利用一元二次方程解决实际问题(2017年)
实际问题与一元二次方程(增长率问题)
审、设、列、解、验、答. 2.假设平均增长(降低)率为x,增长(或降低)前的基准数
是a,增长(或降低)n次后的量是b,那么有: a(1±x)n=b(常见n=2).
3.成本下降额较大的药品,它的下降率不一定也较大,成 本下降额较小的药品,它的下降率不一定也较小.
作业布置 1.课堂作业:课本P22: 习题21.3第4、7题; 2.家庭作业:《名师测控》P15---16页。
2.如果第n年后的总产量为M,那么有下面等
式:
a(1±x)n-1 =M.
.
[问题1]某企业2013年盈利1500万元,2015年实 现盈利2160万元.从2013年到2015年,如果该 企业每年盈利的年增长率相同,求:
〔1〕该企业平均每年的增长率. 〔2〕假设该企业盈利的年增长率继续保持不变,
预计2016年盈利多少万元? 解(1)设年平均增长率为 x,那么 2014年盈利 1500(1+x)万元;2015年盈利
实际问题与一元二次方程
增长率问题
选择适当的方法解以下方程:
〔1〕1500(1+x)2=2160
〔2〕10+10(1+x)+10(1+x)2=33.1
人教版数学九年级上册2实际问题与一元二次方程病毒传染问题课件(共15张PPT)
有一人患了流感,经过两轮传染后共有121人 患了流感,每轮传染中平均一个人传染了几个人?
解:设每轮传染中平均一个人传染了x个人.
开始有一人患了流感,第一轮的传染源就是这个人,他传 染了x个人,第一轮后共有(_1_+_x_)_人患了流感;第二轮传染 源就是_(_1_+_x_) _,这些人中的每个人又传染了x个人,用代 数式表示,第二轮后共有_1_+_x_+__x_(1_+_x_)__人患了流感.
作业
1、某种细菌,一个细菌经过两轮繁殖后,共有 225个细菌,每轮繁殖中平均一个细菌繁殖了多少个 细菌?
2、一台电脑被感染,经过两轮感染后就会有121 台电脑被感染,求: (1)每轮感染中平均一台电脑会感染几台电脑?
(2)3轮感染后,会感染的几台电脑?
1、某种细菌,一个细菌经过两轮繁殖后,共有256个 细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?
如果按照这样的传染速度三轮传染后有多少人患流感? 培养分析问题、解决问题的能力 . 根据问题中的数量关系列出一元二次方程并求解,
解:设中间的整数为x,则其余两个分别为(x-1),(x+1) 两者之间发生一次必须除以2。 (2)一个三位数,个位数字是a,十位数字是b,百位数字是c,可表示为____ 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? (1)一个两位数,个位数字是a,十位数字是b,则两位数可表示为____ -----病毒传染问题 (2)一个三位数,个位数字是a,十位数字是b,百位数字是c,可表示为____ (1)每轮感染中平均一台电脑会感染几台电脑? 一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求 这个两位数。
构造一元二次方程解决图形面积问题
构造一元二次方程解决图形面积问题天津 张琪列一元二方程解决面积问题是一元二次方程的实际应用中一个重点,也是中考的一个热点. 解题的关键是结合图形列出一元二次方程,从而解决问题.【课本原题】如图1,在一块长92 m 、宽60 m 的矩形耕地上挖三条水渠(水渠的宽都相等),水渠把耕地分成面积均为855的6个矩形小块,水渠应挖多宽?(北师大九年级上册教材P57复习题第15题)思路分析:设水渠的宽度为x m ,借助平移将水平的水渠移到矩形的上面,竖直的两条水渠平移到矩形的右边(如图2),可得空白部分为一个矩形,面积为6个原矩形小块的面积和,据此列方程求解.解答展示:设水渠的宽度为x m.根据题意,得(92-2x )(60-x )=885×6.解得x 1=105(不合题意,舍去),x 2=1.答:水渠的宽度为1 m.方法领悟:有些图形中涉及的基本图形比较分散,我们可以通过适当地平移将图形进行转化,可以方便我们求解. 变式1(2017•凉州区)如图3,某小区计划在一块长为32 m ,宽为20 m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m 2.若设道路的宽为x m ,则下面所列方程正确的是( )A .(32-2x )(20-x )=570B .32x+2×20x=32×20-570C .(32-x )(20-x )=32×20-570D .32x+2×20x-2x 2=570 解析:仿照上面的课本原题,通过平移后可知草坪的长为(32-2x ),宽为(20-x ),进而可知答案为A..变式2 如图4,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的41,若道路与观赏亭的面积之和是矩形水池面积的61,求道路的宽. 解析:如图5,利用平移把不规则的图形转化为规则图形.设道路的宽为x 米,则AE =CH =x 米,EF =(20-4x )米,HG =(12-4x )米.根据题意,得x (12-4x )+x (20-4x )+16x2=16×20×12. 整理,得x 2+4x -5=0.解得x 1=l ,x 2=-5(舍去).答:道路的宽为1米. 图5 FG H M E 图4。
中考数学专项复习《一元二次方程的应用(3)》练习(无答案) 浙教版(2021年整理)
2017年中考数学专项复习《一元二次方程的应用(3)》练习(无答案)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专项复习《一元二次方程的应用(3)》练习(无答案)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专项复习《一元二次方程的应用(3)》练习(无答案)浙教版的全部内容。
一元二次方程的应用(03)一、选择题1.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,则原来这块木板的面积是()A.100m2B.64m2C.121m2D.144m22.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )A.5个B.6个C.7个D.8个3.用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为()A.20 B.40 C.100 D.120二、填空题4.如图,一块四周镶有宽度相等的花边的长方形十字绣,它的长为120cm,宽为80cm,如果十字绣中央长方形图案的面积为6000cm2,则花边宽为.5.一块矩形菜地的面积是120m2,如果它的长减少2m,那么菜地就变成正方形,则原菜地的长是m.6.某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是.7.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.8.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 秒时,S1=2S2.三、解答题9.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程并且甲、乙两队的工作效率与题干的不同,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)10.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?11.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?12.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?13.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?14.某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?15.随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9。
一元二次方程应用题及答案
一元二次方程应用题类型一:增长率问题:1.某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.2.白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?类型二:营销问题:1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?2.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?3.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?4.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.类型三:几何问题:1.利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.2.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?3.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.4.某小区在绿化工程中有一块长为18m、宽为6m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.5.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.参考答案与试题解析1.某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.【考点】一元二次方程的应用增长率问题.菁优网版权所有【解答】解:设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费3327.5万元.2.白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【考点】一元二次方程的应用增长率问题.菁优网版权所有【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.【点评】本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.3.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?【考点】一元二次方程的应用销售问题.菁优网版权所有【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,(60﹣x﹣40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,即定价为56元,答:应将销售单价定位56元.【点评】本题考查了一元二次方程应用,题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.4.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是100+200x 斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?【考点】一元二次方程的应用销售问题.菁优网版权所有【解答】解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤);(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:张阿姨需将每斤的售价降低1元.【点评】本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量,从而利润.第二问,根据售价和销售量的关系,以利润做为等量关系列方程求解.5.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?【考点】一元二次方程的应用销售问题.菁优网版权所有【解答】解:(1)设每件衬衫应降价x元,根据题意得(40﹣x)(20+2x)=1200,整理得2x2﹣60x+400=0解得x1=20,x2=10.因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,故每件衬衫应降20元.答:每件衬衫应降价20元.(2)设商场平均每天赢利y元,则y=(20+2x)(40﹣x)=﹣2x2+60x+800=﹣2(x2﹣30x﹣400)=﹣2[(x﹣15)2﹣625]=﹣2(x﹣15)2+1250.∴当x=15时,y取最大值,最大值为1250.答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.【点评】(1)当降价20元和10元时,每天都赢利1200元,但降价10元不满足“尽量减少库存”,所以做题时应认真审题,不能漏掉任何一个条件;(2)要用配方法将代数式变形,转化为一个完全平方式与一个常数和或差的形式.6.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把化简后的结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.【考点】一元二次方程的应用销售问题.菁优网版权所有【解答】解:(1)(2)﹣10x2+1300x﹣30000=10000,解之得:x1=50 x2=80,答:玩具销售单价为50元或80元时,可获得10000元销售利润.【点评】本题主要考查了一元二次方程的应用,解答本题的关键是得出W与x的函数关系.7.利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.【考点】一元二次方程的应用几何图形问题.菁优网版权所有【解答】解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4∴另一边为8米或50米.答:当矩形长为25米时,宽为8米;当矩形长为50米时,宽为4米.【点评】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.11。
(利用一元二次方程解决实际问题)
一元二次方程应用题的一般解题步骤解决问题有三个重要环节:1、完整地系统审清题意;2、把握住问题中的等量关系;3、正确地求解方程并检验解的合理性。
一、一元二次方程应用题问题的一般解题步骤1、审题:认真读题,明确哪些是已知数,它们之间的关系是怎样的。
2、设未知数:用字母表示未知数,这个未知数可能是一个直接未知数,也可能是一个间接未知数。
3、列方程:先确定一个等量关系,再用含所设未知数的字母代数式表示这个等量关系,得到一元二次方程。
3、解方程:选用合适的方法解这个一元二次方程。
4、检验:检验所求出的一元二次方程的根是否符合题意。
5、答:用总结性的语言写出题目最终答案。
常见类型1、传播问题1、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?2、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?3、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请用学过的知识分析,每轮感染中平均一台电脑会感染多少台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?2、循环问题1、在一次象棋比赛中,实行单循环赛制(即每个选手都与其他选手比赛一局),每局赢者记2分,输者记0分,如果平局,两个人各记1分,今有4个同学统计了比赛中全部选手得分总和,结果分别是2005、2004、2070、2008,经核实确定只有一位同学统计无误,试计算这次比赛中共有多少名选手参赛。
2、参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?3、参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?4.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?3、平均率问题M=a(1±x)n n为增长或降低次数M为最后产量,a为基数,x为平均增长率或降低率平均率和时间相关,必须弄清楚从何年何月何日到何年何月何日的增长或降低率。
一元二次方程实际问题分类题集(含答案)
一元二次方程实际问题分类题集(含答案)1、一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有()人。
A.12人B.18人C.9人D.10人答案:B.18人2、某一商人进货价便宜8%,而售价不变,那么他的利润(按进货价而定)可由目前x增加到(x+10%),则x是()。
A.12% B.15% C.30% D.50%答案:A.12%3、___为迎接香港回归,从1994年到1997年四年内师生共植树1997棵,已知该校1994年植树342棵,1995年植树500棵,如果1996年和1997年植树的年增长率相同,那么该校1997年植树的棵数为()。
A.600 B.604 C.595 D.605答案:B.6044、一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()。
A.25 B.36 C.25或36 D.-25或-36答案:B.365、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需付7元车费);超过3km以后,每增加1km,加收2.4元(不足1km按1km计),某人乘出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程()。
A.正好8km B.最多8km C.至少8km D.正好7km答案:C.至少8km6、直角三角形两条直角边的和为7,面积为6,则斜边为()。
A.37 B.5 C.38 D.7答案:B.57、有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是()。
A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;D.以上都不对答案:A.第一块木板长18m,宽9m,第二块木板长16m,宽27m8、从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是()。
用一元二次方程解决问题(平均增长率)
平均增长率 = (终值 - 初值) / 初值 × 100%
计算方法
直接计算法
根据题目给出的数据,直接代入公式 进行计算。
代数法
将平均增长率转化为一元二次方程, 通过解方程求得。
ห้องสมุดไป่ตู้例解析
例1
某企业去年销售额为100万元,今年 销售额增长了20%,求今年的销售额。
解
根据平均增长率公式,今年的销售额 = 100 × (1 + 20%) = 120万元。
解
根据平均增长率公式,5年后GDP = 100 × (1 + 8%)^5 = 146.9亿元。
02
一元二次方程在平均增 长率问题中的应用
建立一元二次方程
确定变量
在平均增长率问题中,通常设初始数 量为A,平均增长率为r,经过时间为t 后的数量为B。
建立方程
方程变形
如果需要求平均增长率r,可以将方程 变形为r = (B/A)^(1/t) - 1。
将方程左边化为完全平 方形式,右边化为常数,
从而求解x。
因式分解法
通过因式分解将方程化 为两个一次方程,从而
求解x。
实例解析
题目
某企业前年缴税30万元,预计 今年缴税36.36万元,那么该企
业缴税的平均增长率为多少?
分析
设该企业缴税的平均增长率为x, 根据题意可以建立一元二次方程 30(1 + x)^2 = 36.36。
根据平均增长率的定义,我们可以建 立一元二次方程B = A(1 + r/100)^t。
解一元二次方程
求解方法
解一元二次方程可以使 用公式法、配方法、因
式分解法等。
公式法
配方法
人教版九年级上册第21章 《一元二次方程》实际应用:平均增长率问题
《一元二次方程》实际应用:平均增长率问题1.小张2019年末开了一家商店,受疫情影响,2020年4月份才开始盈利,4月份盈利6000元,6月份盈利达到7260元,且从4月份到6月份,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率.(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到多少元?2.随着全球疫情的爆发,医疗物资的极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天,现该厂要保证每天生产口罩6500万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?3.新冠肺炎疫情在全球蔓延,造成了严重的人员伤亡和经济损失,其中一个原因是新冠肺炎病毒传播速度非常快.一个人如果感染某种病毒,经过了两轮的传播后被感染的总人数将达到64人.(1)求这种病毒每轮传播中一个人平均感染多少人?(2)按照上面的传播速度,如果传播得不到控制,经过三轮传播后一共有多少人被感染?4.为了创建全国文明城市,提升城市品质,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2017年的绿色建筑面积为950万平方米,2019年达到了1862万平方米.若2018年,2019年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求2018年,2019年绿色建筑面积的年平均增长率;(2)若该市2020年计划推行绿色建筑面积达到2600万平方米,如果2020年仍保持相同年平均增长率,请你预测2020年该市能否完成目标.5.某旅游景区今年5月份游客人数比4月份增加了44%,6月份游客人数比5月份增加了21%,求5月、6月游客人数的平均增长率.6.某磷肥厂去年4月份生产磷肥500t,因管理不善,5月份的磷肥产量减少了10%;从6月份起强化了管理,产量逐月上升,7月份产量达到648t.求该厂6月份、7月份产量的月平均增长率.7.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?8.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2016年盈利1500万元,到2018年盈利2160万元,且从2016年到2018年,每年盈利的年增长率相同.(1)求每年盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,那么2019年该公司盈利能否达到2500万元?9.某村种植水稻,2017年平均每公顷产2400千克,2019年平均每公顷产5400千克,每年的年平均增长率相同并且年平均增长率在三年内保持不变.(1)求每年的年平均增长率;(2)按照这个年平均增长率,预计2020年每公顷的产量为多少千克?10.某工厂1月份的产值为50000元,3月份的产值达到72000元,这两个月的产值平均月增长的百分率是多少?11.小明家在2016年种的果总产量为12吨,到2018年总产量要达到17.28吨.(1)求每年的平均增长率;(2)由于市场价格的不稳定,小明家2018年的果园预备采取两种销售方案进行销售:方案一:按标价每千克5.8元,然后打8折进行销售;方案二:按标价每千克5.8元,然后每吨优惠400元现金销售.请问哪种方案得钱多?12.幸福村种的水稻2006年平均每公顷产7200千克,2018年平均每公顷产8450千克,求水稻每公顷产量的年平均增长率.13.某商场将某种商品的售价从原来的每件40元两次调价后调至每件32.4元.①若该商场两次调价的降低率相同,求这个降低率.②经调查,该商品原来每月可销售500件,商品每降价0.2元,即可多销售10件,那么两次调价后,每月可销售商品多少件?14.近年来,在市委市政府的宏观调控下,我市的商品房成交均价涨幅控制在合理范围内,由2017年的均价5000元/m2上涨到2019年的均价6050元/m2.(1)试求这两年我市商品房成交均价的年平均增长率;(2)如果房价继续上涨,按(1)中上涨的百分率,请预测2020年我市的商品房成交均价.15.江华瑶族自治县香草源景区2016年旅游收入500万元,由于政府的重视和开发,近两年旅游收入逐年递增,到今年2018年收入已达720万元.(1)求这两年香草源旅游收入的年平均增长率;(2)如果香草源旅游景区的收入一直保持这样的平均年增长率,从2018年算起,请直接写出n年后的收入表达式.16.2016年,某市某楼盘以每平方米8000元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米6480元.(1)求平均每年下调的百分率;(2)假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款40万元,张强的愿望能否实现?为什么?(房价每平方米按照均价计算)17.倡导全民阅读,建设书香社会.【调査】目前,某地纸媒体阅读率为40%,电子媒体阅读率为80%,综合媒体阅读率为90%.【百度百科】某种媒体阅读率,指有某种媒体阅读行为人数占人口总数的百分比;综合阅读率,在纸媒体和电子体中,至少有一种阅读行为的人数占人口总数的百分比,它反映了一个国家或地区的阅读水平.【问题解决】(1)求该地目前只有电子媒体阅读行为人数占人口总数的百分比;(2)国家倡导全民阅读,建设书香社会.预计未来两个五年中,若该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加,这样十年后,只读电子媒体的人数比目前增加53%,求百分数x.18.在国家政策的宏观调控下,某市的商品房成交价由今年9月份的14000元/m2下降到11月份的12600元/m2.(1)问10、11两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破12000元/m2?请说明理由.19.某种商品标价500元/件,经过两次降价后为405元/件,并且两次降价百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为380元件,两次降价共售出100件,若两次降价销售的总利润不低于3850元,则第一次降价后至少要售出该商品多少件?20.为深化疫情防控国际合作、共同应对全球公共卫生危机,我国有序开展医疗物资出口工作.2020年3月,国内某企业口罩出口订单额为1000万元,2020年5月该企业口罩出口订单额为1440万元.求该企业2020年3月到5月口罩出口订单额的月平均增长率.参考答案1.解:(1)设每月盈利的平均增长率为x,依题意,得:6000(1+x)2=7260,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:每月盈利的平均增长率为10%.(2)7260×(1+10%)=7986(元).答:按照这个平均增长率,预计2020年7月份这家商店的盈利将达到7986元.2.解:(1)设每天增长的百分率为x,依题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率为20%;(2)设应该增加m条生产线,则每条生产线的最大产能为(1500﹣50m)万件/天,依题意,得:(1+m)(1500﹣50m)=6500,解得:m1=4,m2=25.又∵在增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线.3.(1)解:设一个人平均感染x人,可列方程:1+x+(1+x)x=64,解得:x1=7,x2=﹣9(舍去).故这种病毒每轮传播中一个人平均感染7人;(2)(7+1)3=512(人)答:经过三轮传播后一共有512人被感染.4.解:(1)设2018年,2019年绿色建筑面积的年平均增长率为x,根据题意得,950(1+x)2=1862,解得x1=40%,x2=﹣2.4(舍去).故2018年,2019年绿色建筑面积的年平均增长率为40%;(2)1862×(1+40%)=2606.8(万平方米),∵2606.8>2600,∴2020年该市能完成目标.5.解:设5月、6月游客人数的平均增长率是x,依题意有(1+x)2=(1+44%)×(1+21%),解得:x1=32%,x2=﹣2.32(应舍去).答:5月、6月游客人数的平均增长率是32%.6.解:设该厂6月份、7月份产量的月平均增长率为x.500×(1﹣10%)×(1+x)2=648,解得x1=0.2,x2=﹣0.2(不符合题意,舍去).答:该厂6月份、7月份产量的月平均增长率为20%.7.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.8.解:(1)设每年盈利的年增长率为x,根据题意得:1500(1+x)2=2160.解得x1=0.2,x2=﹣2.2(不合题意,舍去).答:每年盈利的年增长率为20%;(2)2160(1+0.2)=2592,2592>2500答:2019年该公司盈利能达到2500万元.9.解:(1)设每年的年平均增长率为x,依题意得:2400(1+x)2=5400,解得x1=0.5=50%,x2=﹣2.5(舍去).答:每年的年平均增长率为50%;(2)由题意,得5400×(1+0.5)=8100(千克).答:预计2020年每公顷的产量为8100千克.10.解:设这两个月的产值平均月增长的百分率为x,依题意,得:50000(1+x)2=72000,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:这两个月的产值平均月增长的百分率是20%.11.解:(1)设每年的平均增长率为x,根据题意,得12(1+x)2=17.28解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每年的平均增长率为20%;(2)方案一销售得到的钱=17.28×1000×5.8×0.8=80179.2(元)方案一销售得到的钱=17.28×1000×5.8﹣17.28×400=93312(元).由于93312>80179.2.所以,按方案二销售得钱多.12.解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450,解得:x1=≈0.0833,x2=﹣=﹣2.0833(应舍去).答:水稻每公顷产量的年平均增长率约为8.33%.13.解:①设降低率为x,由题意得:40(1﹣x)2=32.4,解得:x1=10%,x2=1.9(不合题意舍去),答:降低率为10%;②降价后多销售的件数:[(40﹣32.4)÷0.2]×10=380(件),两次调价后,每月可销售该商品数量为:380+500=880(件).故两次调价后,每月可销售该商品880件.14.解:(1)设这两年我市商品房成交均价的年平均增长率是x,根据题意得:5000(1+x)2=6050,(1+x)2=1.21,解得:x1=10%,x2=﹣2.1(不合题意,舍去).答:这两年我市商品房成交均价的年平均增长率是10%;(2)2020年我市的商品房成交均价为:6050(1+10%)=6655(元).答:2020年我市的商品房成交均价是6655元.15.解:(1)设这两年香草源旅游收入的年平均增长率为x,依题意得:500(1+x)2=720.解得=20% (舍去).答:这两年香草源旅游收入的年平均增长率为20%;(2)依题意得:.答:n年后的收入表达式是:.16.解:(1)设平均每年下调的百分率为x,则8000(1﹣x)2=6480.解得:x1=0.1=10%,x2=1.9(不合题意舍去)答:平均每年下调的百分率为10%.(2)6480(1﹣10%)×100=583200=58.32(万元)由于20+40=60>58.32,所以张强的愿望能实现.17.解:(1)设某地人数为a,既有传统媒体阅读又有数字媒体阅读的人数为y,则传统媒体阅读人数为0.8a,数字媒体阅读人数为0.4a.依题意得:0.8a+0.4a﹣y=0.9a,解得y=0.3a,∴传统媒体阅读又有数字媒体阅读的人数占总人口总数的百分比为30%.则该社区有电子媒体阅读行为人数占人口总数的百分比为=80%﹣30%=50%.(2)依题意得:0.9a(1+x)2+0.4a(1﹣x)2=0.5a(1+0.53),整理得:5x2+26x﹣2.65=0,解得:x1=0.1=10%,x2=﹣5.3(舍去),答:x为10%.18.解:(1)设10、11两月平均每月降价的百分率是x,则10月份的成交价是14000﹣14000x=14000(1﹣x),11月份的成交价是14000(1﹣x)﹣14000(1﹣x)x=14000(1﹣x)(1﹣x)=14000(1﹣x)2∴14000(1﹣x)2=12600,∴(1﹣x)2=0.9,∴x1≈0.05=5%,x2≈1.95(不合题意,舍去).答:10、11两月平均每月降价的百分率是5%;(2)会跌破12000元/m2.如果按此降价的百分率继续回落,估计12月份该市的商品房成交均价为:12600(1﹣x)2=12600×0.952=11371.5<12000.由此可知12月份该市的商品房成交均价会跌破12000元/m2.19.解:(1)设该种商品每次降价的百分率为x,依题意,得:500(1﹣x)2=405,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:该种商品每次降价的百分率为10%;(2)设第一次降价后售出该商品y件,则第二次降价后售出该商品(100﹣y)件,依题意,得:[500×(1﹣10%)﹣380]y+(405﹣380)(100﹣y)≥3850,解得:y≥30.答:第一次降价后至少要售出该商品30件.20.解:设该企业2020年3月到5月口罩出口订单额的月平均增长率为x,依题意,得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该企业2020年3月到5月口罩出口订单额的月平均增长率为20%.。
02一元二次方程的应用-学生版
教学辅导教案1.用适当的方法解方程:(1)2(x+2)2﹣8=0;(2)x(x﹣3)=x;(3)x2=6x﹣;(4)(x+3)2+3(x+3)﹣4=0.2.已知关于x的方程(a2﹣1)x2+(1﹣a)x+a﹣2=0(1)当a为何值时,该方程为一元二次方程?(2)当a为何值时,该方程为一元一次方程?3.解方程,有一位同学解答如下:解:这里a=,b=,c=∴b2﹣4ac=(﹣∴=∴第1页共14页请你分析以上解答有无错误,如有错误,指出错误的地方,并写出正确的结果.1.新苑小区的物业管理部门为了美化环境在小区靠墙的一侧设计了一块长方形花圃(如图所示),墙长25,花圃三边外围用篱笆围起,栽上花,共用篱笆40.(1)花圃的面积能达到200 m2吗?(2)花圃的面积能达到250 m2吗?(3)你能根据所学的知识求出花圃的最大面积吗?此时,篱笆该怎样围?2.如图,某中学为方便师生活动,准备在长30m、宽20m的矩形草坪上修筑两横两纵四条小路,横、纵路的宽度之比为3:2,若要使余下的草坪面积是原来草坪面积的,则路宽分别为多少?3.有﹣块长32cm,宽14cm的矩形铁皮.(1)如图1,如果在铁皮的四个角裁去四个边长一样的正方形后,将其折成底面积为280cm2的无盖长方体盒子,求裁去的正方形的边长.(2)由于需要,计划制作一个有盖的长方体盒子,为了合理利用材料,某学生设计了如图2的裁剪方案,阴影部分为裁剪下来的边角料,其中左侧的两个阴影部分为正方形,问能否折出底面积为180的有盖盒子?如果能,请求出盒于的体积;如果不能,请说明理由.4.如图所示,在菱形ABCD中,AC,BD交于点O,AB=15,AO=12,P从A出发,Q从O出发,分别以2cm/s和1cm/s的速度各自向O,B点运动,当运动时间为多少秒时,四边形BQP A的面积是∴POQ面积的8倍.8.某旅游团结束时,其中一个游客建议大家互相握手言别,细心的小明发现,每两个参加旅游的人互握一次手,共握了66次手,问这次旅游的游客人数是多少?【几何方面应用】1.有一块长为a,宽为b的长方形铝片,四角各截去一个相同的边长m的正方形,折合成一个没有盖的盒子,则此盒子的容积v的表达式应该为()A.v=m2(a﹣m)(b﹣m)B.v=m(a﹣m)(b﹣m)C.v=m(a﹣2m)(b﹣2m)D.v=m(a﹣2m)(b﹣2m)2.从一块长30cm,宽12cm的长方形薄铁皮的四个角上,截去四个相同的小正方形,余下部分的面积为296cm2,则截去小正方形的边长为()A.1cm B.2cm C.3cm D.4cm3.三角形一边的长是该边上高的2倍,且面积是32,则该边的长是()A.8B.4C.4D.84.某工厂计划在长24米、宽20米的空地中间划出一块32平方米的长方形建一住房,并且四周剩余空地一样宽,那么这宽度应是()A.14米B.8米C.14米或8米D.以上都不对5.如图所示,把底面直径为60mm米,高为200mm的圆柱形钢材,锻压成底面为正方形,高为157mm的长方体零件毛坯,那么零件毛坯的底面正方形的边长为()(π取3.14)A.30mm B.40mm C.50mm D.60mm6.如图所示,使用墙的一边,再用13m的竹篱笆围三边,围成一个面积为20m2矩形,设墙的对边长为xm,可得长,宽分别为()A.5m,4m B.5m,4m或8m,mC.m,8m D.m,5m7.一块面积为600平方米的长方形土地,它的长比宽多10米,求长方形的长与宽,若设长方形的长为x米,则它的宽为米,根据题意的方程为.8.如图,在Rt∴ABC中,∴C=90°,点P以1cm/s的速度由点A向终点C运动,点Q以2cm/s的速度由点C向终点B运动,当其中一点到达自己的终点时,另一点随之停止运动.现已知AC=12cm,BC=9cm,设运动了t秒时,S∴PQC=S∴ABC,则t的值为.9.如图所示,要用防护网围成长方形花坛,其中一面利用现有的一段墙,且在与墙平行的一边开一个2米宽的门,现有防护网的长度为91米,花坛的面积需要1080平方米,若墙长50米,求花坛的长和宽.(1)一变:若墙长46米,求花坛的长和宽;(2)二变:若墙长40米,求花坛的长和宽;(3)通过对上面三题的讨论,你觉得墙长对题目有何影响?10.如图,在梯形ABCD中,AD∴BC,∴C=∴D=90°,BC=16,CD=12,AD=21.动点P从点D出发,沿线段DA的方向以每秒2个单位长度的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动.点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动时间为t(s),当t 为何值时,以B,P,Q三点为顶点的三角形为等腰三角形?【代数方面应用】1.某种商品经过两次降价,由每件100元降低了19元,则平均每次降价的百分率为()A.9%B.9.5%C.8.5%D.10%2.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了促进销售,增加盈利,尽量减少库存,商场决定适当地降价,若每件衬衫每降价1元,商场平均每天 多销售出2件,若商场平均每天要盈利1200元,每件衬衫应降价( )元.A .10B .20C .10或20D .无法确定3.某种商品经过两次降价后,由原来价格10元降到现在价格8.1元,则这种商品平均每次降价的百分率为( )A .10%B .25%C .80%D .90%4.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为( )A .20%B .30%C .50%D .120%5.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( )A.x (x ﹣1)=10B.102)1(=-x xC.x (x +1)=10 D .102)1(=+x x 6.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队。
一元二次方程的实际应用(病毒传播、增长率、单(双)循环、图形面积、涨降价销售问题)含答案
7.(8 分 ) 树 西 瓜 经 营 户 以 2 元 / 千 克 的 进 价 购 进 一 批 小 型 西 瓜 , 以 3 元 / 千 克 的 价 格 出 售 , 每 天 可 售 出 200 千 克 , 为了 促 销 , 该 经 营 户 决 定 降 价 销 售 , 经 调 查 发 现 , 这 种 小 型 西 瓜 每 降 价 0.1 元 / 千 克 , 每 天 可 多 售 出 40 千 克 , 另 外 , 每 天 的 房 租 等 固 定 成 本 共 24 元 , 该 经 营 户 要 想 每 天 赡 利 200 元 , 应 将 每 十 克 小 型 西 瓜 的 售价 降低 多少元 ?
11.分 )(菜 8机 械 厂 七 月 份 生 产 零 件 52 万 个 , 第 三 季 度 生 产 零 件 196 万 个 、 设 该 厂八 、 九 月 份 平 均 每 月 的 增 长 率 为 z, 那 么 满 足 的 方 程 是 ?
12.(8 分 )2015 年 树 市 曾 爆 发 登 革 热 疫 情 , 登 革 热 是 一 种 传 染 性 病 毒 , 在 病 毒 传 播 中 , 若 1 个 人 悦 病 , 则 经 过 两 轮 传 染 就 共 有 144 人 悟 病 . (D) 每 轮 传 染 中 平 均 一 个 人 传 染 了 几 个 人 ? (2) 若 病 毒 得 不 到 有 效 控 制 , 按 照 这 样 的 传 染 违 度 , 三 轮 传 染 后 , 患 病 的 人 数 共 有 多 少 人 ?
6.(8分 ) 桅 商 店 销 售 枸 种 电 扇 , 每 台 进 货 价 为 150 元 , 经 市 场 调 研 , 当 每 台 售 价 为 230 元 时 , 平 均 每 天 能 售 出8 台 : 当 每 台 售 价 每 降 10 元 时 , 平 均 每 天 就 能 多 售 出 4 台 。 若 商 店 要 想 使 这 种 电 扇 的 销 售 利 润 平 均 每 天 达 到 1000元 , 则 每 台 电 扇 的 定 价 应 为 多 少 元 ?
2017年秋八年级数学上册174一元二次方程的应用(3)实际问题沪教版五四制
知识呈现:
二、新授:
1、例题选讲:
例题1某工厂七月份的产值是100万元,计划九月份的产值要达到144万元。如果每月产值的增长率相同,求这个增长率。
请试一试:设出未知数,列出有关的方程。
例题2某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,每件衬衫每降价1元,商场平均每天可多销出2件。若商场每天要盈利1200元,请你帮助商场算一算,每件衬衫应降价多少元?
3、某木器厂今年一月份生产了课桌500张;后因管理不善,二月份的产量减少了10%;从三月份起加强了管理,产量逐月上升,四月份产量达到648张。如果三、四月份的月增长率相同,求这个增长率。
课外
作业
练习册P:32复习B组第2、3、4、5题
预习
要求
第18章函数的有关知识
教学后记与反思
1、课堂时间消耗:教师活动分钟;学生活动分钟)
2、本课时实际教学效果自评(满分10分):分
3、本课成功与不足及其改进措施:
实际问题
课题
17.4(3)实际问题
设计
依据
(注:只在开始新章节教学课必填)
教材章节分析:
学生学情分析:
课型
新授课
教
学
目
标
1、掌握列方程解增长率问题应用题的方法
2、会分析实际问题中的数量关系和列一元二次方程解简单的应用题。
3、通过对实际问题的思考,培养学生分析、解决实际问题的能力。
4、在应用一元二次方程解决实际问题的活动中,增强数学应用意识,体会数学的价值,激发学习数学的兴趣,培养积极探究的态度。
利用一元二次方程解决实际问题
(利用一元二次方程解决实际问题) 一元二次方程是一个形式如ax^2+bx+c=0的方程,其中a、b、c为实数且a≠0。
它的解可以通过使用求根公式x=(-b±√(b^2-4ac))/(2a)来求得。
利用一元二次方程,我们可以解决许多实际问题,如求解物体的运动轨迹、解决几何问题等等。
下面将通过几个实际问题的例子来说明如何利用一元二次方程解决实际问题。
例1:一个石头从100米高的地方自由落下,求石头落地时的速度和落地时间。
解:根据物体自由落体运动的规律,石头落地时的速度可以通过一元二次方程求解。
设石头落地时的速度为v,落地时间为t,则有以下等式:100 = 0.5 * g * t^2 (物体自由落体的位移公式)v = g * t (物体自由落体的速度公式)其中,g为重力加速度,取9.8 m/s^2。
将第二个等式代入第一个等式中,得到:100 = 0.5 * (v/t) * t^2200 = v * t将上述方程组代入一元二次方程的标准形式ax^2+bx+c=0中,得到:t^2 - (200/v) * t + 0 = 0根据一元二次方程的求根公式,可以解得:t = (200/v)/2 = 100/v将t代入第二个等式中,得到:v = g * (100/v)v^2 = 100 * gv = √(100 * g) ≈ 31.3 m/s所以,石头落地时的速度约为31.3 m/s,落地时间为t = 100/v ≈ 3.2 s。
例2:一个花瓶从楼顶上掉下来,从花瓶掉到地面的时间为5秒,求楼顶的高度。
解:根据物体自由落体运动的规律,花瓶掉到地面的时间可以通过一元二次方程求解。
设楼顶的高度为h,则有以下等式:h = 0.5 * g * t^2其中,g为重力加速度,取9.8 m/s^2,t为花瓶掉到地面的时间,取5秒。
将上述方程代入一元二次方程的标准形式ax^2+bx+c=0中,得到:0.5 * g * t^2 - h = 0根据一元二次方程的求根公式,可以解得:h = 0.5 * g * t^2 = 0.5 * 9.8 * 5^2 = 122.5 m所以,楼顶的高度为122.5米。
人教版九年级上册 第21章《一元二次方程》 实际应用题专项练习(二)
《一元二次方程》实际应用题专项练习(二)1.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?2.全球疫情爆发时,医疗物资极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天.①现该厂要保证每天生产口罩6500万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能增加生产线,使得每天生产口罩15000万件,若能,应该增加几条生产线?若不能,请说明理由.3.万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了a%,该经销商购进甲的数量比原计划增加了2a%,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求a的值(a>0).4.某村计划建造如图所示的矩形蔬菜温室,要求长为24m,宽为12m,在温室内,沿前侧内墙保留2m宽的空地,其它三侧内墙各保留等宽的通道.当通道的宽为多少时,蔬菜种植区域的面积是210m2?5.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递总件数分别为10万件和14.4万件,现假定该公司每月投递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投0.5万件,那么该公司现有的29名快递投递员能否完成今年6月份的快递投递任务?如果不能,请问需要至少增加几名业务员?6.温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进A、B两种型号的暖风机共900台,每台A型号暖风机售价为600元,每台B型号暖风机售价为900元.(1)若要使得A、B两种型号暖风机的销售额不低于69万元,则至多购进多少台A型号暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A、B两种型号的暖风机全部售完.该商场在12上旬又购进了A、B两种型号的暖风机若干台,并且进行“双12”促销活动,每台A型号暖风机的售价比其11月下旬的售价优惠a%,A型号暖风机12月上旬的销售量比其在(1)问条件下的最高购进量增加a%,每台B型号暖风机的售价比其11月下旬的售价优惠a%,B型号暖风机12月上旬的销售量比其在(1)问条件下的最低购进量增加a%,A、B两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了a%,求a的值.7.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.8.为实现“先富带动后富,从而达到共同富裕”,某县为做好“精准扶贫”,2017年投入资金1000万元用于教育扶贫,以后投入资金逐年增加,2019年投入资金达到1440万元.(1)从2017年到2019年,该县投入用于教育扶贫资金的年平均增长率是多少?(2)假设保持这个年平均增长率不变,请预测一下2020年该县将投入多少资金用于教育扶贫?9.草根学堂院内有一块长30m,宽20m的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修建三条长方形的矩形小道(如图),剩余的地方种植花草,要使种植花草的面积为532m2,那么小道的宽度应为多少米?(注:所有小道宽度相等)10.今年8月双福国际农贸市场某水果批发商用2.2万元购得“象牙芒”和“红富士苹果”共400箱,其中,“象牙芒”、“红富士”的数量比为5:3.已知每箱“象牙芒”的售价是每箱“红富士”的售价的2倍少10元,预计3月可全部销售完.(1)该批发商想通过本次销售至少盈利8000元,则每箱“象牙芒”至少卖多少元?(总利润=总销售额﹣总成本)(2)实际销售时,受中央“厉行节约”号召的影响,在保持(1)中最低售价的基础上,“象牙芒”的销售下降了%,售价下降了a%;“红富士”的销售量下降了a%,但售价不变.结果导致“象牙芒”、“红富士”的销售总额相等.求a的值.参考答案1.解:(1)设y与x的函数关系式为y=kx+b(k≠0),将(22,36),(24,32)代入y=kx+b,得:,解得:,∴y与x的函数关系式为y=﹣2x+80(20≤x≤28).故答案为:y=﹣2x+80(20≤x≤28).(2)依题意,得:(x﹣20)(﹣2x+80)=150,整理,得:x2﹣60x+875=0,解得:x1=25,x2=35(不合题意,舍去).答:每本纪念册的销售单价是25元.2.解:(1)设每天增长的百分率为x,依题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率为20%;(2)①设应该增加m条生产线,则每条生产线的最大产能为(1500﹣50m)万件/天,依题意,得:(1+m)(1500﹣50m)=6500,解得:m1=4,m2=25,又∵在增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线;②设增加a条生产线,则每条生产线的最大产能为(1500﹣50a)万件/天,依题意,得:(1+a)(1500﹣50a)=15000,化简得:a2﹣29a+270=0,∵△=(﹣29)2﹣4×1×270=﹣239<0,方程无解.∴不能增加生产线,使得每天生产口罩15000万件.3.解:(1)设甲商品的出厂单价是x 元/件,则乙商品的出厂单价是x 元/件, 根据题意得:3x ﹣2×x =150, 解得:x =90, ∴x =60.答:甲、乙商品的出厂单价分别是90、60元.(2)由题意得:,解得:a 1=0(舍去),a 2=15. 答:a 的值为15.4.解:设通道的宽为xm ,则蔬菜种植区域为长(24﹣2﹣x )m ,宽(12﹣2x )m 的矩形, 依题意,得:(24﹣2﹣x )(12﹣2x )=210, 整理,得:x 2﹣28x +27=0,解得:x 1=1,x 2=27(不合题意,舍去).答:当通道的宽为1m 时,蔬菜种植区域的面积是210m 2.5.解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意,得 10(1+x )2=14.4解得x 1=0.2,x 2=﹣2.2(不符合题意,舍去), 答:该快递公司投递总件数的月平均增长率为20%. (2)由(1)得,14.4×1.2=17.28(万件), 29×0.5=14.5, 14.5<17.28, 故不能完成任务.因为(17.28﹣14.5)÷0.5=5.56, 所以还需要至少增加6名业务员. 答:需要至少增加6名业务员.6.解:(1)设购进x 台A 型号暖风机,则购进(900﹣x )台B 型号暖风机, 依题意,得:600x +900(900﹣x )≥690000,解得:x≤400.答:至多购进400台A型号暖风机.(2)依题意,得:600(1﹣a%)×400(1+a%)+900(1﹣a%)×(900﹣400)(1+a%)=690000(1+a%),整理,得:150a﹣12a2=0,解得:a1=12.5,a2=0(不合题意,舍去).答:a的值为12.5.7.解:(1)设该水果店去年8月份购进福建蜜柚x个,则购进泰国青柚(900﹣x)个,依题意,得:6x+20(900﹣x)≤12400,解得:x≥400.答:水果店去年8月份购进福建蜜柚最少400个.(2)由(1)可知:今年8月份,该水果店购进福建蜜柚400个、泰国青柚500个.依题意,得:[16(1﹣a%)×﹣6]×400+[30(1+2a%)﹣20×(1﹣40%)]×500(1﹣a%)=[(16﹣6)×400+(30﹣20)×500]×(1+),整理,得:90a﹣3.6a2=0,解得:a1=25,a2=0(不合题意,舍去).答:a的值为25.8.解:(1)设该地投入教育扶贫资金的年平均增长率为x,根据题意,得:1000(1+x)2=1440,解得:x=0.2或x=﹣2.2(舍),答:从2017年到2019年,该地投入教育扶贫资金的年平均增长率为20%;(2)2020年投入的教育扶贫资金为1440×(1+20%)=1728万元.9.解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532.整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.10.(1)设象牙芒有5x箱,则红富士有3x箱,根据题意得:5x+3x=400,解得x=50,则象牙芒有250箱,红富士有150箱.设每箱象牙芒y元,则250(2y﹣10)+150y﹣22000≥8000.解得:y≥50,∴2y﹣10≥90答:每箱“象牙芒”至少卖90元;(2)根据题意得:250(1﹣a%)•90(1﹣a%)=150(1﹣a%)•50,令t=a%,整理,得:4t2﹣5t+1=0,……(7分)解得:t=1(不合题意,舍去)或t=0.25,∴a=25.答:a的值为25.。
用一元二次方程解决问题(含答案)
4.3用一元二次方程解决问题(1)目标导航:知识要点:根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.学习要点:掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.基础巩固题1、长方形的长比宽多4cm,面积为60cm2,则它的周长为________.2、如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.3、直角三角形两条直角边的和为7,面积为6,则斜边为().A.37B.5 C.38D.74、有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是().A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;D.以上都不对5、从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8cm2D.64cm26、在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?7、某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?8、如图,要设计一本书的封面,封面长27cm,宽21cm,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度(精确到0.1cm )?九 年级 练数 学 习同步9、如图,在ΔABC 中,∠B=90º,AB=4cm ,BC=10cm ,点P 从点B 出发,沿BC 以1cm/s 的速度向点C 移动,问:经过多少秒后,点P 到点A 的距离的平方比点P 到点B 的距离的8倍大1?AB P C思维拓展题10、如图所示,在一个长为32米,宽为20米的矩形空地上,建造一个草坪,并修筑等宽且互相垂直的两条路,要使草坪的面积为540米2,求路的宽度。
一元二次方程的实际问题与解法
一元二次方程的实际问题与解法一元二次方程是中学数学中的重要概念,常用于解决实际生活中的问题。
本文将介绍一元二次方程的定义、实际问题的应用以及解法。
一、一元二次方程的定义一元二次方程是指只含有一个未知数的二次方程。
其一般形式为ax^2 + bx + c = 0,其中a、b、c为已知数,且a ≠ 0。
二、一元二次方程的实际问题应用一元二次方程在日常生活中有广泛的应用。
例如,可以利用一元二次方程模型解决以下问题:1. 钱柜里现有若干枚硬币,其中铜币和铝币的总价值为200元。
已知铜币比铝币多10枚,且铜币的面值为每枚5元,铝币的面值为每枚2元。
求钱柜里铜币和铝币的数量各是多少?2. 甲乙两人同时出发,甲以每小时5公里的速度向南行进,乙以每小时6公里的速度向北行进。
3小时后两人相距28公里,请问他们出发时的相对距离是多少?3. 小明家的长方形花园的长是x米,宽是(x-2)米。
若知面积为18平方米,求长和宽分别是多少?三、一元二次方程的解法解一元二次方程常用的方法有因式分解法、配方法以及求根公式。
下面将逐一介绍这三种解法。
1. 因式分解法因式分解法适用于一元二次方程能够被因式分解成两个一次因式相乘的情况。
例如,对于方程x^2 + 5x + 6 = 0,可以将其因式分解成(x + 2)(x + 3) = 0,从而得到解x = -2或x = -3。
2. 配方法对于一元二次方程无法直接因式分解的情况,可以借助配方法求解。
首先将方程写成完全平方形式,例如x^2 + 6x + 9 = (x + 3)^2,再利用二次方程平方根的性质解得x = -3。
3. 求根公式对于一般的一元二次方程,可以使用求根公式来求解。
求根公式的表达式为x = (-b ± √(b^2 - 4ac))/(2a)。
根据这个公式,我们可以直接计算出方程ax^2 + bx + c = 0的解。
综上所述,一元二次方程在解决实际问题时具有广泛应用。
利用一元二次方程解决实际问题
利用一元二次方程解决实际问题一元二次方程是中学数学中的重要内容,它在解决实际问题中起到了至关重要的作用。
本文将通过具体的例子,介绍如何利用一元二次方程解决实际问题,并展示其实用性和重要性。
一、利用一元二次方程解决跳伞问题假设小明从飞机上跳伞,下降过程中受到空气阻力的影响,他的下降速度可以用一元二次方程来表示。
已知小明的初始高度为h0,下降过程中的时间为t,下降速度为v,空气阻力为k,可以得到如下一元二次方程:h(t) = h0 - v*t - k*t^2通过解这个一元二次方程,我们可以得到小明下降到地面的时间。
这个问题在实际生活中很有实用性,可以帮助判断跳伞过程中的安全性和合理性。
二、利用一元二次方程解决抛物线问题抛物线是一种常见的曲线形状,在实际问题中也经常出现。
例如,一个物体从离地面h0高度处以初速度v0水平抛出,受到重力的影响,可以用一元二次方程来表示其运动轨迹。
已知重力加速度为g,抛物线的方程可以表示为:h(t) = h0 + v0*t - 0.5*g*t^2通过解这个一元二次方程,我们可以得到物体落地的时间以及落地的位置。
这个问题在物理学中经常出现,也是解决实际问题的重要工具。
三、利用一元二次方程解决汽车行驶问题假设一辆汽车以初速度v0匀速行驶,经过t小时后速度增加了a,行驶的距离可以用一元二次方程来表示。
已知汽车的初始位置为s0,行驶的时间为t,行驶的距离为s,可以得到如下一元二次方程:s(t) = s0 + v0*t + 0.5*a*t^2通过解这个一元二次方程,我们可以得到汽车行驶的时间和行驶的距离。
这个问题在实际生活中很有实用性,可以帮助计算汽车行驶的时间和距离,以便合理安排行程。
总结通过以上的例子,我们可以看到一元二次方程在解决实际问题中的重要性和实用性。
利用一元二次方程,我们可以解决跳伞、抛物线和汽车行驶等各种实际问题,帮助我们做出合理的决策和计算。
因此,掌握一元二次方程的解法和应用是中学数学学习的重要内容,对中学生和他们的父母来说都具有重要的意义。
一元二次方程实际问题
一元二次方程实际问题
一元二次方程是数学中的重要概念,它在实际问题中有许多应用。
下面我将从几个不同的角度来讨论一元二次方程在实际问题中的应用。
首先,一元二次方程可以用来解决关于抛物线的实际问题。
例如,当一个物体从特定的高度以特定的初速度被抛出时,它的高度可以用一元二次方程来描述。
这种问题在物理学和工程学中经常出现,通过解一元二次方程可以求解出物体的最高点、飞行时间、落地点等相关信息。
其次,一元二次方程也可以用来解决关于面积和周长的实际问题。
例如,一个矩形的面积是其长和宽的乘积,可以表示为一元二次方程的形式。
通过解这个方程,可以找到给定周长条件下面积最大或最小的矩形,这在数学优化和经济学中有广泛的应用。
另外,一元二次方程还可以用来解决关于速度、时间和加速度的实际问题。
例如,一个物体的运动轨迹可以用一元二次方程来描述,通过对这个方程进行求导可以得到物体的速度和加速度。
这对于物理学和工程学中研究运动的问题非常重要。
此外,一元二次方程还可以用来解决关于金融和投资的实际问题。
例如,复利计算中的本金、利率和时间之间的关系可以表示为一元二次方程。
通过求解这个方程,可以得到投资的最佳方案和最大收益。
总的来说,一元二次方程在实际问题中有着广泛的应用,涉及到物理学、工程学、数学优化、经济学、金融学等多个领域。
通过解一元二次方程,我们可以更好地理解和解决各种实际问题,这使得它成为数学中一个非常重要的概念。
知识点13 一元二次方程的实际应用2017(解答题)
三、解答题1.(2017重庆,23,10分)(本小题满分10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一总分运往市场销售.该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m %,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2 m %,但销售均价比去年减少了m %.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.思路分析:(1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x千克,今年收获枇杷(400-x)千克,依题意,得:400-x≥7x,解得:x≥50.答:该果农今年收获樱桃至少70千克.(2)由题意,得:3000×(1-m %)+4000×(1+2m %)×(1-m %)=7000,解得:m1=0(不合题意,舍去),m2=12.5;答:m的值为12.5.2.(2017山东菏泽,19,7分)(本题7分)列方程解应用题某玩具厂生产一种玩具,按照控制成本加捻促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天课多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?思路分析:根据等量关系“利润=(售价-成本)×销售量”列出每天的销售利润与销售单价的方程求解,求解结果符合题意即可.解:设销售单价为x元,由题意,得:(x-360)[160+2(480-x)]=20000,整理,得:x 2-920x+211600=0,解得:x 1=x 2=460,答:这种玩具的销售单价为460元时,厂家每天可获利润20000.3. (2017四川眉山,24,9分)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?思路分析:(1)根据“第一档次的利润+增加的利润=新批次的利润”,可列出一元一次方程求解;(2)根据“总利润=该档次每件的利润×该档次的产品的产量”,列出一元二次方程求解,注意检验是否符合题意.解:(1)设此批次蛋糕属第x 档次产品,则10+2(x -1)=14,解得x =3.答:此批次蛋糕属第3档次产品.(或:∵14-102+1=3,∴此批次蛋糕属第3档次产品.)(2)设该烘焙店生产的是第x 档次的产品,根据题意,得[10+2(x -1)][76-4(x -1)]=1080,解之,得x 1=5,x 2=11(舍去).答:该烘焙店生产的是第5档次的产品.4. (2017江苏淮安,26,10分)某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图像,图中折线ABCD 表示人均收费y (元)与参加旅游的人数x (人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为________元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?思路分析:(1)参加旅游的人数不超过10人对应的函数图像是线段AB ,线段AB 对应的纵坐标就是人均费用;(2)先根据总费用3600员确定参加旅游的人数,然后利用“总费用=人均费用×总人数”列方程求解. 解:(1)240.(2)设参加这次旅游有a 人.∵10×240=2400<3600,∴a >10.∵25×150=3750>3600,第26题图∴a <25.综合知,10<a <25.设直线BC 的函数表达式为y =kx b +,把B (10,240),C (25,150)代入,得2401015025k b k b =+⎧⎨=+⎩., 解得k =-6,b =300.∴直线BC 的函数表达式为y =6300x -+.∴人数为a 时的人均费用为6300a -+.根据题意,得(6300)a a -+=3600.整理,得250600a x -+=0.解得1a =20,2a =30.∵10<a <25,∴a =20.答:参加这次旅游有20人.5. (2017湖南常德,23,8分)收发微信红包已成为各类人群进行交流联系、增强感情的一部分.下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.甜甜: 妹妹:请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?思路分析:列一元一次方程和一元二次方程,进行求解.解:(1)设2015年到2017年甜甜和她妹妹在六一收到红包的年平均增长率是x根据题意列方程得:400(1+x )²=484解得1x =0.1 2x =﹣2.1(舍)故平均增长率为10%.(2)设2017年六一甜甜收到的微信红包为y 元,则妹妹收到红包为(2y +34)元,根据题意列方程得:y +(2y +34)=4842017年六一,我们共收到484元微信红包 2015年六一时,我们只共收到400元微信红包,不过我今年收到的钱数是你的2倍多34元解得y=150故甜甜收到的微信红包为:150元,妹妹收到的为新年红包为:(2y+34)=334元.6.(2017·南宁)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.[来源:@~&中#教网^](1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?思路分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7500(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7500(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%.故a的值至少是12.5.7.27.( 2017四川巴中,6分)巴中市某楼盘准备以每平方5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050 元的均价开盘销售.若两次下调的百分率相同,求平均每次下调的百分率.思路分析:增长率或降低率问题,由基数×(1±百分率)n=结果数据,列方程计算.解:设平均每次下调的百分率为x,由题意得:5000(1-x)2=4050,解得:x1=0.1,x2=1.9(舍去)答:平均每次下调的百分率为10%.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. (2017 山东省潍坊市) 2017山东潍坊,23,9分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?答案:思路分析:(1)矩形四角裁去的四个同样大小小正方形画成实线,内部的四个顶点用虚线顺次连接,即得裁剪示意图;设裁掉的正方形的边长为x cm,表示长方体底面的两边长,再利用面积公式构建一元二次方程求解;(2)利用长不大于宽的五倍,构建一元一次不等式确定裁掉的正方形的边长x(cm)的取值范围,然后设总费用为w(元),根据题设条件列出w(元)与x(cm)的二次函数解析式,利用二次函数的最值解决该实际问题.解:(1)如图所示:设裁掉的正方形的边长为x cm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解之得:x1=2或x2=6(舍去).所以裁掉的正方形的边长为2dm,底面积为12dm2.(2)因为长不大于宽的五倍,所以10-2x≤5(6-2x),所以0<x≤2.5.设总费用为w元,由题意可知:w=0.5×2x(16-4x)+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24.因为对称轴为x=6,开口向上,所以当0<x≤2.5时,w随x的增大而减小,所以当x=2.5时,w min=25元.所以当裁掉边长为2.5dm的正方形时,总费用最低为25元.方法:对照从平面图形到立体图形的裁剪、竖折的变化过程,理解题意,是解决问题(1)的关键.注意:容易忽略条件0<x≤2.5,而误认为x=6时总费用最少.20171012114505609785 4.5 利用一元二次方程解决实际问题应用题基础知识2017-10-122. (2017 湖北省襄阳市) 】.(6分)(2017•襄阳, 19, 6分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,20XX年利润为2亿元,20XX年利润为2.88亿元.(1)求该企业从20XX年到20XX年利润的年平均增长率;(2)若20XX年保持前两年利润的年平均增长率不变,该企业20XX年的利润能否超过3.4亿元?答案:】.考点AD:一元二次方程的应用.分析(1)设这两年该企业年利润平均增长率为x.根据题意20XX年创造利润250(1+x)万元人民币,20XX年创造利润250(1+x)2 万元人民币.根据题意得方程求解;(2)根据该企业从20XX年到20XX年利润的年平均增长率来解答.解答解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得 x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果20XX年仍保持相同的年平均增长率,那么20XX年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业20XX年的利润能超过3.4亿元.点评此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.20171012083538000934 4.5 利用一元二次方程解决实际问题应用题基础知识2017-10-123. (2017贵州省六盘水市) 三角形的两边,a b的夹角为60°且满足方程240x-+=,则第三边长的长是( )B. C. D.答案:20171011151348531515 4.5 利用一元二次方程解决实际问题选择题基础知识2017-10-114. (2017 重庆市綦江县) 某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.答案:考点AD:一元二次方程的应用;C9:一元一次不等式的应用.分析(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.解答解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m 2=12.5,答:m 的值为12.5.20170919160008640271 4.5 利用一元二次方程解决实际问题 应用题 基础知识 2017-9-195. (2017 重庆市綦江县) 某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产。
(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m 的值。
答案:⑴设该果农今年收获樱桃x 千克根据题意得4007x x -≤,解得50x ≥⑵()()()1001%3020012%201%1003020020m m m -⨯+⨯+⨯-=⨯+⨯令%m y =,原方程可化为()()()3000140001217000y y y -++-=整理可得:280y y -=解得:10y =,20.125y =∴10m =(舍去),212.5m =∴212.5m =20170919155620953952 4.5 利用一元二次方程解决实际问题 应用题 基础知识 2017-9-196. (2017 四川省宜宾市) 经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .答案: 50(1﹣x )2=32 .考点AC :由实际问题抽象出一元二次方程.分析根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x ,可以列出相应的方程即可.解答解:由题意可得,50(1﹣x )2=32,故答案为:50(1﹣x )2=32.20170919140904515152 4.5 利用一元二次方程解决实际问题 填空题 基础知识 2017-9-197. (2017 山东省烟台市) 今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动.现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球20XX 年单价为200元,20XX 年单价为162元.(1)求20XX 年到20XX 年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商店有不同的促销方案:试问去哪个商场购买足球更优惠?答案:答案(1)10%.(2)去B商场购买足球更优惠.试题解析:(1)设20XX年到20XX年该品牌足球单价平均每年降低的百分率为x,根据题意得:200×(1﹣x)2=162,解得:x=0.1=10%或x=﹣1.9(舍去).答:20XX年到20XX年该品牌足球单价平均每年降低的百分率为10%.(2)100×101000=1111≈90.91(个),在A商城需要的费用为162×91=14742(元),在B商城需要的费用为162×100×910=14580(元).14742>14580.答:去B商场购买足球更优惠.考点:一元二次方程的应用.20170919121250656021 4.5 利用一元二次方程解决实际问题应用题基础知识2017-9-198. (2017 江苏省盐城市) 某商店在20XX年至20XX年期间销售一种礼盒.20XX年,该商店用3500元购进了这种礼盒并且全部售完;20XX年,这种礼盒的进价比20XX年下降了11元/盒,该商店用2400元购进了与20XX年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)20XX年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?答案:考点AD:一元二次方程的应用;B7:分式方程的应用.分析(1)设20XX年这种礼盒的进价为x元/盒,则20XX年这种礼盒的进价为(x﹣11)元/盒,根据20XX年花3500元与20XX年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出20XX年的购进数量,再根据20XX年的销售利润×(1+增长率)2=20XX年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.解答解:(1)设20XX年这种礼盒的进价为x元/盒,则20XX年这种礼盒的进价为(x﹣11)元/盒,根据题意得: =,解得:x=35,经检验,x=35是原方程的解.答:20XX年这种礼盒的进价是35元/盒.(2)设年增长率为m,20XX年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.20170918161057718783 4.5 利用一元二次方程解决实际问题应用题基础知识2017-9-189. (2017 湖南省常德市) 收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)20XX年到20XX年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)20XX年六一甜甜和她妹妹各收到了多少钱的微信红包?答案:答案(1)10%;(2)甜甜在20XX年六一收到微信红包为150元,则她妹妹收到微信红包为334元.试题解析:(1)设20XX年到20XX年甜甜和她妹妹在六一收到红包的年增长率是x,依题意得:400(1+x)2=484,解得x1=0.1=10%,x2=﹣2.1(舍去).答:20XX年到20XX年甜甜和她妹妹在六一收到红包的年增长率是10%;(2)设甜甜在20XX年六一收到微信红包为y元,依题意得:2y+34+y=484,解得y=150,所以484﹣150=334(元).答:甜甜在20XX年六一收到微信红包为150元,则她妹妹收到微信红包为334元.考点:一元一次方程的应用;一元二次方程的应用;增长率问题.20170915090045390719 4.5 利用一元二次方程解决实际问题应用题解决问题2017-9-1510. (2017 黑龙江省黑河市) 原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为.答案:10% .考点AD:一元二次方程的应用.分析先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1﹣x),第二次降价后的售价是原来的(1﹣x)2,再根据题意列出方程解答即可.解答解:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.20170914100145578205 4.5 利用一元二次方程解决实际问题填空题双基简单应用2017-9-1411. (2017 广西钦州市) 为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在20XX年图书借阅总量是7500本,20XX年图书借阅总量是10800本.(1)求该社区的图书借阅总量从20XX年至20XX年的年平均增长率;(2)已知20XX年该社区居民借阅图书人数有1350人,预计20XX年达到1440人,如果20XX 年至20XX年图书借阅总量的增长率不低于20XX年至20XX年的年平均增长率,那么20XX年的人均借阅量比20XX年增长a%,求a的值至少是多少?答案:考点AD:一元二次方程的应用;C9:一元一次不等式的应用.分析(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7500(1+x)2本,即可列方程求解;(2)先求出20XX年图书借阅总量的最小值,再求出20XX年的人均借阅量,20XX年的人均借阅量,进一步求得a的值至少是多少.解答解:(1)设该社区的图书借阅总量从20XX年至20XX年的年平均增长率为x,根据题意得7500(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该社区的图书借阅总量从20XX年至20XX年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%.故a的值至少是12.5.20170913143000437919 4.5 利用一元二次方程解决实际问题应用题数学思考2017-9-1312. (2017 广东省深圳市) 一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.答案:考点AD:一元二次方程的应用.分析(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.解答解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣800<0,原方程无解,故不能围成一个面积为200平方厘米的矩形.20170912140638484341 4.5 利用一元二次方程解决实际问题应用题解决问题2017-9-1213. (2017 四川省眉山市) 坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?答案:考点AD:一元二次方程的应用.分析(1)根据生产提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出每件利润为14元的蛋糕属第几档次产品;(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论.解答解:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第3档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11.答:该烘焙店生产的是第5档次或第11档次的产品.20170911101641625694 4.5 利用一元二次方程解决实际问题 应用题 数学思考 2017-9-1114. (2017 甘肃省白银九市) 如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( )A .()()32220570x x --= B .322203232570x x +⨯=⨯- C.()()32203220570x x --=⨯- D .2322202570x x x +⨯-=答案:A20170821135527406332 4.5 利用一元二次方程解决实际问题 选择题 双基简单应用 2017-8-21。