负反馈放大电路的设计和仿真
负反馈放大电路实验报告
(4)提高要求
usf
Rif
Rof
9.46
526.5Ω
3.43kΩ
与仿真数据比较:
usf =
if =
10.2 − 9.46
× 100% = 7.25%
10.2
526.5 − 310.13
3.58 − 3.43
× 100% = 41.10% ; =
× 100% = 4.19%
× 100% = 39.86%
854.1
393.1
误差分析:闭环时的电压放大倍数的误差相对较小,而输入输出电阻则与仿真值误差较大,
这主要是由于电压幅值较小,导致在测量输入输出电阻(尤其是输出电阻)时,两次测量的
电压(对于输入电阻指串入输入回路电阻两端的电压;对于输出电阻指带负载和不带负载时
的输出电压)的幅值变化很小,导致读数时的误差对结果影响较大。
526.5
3.58
误差分析:提高要求中闭环放大倍数、输出电阻与仿真值误差比较小,而输入电阻一项的误
差较大,其可能原因一方面与上面分析输入电阻误差的原因一致,另外可能与示波器显示波
形相对不稳定导致读数偏差增大有关。
七、分析与总结
由以上数据对比和误差分析可知:
此次试验数据与仿真数据的误差整体较小。这一方面是由于调整了仿真时晶体管的β 值,
3.
6
图 3 电流并联负反馈放大电路
四、仿真数据
基本要求:(原电路)
(1) 静态工作点的调试第一级:I DQ=1.99mA,
UGDQ=-9V.
UGSQ=-2.38V,
第二级:I CQ=2.03mA,
UA= 2.43 V,
US= 4.81 V,
UCEQ=2.303V
负反馈放大电路实验报告
一、实验目的加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。
二、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、万用表5、晶体三极管3DG6×2(β=50~100)或9011×2 电阻器、电容器若干。
三、实验原理负反馈放大器有四种组态,即电压串联、电压并联、电流串联、电流并联。
本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。
1、图3-1为带有负反馈的两级阻容耦合放大电路,在电路中通过f R 把输出电压O U 引回到输入端,加在晶体管T1的发射极上,在发射极电阻1F R 上形成反馈电压f U 。
根据反馈的判断法可知,它属于电压串联负反馈。
带有电压串联负反馈的两级阻容耦合放大器主要性能指标如下①闭环电压放大倍数:u u uuf F A 1A A +=其中I O u U U A /=——基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。
u u F A +1——反馈深度,它的大小决定了负反馈对放大器性能改善的程度。
②反馈系数:F1f F1u R R R F +=③输入电阻:i u u if R F A R )1(+=,i R ——基本放大器的输入电阻④输出电阻:uuO Oof F A 1R R +=,of R :基本放大器的输出电阻 uo A :基本放大器∞=L R 时的电压放大倍数 ①在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令0=O U ,此时f R 相当于并联在1F R 上。
②在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T1管的射极)开路,此时)1F f R R +(相当于并接在输出端。
可近似认为f R 并接在输出端。
根据上述规律,就可得到所要求的如图3-2所示的基本放大器。
四、实验步骤1、测量静态工作点数模实验箱按图3-3连接实验电路,模拟电子技术实验箱按图3-4连接实验电 路,首先取 适量,频率为1KHz 左右,调节电位器使放大器的输出不出现失真,然后使 (即断开信号源的输出连接线),用万用表直流电压档分别测量第一级、第二级的静态工作点,记入表3-1。
负反馈放大电路实验报告
负反馈放大电路实验报告一、实验目的。
本实验旨在通过搭建和测试负反馈放大电路,加深对负反馈原理的理解,掌握负反馈放大电路的基本特性和工作原理。
二、实验原理。
负反馈放大电路是在放大器的输出端和输入端之间加入反馈电路,使得输出信号的一部分反馈到输入端,从而抑制放大器的增益,降低失真,提高稳定性和线性度。
三、实验器材。
1. 信号发生器。
2. 示波器。
3. 电阻、电容。
4. 电压表。
5. 万用表。
6. 负反馈放大电路实验箱。
四、实验步骤。
1. 按照实验箱上的示意图连接负反馈放大电路。
2. 调节信号发生器的频率和幅度,观察输出端的波形变化,并用示波器观察输入输出波形的相位差。
3. 测量输入端和输出端的电压、电流,计算增益和带宽。
4. 调节反馈电路的参数,观察输出波形的变化。
五、实验结果与分析。
通过实验我们观察到,在负反馈放大电路中,输出波形的失真明显降低,相位差减小,增益稳定性提高。
当调节反馈电路的参数时,输出波形的变化也相对灵活,这说明负反馈放大电路具有较好的调节性能。
六、实验结论。
负反馈放大电路可以有效地降低失真,提高稳定性和线性度,是一种常用的放大电路结构。
掌握负反馈放大电路的基本特性和工作原理,对于电子工程技术人员来说具有重要的意义。
七、实验总结。
通过本次实验,我们深入了解了负反馈放大电路的工作原理和特性,并通过实际操作加深了对其的理解。
在今后的学习和工作中,我们将更加熟练地运用负反馈放大电路,为电子技术的发展贡献自己的力量。
八、参考文献。
1. 《电子技术基础》,XXX,XXX出版社,200X年。
2. 《电子电路设计与仿真》,XXX,XXX出版社,200X年。
以上为负反馈放大电路实验报告的内容,希望对大家有所帮助。
两级阻容耦合负反馈放大电路Multisim仿真分析
两级阻容耦合负反馈放大电路Multisim仿真分析一、实验目的:1.学习利用Multisim电子线路仿真软件构建自己的虚拟实验室。
2.学习多级共射极放大电路及其静态工作点、放大倍数的调节方法。
3.掌握多级放大电路的放大倍数、输入电阻、输出电阻、频率特性的测量方法。
4.加深对负反馈放大电路放大特性的理解。
5.研究负反馈对放大电路各项性能指标的影响。
二、实验原理:反馈形式:电压串联负反馈三、实验内容:1.直流工作点分析择节点5、6、7、8、9、13作为输出节点,对开环和闭环电路仿真得到相同的输出结果2.负反馈对放大电路性能的影响主要有五个方面1.降低放大倍数2.提高放大倍数的稳定性3.改善波形失真4.展宽通频带5.对放大电路的输入电阻和输出电阻的影响2.1放大电路稳定性分析在电路输入端5、输出端10同时接入交流电压表,按B键选择有无引入负反馈,按A 键选择有无负载电阻R9接入。
表1 输出电压与电压放大倍数的测量结果U o、A u的测量J1U i (mV) U o (mV) A u= U o /U i无反馈(J2断开)断开97.207 2030 20.883 闭合105.452 1524 14.452负反馈(J2闭合)断开30.563 446.583 14.612闭合37.128 414.451 11.163从而稳定了电压放大倍数。
此外,基本放大电路在空载和负载状态下,得到的输出电压相差很大,而接入负反馈后,负载接入与否对输出电压影响很小。
2.2非线性失真分析按B键断开开关S2使电路处在开环状态,双击示波器观察输出波形。
如图所示,调节信号源电压的幅值(频率不变),使输出波形出现非线性失真,在输出端利用失真度测试仪测得其失真系数为18.484%。
开关S2闭合引入负反馈,可见输出波形幅度减小,失真度测试仪显示失真系数为0.158%,因此引入负反馈后非线性失真得到明显改善。
(a)开环输出电压非线性失真 (b)电压串联负反馈失真减小2.3 幅频特性分析打开S2开关,选择simulate→analyses→AC Analysis,在弹出的对话框的“Prequency Parameters”选项卡中将“开始频率”和“终止频率”分别设置为1Hz和1GHz,在“Output”选项卡中选择输出节点10进行仿真,得到无反馈的频率特性。
EDA设计实验二 负反馈放大器设计与仿真
实验二负反馈放大器设计与仿真1.实验目的(1)熟悉两级放大电路设计方法。
(2)掌握在放大电路中引入负反馈的方法。
(3)掌握放大器性能指标的测量方法。
(4)加深理解负反馈对电路性能的影响(5)进一步熟悉利用Multisim仿真软件辅助电路设计的过程。
2.实验要求1)设计一个阻容耦合两极电压放大电路,要求信号源频率10kHz(峰值1mv),负载电阻1kΩ,电压增益大于100。
2)给电路引入电压串联负反馈:①测试负反馈接入前后电路的放大倍数,输入输出电阻和频率特性。
②改变输入信号幅度,观察负反馈对电路非线性失真的影响。
3.实验内容反馈接入前的实验原理图:1.放大倍数:Au=0.075V/0.707mV=106.0822.输入电阻:Ri=0.707mV/94.48nA=7.483kΩ3.输出电阻:Ro=0.707V/143.311nA=4.934kΩ4.频率特性:fL=357.094Hz,fH=529.108kHz输出开始出现失真时的输入信号幅度:19.807mV反馈接入后的实验电路:开关闭合之后:1.放大倍数:Af=7.005mV/0.707mV=9.9082.输入电阻:Ri=0.707mV/0.198uA=3.57kΩ3.输出电阻:Ro=0.707mV/0.096mA=7.364Ω4.频率特性:fL=67.134Hz,fH=6.212MHz输出开始出现失真时的输入信号幅度≈197mV4.理论值分析由于三极管2N2222A的β=220,所以反馈接入前第一级rbe1=rb+βVT/Ic=6.7kΩ第二级rbe2=rb+βVT/Ic=6.5kΩ第二级输入电阻Ri’=R8||(R7+40%R13)||rbe2=3.65kΩ放大倍数Au=βR4||Ri’*R9||R12/([rbe1+(1+β)R1]rbe2)=107.034输入电阻Ri=R3||(R2+30%R5)||[rbe1+(1+β)R1]=7.484kΩ输出电阻Ro=R9=5.1kΩ反馈接入后:F=0.101放大倍数Af=Au/(1+AuF)=9.056输入电阻Rif=R3||(R2+30%R5)||(1+AuF)Ri=3.621kΩ输出电阻Rof=Ro/(1+AoF)=7.425Ω所以可以得出结论Af≈1/F5.实验结果分析由仿真结果以及理论计算值可以看出,接入负反馈后,放大倍数明显下降,输入电阻变化不明显,输出电阻明显下降,原因是接入电压并联负反馈之后,输出电压基本稳定而输出电流由于负反馈的增加而变大,导致输出电阻变小。
负反馈放大器电路multisim仿真
比较后的信号会调整输入级的增益,从而影响输出 信号的幅度和相位。
负反馈放大器电路的特点
提高放大倍数的稳定性
负反馈可以减小放大倍数对元件参数变化的 敏感度,使放大倍数更加稳定。
扩展带宽
负反馈可以扩展放大器的通频带,提高频率 响应。
减小非线性失真
负反馈可以减小放大器内部的非线性效应, 降低失真。
降低噪声
强大的分析功能
Multisim支持多种电路分析方法,如瞬态分 析、频率分析等。
Multisim仿真软件的使用方法
创建电路图
在Multisim中打开软件,选择合适的元件库,开始创建电路图。
连接电路
将元件从元件库中拖拽到电路图中,按照电路图的要求连接元件。
设置参数
根据需要设置元件的参数,如电阻值、电容值等。
03
负反馈放大器电路的 Multisim仿真过程
建立负反馈放大器电路的Multisim仿真模型
01
02
03
04
打开Multisim软件,创 建一个新的电路图。
从元件库中选取所需的 电子元件,如电阻、电 容、电感、晶体管等。
根据负反馈放大器的电 路图,将元件连接起来, 形成完整的电路。
检查电路连接是否正确, 确保没有连接错误或遗 漏。
设置仿真参数和运行仿真
01 在仿真设置中,选择适当的仿真时间和仿真精度。
02 根据需要,可以设置其他仿真参数,如电源电压、 偏置电流等。
03
运行仿真,观察电路的行为和输出结果。
分析仿真结果
观察仿真结果,分析负反馈放大器的性能指标,如电压增益、带宽、相位 裕度等。
将仿真结果与理论分析进行比较,验证负反馈放大器电路的正确性和有效 性。
4负反馈放大电路的设计和调试
设计要求Avf ≥50, 取Avf =60
Fv≈0.015
②电阻Rf1确定
• 射极电阻Rf1不能太大,否则负反馈太强,使得放大器增益 很FV小,Rf一RF1般RF1取30~100ΩR间f=。4.7现k以Ω Rf1=56Ω。
②电阻Rf1确定
Fv≈0.015 Av ≈600
rif(1A vF)ri110 K 0
X Xdf
X f、Xd 同相,所以 AvFv 0
则有: Avf Av 负反馈使放大倍数下降。
②
Avf
Av 1 AvFv
d Avf d Av 1
Avf
Av 1 AvFv
引入负反馈使电路放大倍数的稳定性提高。
③若
AvFv 1称为深度负反馈,此时 Avf
1 F
在深度负反馈的情况下,放大倍数只与反馈
网络有关。
io
iE
RL
vo RL
采样电阻很大
io
RL
iE
Rf
采样电阻很小
(2)串联反馈和并联反馈
根据反馈信号在输入端与输入信号比较形式 的不同,可以分为串联反馈和并联反馈。
串联反馈:反馈信号与输入信号串联,即反馈 电压信号与输入信号电压比较。
并联反馈:反馈信号与输入信号并联,即反馈 信号电流与输入信号电流比较。
串联反馈使电路的输入电阻增大; 并联反馈使电路的输入电阻减小。
并联反馈
if i
ib
ib=i-if
串联反馈
vi
vbe vf
vbe=vi-vf
(3)交流反馈与直流反馈
交流反馈:反馈只对交流信号起作用。
直流反馈:反馈只对直流起作用。
有的反馈只对交流信号起作用;有的反 馈只对直流信号起作用;有的反馈对交、 直流信号均起作用。
负反馈放大电路的设计与仿真实验报告-V1
负反馈放大电路的设计与仿真实验报告-V1【正文】负反馈放大电路的设计与仿真实验报告一、引言负反馈是现代电子学中常用的一种技术手段,可用于提高放大电路的稳定性、增加带宽、降低失真等。
本实验旨在通过设计和仿真一个负反馈放大电路,比较其与未加负反馈的放大电路的性能差异,并验证负反馈对电路的改善作用。
二、设计与仿真1.设计要求本实验设计的放大电路要求如下:①输入阻抗大于10kΩ;②输出阻抗小于1kΩ;③增益要求10倍左右;④带宽大于10kHz。
2.电路设计本实验采用非反相输入的共射极放大电路(图1),电路由电压放大和电流放大两部分构成。
图1 非反相输入共射极放大电路其中,Vi为输入信号,C1为耦合电容,R1为输入电阻,R2为电路的DC偏压电阻,Q1为NPN晶体管,Rc为集电极负载电阻,C2为旁路电容,Re为发射极电阻,VCC为电源电压,RL为输出负载电阻。
为了实现负反馈,本实验在放大电路中串联了一个反馈电阻Rf(图2)。
图2 负反馈放大电路3.电路仿真为了验证电路设计的正确性,本实验通过仿真软件Multisim对放大电路进行仿真。
结果显示,电路有很好的放大效果,输入输出波形相位相同,且波形幅值增益约为10倍。
经过仿真后,输出信号稳定,未出现失真等问题。
三、实验结果为了验证负反馈对电路的改善作用,本实验对比了带负反馈和不带负反馈两种放大电路的性能差异。
实验结果如下:1.带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:17.5kΩ输出电压:19.5V输出阻抗:751Ω增益:9.752.不带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:16.8kΩ输出电压:10.2V输出阻抗:3.04kΩ增益:5.1通过以上测量参数可知,带负反馈电路与不带负反馈电路相比,具有更高的增益、更低的输出阻抗和更好的稳定性。
电压串联负反馈放大电路设计与仿真--课程设计
目录摘要 (2)关键词 (2)Abstract (2)Keywords (2)一、引言 (3)1.1研究本课题的重要性 (3)1.2集成电路产业简介 (3)1.3 PSPICE软件的介绍 (3)二、放大电路介绍 (6)三、放大电路的设计与仿真 (10)3.1电路设计框图 (10)3.2 电路版图 (10)3.3局部电路分析 (11)3.4直流分析 (12)3.4.1直流工作点分析 (12)3.4.2温度对静态工作点的影响 (13)3.5瞬态分析 (14)3.6交流分析 (15)3.6.1输入电阻 (16)3.6.2输出电阻 (16)3.6.3放大电路的频响特性及其增益 (17)四、心得体会 (19)致谢 (20)参考文献 (21)附录 (22)电压串联负反馈放大电路的设计与仿真摘要:主要对电压串联负反馈放大电路进行了设计与仿真,主要利用其放大功能。
该放大器主要分为4个部分:输入级、中间级、输出级以及负反馈回路。
其主要核心思想是利用电压负反馈减小增益改变对电路频率特性的影响,同时获得较好的放大效果。
通过PSPICE 软件对其进行直流分析、瞬态分析、交流分析等等。
关键词:晶体管;放大器;电路设计;PSPICEAbstract: the main voltage series negative feedback amplifying circuit design and simulation, mainly use the zoom feature. That amplifier comprises 4 major components: input level, intermediate output, level and negative feedback circuit. Whose main core idea is using voltage negative feedback reduces the gain change effects on circuit frequency characteristics, both better Zoom effect. By PSPICE software on its DC analysis, AC analysis, transient analysis, and so on.Keywords:transistors; amplifier circuit design; PSPICE1 / 28一、引言1.1研究本课题的重要性随着微电子技术、大规模集成电路和电子计算机计算的快速发展、电路设计规模的扩大、电路复杂程度的加深,传统的电路设计方法已经不能满足现代电路设计的要求。
实验三负反馈放大电路
实验三 负反馈放大电路
一、实验目的
1、研究负反馈对放大器性能的影响。
2、掌握反馈放大器性能的测试方法。
二、实验原理
反馈在电子技术中得到广泛应用。所谓反馈就是将放大器的输出信号(电压或电流)的一部分或全部,通过适当的电路(反馈网络)送回到放大电路的输入回路,使放大器获得某些性能的改善。在电子技术中,对反馈来说,有正反馈和负反馈两类。但如何判断电路的反馈是属哪一类呢?可以采用瞬时极性法。先假定输入信号处于某一个瞬时极性,然后逐级推出电路其他有关各点瞬时信号极性情况,最后判断反馈到输入端信号的瞬时极性是增强还是削弱了原来的输入信号。如果反馈回来的信号增强了原输入信号则为正反馈。相反,削弱了输入信号就是负反馈。
559
闭环
∞
1
29.9
29.9
46.6
1.5K
1
29
29
Multisim仿真:
软件版本号:Multisim 14.2
三极管型号:2N1711
仿真步骤:
(1)开环电路
在Multisim中选择元器件,搭建图1所示电路,暂不接入反馈信号Rf与Cf,按照图1修改元器件参数,直流电压源为+12V。
选择交流电压源V1,频率设为10KHz,从R1处输入信号。在Vi处放置电压探针,调节V1幅值,直至Vi显示电压有效值为1mV.
图8反馈接入基极(仿真)
(4)总结反馈对失真改善的特点。
特点:引入电压串联负反馈后,电路在采集原始信号时其真度提高,与上一级电路的衔接性增强,可改善波形失真。对于同一放大电路,若引入负反馈,当输出波形刚出现失真时,对应的输入电压将远大于无负反馈时刚出现失真所对应的输入电压。
3.测放大器频率特性
负反馈放大电路设计实验报告
负反馈放大电路设计实验报告无07 李杭 2010011147一.实验目的(1)通过实验,学习并初步掌握负反馈放大电路的设计及电路安装、调试方法。
(2)学习用CAD 工具PSpice (或EWB )设计较复杂电路的方法。
(3)深入理解负反馈对放大电路性能的影响。
(4)巩固放大电路主要性能指标的测度方法。
二.实验任务按实验室给定的晶体管型号、参数以及电阻、电容系列值,设计一个负反馈电压放大电 路。
其输入、输出采用电容耦合。
设负载电阻2.2 R L = k Ω ,信号源内阻50 R S = Ω。
主要性能要求如下:vf i o A 40(10%)10R 15k R 10010,?1L H f Hz f MHz =±≥Ω≤Ω≤ ≥,反馈深度不低于,频率响应。
三.实验原理(1)负反馈的类型根据输入端基本放大电路和反馈网络的连接方式有并联和串联2 种,输出端取样方式 有电压取样和电流取样2 种,所以负反馈放大电路有4 种类型,即:电压串联负反馈、电 压并联负反馈、电流串联负反馈、电流并联负反馈。
(2)负反馈对放大电路性能的影响①负反馈降低增益 ②负反馈提高增益稳定性 ③负反馈影响输入输出电阻④负反馈展宽频带⑤负反馈改善非线性失真(3)消除自激的方法①加入补偿电容。
缺点:对放大电路的频率响应的影响很大。
只是要想实现放大电路的稳定,必然要牺牲一部分频带的指标。
②在射极跟随器的基极串入电阻抵消负阻效应。
对放大电路的频率特性有影响。
判断是否是由于负阻效应引起的振荡可以把示波器的探头的衰减器从´1档变为´10档,如果振荡减弱即是由于负阻引起的。
③电路要有良好的接地,尽量加粗接地线,消除干扰信号通过地线引起的影响。
这个方法只对设计印刷电路板有指导作用。
④插入电源去耦电路,抵消反馈的影响。
这种方法是最有效的,且是对放大电路的性能指标影响最小的。
⑤消除外界干扰。
如果前面的措施都解决不了的时候,就要考虑振荡的根源不是出自于自身,而是由外界传入的。
电压串联负反馈放大电路仿真分析-模电课设之欧阳体创编
成绩评定表课程设计任务书目录1. 课程设计的目的与作用 01.1课程设计的目的 01.1课程设计的作用 02设计任务及所用Multisim软件环境介绍 (1)2.1设计任务 (1)2.2 Multisim软件环境介绍 (1)3 电路模型的建立 (3)4 理论分析及计算 (5)5 仿真结果分析 (6)5.1无极间反馈 (6)5.2加入极间反馈 (10)6 设计总结和体会 (14)7 参考文献 (14)1. 课程设计的目的与作用1.1课程设计的目的学习电压串联负反馈电路,掌握电压串联负反馈电路的工作原理。
通过对它的学习,对负反馈对放大电路性能的影响有进一步的理解和掌握,学会对其进行静态分析、动态分析等相关运算,利用Multisim软件对电压串联负反馈电路仿真实现。
根据实例电路图和已经给定的原件参数,使用Multisim软件模拟出电压串联负反馈电路课后练习题,并对其进行静态分析,动态分析,显示波形图,计算数据等操作,记录结果和数据;与此同时,更好的应用于以后的学习与工作中,切实对自身能力的提高有所帮助。
1.1课程设计的作用模拟电子技术课程设计是在“模拟电子技术”课程之后,集中安排的重要实践性教学环节。
学生运用所学的知识,动脑又动手,在教师指导下,结合某一专题独立地开展电子电路的设计与实验,培养学生分析、解决实际电路问题的能力。
该课程的任务是使学生掌握数字电子技术方面的基本概念、基本原理和基本分析方法,重点培养学生分析问题和解决问题的能力,初步具备电子技术工程人员的素质,并为学习后继课程打好基础。
课程设计师某门课程的总结性教学环节,会死培养学生综合运用本门课程及有关选修课的基本知识去解决某一实际问题的训练,加深课程知识的理解。
在真个教计划中,它起着培养学生独立工作能力的重要作用。
设计和实验成功的电路可以直接在产品中使用。
2设计任务及所用Multisim软件环境介绍2.1设计任务⑴设计一个电压串联负反馈电路,使其能够实现一定的放大电路的功能,电路由自己独自设计完成,在实验中通过自己动手调试电路,能够真正掌握实验原理,即静态分析和动态分析,并在实验后总结出心得体会。
负反馈放大电路的设计与仿真实验报告
负反馈放大电路的设计与仿真实验报告一.实验报告1.掌握两种耦合方式的多级放大电路的静态工作点的调试方法。
2.掌握多级放大电路的电压放大倍数, 输入电阻, 输出电阻的测试方法。
3.掌握负反馈对放大电路动态参数的影响。
二.实验原理三.实际放大电路由多级组成, 构成多级放大电路。
多级放大电路级联而成时, 会互相产生影响。
故需要逐级调整, 使其发挥发挥放大功能。
四.实验步骤1.两级阻容耦合放大电路(无反馈)两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=107.323nA输入电压Ui=1mA输出电压Uo=107.306mV.则由输入电阻Ri=Ui/Ii=9.318kOhm.放大倍数Au=Uo/Ui=107.306(2)测输出电阻输出电阻测试电路由图可得输出电流Io=330.635nA.则输出电阻Ro=Uo/Io=3.024kOhm.(3)频率响应幅频响应与相频响应由左图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。
由下表可知, 中频对应的放大倍数是601.1943则上限频率或下限频率对应的放大倍数应为425.044左右。
故下限频率为f L=50.6330kHZ上限频率为f H=489.3901kHZ则频带宽度为438.7517kHZ(4)非线性失真当输入为10mA时开始出现明显失真, 输出波形如下图所示2.有串联电压负反馈的两级阻容耦合放大电路有串联电压负反馈的两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=91.581nA.输入电压Ui=1mA.输出电压Uo=61.125mV. 则由输入电阻Ri=Ui/Ii=10.919kOhm.放大倍数Au=Uo/Ui=61.125(2)测输出电阻由图可得输出电流Io=1.636uA.则输出电阻Ro=Uo/Io=611.247Ohm(3)频率响应幅频相应与相频相应由图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。
含负反馈的两级阻容耦合放大电路设计
含负反馈的两级阻容耦合放大电路设计一实验目的:1.学习利用Electronics Workbench Multisim电子线路仿真软件构建自己的虚拟实验室。
2.学习多级共射极放大电路及其静态工作点、放大倍数的调节方法。
3.掌握多级放大电路的放大倍数、输入电阻、输出电阻、频率特性的测量方法。
4.加深对负反馈放大电路放大特性的理解。
5.研究负反馈对放大电路各项性能指标的影响。
二主要仪器设备:1. 虚拟实验设备⏹操作系统为Windows XP的计算机 1台⏹Electronics Workbench Multisim 8.x~9.x电子线路仿真软件1套.2. 实际工程实验设备⏹模拟实验箱 1台⏹函数信号发生器 1台⏹示波器 1台⏹数字万用表 1台三实验原理及实验电路通常放大电路的放大倍数都是很微弱的,一般为毫伏或微伏数量级.为了推动负载工作,因此要求把几个单级放大电路连接起来,使信号逐级得到放大.因此构成多极放大电路.级间的连接方式叫耦合,如耦合电路是采用电阻,电容耦合的叫阻容耦合放大电路.本试验采用的就是两极阻容耦合放大电路,如图1-1所示.其中两极之间是通过耦合电容C2及偏置电阻连接,由于电容隔直作用,所以两极放大电路的静态工作点可以单独调试测定.两极阻容耦合放大电路的电压放大倍数Au= Au1*Au2从表面看,通过对多个单级放大电路的适当级联,可以实现任意倍数的放大。
似乎放大电路已经没有什么可以研究的了。
但是,问题并不是这么简单。
首先静态工作点与放大倍数是互相影响的,其次,放大倍数与输出电阻也可能互相影响,第三,输入电阻与放大倍数也可能互相影响.在电路中引入负反馈,可以解决这个问题。
如电路图所示.负反馈对放大电路性能主要有五个方面的影响:1.降低放大倍数2.提高放大倍数的稳定性3.改善波形失真4.展宽通频带5.对放大电路的输入电阻和输出电阻的影响四实验预习内容:1预习实验电路的原理,明确实验目的及内容2掌握放大电路的静态和动态的测试方法.3了解实验所需仪器设备的结构性能及使用方法(特别是波特图示仪)4求电路图1-1的静态工作点和电压放大倍数五实验研究分析报告参照实验电路图1-1,完成测量电路的接线,断开反馈支路。
模拟实验二:负反馈放大电路
1~3k
负反馈放大器设计的注意事项
3. 减小射极跟随器负载电容的影响. 减小射极跟随器负载电容的影响.
探头观察, 用×10探头观察,减少示波器的输入电容. 探头观察 减少示波器的输入电容.
Байду номын сангаас
负反馈放大器设计的注意事项 电路要有良好的接地, 4. 电路要有良好的接地,尽量加粗接地 线,消除干扰信号通过地线引起的影响. Vcc 第一 级放 大器 第二 级放 大器 第三 级放 大器
RW1 10K
R5 10K
R6 10K
关于下次实验预习: 增益自动切换的电压放大电路
在2学时以内完成者 在3学时以内完成者 补做一次完成者 90分 70分 60分
�
未完成预约下次实验的办法:实验结束时当堂填表预约. 未完成预约下次实验的办法:实验结束时当堂填表预约.
负反馈放大器指标
设计一负反馈放大器, 要求当 RL =2K 时, 设计一负反馈放大器,
Avf = 40(±10%) ±
反馈深度不低于10 反馈深度不低于 Ri ≥ 15k , Rof ≤ 100 f Lf ≤10Hz, , fHf ≥1MHz, , , 当负载R 当负载 L = 2k 时, Vo ≥500mV. .
设计要求:电路对晶体管的β值变化不敏感,实 设计要求:电路对晶体管的 值变化不敏感 值变化不敏感, 验中不得挑选晶体管的β值 验中不得挑选晶体管的 值. 电阻的相对误差为 %,电容的误差为 %, 电阻的相对误差为10%,电容的误差为20%, %,电容的误差为 在给定的误差范围电路必须能稳定工作. 在给定的误差范围电路必须能稳定工作. 电阻,电容标称值的选择从所发元件中选取. 电阻,电容标称值的选择从所发元件中选取.
关于下次实验预习: 增益自动切换的电压放大电路
负反馈放大电路仿真实验
实验三负反馈放大电路仿真实验一、实验目的(1)、进一步熟悉multisim10软件的使用方法(2)、学会用该软件对负反馈放大电路进行仿真分析(3)、研究负反馈对放大电路性能的影响(4)、掌握负反馈电路的测试方法二、实验原理1、负反馈可以稳定放大倍数,但是其稳定性是以损失放大倍数为代价的,即Af减小到A的(1+AF)分之一,才使其稳定性提高到A的(1+AF)倍;2、负反馈改变输入电阻和输出电阻串联负反馈增大输入内阻,R(if)=(1+AF)Ri3、电压负反馈减小输出电阻: R(of)=Ro/(1+AF);4、引入负反馈后,各种原因引起的放大倍数的变化都将减小,当然也包括因信号频率变化而引起的放大倍数的变化,因此其效果是展宽了同频带;负反馈下线频率为:f Lf=f L/(1+A m F);负反馈上限频率为: f Hf=f H(1+A m F)。
三、实验步骤及内容1、组建负反馈放大仿真电路图1 两级阻容耦合放大电路2、负反馈放大电路开环、闭环放大倍数的测试2.1 开环电路测试(1) 开关S1、 S2打开的情况下,通过示波器,读取输入输出波形的峰值,从而得到没有加反馈、无负载时的开环电压放大倍数Au.(2) 关闭仿真开关,在输出端接上10K电阻,重新开启仿真开关,利用读数指针读出波形的峰值,冰球出在没有加反馈时的开环电压放大倍数Au,并计算电压放大倍数变化量,填入表1中。
2.2 闭环电路测试(1)闭合开关S1,断开S2,使电路引入负反馈环节,测出空载的放大倍数、放大倍数变化量等,并填入表中(2)闭合开关S1、S2,开启仿真开关,,做带负载的闭环电路测试,并将结果填入表1中。
表1 测试开环、闭环电路电压放大倍数数据解:放大倍数A U=U OU i ; ∆A A=A VO−A VLA VO.根据计算可见:①外加负载会使电路的放大倍数减小,但对闭环电路的影响明显小于对开环电路的影响;说明闭环电路稳定性更好。
②闭环电路的放大倍数远小于开环电路的放大倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
负反馈放大电路的设计和仿真
一、实验目的
1、掌握阻容耦合放大电路的静态工作点的调试方法。
2、掌握多级放大电路的电压放大倍数、输入电阻、输出电阻的测试方法。
3、掌握负反馈对电路的影响
二、实验要求
1、设计一阻容耦合两级电压放大电路,要求信号源频率10kHz(幅度1mv) ,负载电阻1kΩ,电压增益大于100。
2、给电路引入电压串联负反馈,并分别测试负反馈接入前后电路放大倍数、输入、输出电阻和频率特性。
改变输入信号幅度,观察负反馈对电路非线性失真的影响。
三、实验原理图
原理图中的滑动变组曲均为100k
图2.01 反馈接入前
图2.02 反馈接入后
四、实验过程
1、反馈接入前
(1)放大倍数:
77.703
109.893 707.078
v
mV
A
uV
==
(2)输入电阻:
707.078
7.484
94.475
i
uV
R k
nA
==Ω
(3)输出电阻:
707.080
4.934
143.311
o
uV
R k
nA
==Ω
(4)频率特性:f L=326.5512Hz,f H=525.3266kHz
图2.03 频率特性曲线(5)三极管参数的测量
①1
β与1be r的测量
111864.20800214.9 4.02151c b I u I u β=
== 111 4.1295 6.8547602.4295be be b V m r k I n
∆===Ω∆
图2.04 前级输入特性曲线
②2β与2be r 的测量
222890.64300215.54.13287c b I u I u β=
== 222 4.8465 6.7131721.9498be be b V m r k I n
∆===Ω∆
图2.05 后级输入特性曲线
(6)非线性失真的观察
①开始出现失真时
幅度:约1.3mV
波形:
图2.06 开始出现失真波形②失真较明显时
幅度:约16mV
波形:
图2.07 明显失真时波形2、反馈接入后
(1)放大倍数:
1.368
1.935
707.079
f
mV
A
uV
==
(2)输入电阻:
707.079
7.972
88.698
i
uV
R k
nA
==Ω
(3)输出电阻:
707.080
47.928
14.753
o
uV
R
uA
==Ω
(4)频率特性:f L=29.1507Hz,f H=90.0710MHz
图2.08 反馈接入后频率特性
(5)三极管参数的测量 ①1β与1be r 的测量
111 1.93811205.59.43256c b I m I u β=
== 111 4.7344 2.84501.6641be be b V m r k I u
∆===Ω∆
图2.09 反馈接入后前级输入特性曲线
②2β与2be r 的测量
对比接入负反馈前的数据可知,2β与2be r 的值未改变,即2215.5β=,
2 6.7131be r k =Ω
图2.10 反馈接入后后级输入特性曲线非线性失真的观察
①开始出现失真时
幅度:约250mV
波形:
图2.11 反馈接入后开始失真时波形②失真较明显时
幅度:约1V
波形:
图2.12 反馈接入后明显失真时波形
五、数据分析 1.数据误差分析 (1)反馈接入前
第一级的be r :11
6.665T
be b c V r r k I β=+=Ω 第二级的be r :22 6.491T
be b c
V r r k I β=+=Ω
第二级输入电阻:'
9762||(40%)|| 3.649i be R R R R r k =+=Ω
放大倍数:'
1421011122
11
||||108.656(1)i v be be R R R R A r R r βββ=
=++ 输入电阻:1231112||(30%)||[(1)]7.487i be R R R R r R k β=+++=Ω 输出电阻:10 5.1o R R k ==Ω
反馈接入前各测量量的误差分析见下表
1be r 2be r v A
i R
o R
测得值
/k Ω 6.8547 6.7131 109.893 7.484 4.934 理论值/k Ω 6.665 6.491 108.656 7.487 5.1 误差
2.85%
3.42%
1.14%
0.04%
3.24%
表2.01 反馈接入前各值误差分析
(2)反馈接入后
第一级的be r :11
2.957T
be b c V r r k I β=+=Ω 第二级的be r :22 6.491T
be b c
V r r k I β=+=Ω 放大倍数: 1.9641v
f v A A A F
=
=+ 输入电阻:123||(30%)||(1)7.846if v i R R R R A F R k =++=Ω
(注:串联负反馈放大输入电阻if R 的表达式为(1)1if v i
o
of o R A F R R R A F
=+=
+ 。
但在本负反馈放大电路中,由于12,b b R R 并联在输入端,并不在反馈环内,反馈对它不产生影响,故输入电阻应为上式。
v A 是带负载时的开环放大倍数)
输出电阻:1o
of o R R A F
=
+(注:o A 是R L 开路但考虑反馈网络负载效应时的开环电
压放大倍数,这里不予深究)
表2.02 反馈接入后误差分析
(3)误差分析结论
此次测量数据的误差相对较大,当然一些误差还包括了测量方法本身的不完善导致的误差,但总体来看,误差均在可接受的范围。
本题的0.5F =,理论上, 1.964f A =,而实际测得 1.935f A =,f A 的相对误差为1.48%,所以1/2f A F ≈=,以此为标准,测得值误误差为 3.25%,考虑到测量误差等,此结果是合理的,可以做这样近似。
故测量结果可验证1/f A F ≈。
表2.03 负反馈接入前后对比
由上表可看出,接入反馈后放大倍数降低,因为1f A A A F
•
•
••
=
+,而一般|1|1A F ••
+>(深
度负反馈条件下|1|1A F •
•
+>>),故一般放大倍数降低。
对于输入电阻,可以看出它是变大的,但变化不是很大,变大是因为电路是串联负反馈电路,反馈电路分流使输入电流减小进而使输入电阻变大;相对而言,输出变化则相当明显,
由原来的几千欧姆降到了几十欧姆,变化很大,这是由于电路是电压负反馈电路,输出电压基本稳定而输出电流由于负反馈的增加而变大,故输出电阻降低。
同样可以获得f L 减小,而f H 变大。
以f L 为例,()1/M
L A A j j ωωω
=
-,引入负反馈后,
()/(1)
()1()1/1/[(1)]
M M M F L M L M A j A A FA A j FA j j FA j FA ωωωωωωω+=
==
+-+-+。
因
而
,
/(1)LF L M f f FA =+,f L 接入反馈后变小, f H 是同样的道理,故引入负反馈可以拓宽通频
带。
最后讨论下负反馈对非线性是真的影响,由表中可得,引入负反馈后,开始出现失真时信号源幅度提高了,也就是说,负反馈使可正常放大的范围扩大了。
故引入负反馈可以稳定静态工作点,使非线性失真减小,可在无失真放大的前提下增大输入信号的幅度。
六、实验感想
第二个实验感觉要比第一个要难好多,首先是电路的设计,本次实验是两级放大,在这样的条件下使放大倍数达到要求且输出波形不失真对于初学者还是有一定难度的。
其次,要测的东西也多了些。
本次实验主要考察负反馈电路的电路设计,以及负反馈电路的电路特性。
经过这次实验,感觉负反馈的特性仿佛是印在了脑子里,以前很容易忘记的东西,像输入电阻“串大并小”,输出电阻“压小流大”,现在都记下了。
对于负反馈之于非线性失真的影响,也有了直观的理解,不感觉像以前那么抽象。
总之,做实验重温了一下模电知识,经过暑期淡忘的渐渐明朗起来。
现在,对于一般单级或多级放大电路的设计感觉挺熟悉的,出现的一些问题可以调整过来,这是一个进步。