经济数学基础A卷试题
经济数学期末考试试卷(A卷).doc
![经济数学期末考试试卷(A卷).doc](https://img.taocdn.com/s3/m/70fdd3ae866fb84ae55c8d44.png)
格式经济数学期末考试试卷( A 卷)一、填空题(满分15 分,每小题3 分)1.设1 2的定义域为 .f(x)1x1lnx22.当x0 时,若ln(1ax)与 xsinx 是等价无穷小量,则常数 a.3.设f(x)A ,则lim f ( x )f( x 2h).000 h0h4.设f(x)在(,)上的一个原函数为sin2x ,则 f(x).5.设f(x) 为连续函数,且1f(x)x2f(t)dt ,则 f(x) .二、选择题:(满分15 分,每小题 3 分)sin xx0x6.设 fx ,则在 x0 处, f(x) ()1x0(A).连续( B).左、右极限存在但不相等(C).极限存在但不连续( D).左、右极限不存在27.设f(x) xx ,则函数 f(x) ()sinx( A)有无穷多个第一类间断点;(B)只有 1 个可去间断点;( C)有 2 个跳跃间断点;(D)有 3 个可去间断点.8.若点 (1,4) 是曲线23yaxbx 的拐点,则 ()(A) a6,b2 ;( B) a2,b6 ;( C) ab1 ;( D) ab2.9.下列各式中正确的是()b(A).(f(x)dx)f(x)(B).df(x)f(x)dxax( C).d(f(x)dx)f(x)(D).(f(t)dt)f(t)a10.某种产品的市场需求规律为Q8005p,则价格p120 时的需求弹性d()( A).4( B).3( C).4%( D).3%三、计算题(每小题 5 分,共 20 分):11.求极限:x1lim()x11xlnx专业资料整理格式xa,求常数 a 的值 .x12.设 lim()8xxa13.设 sinxyx ,求 dy| xx2cost2 14.设 ,求dyy3sint2 dx四、计算题( 10 分)sinx,x015.设 f(x).axb,x0( 1)确定常数 a,b 的值,使 f(x)在x0处可导;( 2)求 f(x) ;( 3)问 f(x) 在 x0 处是否连续.五、计算题(满分 10 分)16.求不定积分: 1xdx1e17.求广义积分:l nx dx2 1x六、应用题(满分 20 分)18.过原点作曲线 ylnx 的切线,求该切线与曲线ylnx 及 x 轴所围成的平面图形的面积,并求该图形绕x 轴旋转一周所成立体的体积。
《经济数学基础上》模拟试卷A-C
![《经济数学基础上》模拟试卷A-C](https://img.taocdn.com/s3/m/7b92741ee009581b6ad9ebcf.png)
厦门大学网络教育2008-2009学年第二学期 《经济数学基础上》模拟试卷(A )卷一、 填空题(每小题4分,共24分)1.函数31()2arcsin2x f x -=的定义域是_____________.答案:11,32⎡⎤-⎢⎥⎣⎦2.若2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭, 则a =_________.答案:ln 2 3. 设()f x 在点x a =处可导,则0()()limx f a x f a x x→+--=________.答案:'2()f a4. 已知曲线L 的参数方程是sin 2cost tx e ty e t ⎧=⎨=⎩在点()0,1处的法线方程是______________.答案:210x y +-= 5. 曲线21(0)1y x x =>+的拐点是____________________.答案:1)36.13-=⎰___________________.答案: 0二、单项选择题(每小题4分,共24分)1. 设xx eex f 11321)(++=,则0x =是()f x 的( B ).A. 可去间断点B. 第一类间断点(跳跃间断点)C. 第二类间断点D. 连续点2. 设数列n x 与n y 满足lim 0n n n x y →∞=,则下列断言正确的是( D ).A. 若n x 发散,则n y 必发散B. 若n x 无界,则n y 必有界C. 若n x 有界,则n y 必为无穷小D. 若1nx 为无穷小,则n y 必为无穷小 3. 设321,0()00x e x f x x x ⎧-⎪≠=⎨⎪=⎩,则在0x =处,()f x 的导数( C ).A. 0B. 不存在C. -1D. 1 4. 函数32()f x x ax bx =++在1x =处取极小值-2,则( B ).A. 1,2a b ==B. 0,3a b ==-C. 2,2a b ==D. 3,0a b =-=5. 曲线2y x =在其上横坐标为1x =的点处切线的斜率是( A ).A . 2 B. 0 C. 1 D. -1 6. "()xf x dx =⎰( C ).A. "'()()()xf x xf x f x C --+B. ()()xf x f x dx -⎰C. '()()xf x f x C -+D. '()()xf x f x C ++三、计算题(每小题8分,共32分)1. 20ln(ln(1)1)lim 1cos 2x x x→++-.解法一:()222ln(ln(1)1)ln(1)0x x x x ++~+~→()()211cos 2202xx x -→()22002ln(ln(1)1)1limlim 11cos 2222x x x x xx →→++∴==- 2.求xx xdt ext x --⎰-→sin lim2.解 原式 = 2200211limlim 1cos 122x x x e x x x-→→-==-, 其中 22211~,1cos ~2x e x x x ---- 3. 求由方程y x x y a +=所确定的函数()y y x =导数dy dx. 解 将方程写成指数形式ln ln y x x y e e a +=两边关于x 求导ln 'ln '11(ln )(ln )0y x x y e y x y e y x y x y+⋅++⋅=即 ''11(ln )(ln )0y xx y x y y y x y xy+⋅++⋅= 故 1'1ln ln x y y x y y yx y x x xy --+=-+4.⎰.解首先作代换t =,则2dx tdt =,于是2222arctan arctan 1t t tdt t t dt t ==-+⎰⎰⎰∵ 22222111arctan 111t t dt dt dt dt t t c t t t+-==-=-++++⎰⎰⎰⎰c原式=x c四、证明题 (每小题10分,共20分)1. 设()f x 在[0,1]上连续,在(0,1)内可导,且1144()(0)3f x dx f =⎰,证明在(0,1) 内至少存在一点(0,1)ξ∈,使()0f ξ'=.证:∵()f x 在[0,1]上连续,由积分中值定理有1144()(0)3f dx f η=⎰,即1()(0),(,1)4f f ηη=∈,于是在[0,]η上应用罗尔定理, 则存在一点(0,)(0,1)ξη∈⊂,使()0f ξ'=。
经济数基础学试题及答案
![经济数基础学试题及答案](https://img.taocdn.com/s3/m/3fe55a720a4e767f5acfa1c7aa00b52acec79c5c.png)
经济数基础学试题及答案一、单项选择题(每题2分,共10分)1. 经济学中,需求曲线通常呈现为:A. 向上倾斜的直线B. 向下倾斜的直线C. 水平直线D. 垂直直线答案:B2. 边际成本与平均成本的关系是:A. 边际成本始终高于平均成本B. 边际成本始终低于平均成本C. 边际成本与平均成本无固定关系D. 边际成本等于平均成本时,平均成本最小答案:D3. 完全竞争市场中,企业在短期内的供给曲线是:A. 边际成本曲线B. 平均成本曲线C. 总成本曲线D. 固定成本曲线答案:A4. 价格弹性的计算公式是:A. (价格变化/需求量变化)×100%B. (需求量变化/价格变化)×100%C. (价格变化/需求量变化)D. (需求量变化/价格变化)答案:B5. 根据洛伦兹曲线,收入分配的不平等程度可以通过:A. 基尼系数来衡量B. 洛伦兹曲线与45度线之间的面积来衡量C. 洛伦兹曲线与45度线之间的距离来衡量D. 洛伦兹曲线与45度线之间的交点来衡量答案:A二、多项选择题(每题3分,共15分)6. 以下哪些因素会影响供给曲线的移动?A. 生产成本的变化B. 消费者偏好的变化C. 相关产品的价格变化D. 技术水平的变化答案:A, C, D7. 宏观经济学中的总需求包括:A. 消费B. 投资C. 政府支出D. 净出口答案:A, B, C, D8. 货币政策工具包括:A. 调整利率B. 公开市场操作C. 调整存款准备金率D. 调整税收答案:A, B, C9. 以下哪些属于宏观经济学中的失业类型?A. 摩擦性失业B. 结构性失业C. 周期性失业D. 非自愿失业答案:A, B, C10. 根据菲利普斯曲线,通货膨胀率与失业率之间的关系是:A. 正相关B. 负相关C. 无相关D. 长期内无相关答案:B, D三、简答题(每题5分,共20分)11. 简述边际效用递减原理。
答案:边际效用递减原理指的是随着消费某种商品的数量增加,消费者从每增加一单位商品中获得的额外满足(即边际效用)逐渐减少。
《经济学基础》A卷试题与答案
![《经济学基础》A卷试题与答案](https://img.taocdn.com/s3/m/8e5dc660312b3169a451a4ce.png)
《经济学基础》 A 卷一、名词解释题(本题共 4 小题,每小题 5 分,共 20 分)1、边际效用递减规律2、衡量经济增长的主要指标3、帕累托最优状态4、经济增长:二、单选题(本题共10 小题,每小题 1.5 分,共 15 分)1、如果两种商品 x 和 y 的需求交叉弹性系数是 -2.3,那么可以判断出 ( )。
A.x 和 Y 是替代品B.x 和 y 是互补品C.x 和 y 是高档品D.x 和 y 是低价品2、基数效用论和序数效用论的主要区别是()。
A. 边际效用是否递减B.效用是否可加总C.效用函数是否线性D.效用是否客观3、总效用曲线达到顶点时()。
A.边际效用为正B.边际效用为零C.边际效用为负D.边际效用曲线达到最大点4、机会成本是指当一种生产要素被用于生产某产品时所放弃的使用该生产要素在其他生产用途中所得到的()。
A. 最高收入B.最低收入C.平均收入D.超额收入5、最需要进行广告宣传的市场结构是()A. 完全竞争市场B.完全垄断市场C.寡头垄断市场D.垄断竞争市场6、随着工资水平的提高()A .劳动的供给量会一直增加 B.劳动的供给量变化无定数C..劳动的供给量先增加,但工资提高到一定水平后,劳动的供给不仅不会增加反而会减少少。
D.劳动的供给量增加到一定程度后就不会增加也不会减少了。
7、市场失灵是指()A.在私人部门和公共部门之间资源配置不均B.不能产生任何有用成果的市场过程C.以市场为基础的对资源的低效率配置D.收入分配不平等8、 GDP 一般包括()A. 当年生产的物质产品和劳务B.上年的存货C. 本国公民创造的全部价值D. 当年销售掉的全部最终产品和劳务9、引起周期性失业的原因是()。
A. 工资刚性B.总需求不足C.经济中劳动力的正常流动D.经济结构的调整。
10、决定国际间资本流动的主要因素是各国的()。
A.收入水平B.利率水平C.价格水平D.进出口差额。
三、多选题(本题共 5 小题,每小题 3 分,共 15 分)1、西方微观经济学认为,所有的社会都要解决()。
《经济数学》课程考试试题及答案(A卷及答案)( 经济数学基础12形考答案)
![《经济数学》课程考试试题及答案(A卷及答案)( 经济数学基础12形考答案)](https://img.taocdn.com/s3/m/9b32c91b7e21af45b307a8ec.png)
《经济数学》课程考试试题及答案(A 卷及答案)2018 ~2019 学年第一学期适用班级 成会计电算化18-01 成绩一.单项选择(3515'⨯=)1.函数()f x =ln(2)x -+) A ( 2 4] , B [2 , 4] C [2 , 4) D (2 , 4) 2.若函数f (x )在点x 0处可导,则()是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠ C .函数f (x )在点x 0处连续 D .函数f (x )在点x 0处可微3.设()R x 为收入函数,()C x 为成本函数,0x 为盈亏平衡点,则0x 满足( ) A .()()R x C x ''=; B .()()R x C x <; C .()()R x C x >; D .()()R x C x =. 4.下列说法不正确的是( )A .无穷小量是极限为0变量;B .0是无穷小量;C .无穷小量是绝对值极小的数;D .非零常数绝对值再小也不是无穷小量. 5.已知()f x 在0x 处可导,则000(2)()limh f x h f x h h→+--=( )A .0()f x ;B .20()f x ';C .0;D .03()f x '. 二.填空题(3515''⨯=)6.24lim(1)x x x →∞+= .7.当01x x +→- 时, 是 的________无穷小(填“高阶”、“低阶”、“同阶”或“等价”)。
8.xdx = 2(53)d x -. 9.设函数()f x 的一个原函数为1x,则()_____________f x =。
10.设生产某种产品产量为q 单位时的成本函数为:()10007C q q =++(元),则当100q =单位时的边际成本为_____,其经济意义是 .三.计算题(5566688549'''''''''+++++++=) 11.设函数2sin ,0,(),0,1sin 2,0x x x f x k x x x x ⎧<⎪⎪==⎨⎪⎪+>⎩在点0x =处连续,试确定k 的值。
大学经济数学基础考试题及答案
![大学经济数学基础考试题及答案](https://img.taocdn.com/s3/m/f3ab004b2379168884868762caaedd3383c4b594.png)
大学经济数学基础考试题及答案一、选择题(每题2分,共20分)1. 经济学中的边际成本是指:A. 总成本除以产量B. 增加一单位产量所带来的成本增加C. 固定成本D. 总成本答案:B2. 在完全竞争市场中,企业面临的需求曲线是:A. 水平的B. 垂直的C. 向右下倾斜的D. 向右上倾斜的答案:A3. 下列哪项不是宏观经济学的研究内容?A. 通货膨胀B. 失业率C. 个人收入D. 经济增长答案:C4. 边际效用递减原理指的是:A. 随着商品数量的增加,其边际效用递增B. 随着商品数量的增加,其边际效用递减C. 商品价格越高,边际效用越大D. 商品价格越低,边际效用越大答案:B5. 如果一个企业处于垄断地位,它将:A. 总是生产最少的产品以最大化利润B. 总是生产最多的产品以最大化利润C. 选择一个产量水平,使得边际收入等于边际成本D. 选择一个价格水平,使得消费者剩余最大答案:C6. 在下列哪种情况下,消费者剩余最大?A. 完全竞争市场B. 垄断市场C. 垄断竞争市场D. 寡头市场答案:A7. 机会成本是指:A. 放弃的下一个最佳选择的价值B. 放弃的总成本C. 放弃的固定成本D. 放弃的可变成本答案:A8. 如果两种商品是互补品,那么其中一种商品价格上升将导致:A. 另一种商品的需求量增加B. 另一种商品的需求量减少C. 互补商品的供应量增加D. 互补商品的供应量减少答案:B9. 根据科斯定理,如果产权界定清晰,并且交易成本为零,则:A. 资源配置将达到社会最优B. 资源配置将达到个人最优C. 资源配置将达到政府最优D. 资源配置将达到企业最优答案:A10. 在下列哪种情况下,政府可能会实施价格上限?A. 商品供应过剩B. 商品需求过剩C. 商品供应不足D. 商品需求不足答案:B二、简答题(每题10分,共30分)11. 简述边际分析在经济学中的应用。
答案:边际分析是经济学中一种重要的分析方法,它通过比较额外一单位的投入(边际成本)与额外一单位的产出(边际收益)来帮助企业或个人做出决策。
经济数学基础12试题-A及答
![经济数学基础12试题-A及答](https://img.taocdn.com/s3/m/d2fb23c25f0e7cd1852536ba.png)
经济数学基础12试题 A 卷及答案一、单项选择题(共20题,每题2分,共40分)1.下列函数中为偶函数的是( ).(A) sin yx x (B) 2y x x (C) 22x x y (D) cos y x x2.下列函数中为奇函数的是( ).(A) sin yx x (B) 1ln 1x y x (C) e e x x y (D) 2y x x 3.下列各函数对中,( )中的两个函数相等.A.2()(),()f x x g x x B. 21(),()11x f x g x x x C. 2()ln ,()2ln f x x g x x D.22()sin cos ,()1f x x x g x4.下列结论中正确的是( ).(A) 周期函数都是有界函数(B) 基本初等函数都是单调函数(C) 奇函数的图形关于坐标原点对称(D) 偶函数的图形关于坐标原点对称5.下列极限存在的是( ).A .22lim 1x x x →∞-B .01lim 21x x →- C .limsin x x →∞D .10lime xx → 6.已知()1sin x f x x,当()时,)(x f 为无穷小量. A.0x → B.1x → C.x →-∞ D.x →+∞正确答案:A7.当x →+∞时,下列变量为无穷小量的是( )A .ln(1)xB .21x x C .21e x D .x xsin8.函数1,0(),0x f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k= ( ).A .-2B .-1C .1D .29.曲线sin y x 在点)0,π(处的切线斜率是( ).(A) 1(B) 2(C) 21(D) 110.曲线1y x 在点(0, 1)处的切线斜率为( )。
A .21B .12C.2(1)x 11.若()cos 2f x x ,则()2f π''=( ).A .0B .1C . 4D .-412.下列函数在区间(,)-∞+∞上单调减少的是( ). (A) x cos (B) 2x (C)x 2 (D) 2x13.下列结论正确的是( ).(A) 若0()0f x '=,则0x 必是)(x f 的极值点(B) 使()f x '不存在的点0x ,一定是)(x f 的极值点(C) 0x 是)(x f 的极值点,且0()f x '存在,则必有0()0f x '=(D) 0x 是)(x f 的极值点,则0x 必是)(x f 的驻点14.设某商品的需求函数为2()10e pq p ,则当6p 时,需求弹性为().A .35eB .- 3C .3D .1215.若函数1()xf x x ,()1,g x x 则[(2)]f g ( ).A .-2B .-1C .-1.5D .1.516.函数1ln(1)y x 的连续区间是( ).A .122⋃+∞(,)(,)B .[122⋃+∞,)(,)C .1+∞(,)D .[1+∞,)17.设ln ()d xf x x c x =+⎰,则)(x f =( ).A .x ln lnB .x xln C .21ln xx D .x 2ln18.下列积分值为0的是( ).A .-sin d x x x ππ⎰B .1-1e e d 2x xx -+⎰C .1-1e e d 2x xx --⎰ D .(cos )d x x x ππ-+⎰19.若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ).A .()d ()xa f x x F x =⎰B .()d ()()xa f x x F x F a =-⎰C .()d ()()ba F x x fb f a =-⎰D .()d ()()ba f x x Fb F a '=-⎰ 20.设(12)A ,(13)B ,I 是单位矩阵,则T A B I =().A .2325-⎡⎤⎢⎥-⎣⎦B .1236--⎡⎤⎢⎥⎣⎦C .1326-⎡⎤⎢⎥-⎣⎦ D .2235--⎡⎤⎢⎥⎣⎦二、填空题(共20题,每题1.5分,共30分)1.函数24ln(1)x y x 的定义域是.2.函数2141y x x 的定义域是.3.若函数2(1)26f x x x ,则()f x .4.设1010()2x x f x ,则函数的图形关于对称. 5.已知需求函数为20233q p ,则收入函数)(q R =. 6.sin lim x x x x→∞+=. 7.已知210()10x x f x x a x ⎧-≠⎪=-⎨⎪=⎩,若)(x f 在(,)-∞+∞内连续,则a . 8.曲线2()1f x x 在)2,1(处的切线斜率是. 9.过曲线2e x y上的一点(0,1)的切线方程为. 10.函数3(2)y x 的驻点是.11.设12325130A a -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,当a 时,A 是对称矩阵. 12.已知tan ()1x f x x ,当时,)(x f 为无穷小量. 13.齐次线性方程组0AX(A 是n m ⨯)只有零解的充分必要条件是. 14.若()d ()f x x F x c =+⎰,则e (e )d x xf x --⎰=. 15.03e d x x -∞⎰=. 正确答案:3116.设线性方程组AX b ,且111601320010A t ⎡⎤⎢⎥→-⎢⎥⎢⎥+⎣⎦,则___t 时,方程组有唯一解. 17.设齐次线性方程组11m n n m A X O ⨯⨯⨯=,且)(A r = r < n ,则其一般解中的自由未知量的个数等于.18.线性方程组AX b 的增广矩阵A 化成阶梯形矩阵后为120100421100001A d ⎡⎤⎢⎥→-⎢⎥⎢⎥+⎣⎦则当d =时,方程组AX b 有无穷多解.19. 已知齐次线性方程组AX O 中A 为53⨯矩阵,则()r A ≤. 20.函数()11x f x e=-的间断点是. 三、计算题(共2题,每题10分,共20分)1.已知22sin x x ,求y '.2.设2cos 2sin x y x ,求y '.四、应用题(共10分)1. 设生产某产品的总成本函数为 ()3C x x (万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为()152R x x '=-(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?经济数学基础12 A 答案一、单项选择题(共20题,每题2分,共40分)1. A2. B3. D4. C5. A6. A7. D8. B 9. D 10. B11. C12. B13.C14. B15. A16. A17. C18. C19. B20. A二、填空题(共20题,每题1.5分,共30分)1.(1,2]2. :[2,1)(1,2] 3.:25x 4. :y 轴5. :23102q q 6.:17. :2 8.:219. :21y x 10.:2x 11. 112. :0x →13.:()r A n14. (e )x F c 15.:3116.:1≠-17. :n – r 18. :-119. :3 20. :0x =三、微积分计算题(共2题,每题10分,共20分)1.已知22sin x x ,求y '.解:由导数运算法则和复合函数求导法则得222(2sin )(2)sin 2(sin )x x x y x x x ''''==+2222ln 2sin 2cos ()x x x x x '=+222ln 2sin 22cos x x x x x2.设2cos 2sin x y x ,求y '.解;2sin 22ln 22cos x x y x x '=--四、应用题(共10分)1.设生产某产品的总成本函数为 ()3C x x (万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为()152R x x '=-(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?解:(1) 因为边际成本为()1C x '=,边际利润()()()142L x R x C x x '''=-=-令()0L x '=,得7x由该题实际意义可知,7x 为利润函数()L x 的极大值点,也是最大值点.因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为88277(142)d (14)1126498491L x x x x ∆=-=-=--+=-⎰(万元)即当产量由7百吨增加至8百吨时,利润将减少1万元。
经济数学基础12试题A和答
![经济数学基础12试题A和答](https://img.taocdn.com/s3/m/f74a6712192e45361066f59b.png)
经济数学基础12 试题 A 卷及答案一、单项选择题(共20题,每题2分,共40分)1.下列函数中为偶函数的是( ).(A) sin y x x = (B) 2y x x =+(C) 22x x y -=- (D) cos y x x =2.下列函数中为奇函数的是( ).(A) sin y x x = (B) 1ln 1x y x -=+ (C) e e x x y -=+ (D) 2y x x =-3.下列各函数对中,( )中的两个函数相等.A.2(),()f x g x x ==B. 21(),()11x f x g x x x -==+- C. 2()ln ,()2ln f x x g x x ==D. 22()sin cos ,()1f x x x g x =+=4.下列结论中正确的是( ).(A) 周期函数都是有界函数(B) 基本初等函数都是单调函数(C) 奇函数的图形关于坐标原点对称(D) 偶函数的图形关于坐标原点对称5.下列极限存在的是( ).A .22lim 1x x x →∞- B .01lim 21x x →- C .limsin x x →∞ D .10lime xx →6.已知()1sin x f x x=-,当( )时,)(x f 为无穷小量.A. 0x →B. 1x →C. x →-∞D. x →+∞正确答案:A7.当x →+∞时,下列变量为无穷小量的是( )A .ln(1)x +B .21x x + C .21e x - D .x xsin8.函数10(),0x f x xk x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ().A .-2B .-1C .1D .29.曲线sin y x =在点)0,π(处的切线斜率是( ).(A) 1 (B) 2 (C) 21(D) 1-10.曲线y 0, 1)处的切线斜率为( )。
A .21B .12- C.-11.若()cos 2f x x =,则()2f π''=( ).A .0B .1C . 4D .-412.下列函数在区间(,)-∞+∞上单调减少的是( ).(A) x cos (B) 2x - (C) x 2 (D) 2x13.下列结论正确的是( ).(A) 若0()0f x '=,则0x 必是)(x f 的极值点(B) 使()f x '不存在的点0x ,一定是)(x f 的极值点(C) 0x 是)(x f 的极值点,且0()f x '存在,则必有0()0f x '=(D) 0x 是)(x f 的极值点,则0x 必是)(x f 的驻点14.设某商品的需求函数为2()10e pq p -=,则当6p =时,需求弹性为( ).A .35e --B .-3C .3D .12-15.若函数1()xf x x -=,()1,g x x =+则[(2)]f g -=( ).A .-2B .-1C .-1.5D .1.516.函数1ln(1)y x =-的连续区间是( ).A .122⋃+∞(,)(,)B .[122⋃+∞,)(,)C .1+∞(,)D .[1+∞,)17.设ln ()d xf x x c x =+⎰,则)(x f =( ).A .x ln lnB .x x lnC .21lnxx - D .x 2ln18.下列积分值为0的是( ).A .-sin d x x x ππ⎰B .1-1e e d 2x xx -+⎰C .1-1e e d 2x xx --⎰ D .(cos )d x x x ππ-+⎰19.若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ). A .()d ()xa f x x F x =⎰B .()d ()()xa f x x F x F a =-⎰C .()d ()()ba F x x fb f a =-⎰D .()d ()()ba f x x Fb F a '=-⎰20.设(12)A =,(13)B =-,I 是单位矩阵,则T A B I -=( ).A .2325-⎡⎤⎢⎥-⎣⎦B .1236--⎡⎤⎢⎥⎣⎦C .1326-⎡⎤⎢⎥-⎣⎦D .2235--⎡⎤⎢⎥⎣⎦二、填空题(共20题,每题1.5分,共30分)1.函数ln(1)y x =+的定义域是 .2.函数11y x +的定义域是 .3.若函数2(1)26f x x x -=-+,则()f x = . 4.设1010()2x xf x -+=,则函数的图形关于 对称.5.已知需求函数为20233q p =-,则收入函数)(q R = .6.sin limx x x x→∞+= . 7.已知210()10x x f x x a x ⎧-≠⎪=-⎨⎪=⎩,若)(x f 在(,)-∞+∞内连续,则a = .8.曲线2()1f x x =+在)2,1(处的切线斜率是 .9.过曲线2e x y -=上的一点(0,1)的切线方程为 .10.函数3(2)y x =-的驻点是 .11.设12325130A a -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,当a = 时,A 是对称矩阵.12.已知tan ()1x f x x =-,当 时,)(x f 为无穷小量.13.齐次线性方程组0AX =(A 是n m ⨯)只有零解的充分必要条件是 .14.若()d ()f x x F x c =+⎰,则e (e )d x xf x --⎰= .15.03e d x x -∞⎰= . 正确答案:3116.设线性方程组AX b =,且 111601320010A t ⎡⎤⎢⎥→-⎢⎥⎢⎥+⎣⎦,则___t 时,方程组有唯一解.17.设齐次线性方程组11m n n m A X O ⨯⨯⨯=,且)(A r = r < n ,则其一般解中的自由未知量的个数等于 .18.线性方程组AX b =的增广矩阵A 化成阶梯形矩阵后为120100421100001A d ⎡⎤⎢⎥→-⎢⎥⎢⎥+⎣⎦则当d = 时,方程组AX b =有无穷多解.19. 已知齐次线性方程组AX O =中A 为53⨯矩阵,则()r A ≤ .20.函数()11x f x e=-的间断点是 .三、计算题(共2题,每题10分,共20分)1.已知22sin x x =,求y '.2.设2cos 2sin x y x =-,求y '.四、应用题(共10分)1. 设生产某产品的总成本函数为 ()3C x x =+ (万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为()152R x x '=-(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?经济数学基础12 A 答案一、单项选择题(共20题,每题2分,共40分)1. A2. B3. D4. C5. A6. A7. D8. B 9. D 10. B11. C 12. B13. C14. B15. A16. A17. C18. C19. B20. A二、填空题(共20题,每题1.5分,共30分)1. (1,2]- 2. :[2,1)(1,2]--- 3. :25x + 4. :y 轴 5. :23102q q - 6.:17. :2 8. :21 9. :21y x =-+ 10. :2x = 11. 1 12. :0x → 13. :()r A n = 14. (e )x F c --+ 15. :31 16. :1≠- 17. :n – r 18. :-1 19. :3 20. :0x =三、微积分计算题(共2题,每题10分,共20分)1.已知22sin x x =,求y '.解:由导数运算法则和复合函数求导法则得 222(2sin )(2)sin 2(sin )x x x y x x x ''''==+2222ln 2sin 2cos ()x x x x x '=+ 222ln 2sin 22cos x x x x x =+2.设2cos 2sin x y x =-,求y '. 解;2sin 22ln 22cos x x y x x '=--四、应用题(共10分)1.设生产某产品的总成本函数为 ()3C x x =+ (万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为()152R x x '=-(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?解:(1) 因为边际成本为()1C x '=,边际利润()()()142L x R x C x x '''=-=-令()0L x '=,得7x =由该题实际意义可知,7x =为利润函数()L x 的极大值点,也是最大值点. 因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为88277(142)d (14)1126498491L x x x x ∆=-=-=--+=-⎰(万元)即当产量由7百吨增加至8百吨时,利润将减少1万元。
《经济数学基础》习题答案及试卷(附答案)
![《经济数学基础》习题答案及试卷(附答案)](https://img.taocdn.com/s3/m/fc5e36230a4c2e3f5727a5e9856a561252d32107.png)
习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。
经济数学基础试题及答案
![经济数学基础试题及答案](https://img.taocdn.com/s3/m/425ee079c381e53a580216fc700abb68a982ad25.png)
经济数学基础试题及答案一、单项选择题(每题2分,共10分)1. 下列函数中,哪一个是偶函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^2 + x \)D. \( f(x) = \sin(x) \)答案:A2. 微积分中,求定积分 \(\int_{0}^{1} x^2 dx\) 的值是多少?A. 0B. 1C. \(\frac{1}{3}\)D. 2答案:C3. 线性代数中,矩阵 \( A \) 与矩阵 \( B \) 相乘,结果矩阵的行列数是什么?A. \( A \) 的行数与 \( B \) 的列数B. \( A \) 的行数与 \( B \) 的行数C. \( A \) 的列数与 \( B \) 的列数D. \( A \) 的列数与 \( B \) 的行数答案:D4. 概率论中,如果事件 \( A \) 和事件 \( B \) 是互斥的,那么\( P(A \cup B) \) 等于什么?A. \( P(A) + P(B) \)B. \( P(A) - P(B) \)C. \( P(A) \times P(B) \)D. \( P(A) / P(B) \)答案:A5. 经济学中,边际效用递减原理指的是什么?A. 随着消费量的增加,每增加一单位商品带来的额外满足感逐渐减少B. 随着消费量的增加,每增加一单位商品带来的额外满足感逐渐增加C. 随着消费量的增加,每增加一单位商品带来的额外满足感保持不变D. 随着消费量的减少,每增加一单位商品带来的额外满足感逐渐增加答案:A二、填空题(每题3分,共15分)1. 函数 \( f(x) = 2x + 3 \) 的反函数是 ________。
答案:\( f^{-1}(x) = \frac{x - 3}{2} \)2. 函数 \( y = x^2 \) 在 \( x = 1 \) 处的导数是 ________。
(完整版)经济数学基础试题及答案
![(完整版)经济数学基础试题及答案](https://img.taocdn.com/s3/m/28b4ab34b9f3f90f77c61b90.png)
经济数学基础(05)春模拟试题及参考答案、单项选择题(每小题 3分,共30分)1.下列各函数对中,()中的两个函数是相等的.2C. f (x) In x , g(x) 2ln x22,、D. f (x) sin x cos x , g(x)A. x y 1 C. x y 1B. x y 1 D. x y14 .下列函数在区间(,)上单调减少的是( ).A. sin xB. 2 xC. x 25 .若 f(x)dx F (x) c,则 xf (1 x 2)dx=()12 xA. - F (1 x ) c___ 2C. 2F(1 x ) c 6.下列等式中正确的是( A . sin xdx d(cos x)~ 1 …C.a dx d(a ) ln a1 2、8. - F (1 x ) c____2D. 2F(1 x ) c8. ln xdx d(-) x1 . D. dx d(、, x) .x25, 22, 35, 20, 24是一组数据,则这组数据的中位数是(B. 23C. 22.5D. 2228.设随机变量X 的期望E(X) 1,万差D(X) = 3,则E[3(X2)]=()9.设A, B 为同阶可逆矩阵,则下列等式成立的是( )A. f(x) x 2 1 x 1,g(x) x 1B. f(x) xx 2 , g(x) x2.设函数f(x ) xsin — k,x 1,在x = 0处连续,则k =()•A. -2B. -1C. 1D. 23.函数f (x)ln x 在x 1处的切线方程是(A. 36B. 30C. 6D. 9D. 3 - x7.设 23, A. 23.5 ).2.-一11.若函数 f(x 2) x 4x 5,则 f (x)13 . d cosxdx .14 .设A,B,C 是三个事件,则 A 发生,但B,C 至少有一个不发生的事件表示 为. 15 .设A, B 为两个n 阶矩阵,且I B 可逆,则矩阵方程 A BX X 的解X三、极限与微分计算题(每小题 6分,共12分)17 .设函数y y(x)由方程x 2 y 2 e xy e 2确定,求y(x).四、积分计算题(每小题6分,共12分)18 .2xcos2xdx19 .求微分方程 y Y x 21的通解. x五、概率计算题(每小题 6分,共12分)20 .设A, B 是两个相互独立的随机事件,已知 P(A) = 0.6 , P(B) = 0.7 ,求A 与B 恰有 一个发生的概率.一 一一 2._ . 一 — 一 一一 一21 .设 X ~ N(2,3 ),求 P( 4 X 5)。
《经济数学》期末考试试卷A
![《经济数学》期末考试试卷A](https://img.taocdn.com/s3/m/74fc51c92cc58bd63186bda7.png)
四川文轩职业学院 13 级 会计 专业2013—2014学年度第一学期期末考试 《经济数学基础》课程试卷(A)答卷说明: 1、满分100分 2、120分钟完卷一、判断题(正确的划“√”,错误的划“×”。
每小题2分,共10分) 1.当x →∞时,sin xx是无穷小量。
( ) 2.若函数()y f x =在0x x =处有定义,则函数在0x x =处一定连续。
( ) 3.有限个无穷小的代数和为无穷小。
( ) 4.函数()f x 在0x =处可导,则函数在0x =处一定连续。
( ) 5.如果数列{n x }收敛 ,那么数列一定有界。
( )二、选择题(每小题3分,共30分) 1.函数y =的定义域为( )A [2,1)(1,2]--⋃B [1,1]-C [2,1][1,2]--⋃D [2,2]-2.当0x →时, sin~5xx b, 则b=( ) A 0 B 5 C 15D ∞ 3.求cos(21)y x =+的微分=dy ( )A. sin(21)x dx -+B. 2sin(21)x dx -+C. 2sin(21)x dx +D. 2sin(21)x -+4.设函数⎩⎨⎧>-≤-=2,122,4)(2x x x x x f ,试指出函数在x=2处的间断点的类型( )A 可去间断的B 振荡间断的C 无穷间断的D 跳跃间断的 5.设函数23223+-=x x y ,那么函数在区间[0,2]内的有( ) A 最小值35,最大值310B 最小值0,最大值2C 最小值35,最大值 2D 最小值310,无最大值6.曲线32x x y -=在点(-2,4)的切线方程是( )。
A 、06=++y xB 、01610=++y xC 、02410=+-y xD 、06=+-y x7.(arccos )x '=( )A.C8.求极限0tan 3limsin 2x xx →=( )A 、32B 、23C 、1D 、09.求有参数方程⎩⎨⎧+=+=2cos 1sin 2t y t x (t 为参数)所确定的函数的导数dydx = ( )A.t t sin cos 2-B.t t sin cos 2C.t tan 21D.t tan 21- 10.若函数⎪⎩⎪⎨⎧=≠=0,0,sin )(x a x x xx f 在x=0处连续,那么a=( )A.2B. 1C. 0D.21三、填空题( 每小题3分,共15分) 1.22lim(32)x x x →+-=2.函数2(1),0(),0x x x f x x a x ⎧⎪+<=⎨⎪+≥⎩ 在0x =处连续,则a =3.设x x f =)(,x x g tan )(=,则=)]([x g f4.01cos limsin x xx x→-=5.设分段函数⎩⎨⎧<+≥-=2,322,4)(2x x x x x f ,则有f(0)=________,f(3)=_________四、计算题(每小题6分,共36分)1. x x x x x -+-→32123lim 2.2lim xx x x →∞+⎛⎫⎪⎝⎭3. 22657lim 4x x x x x→∞-+- 4.设)1sin(23x y +=,求y '。
经济数学基础12考试A及答
![经济数学基础12考试A及答](https://img.taocdn.com/s3/m/8db10d55fc4ffe473268ab20.png)
经济数学基础12考试A及答————————————————————————————————作者:————————————————————————————————日期:经济数学基础12 试题 A 卷及答案一、单项选择题(共20题,每题2分,共40分)1.下列函数中为偶函数的是( ).(A) sin y x x = (B) 2y x x =+(C) 22x x y -=- (D) cos y x x =2.下列函数中为奇函数的是( ).(A) sin y x x = (B) 1ln 1x y x -=+ (C) e e x x y -=+ (D) 2y x x =-3.下列各函数对中,( )中的两个函数相等. A.2()(),()f x x g x x == B. 21(),()11x f x g x x x -==+- C. 2()ln ,()2ln f x x g x x ==D. 22()sin cos ,()1f x x x g x =+=4.下列结论中正确的是( ).(A) 周期函数都是有界函数(B) 基本初等函数都是单调函数(C) 奇函数的图形关于坐标原点对称(D) 偶函数的图形关于坐标原点对称5.下列极限存在的是( ).A .22lim 1x x x →∞- B .01lim 21x x →- C .limsin x x →∞ D .10lime xx →6.已知()1sin x f x x=-,当( )时,)(x f 为无穷小量.A. 0x →B. 1x →C. x →-∞D. x →+∞正确答案:A7.当x →+∞时,下列变量为无穷小量的是( )A .ln(1)x +B .21x x +C .21e x - D .x x sin8.函数112,0(),0x x f x x k x ⎧-+≠⎪=⎨⎪=⎩在x = 0处连续,则k = ( ).A .-2B .-1C .1D .2 9.曲线sin y x =在点)0,π(处的切线斜率是( ).(A) 1 (B) 2 (C)21 (D) 1-10.曲线11y x =+在点(0, 1)处的切线斜率为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7315(A)
试卷代号:学年度第一学期期末考试2005—2006浙江广播电视大学级第一学期经济数学基础试卷财经05月2006年1
总分六七四二三题号五一
得分
3)分,共15分得分评卷人一、单项选择题(每小题
x1 )(1.设函数?)f?,则(2xf()1xx?)?1x?1)2(2(x21 D.B. C. A.
xx?12x1?x2
3x??y )的连续区间是(2.函数
))(x?1x(?2A.B. )???1,,?1) (?2) ?1,??)((??(??,?? C.D.??3,),??,(?2?1) (?1,(???2) 2?)(,则3. 设f(x)的一个原函数是x?dxxf(x)35xx253A.B.x+CC. D.C??CC?x3153 nB,A阶矩阵,则下列等式成立的是(4.设为).
????????)AAB(B(A?B)AB?B?(AB)?A BAAB? B. D.C.A.
AX?0AX?b(b?0)(线性方程组5.)只有0解,则.
A.有唯一解
B.可能无解
C.有无穷多解
D.无解
1 / 5
分)3分,共15得分评卷人二、填空题(每小
x x?lim().61?x??xx?x??ey内单调在区间(-1,1)7.函数???)] xfdx(xx[f()? 8.1??
3?2AB?B,A?B?3A,均为39.设,则阶矩阵,x?x?0?21?? 10.若线性方程组有非零解,则??x?0x??21
三、极限与微分计算题(每小题得分评卷人9分,共18分)
x?1?1?lim.11sin3x0x?
x2x?(xy))x?ee?ln(?1lntany?.设,求12
2 / 5
得分评卷人四、积分计算题(每小题9分,共18分)
ln(1?x)?dx.132x
dy x?x0y?e?满足初始条件14y(1)=e的特解.求微分方程. dx
3 / 5
得分评卷人五、代数计算题(每小题9分,共18分)
012??213????T A?114AX?B?B,15.设,求解矩阵方程?????356????2?10??
x?x?2x?x?1?4312?2x?x?2x?3x?2的一般解16.求线性方程组.?4312?x?3x?x?2x?0?1423
4 / 5
得分评卷人六、应用题(12分)
12件某产品的成本为C(x)=25000+200x+17.已知某厂生产x问x.40(1)要使平均成本最小,应生产多少件产品?
(2)如产品以每件500元出售,要使利润最大,应生产多少件产品?
得分评卷人七、证明题(4分)
2T AAIIAA?A?n是对称矩阵满足.设18阶矩阵,,证明5 / 5。