为x 米,长比宽长10米,那么这块矩形土地的长是______米. 【答案】150【分析】土地的宽为x 米,则长为()10x +米,根据矩形面积为21000平方米列一元二次方程,求解即可.【详解】解:根据题意,土地的宽为x 米,则长为()10x +米,∵()1021000x x +=,解得1140x =,2150x =-(不合题意,舍去),∵矩形土地的长为14010150+=(米),故答案为:150.【点睛】本题考查了一元二次方程的应用,根据题意建立等量关系是解题的关键. 33.填空:(1)若10x +>,两边都加上1-,得____________________________(依据:_______________).(2)若26x >-,两边都除以2,得______________________________(依据:______________).(3)若1132x -≤,两边都乘3-,得_____________________________(依据:_______________).【答案】 1x >-##1x -< 不等式两边加(或减)同一个数(或式子),不等号的方向不变 3x >-##3x -< 不等式两边乘(或除以)同一个正数,不等号的方向不34.解方程412343x x-+=-1的第一步是方程左、右两边同时乘以________去分母,最后可得方程的解为________.35.从满足不等式组2173211xx+≤⎧⎨--⎩>的所有整数解中任意取一个数记作a,则关于y的一元二次方程230 4ay y--=有实数根的概率是_____________.36.商店将定价600元的商品降价10%后出售,至少要获利20%,那么这种商品的进价应不高于______元.【答案】450【分析】设这种商品的进价为x元,则降价后的价钱为600×(1-10%),然后根据仍能至少获利20%列出不等式,求出x的范围.【详解】设这种商品的进价为x元,由题意得,600×(1-10%)≥x(1+20%),解得:x≤450.即这种商品的进价应不超过450元.【点睛】此题主要考查了一元一次不等式的应用,解决本题的关键是得到商品售价的等量关系,列出不等式求出最小整数解.37.分解因式4m 3﹣mn 2的结果是____;二元一次方程组22x y x y +=⎧⎨-=-⎩的解是___. 【答案】 m (2m +n )(2m-n ) 02x y =⎧⎨=⎩ 【分析】利用提公因式法和公式法分解因式和加减消元法解二元一次方程组即可求解.【详解】解:4m 3﹣mn 2=m (4m 2﹣n 2)= m (2m +n )(2m-n );22x y x y +=⎧⎨-=-⎩①②, ∵+∵得:2x =0,得x =0 , 将x =0代入∵得y =2,方程组的解为02x y =⎧⎨=⎩, 故答案为:m (2m +n )(2m-n );02x y =⎧⎨=⎩【点睛】此题考查提公因式法和公式法分解因式和加减消元法解二元一次方程组,掌握相应的运算方法是解答此题的关键.38.若关于x 的一元一次不等式组20122x x m -<⎧⎪⎨+≥⎪⎩有4个整数解,则m 的取值范围为_______________________.732m < 【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【详解】解:解不等式122x m +,得:不等式组有4个整数解,,732m < 故答案为732m <【点睛】本题主要考查的是不等式的解集,由不等式无解判断出是解题的关键.39220x --≤的解集是_______.40.已知25x y -=,若用含x 的代数式表示y ,则y =_____________.【答案】2x-5.【分析】将x 看做已知数求出y 即可.【详解】2x-y=5,解得:y=2x-5.故答案为2x-5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .三、解答题41.解不等式2(3)3(2)x x -+>+【答案】x <−12【分析】根据解一元一次不等式的步骤:先去括号,再移项、合并同类项,最后系数化为1即可.【详解】解:去括号,得−6+2x >3x +6,移项、合并同类项,得−x >12,系数化为1,得x <−12.【点睛】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质: ∵在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;∵在不等式的两边同时乘以或除以同一个正数不等号的方向不变;∵在不等式的两边同时乘以或除以同一个负数不等号的方向改变.42.解方程:(1)()235x x +=-;(2)325123y y ---=. 【答案】(1)11x =-;(2)5y =-【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可; (2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 43.解方程:(1)5(21)x x --=(2)1324x x +-= 【答案】(1)2x =;(2)13x =.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】(1)去括号,得:521x x -+=,移项,得:251x x --=--,合并同类项,得:36x -=-,系数化为1,得:2x =; (2)去分母,得:()2112x x -+=,去括号,得:2112x x --=,移项,得:2121x x -=+,合并同类项,得:13x =.【点睛】本题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.44.(1)计算:1202020131)(1)2-⎛⎫+-+- ⎪⎝⎭(2)解方程:132x x =+45.我县化工园区一化工厂,组织20辆汽车装运A 、B 、C 三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,若要求总运费最少,应如何安排使得总运费最少,并求出最少总运费.【答案】(1)y=20-2x(2)装运A种物资的车8辆,装运B种物资的车4辆,装运C种物资的车8辆;最少为48640元【详解】试题分析:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y,所以装运C种物资的车辆数(20-x-y),然后根据化学物资共200吨,可得函数关系式y=20-2x;(2)根据装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,可求出x的取值范围,设总运费为M元,然后求出函数关系式M=-1920x+64000,然后利用一次函数的增减性,x取最大值时,M最小.试题解析:解:(1)根据题意得:12x+10y+8(20-x-y)=2001分12x+10y+160-8x-8y=2002x+y=20,2分∵y=20-2x4分(2)根据题意得:5{2024xx≥-≥,解得58x≤≤,5分设总运费为M元,则M=12×240x+10×320(20-2x)+8×200(20-x+2x-20)6分即:M=-1920x+640007分∵M是x的一次函数,且M随x增大而减小,x取正整数,∵当x=8时,M 最小,最少为48640元. 8分 即装运A 种物资的车8辆,装运B 种物资的车4辆,装运C 种物资的车8辆 9分考点:1.确定一次函数解析式;2.不等式组;3.一次函数的实际应用.46.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台? 【答案】(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,再根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”建立方程组,解方程组即可得;(2)设购买甲种型号的设备m 台,则购买乙种型号的设备(10)m -台,再根据“资金不超过110万元”建立不等式,解不等式即可得.(1)解:甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216236x y x y -=⎧⎨-+=⎩, 解得1210x y =⎧⎨=⎩, 答:甲、乙两种型号设备每台的价格分别为12万元和10万元.(2)解:设购买甲种型号的设备m 台,则购买乙种型号的设备(10)m -台,由题意得:1210(10)110m m +-≤,解得5m ≤,答:该公司甲种型号的设备至多购买5台.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,正确建立方程组和不等式是解题关键.47.已知关于x的一元二次方程x2﹣3x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)选一个适当的k值使得此一元二次方程的根都是整数.48.解方程:(1)224-=.x x(2)2320x x-+=.∵x 1=1,x 2=2. 【点睛】此题考查了解一元二次方程,利用因式分解法解方程时,首先将方程右边化为0,左边化为积的形式,再由利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.49.完成下列各题: (1)解方程:∵2111x x x +=+- ∵22216224x x x x x -+-=+-- (2)观察下列等式,并探索它们的规律:111111111,,12223233434=-=-=-⨯⨯⨯...,试用正整数n 表示这个规律,并加以证明.50.(1)251x yx y-=⎧⎨+=⎩,(2)325429m nm n-=⎧⎨+=⎩,(3)357425x yx y-=⎧⎨+=⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
()
B D
3 x2 3x
.y2-2y+3=0 .y2-2y-3=0
4 时,设 y x2 3x ,则原方程可化为
( A) y 3 4 0
3
(B) y
4 0 ( C) y
1
40
1
(D) y
40
y
y
3y
3y
6、应用: ( 1)分式方程(行程、工作问题、顺逆流问题) ( 2)一元二次方程(增长率、面积问题) ( 3)方程组实际中的运用 例题:①轮船在顺水中航行 80 千米所需的时间和逆水航行 60 千米所需的时间相 同 .已知水流的速度是 3 千米 /时,求轮船在静水中的速度 .(提示:顺水速度 =静 水速度 +水流速度,逆水速度 =静水速度 -水流速度) 解:
3x 2 y 8

【05 苏州 】解方程组:
x y11 23
3x 2 y 10

代入消元 加减消元
一元一次方程
x y1
【 05 遂宁课改】 解方程组:
2x y 8

【05 宁德 】解方程组: 解
x+y=9 3( x+y)+ 2x= 33
5、分式方程 :
分式方程的解法步骤: (1) 一般方法:选择最简公分母、去分母、解整式方程,检验
学习必备
欢迎下载
② 填空: ( 1) x2+6x+( )=( x+ )2;
( 2) x2-8x+( )=( x- )2;
( 3) x2+ 3 x+( )=( x+ )2 2
(3)判别式△= b2-4ac 的三种情况与根的关系
当 0时 当 0时 当 0时
当△≥ 0 时
有两个不相等的实数根 , 有两个相等的实数根
学习必备
欢迎下载
方程与不等式
一、方程与方程组
二、不等式与不等式组
知识结构及内容:
1 几个概念
(一)方程与方程组
2 一元一次方程 3 一元二次方程
4 方程组
5 分式方程
6 应用
1、 概念 :方程、方程的解、解方程、方程组、方程组的解 2、 一元一次方程 :
解方程的步骤:去分母、去括号、移项、合并同类项、系数化一(未知项系数不能为零)
没有实数根。 有两个实数根
例题 .① .(无锡市)若关于 x 的方程 x2+ 2x+k=0 有两个相等的实数根,则 k
满足
()
A.k >1 B.k ≥1
C.k
=1
D.k
<1
②(常州市)关于 x 的一元二次方程 x2 (2k 1)x k 1 0 根的情况是(

( A)有两个不相等实数根 ( C)没有实数根
(2)8 与 y 的 2 倍的和是正数; (3)x 与 5 的和不小于 0;
(5)x 的 4 倍大于 x 的 3 倍与 7 的差;
解:
( 2)不等式的三个基本性质
不等式的性质 1:如果 a>b,那么 a+ c>b+c,a- c>b-c
推论:如果 a+c>b,那么 a>b- c。
不等式的性质 2:如果 a>b,并且 c>0,那么 ac>bc。
③ .(浙江富阳市)已知方程
( B)有两个相等实数根 ( D)根的情况无法判定
x2 2 px q 0 有两个不相等的实数根,
则 p 、 q 满足的关系式是(

A、p2 4q 0
B、p 2 q 0
C、p2 4q 0
D、p2 q 0
( 4)根与系数的关系: x1+ x2= b , x1x2= c
a
a
例题 :( 浙江富阳市)已知方程 3x 2 2x 11 0 的两根分别为 x1 、x2 ,则 1 1
③解:设原零售价为 a 元,每次降价率为 x 依题意得: a(1-x )2=a/2 解得: x≈ 0.292 答:(略)
④ 【05 绵阳 】 解: A=6/5 B= -4/5
⑤ 解: A
⑥解:三个连续奇数依次为 x-2、 x、 x+2
依题意得:(x-2)2+ x2+ ( x+2)2 =371 解得: x=±11
( 4)根与系数的关系: x1+x2= b ,x1x2= c
a
a
例题 :( A )
例题 :【 05 泸州】 解方程组 x y 7, 解得:
x=5
2 x y 8.
y=2
x 2y 0
【05 南京 】解方程组
解得:
x=2
3x 2y 8
y=1
学习必备
欢迎下载
【05 苏州 】解方程组:
x y1 1
23 3x 2 y 10
1、几个概念 :不等式(组)、不等式(组)的解集、解不等式(组)
2、不等式 :
( 1)怎样列不等式: 1.掌握表示不等关系的记号
学习必备
欢迎下载
2.掌握有关概念的含义,并能翻译成式子 . (1) 和、差、积、商、幂、倍、分等运算. (2) “至少”、“最多”、“不超过”、“不少于”等词语.
例题:用不等式表示: ① a 为非负数, a 为正数, a 不是正数 解: ②
(2) 换元法
例题:①、解方程:
4
x2
1 4
1 的解为 x2
x2 4
2
x 5x 6
0 根为
②、【 北京市海淀区 】当使用换元法解方程
( x )2 x1
x
y x 1 ,则原方程可变形为(

x 2( )
x1
3 0 时,若设
学习必备
欢迎下载
A. y2+2y+ 3=0 C. y2+2y- 3=0
( 3)、用换元法解方程 x2 3x
②乙两辆汽车同时分别从 A、B 两城沿同一条高速公路驶向 C 城 .已知 A、C 两城 的距离为 450 千米, B、C 两城的距离为 400 千米,甲车比乙车的速度快 10 千米 /时,结果两辆车同时到达 C 城 .求两车的速度 解
③某药品经两次降价,零售价降为原来的一半 每次降价的百分率 .(精确到 0.1%) 解

3、把一堆苹果分给几个孩子,如果每人分 3 个,那么多 8 个;如果
前面每人分 5 个,那么最后一人得到的苹果不足 3 个,问有几个孩子?
有多少只苹果?
学习必备
欢迎下载
辅导班方程与不等式资料答案:
例题 : .解方程:
( 1)解:( x=1)
( x=1)
( 3)【05 湘潭 】 解:
(m=4 )
例题 :
不等式的性质 3:如果 a>b,并且 c<0,那么 ac<bc。
( 3) 解不等式的过程,就是要将不等式变形成 x>a 或 x<a 的形式
步骤:(与解一元一次方程类似)
去分母、去括号、移项、合并同类项、系数化一
(注:系数化一时,系数为正不等号方向不变;系数为负方向改变)
例题:① 解不等式 1 ( 1-2x)> 3(2x 1)
( 3)、( A )
例题:①解:设船在静水中速度为 x 千米 /小时
依题意得: 80/(x+3)= 60/(x-3)
解得 :x=21 答:(略)
②解:设乙车速度为 x 千米 /小时,则甲车的速度为( x+10)千米 /小时
依题意得: 450/( x+10) =400/x
解得 x=80 x+1=90
答:(略)
1234
6
7
表格中捐款 2 元和 3 元的人数不小心被墨水污染已看不清楚 .
若设捐款 2 元的有 x 名同学 ,捐款 3 元的有 y名同学 ,根据题意 ,可得方程组
x y 27 A、
2x 3y 66
x y 27 B、
2 x 3 y 100
x y 27
x y 27
C、
D、
3x 2y 66
3x 2 y 100
当 x=11 时,三个数为 9 、11 、13 ;
当 x= — 11 时,三个数为 — 13 、— 11 、— 9
答(略)
⑦解:设小正方形的边长为 x cm 依题意:( 60-2x)( 40-2x)=800
(不合题意舍去)
解得 x1=40
学习必备
欢迎下载
x2=10 答(略)
例题:用不等式表示:① a 为非负数, a 为正数, a 不是正数
3
2
解:
学习必备
欢迎下载
②一本有 300 页的书,计划 10 天内读完, 前五天因各种原因只读完 100 页. 问从 第六天起,每天至少读多少页? 解:
(4) 在数轴上表示解集:“大右小左”“” (5) 写出下图所表示的不等式的解集
3、不等式组 :求解集口诀:同大取大,同小取小,交叉中间,分开两边
.已知两次降价的百分率一样,求
④ 【05 绵阳 】已知等式 (2A-7B) x+(3 A-8B)=8 x+10 对一切实数 x 都成立,求 A、 B 的值

⑤【05 南通 】某校初三( 2)班 40 名同学为“希望工程”捐款 ,共捐款 100 元 .捐款情况如
学习必备
欢迎下载
下表:
捐款(元) 人数
x2= ( 3— √15)/2 )
( 8)(x1= 5 x2= 3/13)
② 填空:(1)x2+6x+( 9 )=( x+ 3 ) 2;
( 2) x2-8x+( 16)=( x-4 ) 2;
( 3) x2+ 3 x+( 9/16 )=( x+ 3/4 )2
2
例题 . ①. ( C)
② B ③ .( A)
(3) 由 2x>4,得 x<-2;( )
(4) 由- 1 ≤3,得 x≥- 6。(
相关文档
最新文档