高中三角函数,反三角函数公式大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB
tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB
tanA +-
cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA
cotB 1
cotAcotB -+
倍角公式
tan2A =A
tan 12tanA
2
- Sin2A=2SinA•CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式
sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA
tan3a = tana ·tan(3π+a)·tan(3
π
-a)
半角公式 sin(
2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+-
cot(
2A )=A A cos 1cos 1-+ tan(2
A )=A A sin cos 1-=A A
cos 1sin +
和差化积
sina+sinb=2sin
2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b
a - cosa+cos
b = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b
a -
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB
积化和差
sinasinb = -
21[cos(a+b)-cos(a-b)] cosacosb = 21
[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2
1
[sin(a+b)-sin(a-b)]
诱导公式
s in(-a) = -sina c os(-a) = cosa sin(2π-a) = cosa cos(2
π
-a) = sina
sin(2π+a) = cosa cos(2π
+a) = -sina sin(π-a) = sina cos(π-a) = -cosa
sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a
a
cos sin
万能公式
sina=
2)2(tan 12tan
2a a + cosa= 22)2(tan 1)2(tan 1a a +- tana=2
)2
(tan 12tan
2a
a
- 其它公式
a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a
b
]
a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b
a
]
1+sin(a) =(sin 2a +cos 2a
)2
1-sin(a) = (sin 2a -cos 2
a
)2
其他非重点三角函数
csc(a) =a
sin 1 sec(a) =a cos 1
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三:
任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -ta nα cot (π-α)= -cotα 公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六: 2
π±α及23π±α与α的三角函数值之间的关系:
sin (
2π+α)= cosα cos (2π
+α)= -sinα tan (2π+α)= -cotα cot (2π
+α)= -tanα
sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π
-α)= tanα
sin (23π+α)= -cosα cos (23π+α)= sinα
tan (23π+α)= -cotα cot (23π+α)= -tanα
sin (23π-α)= -cosα cos (23π-α)= -sinα
tan (23π-α)= cotα cot (23π-α)= tanα
(以上k ∈Z)
这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )
cos(2)
Bsin in arcsin[(As t 2
2
ϕθϕθω⋅++++AB B A
正切函数sin tan cos x x x =
;余切函数cos cot sin x
x x =; 正割函数1sec cos x x =;余割函数1
csc sin x x
=
三角函数奇偶、周期性
sin x ,tan x ,cot x 奇函数;cos x 偶函数;
sin x ,cos x 周期2π;sin()t ωϕ+ 周期
2π
ω
;tan x ,cot x 周期π
常用三角函数公式:
22cos sin 1x x += 22cos sin cos 2x x x -= 2sin cos sin 2x x x = 21cos 22sin x x -= 21cos 22cos x x +=
22211tan sec cos x x x +=
= 22
2
11cot csc sin x x x +== 1sin sin [cos()cos()]2x y x y x y =-+-- 1
cos cos [cos()cos()]2x y x y x y =++-
1
sin cos [sin()sin()]2
x y x y x y =++-
反三角函数: arcsin arccos 2
x x π
+=
arctan arccot 2
x x π
+=